

MRT Technology (Suzhou) Co., Ltd
Phone: +86-512-66308358
Fax: +86-512-66308368
Web: www.mrt-cert.com

Report No.: 1504RSU00402
Report Version: V01
Issue Date: 04-05-2015

MEASUREMENT REPORT

FCC PART 15.407 WLAN 802.11a/n

FCC ID: WL6-TR10RS1AP6330

APPLICANT: ELITEGROUP COMPUTER SYSTEMS CO., LTD

Application Type: Certification

Product: Tablet PC

Model No.: TR10RS1

Trademark: ECS ELITEGROUP

FCC Classification: Unlicensed National Information Infrastructure (UNII)

FCC Rule Part(s): Part 15.407

Test Procedure(s): ANSI C63.10-2009, KDB 789033 D02v01

Test Date: Apr. 03 ~ 04, 2015

Reviewed By : Robin Wu
(Robin Wu)

Approved By : Marlin Chen
(Marlin Chen)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 789033 D02v01. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date
1504RSU00402	Rev. 01	Initial report	04-05-2015

CONTENTS

Description	Page
§2.1033 General Information	6
1. INTRODUCTION	7
1.1. Scope	7
1.2. MRT Test Location	7
2. PRODUCT INFORMATION	8
2.1. Equipment Description	8
2.2. Working Frequencies	8
2.3. Test Mode	8
2.4. Test Software.....	8
2.5. Device Capabilities.....	9
2.6. Test Configuration	9
2.7. EMI Suppression Device(s)/Modifications	9
2.8. Labeling Requirements	10
3. DESCRIPTION OF TEST	11
3.1. Evaluation Procedure	11
3.2. AC Line Conducted Emissions.....	11
3.3. Radiated Emissions.....	12
4. ANTENNA REQUIREMENTS	13
5. TEST EQUIPMENT CALIBRATION DATE	14
6. MEASUREMENT UNCERTAINTY	15
7. TEST RESULT	16
7.1. Summary	16
7.2. 26dB Bandwidth Measurement	18
7.2.1. Test Limit	18
7.2.2. Test Procedure used	18
7.2.3. Test Setting.....	18
7.2.4. Test Setup	18
7.2.5. Test Result.....	19
7.3. 6dB Bandwidth Measurement	24
7.3.1. Test Limit	24
7.3.2. Test Procedure used	24
7.3.3. Test Setting.....	24

7.3.4. Test Setup	24
7.3.5. Test Result.....	25
7.4. Output Power Measurement	27
7.4.1. Test Limit	27
7.4.2. Test Procedure Used.....	27
7.4.3. Test Setting.....	27
7.4.4. Test Setup	28
7.4.5. Test Result.....	29
7.5. Transmit Power Control.....	31
7.5.1. Test Limit	31
7.5.2. Test Procedure Used.....	31
7.5.3. Test Setting.....	31
7.5.4. Test Setup	31
7.5.5. Test Result.....	31
7.6. Power Spectral Density Measurement	32
7.6.1. Test Limit	32
7.6.2. Test Procedure Used.....	32
7.6.3. Test Setting.....	32
7.6.4. Test Setup	33
7.6.5. Test Result.....	34
7.7. Frequency Stability Measurement	40
7.7.1. Test Limit	40
7.7.2. Test Procedure Used.....	40
7.7.3. Test Setup	40
7.7.4. Test Result.....	41
7.8. Radiated Spurious Emission Measurement	43
7.8.1. Test Limit	43
7.8.2. Test Procedure Used.....	43
7.8.3. Test Setting.....	43
7.8.4. Test Setup	44
7.8.5. Test Result.....	46
7.9. Radiated Restricted Band Edge Measurement	76
7.9.1. Test Limit	76
7.9.2. Test Result of Radiated Restricted Band Edge	78
7.10. AC Conducted Emissions Measurement.....	126
7.10.1. Test Limit	126
7.10.2. Test Procedure	126
7.10.3. Test Setup	127

