

**** MPE Calculations for GSM 850****

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

$EIRP = P + G$	Where,
$EIRP = 31.8 \text{ dBm} + 2 \text{ dBi}$	$P = \text{Power input to the antenna (mW)}$
$EIRP = 33.8 \text{ dBm}$	$G = \text{Power gain of the antenna (dBi)}$

Power density at the specific separation:

$S = PG/(4R^2 \pi)$	Where,
$S = (1513.56 * 1.58) / (4 * 20^2 * \pi)$	$S = \text{Maximum power density (mW/cm}^2\text{)}$ $P = \text{Power input to the antenna (mW)}$ $G = \text{Numeric power gain of the antenna}$
$S = 0.4775 \text{ mW/cm}^2$	$R = \text{Distance to the center of the radiation of the antenna}$ (20cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm^2 .

The power density does not exceed the 1 mW/cm^2 limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG / 4\pi)}$	Where,
$R = \sqrt{(1513.56 * 1.58 / 4\pi)}$	$P = \text{Power input to the antenna (mW)}$ $G = \text{Numeric power gain of the antenna}$
$R = 13.82 \text{ cm}$	$R = \text{Distance to the center of the radiation of the antenna}$ (20cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = \log^{-1} (\text{dB antenna gain} / 10)$$

$$G = \log^{-1} (2 / 10)$$

$$G = 1.58$$

**** MPE Calculations for GSM 1900****

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

$EIRP = P + G$	Where,
$EIRP = 29.3 \text{ dBm} + 1 \text{ dBi}$	$P = \text{Power input to the antenna (mW)}$
$EIRP = 30.3 \text{ dBm}$	$G = \text{Power gain of the antenna (dBi)}$

Power density at the specific separation:

$S = PG/(4R^2 \pi)$	Where,
$S = (851.14 * 1.26) / (4 * 20^2 * \pi)$	$S = \text{Maximum power density (mW/cm}^2\text{)}$
$S = 0.2113 \text{ mW/cm}^2$	$P = \text{Power input to the antenna (mW)}$ $G = \text{Numeric power gain of the antenna}$ $R = \text{Distance to the center of the radiation of the antenna}$ (20cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm².

The power density does not exceed the 1 mW/cm² limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG / 4\pi)}$	Where,
$R = \sqrt{(851.14 * 1.26 / 4\pi)}$	$P = \text{Power input to the antenna (mW)}$
$R = 9.24 \text{ cm}$	$G = \text{Numeric power gain of the antenna}$ $R = \text{Distance to the center of the radiation of the antenna}$ (20cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = \log^{-1} (\text{dB antenna gain} / 10)$$

$$G = \log^{-1} (1 / 10)$$

$$G = 1.26$$