

Report No.:SZ10100003E05

FCC TEST REPORT

Issued to

Shinano Kenshi Co., Ltd.

For


Plextalk Pocket

Model Name: PTP1, PTP1/LINK
Trade Name: Plextalk
Brand Name: Plextor
FCC ID: WNU-PTP1A
Standard: 47 CFR Part 15 Subpart B
Test date: February 12,2011 – June 21, 2011
Issue date: October 26, 2011

by

Shenzhen Morlab Communications Technology Co., Ltd.

Tested by Tu Lang
Tu Lang
Date 2011.10.26

Review by Mo Huina
Mo Huina
Date 2011.10.26

CTIA Authorized Test Lab
LAB CODE 20081223-00
IEEE 1725 OTA

OFTA
電訊管理局

GCF
Official Observer of
Global Certification Forum

Bluetooth
FCC
Reg. No.
741109
BQTF

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced either in its entirety or in part and it may not be used for advertising. The client to whom the report is issued may, however, show or send it, or a certified copy thereof prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his customer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 EUT Description	3
1.2 Test Standards and Results	4
1.3 Facilities and Accreditations.....	5
1.3.1 Facilities	5
1.3.2 Test Environment Conditions.....	5
1.3.3 Measurement Uncertainty	5
2. TEST CONDITIONS SETTING.....	6
2.1 Test Mode	6
2.2 Test Setup and Equipments List.....	7
2.2.1 Conducted Emission.....	7
2.2.2 Radiated Emission.....	8
3. 47 CFR PART 15B REQUIREMENTS	10
3.1 Conducted Emission.....	10
3.1.1 Requirement	10
3.1.2 Test Description	10
3.1.3 Test Result.....	10
3.2 Radiated Emission	12
3.2.1 Requirement	12
3.2.2 Test Description	12
3.2.3 Test Result.....	12

Change History		
Issue	Date	Reason for change
1.0	October 26, 2011	First edition

1. GENERAL INFORMATION

1.1 EUT Description

EUT Type..... PlexTalk Pocket
Serial No. (n.a., marked #1 by test site)
Hardware Version PTP1 (TLA 0609), PTP1/LINK (TLA0709)
Software Version..... V1.00.0078
Applicant..... Shinano Kenshi Co., Ltd.
1078, Kami-Maruko, Ueda-Shi, Nagano-Ken, 386-0498, Japan
Manufacturer..... GROUP SENSE (International) Ltd
6th Floor, Building 9, No.5 Science Park West Avenue, Hong Kong
Science Park, Shatin, New Territories, Hong Kong
Modulation Type..... DSSS
Power supply Battery
Brand Name: PLEXTOR
Model No.: PTP1
Serial No.: (n.a. marked #1 by test site)
Capacitance: 1430mAh
Rated Voltage: 3.7V
Charge Limit: 4.2V
Ancillary Equipment 1.... AC Adapter (Charger for Battery)
Brand Name: Ten Pao
Model No.: S012WV0500180 (EU)
S012BU0500180 (US, Canada)
S012BB0500180 (UK)
S012BS0500180 (Australia)
S012BT0500180 (Japan)
Serial No.: (n.a. marked #1 by test site)
Rated Input: ~ 100-240V, 450mA, 50/60Hz
Rated Output: = 5V, 1800mA
Manufacturer: Ten Pao International Ltd

Note 1: The EUT is DAISY Book Playback and Voice Recording Machine include and Wi-Fi Module, with 802.11b/g interface

Note 2: The EUT have two sample which is the model name is PTP1/LINK (Without iNAND) and PTP1 (With iNAND). During the measurement, the PTP1/LINK was used.

Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart B:

No.	Identity	Document Title
1	47 CFR Part 15 (10-1-09 Edition)	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result
1	15.107	Conducted Emission	PASS
2	15.109	Radiated Emission	PASS

NOTE: The tests were performed according to the method of measurements prescribed in ANSI C63.4 2009.

1.3 Facilities and Accreditations

1.3.1 Facilities

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at 3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22; the FCC registration number is 741109.

1.3.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 - 60
Atmospheric Pressure (kPa):	86 -106

1.3.3 Measurement Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

Uncertainty of Conducted Emission:	±1.8dB
Uncertainty of Radiated Emission:	±3.1dB

2. TEST CONDITIONS SETTING

2.1 Test Mode

During the measurement, the test modes of the EUT are showed as below:

(1) The first test mode (SD)

The EUT configuration of the emission tests is EUT + Battery + Charger + SD Card.