7.10.4. Test Result.....	128
8. CONCLUSION.....	130

§2.1033 General Information

Applicant:	ELITEGROUP COMPUTER SYSTEMS CO., LTD
Applicant Address:	No.239, Sec. 2, Tiding Blvd., Neihu Dist, Taipei City 14, Taiwan (R.O.C)
Manufacturer:	ELITEGROUP COMPUTER SYSTEMS CO., LTD
Manufacturer Address:	No.239, Sec. 2, Tiding Blvd., Neihu Dist, Taipei City 14, Taiwan (R.O.C)
Test Site:	MRT Technology (Suzhou) Co., Ltd
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China
MRT FCC Registration No.:	809388
FCC Rule Part(s):	Part 15.407
Model No.:	TR10RS1
FCC ID:	WL6-TR10RS1AP6330
Test Device Serial No.:	N/A <input type="checkbox"/> Production <input checked="" type="checkbox"/> Pre-Production <input type="checkbox"/> Engineering
FCC Classification:	Unlicensed National Information Infrastructure (UNII)

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 809388) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-4179, G-814, C-4664, T-2206) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, EU and TELEC Rules.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	Tablet PC
Model No.	TR10RS1
Frequency Range	For 802.11a/n-HT20: 5180~5320MHz, 5500~5700MHz, 5745~5825MHz
Maximum Output Power	802.11a: 13.22dBm 802.11n-HT20: 12.78dBm
Type of Modulation	802.11a/n: OFDM
Antenna Gain	<u>For 2.4GHz</u> 0.77dBi for 2.4GHz <u>For 5GHz</u> 1.08dBi for 5.2GHz 0.90dBi for 5.3GHz 0.56dBi for 5.6GHz 0.53dBi for 5.8GHz

2.2. Working Frequencies

Channel List for 802.11a/n-HT20

Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180 MHz	40	5200 MHz	44	5220 MHz
48	5240 MHz	52	5260 MHz	56	5280 MHz
60	5300 MHz	64	5320 MHz	100	5500 MHz
104	5520 MHz	108	5540 MHz	112	5560 MHz
116	5580 MHz	120	5600 MHz	124	5620 MHz
128	5640 MHz	132	5660 MHz	136	5680 MHz
140	5700 MHz	149	5745 MHz	153	5765 MHz
157	5785 MHz	161	5805 MHz	165	5825 MHz