During the test, the SD Card was inserted into the EUT. And the date was transmitted between EUT and SD Card

(2) The second test mode (USB)

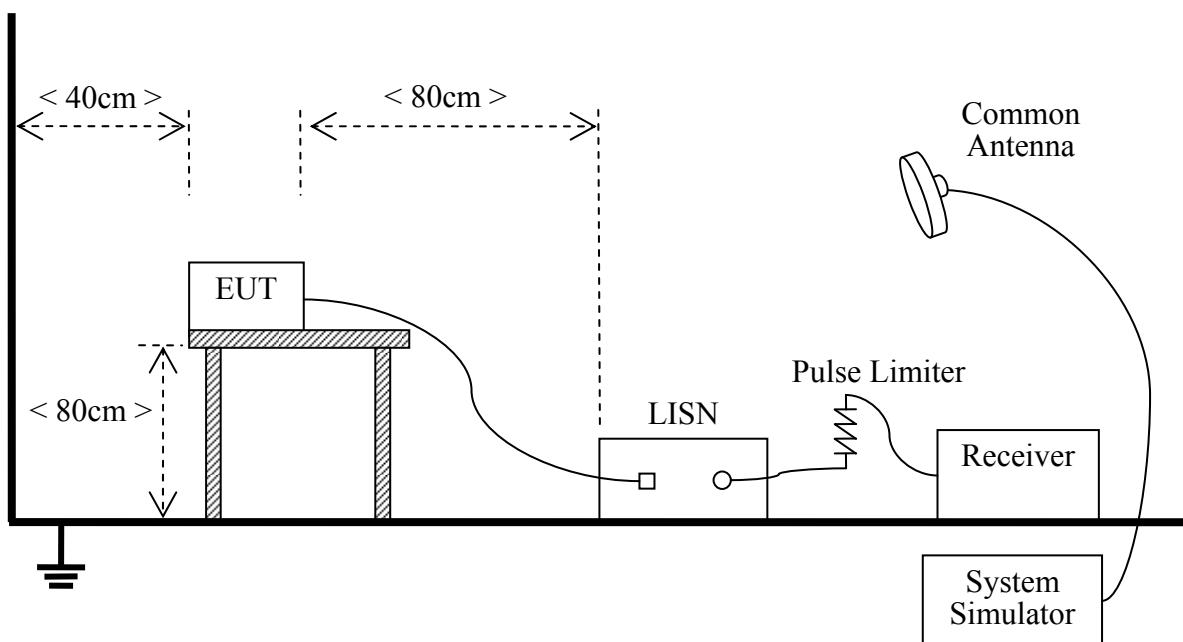
The EUT configuration of the emission tests is EUT + Battery + Charger + USB.

During the test, the USB was connected with EUT via USB cable. And the date was transmitted between EUT and USB.

NOTE: All test modes are performed, only the worst cases are recorded in this report.

2.2 Test Setup and Equipments List

2.2.1 Conducted Emission


A. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.4-2009 on Conducted Emission Measurement.