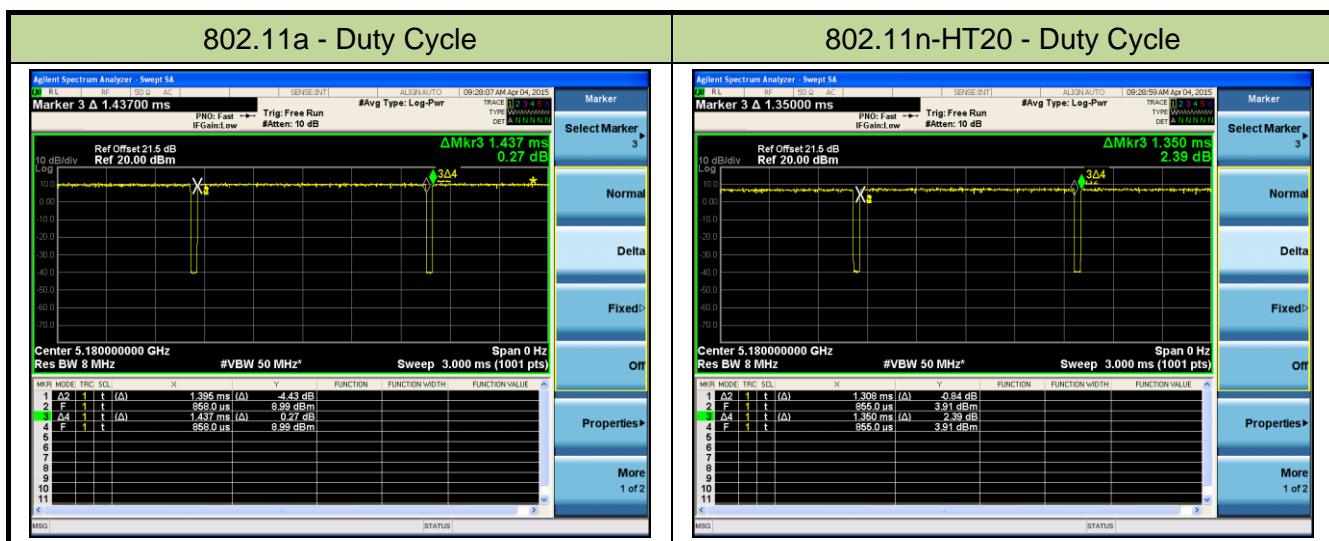
2.3. Test Mode

Test Mode	Mode 1: Transmit by 802.11a
	Mode 2: Transmit by 802.11n-HT20

2.4. Test Software

The test utility software used during testing was “iftesttool”.

2.5. Device Capabilities


This device contains the following capabilities:

2.4GHz WLAN (DTS) & 5GHz WLAN (UNII).

Note: 5GHz (UNII) operation is possible in 20MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B2(b) of KDB 789033 D02v01. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100.

The duty cycles are as follows:

Test Mode	Duty Cycle
802.11a	97.1%
802.11n-HT20	96.9%

2.6. Test Configuration

The **Tablet PC FCC ID: WL6-TR10RS1AP6330** was tested per the guidance of KDB 789033 D02v01. ANSI C63.10-2009 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.7. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.8. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2009), and the guidance provided in KDB 789033 D02v01 were used in the measurement of the **Tablet PC FCC ID: WL6-TR10RS1AP6330**.

Deviation from measurement procedure..... **None**

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, 50Ω/50uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2009.

Line conducted emissions test results are shown in Section 7.10.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 0.8 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found. Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB BeamWidth of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

“An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.”

- The antenna of the **Tablet PC** is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The **Tablet PC FCC ID: WL6-TR10RS1AP6330** unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	101209	1 year	2015/11/07
Two-Line V-Network	R&S	ENV216	101683	1 year	2015/11/07
Two-Line V-Network	R&S	ENV216	101684	1 year	2015/11/07
Temperature/ Meter Humidity	Anymetre	TH101B	SR2-01	1 year	2015/11/14

Radiated Emission

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2015/10/09
EMI Test Receiver	R&S	ESR7	101209	1 year	2015/11/07
Preamplifier	MRT	AP18G40	S-001	1 year	2015/10/06
Preamplifier	Agilent	83017A	MY53270040	1 year	2015/12/13
Loop Antenna	Schwarzbeck	FMZB1519	1519-041	1 year	2015/11/08
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	1 year	2015/11/08
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1167	1 year	2015/11/08
Broadband Horn Antenna	Schwarzbeck	BBHA9170	9170-549	1 year	2016/01/05
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2015/11/14

Conducted Test Equipment

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Agilent	N9020A	MY52090106	1 year	2015/04/23
USB Wideband Power Sensor	Boonton	55006	8911	1 year	2015/10/15
Temperature & Humidity Chamber	BAOYT	BYH-1500L	1309W043	1 year	2015/11/20
Temperature/Humidity Meter	Anymetre	TH101B	TR3-01	1 year	2015/11/14

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

AC Conducted Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 150kHz~30MHz: 3.46dB
Radiated Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 9kHz ~ 1GHz: 4.18dB 1GHz ~ 40GHz: 4.76dB

7. TEST RESULT

7.1. Summary

Product Name: Tablet PC
FCC ID: WL6-TR10RS1AP6330
FCC Classification: Unlicensed National Information Infrastructure (UNII)
Data Rate(s) Tested: 6Mbps ~ 54Mbps (a);
6.5/7.2Mbps ~ 65/72.2Mbps (n-HT20MHz BW);