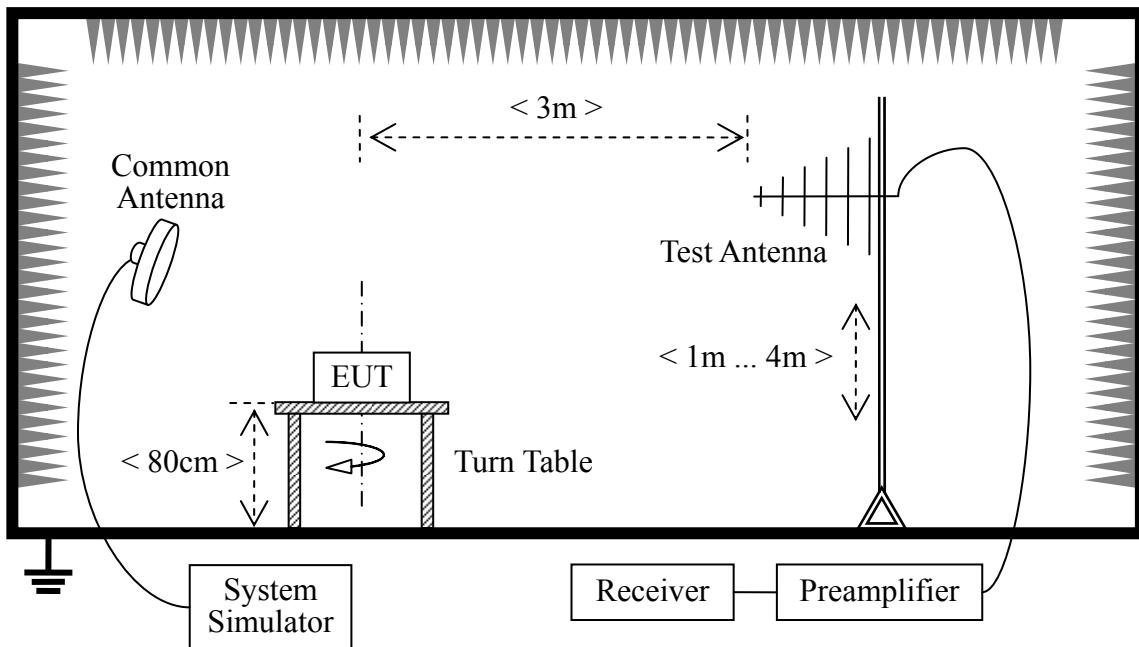
The bandwidth of test receiver (ESCI) set at 9KHz.

The frequency range from 150KHz to 30MHz is checked.

B. Test Setup:

The EUT is placed on a 0.8m high insulating table, which stands on the grounded conducting floor, and keeps 0.4m away from the grounded conducting wall. The EUT is connected to the power mains through a LISN which provides $50\Omega/50\mu\text{H}$ of coupling impedance for the measuring instrument. The Common Antenna is used for the call between the EUT and the System Simulator (SS). A Pulse Limiter is used to protect the measuring instrument. The factors of the whole test system are calibrated to correct the reading.

C. Equipments List:


Description	Manufacturer	Model	Serial No.	Cal. Date
Receiver	Agilent	E7405A	US44210471	2011.05
LISN	Schwarzbeck	NSLK 8127	812744	2011.05
Pulse Limiter (20dB)	Schwarzbeck	VTSD 9561-D	9391	(n.a.)
System Simulator	Agilent	E5515C	GB43130131	2011.05
Personal Computer	IBM	IBM_T20	(n.a.)	(n.a.)
Bluetooth-Headset	Nokia	HS-36W	(n.a.)	(n.a.)
T-Flash Card	SanDisk	256MB	(n.a.)	(n.a.)

2.2.2 Radiated Emission

A. Test Procedure

- The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- For the actual test configuration, please refer to the related Item –EUT Test Photos.

B. Test Setup:

The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor, cable loss and so on of the site (factors) is calculated to correct the reading. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3m away from the Test Antenna, which is mounted on a variable-height antenna master tower. The Common Antenna is used for the call between the EUT and the System Simulator (SS).

C. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date
Receiver	Agilent	E7405A	US44210471	2011.05
Semi-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2011.05
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2011.05
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2011.05
Test Antenna - Monopole	Schwarzbeck	VAMP 9243	9243236	2011.05
System Simulator	Agilent	E5515C	GB43130131	2011.05
Personal Computer	IBM	IBM_T20	(n.a)	(n.a.)
Bluetooth-Headset	Nokia	HS-36W	(n.a.)	(n.a.)
T-Flash Card	SanDisk	256MB	(n.a.)	(n.a.)