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.407(a)	26dB Bandwidth	N/A	Conducted	Pass	Section 7.2
15.407(e)	6dB Bandwidth	$\geq 500\text{kHz}$		Pass	Section 7.3
15.407(a)(1)(ii), (2), (3)	Maximum Conducted Output Power	$< 30.00 \text{ dBm U-NII-1}$ $< 23.98 \text{ dBm U-NII-2a}$ $< 23.98 \text{ dBm U-NII-2b}$ $< 30.00 \text{ dBm U-NII-3}$		Pass	Section 7.4
15.407(h)(1)	Transmit Power Control	$< 24 \text{ dBm}$		Pass	Section 7.5
15.407(a)(1)(ii), (2), (3), (5)	Peak Power Spectral Density	$< 17 \text{ dBm/MHz U-NII-1}$ $< 11 \text{ dBm/MHz U-NII-2a}$ $< 11 \text{ dBm/MHz U-NII-2b}$ $< 30 \text{ dBm/500kHz U-NII-3}$	Radiated	Pass	Section 7.6
15.407(g)	Frequency Stability	N/A		Pass	Section 7.7
15.407(b)(1), (2), (3), (4)	Undesirable Emissions	$< -27\text{dBm/MHz EIRP}$ $< -17\text{dBm/MHz EIRP}$	Radiated	Pass	Section 7.8 & 7.9
15.205, 15.209 15.407(b)(5), (6), (7)	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209		Pass	
15.207	AC Conducted Emissions 150kHz - 30MHz	$< \text{FCC 15.207 limits}$	Line Conducted	Pass	Section 7.10

Notes:

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The

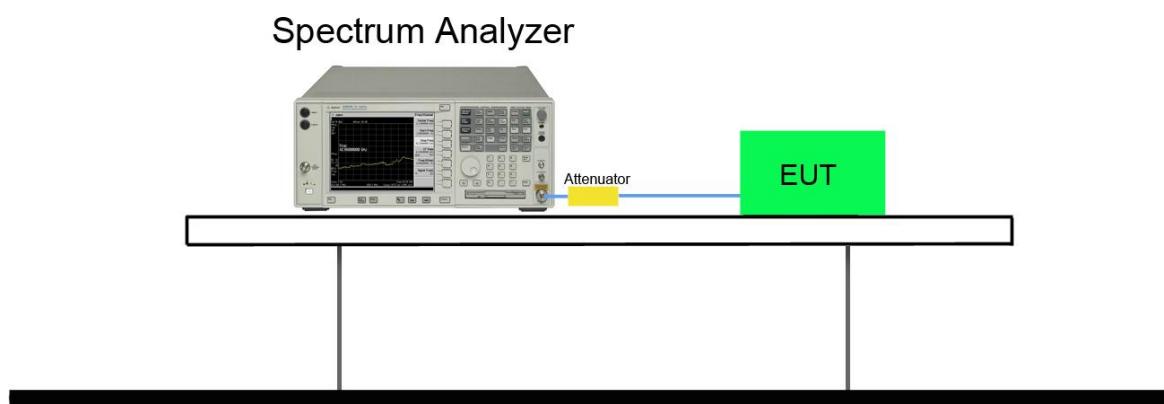
correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

7.2. 26dB Bandwidth Measurement

7.2.1. Test Limit

N/A

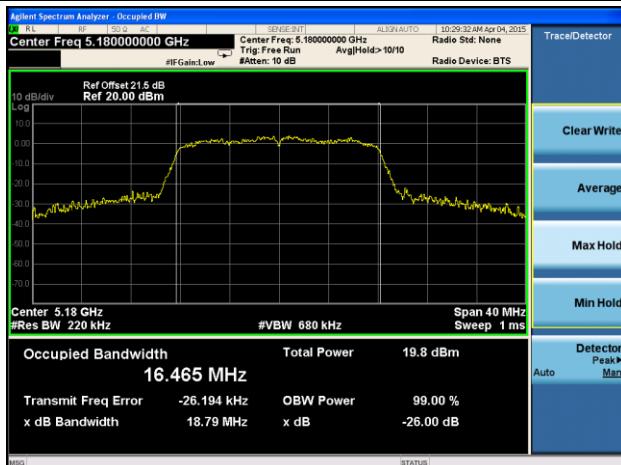

7.2.2. Test Procedure used

KDB 789033 D02v01 - Section C.1

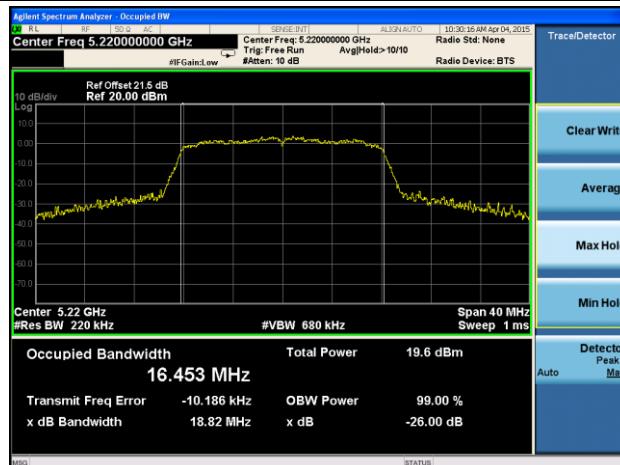
7.2.3. Test Setting

1. The analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediated power nulls in the fundamental emission.
2. RBW = approximately 1% of the emission bandwidth.
3. VBW $\geq 3 \times$ RBW.
4. Detector = Peak.
5. Trace mode = max hold.