3. 47 CFR PART 15B REQUIREMENTS

3.1 Conducted Emission

3.1.1 Requirement

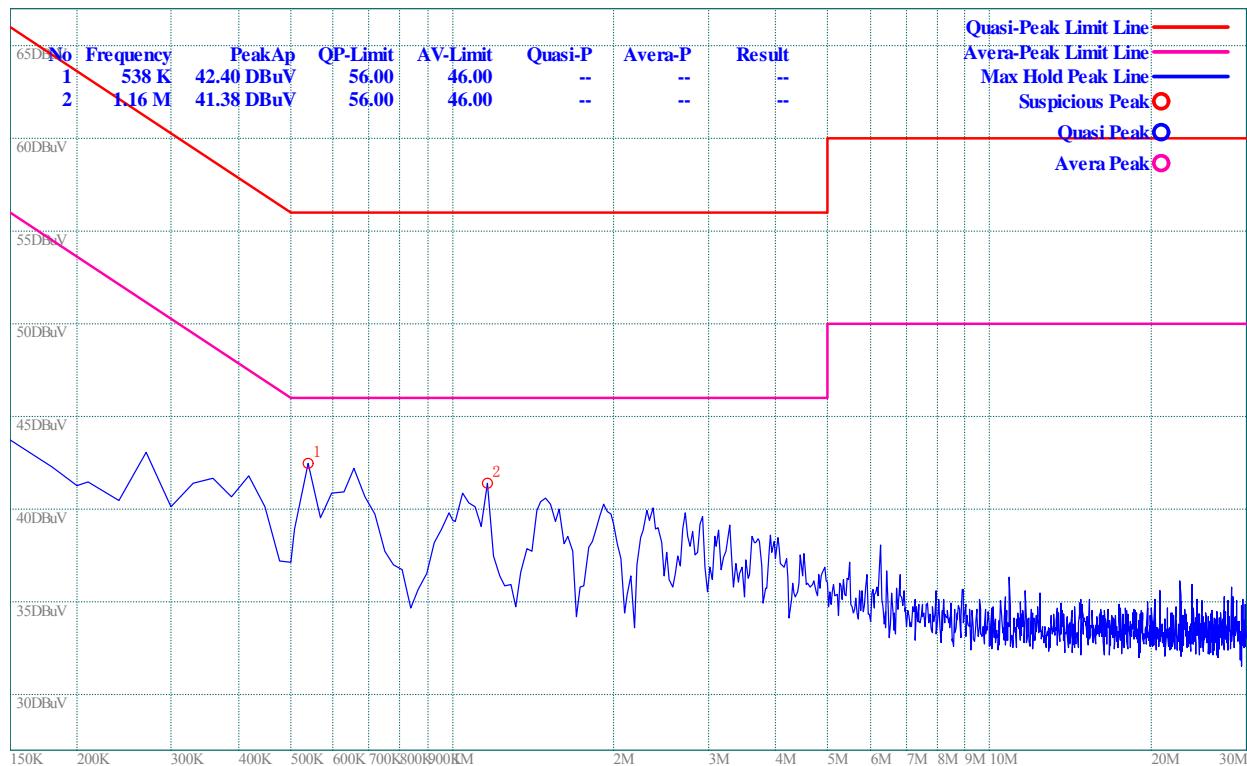
According to FCC section 15.107, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN).

Frequency range (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5 - 30	60	50

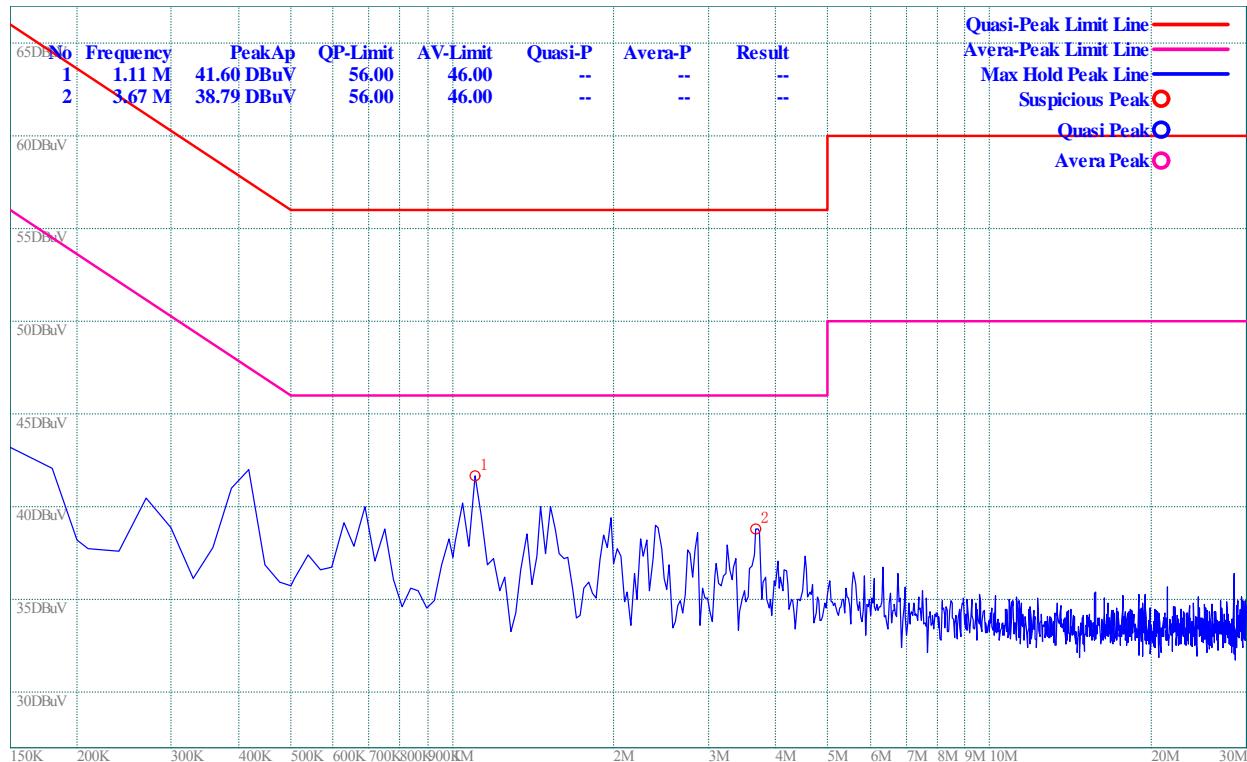
NOTE:

- a) The limit subjects to the Class B digital device.
- b) The lower limit shall apply at the band edges.
- c) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

3.1.2 Test Description


See section 2.2.1 of this report.

3.1.3 Test Result


The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. All test modes are considered, refer to recorded points and plots below.

3.1.3.1 Test Mode

A. Test Plot and Suspicious Points:

(Plot A: L Phase)

(Plot B: N Phase)

Test Result : PASS

3.2 Radiated Emission

3.2.1 Requirement

According to FCC section 15.109, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency range (MHz)	Field Strength		Field Strength Limitation at 3m Measurement Dist	
	$\mu\text{V/m}$	Dist	(uV/m)	(dBuV/m)
0.009 - 0.490	2400/F(KHz)	300m	10000* 2400/F(KHz)	20log 2400/F(KHz) + 80
0.490 - 1.705	2400/F(KHz)	30m	100* 2400/F(KHz)	20log 2400/F(KHz) + 40
1.705 - 30.00	30	30m	100*30	20log 30 + 40
30.0 - 88.0	100	3m	100	20log 100
88.0 - 216.0	150	3m	150	20log 150
216.0 - 960.0	200	3m	200	20log 200
Above 960.0	500	3m	500	20log 500

As shown in FCC section 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector. When average radiated emission measurements are specified in this part, including emission measurements below 1000MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

Note:

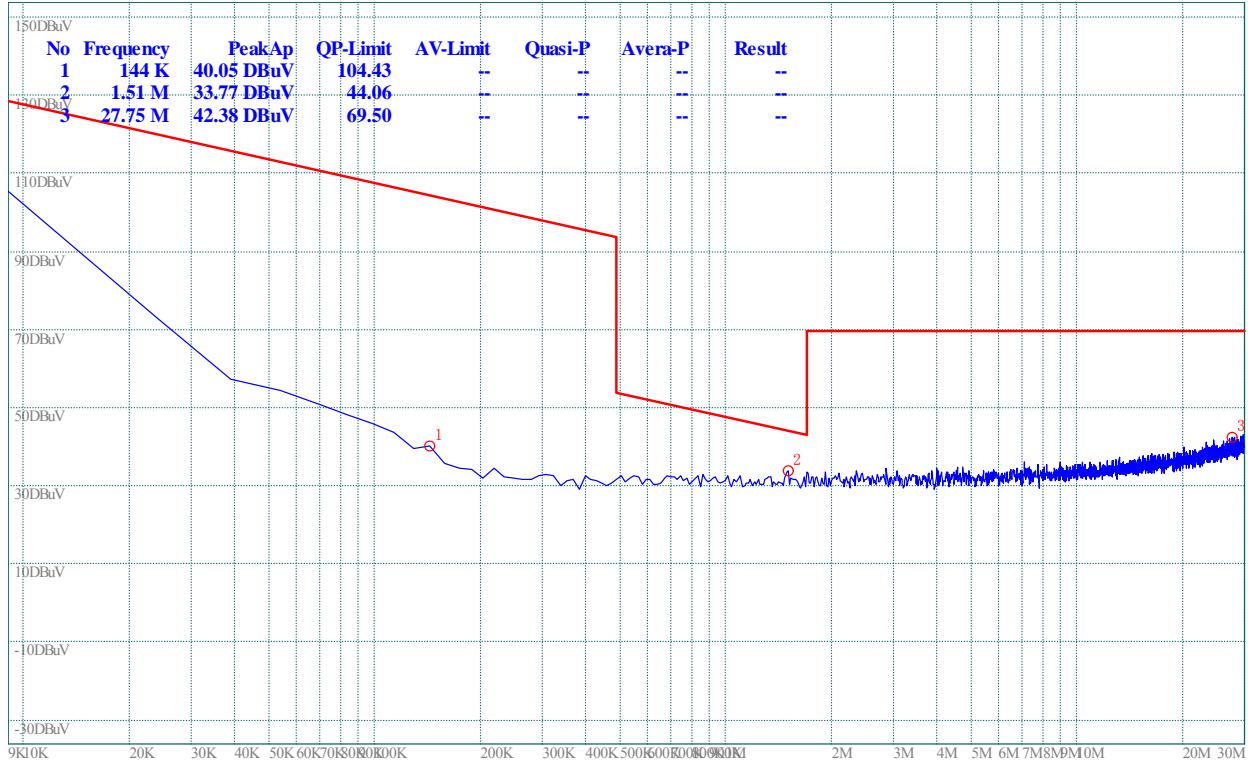
- 1) The tighter limit shall apply at the boundary between two frequency range.
- 2) Limitation expressed in dBuV/m is calculated by $20\log$ Emission Level(uV/m).
- 3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of $Ld1 = Ld2 * (d2/d1)^2$.

Example:

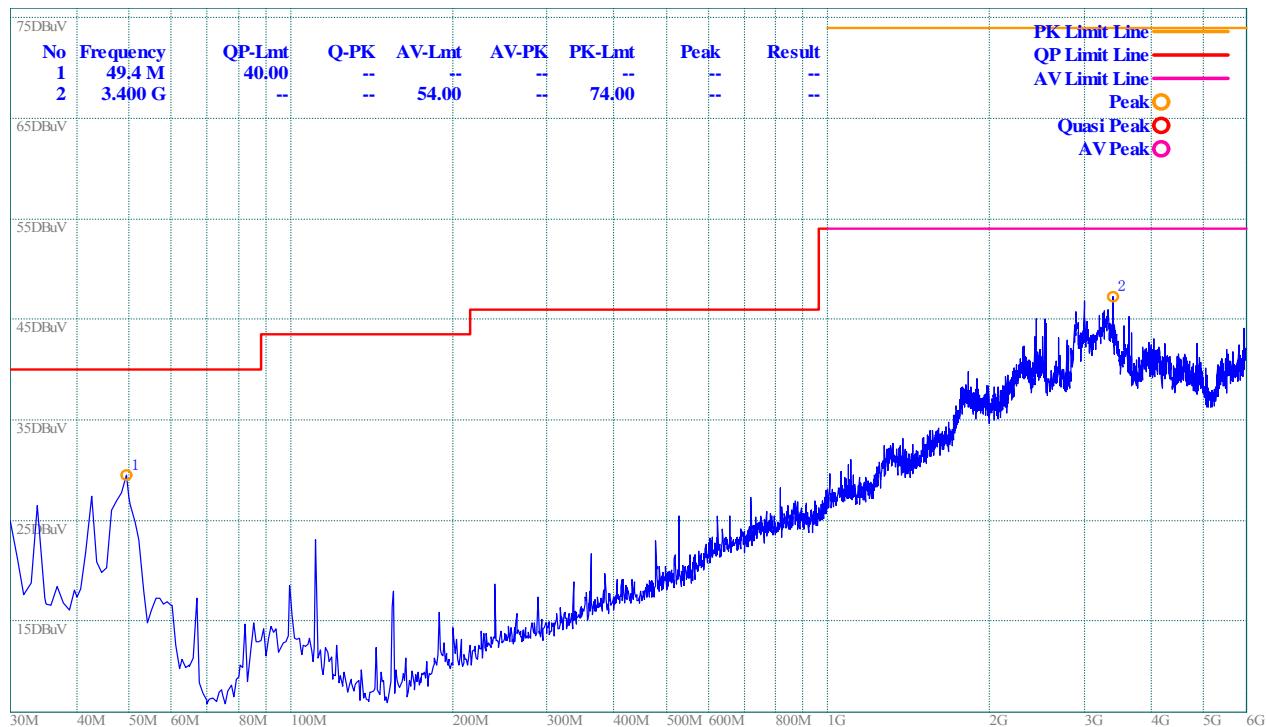
F.S Limit at 30m distance is 30uV/m, then F.S Limitation at 3m distance is adjusted as
 $Ld1 = Ld2 * (10)^2 = 100 * 30\text{uV/m}$