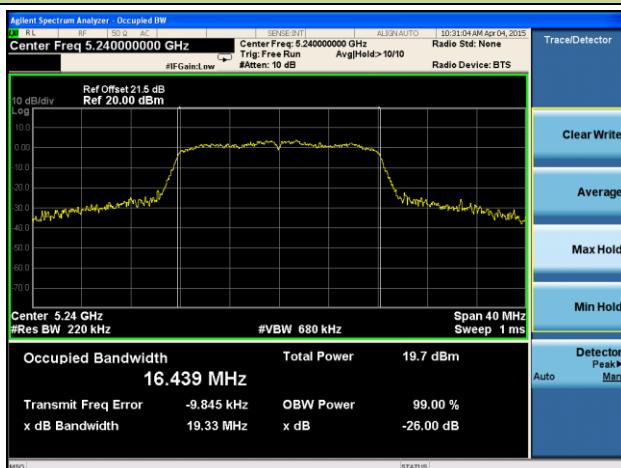
7.2.4. Test Setup

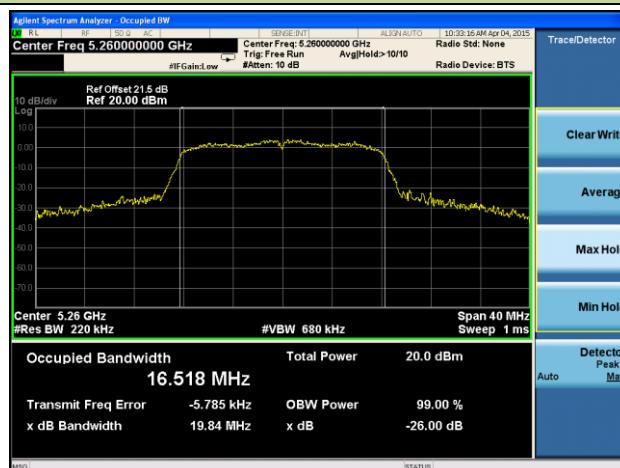


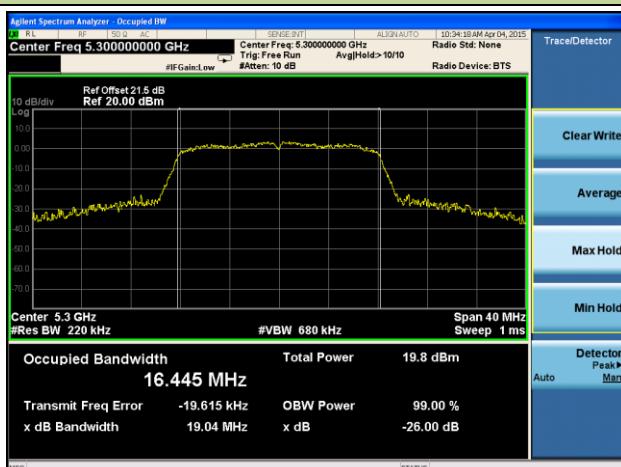
7.2.5. Test Result

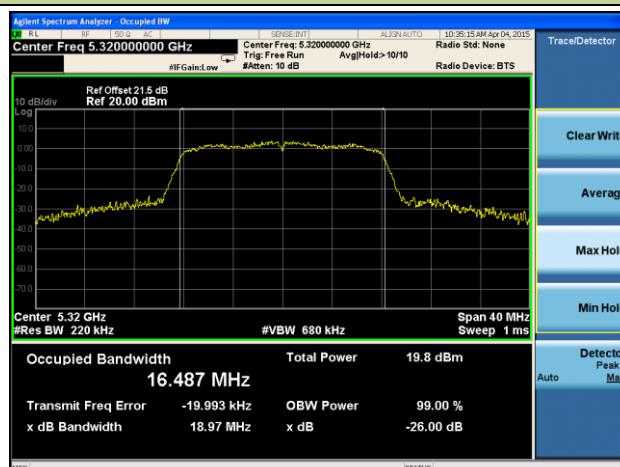

Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
802.11a	6	36	5180	18.79	16.47	Pass
802.11a	6	44	5220	18.82	16.45	Pass
802.11a	6	48	5240	19.33	16.44	Pass
802.11a	6	52	5260	19.84	16.52	Pass
802.11a	6	60	5300	19.04	16.45	Pass
802.11a	6	64	5320	18.97	16.49	Pass
802.11a	6	100	5500	18.83	16.45	Pass
802.11a	6	120	5600	18.86	16.42	Pass
802.11a	6	140	5700	19.07	16.47	Pass
802.11a	6	149	5745	20.46	16.56	Pass
802.11a	6	157	5785	22.16	16.51	Pass
802.11a	6	165	5825	22.62	16.57	Pass
802.11n-HT20	6.5	36	5180	19.13	17.45	Pass
802.11n-HT20	6.5	44	5220	19.17	17.49	Pass
802.11n-HT20	6.5	48	5240	19.06	17.48	Pass
802.11n-HT20	6.5	52	5260	19.20	17.47	Pass
802.11n-HT20	6.5	60	5300	19.12	17.46	Pass
802.11n-HT20	6.5	64	5320	19.10	17.47	Pass
802.11n-HT20	6.5	100	5500	19.15	17.49	Pass
802.11n-HT20	6.5	120	5600	19.09	17.47	Pass
802.11n-HT20	6.5	140	5700	19.20	17.47	Pass
802.11n-HT20	6.5	149	5745	19.06	17.50	Pass
802.11n-HT20	6.5	157	5785	20.42	17.50	Pass
802.11n-HT20	6.5	165	5825	20.77	17.52	Pass