3.2.2 Test Description

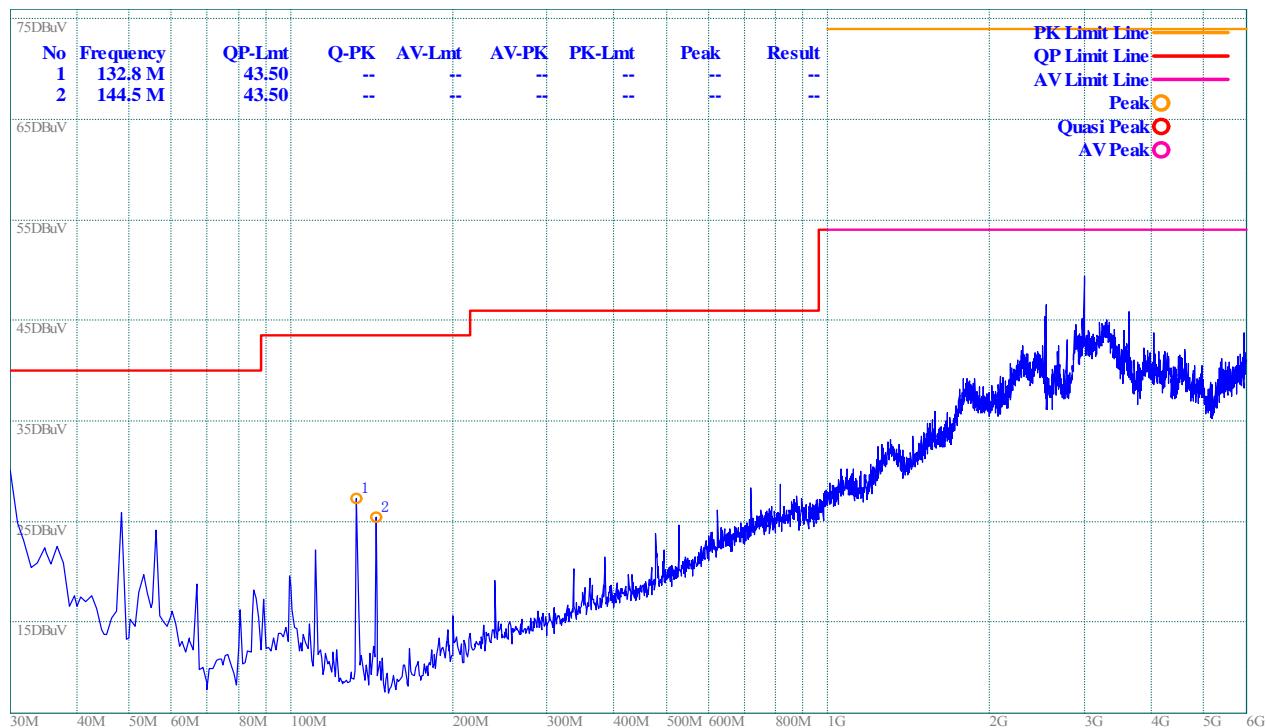
See section 2.2.2 of this report.


3.2.3 Test Result

The maximum radiated emission is searched using PK, QP and AV detectors; the emission levels more than the limits, and that have narrow margins from the limits will be re-measured with AV and QP detectors. Both the vertical and the horizontal polarizations of the Test Antenna are considered to


perform the tests. All test modes are considered, refer to recorded points and plots below.

3.2.3.1 Test Mode


A. Test Plots and Suspicious Points:

(Plot A: 9K – 30M)

(Plot B: Test Antenna Vertical)

(Plot C: Test Antenna Horizontal)

Test Result : PASS

** END OF REPORT **