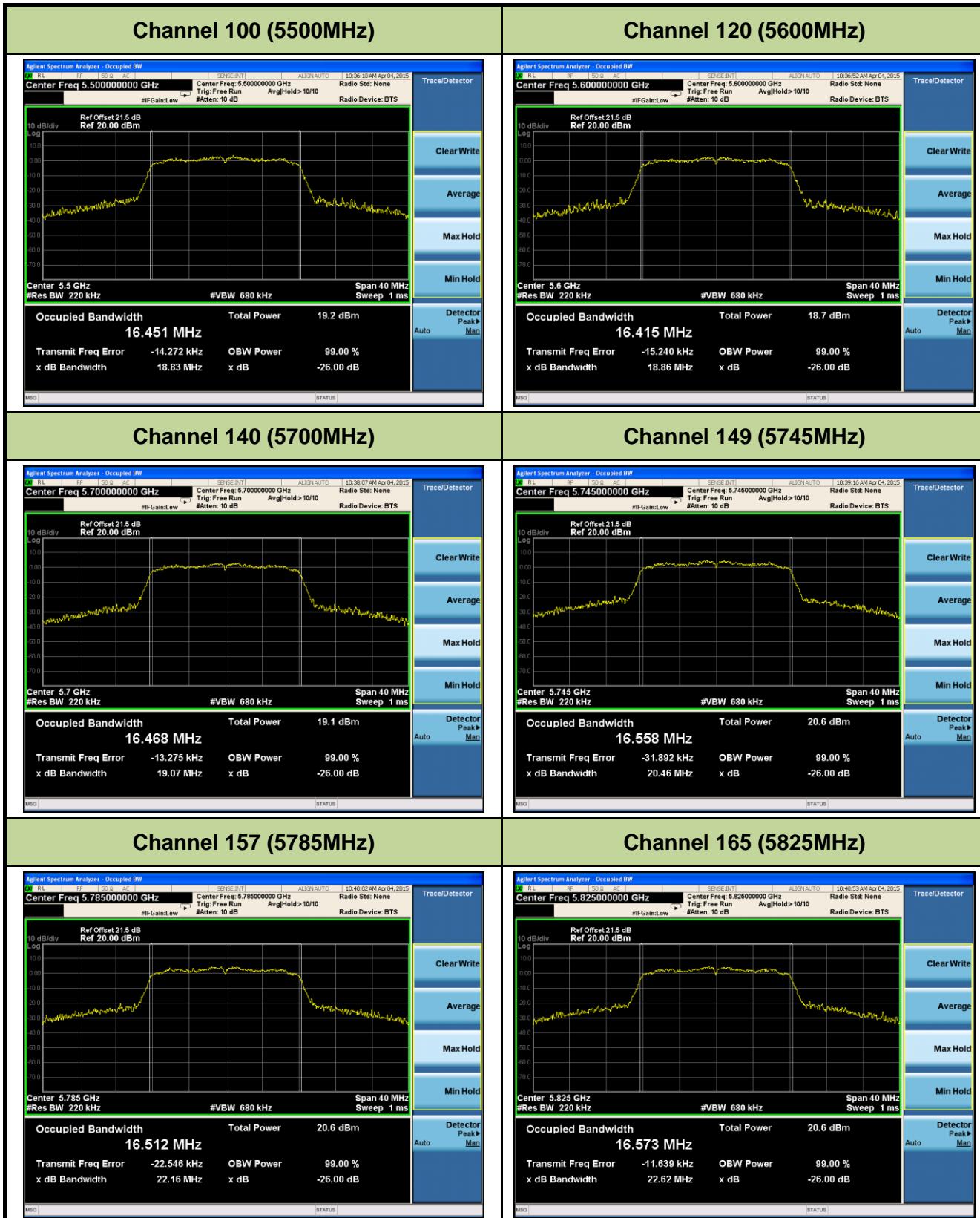
802.11a 26dB Bandwidth & 99% Bandwidth


Channel 36 (5180MHz)

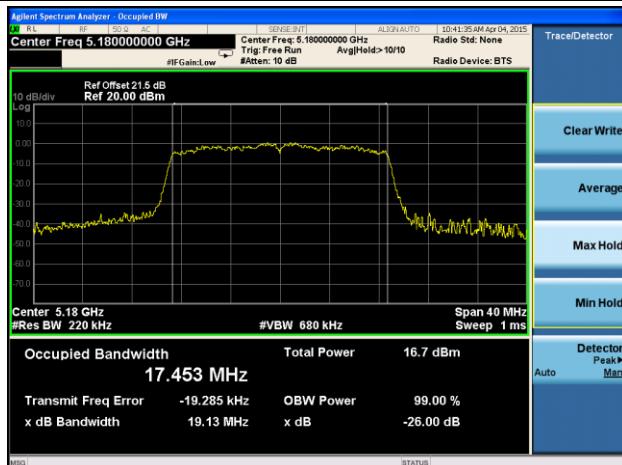

Channel 44 (5220MHz)


Channel 48 (5240MHz)

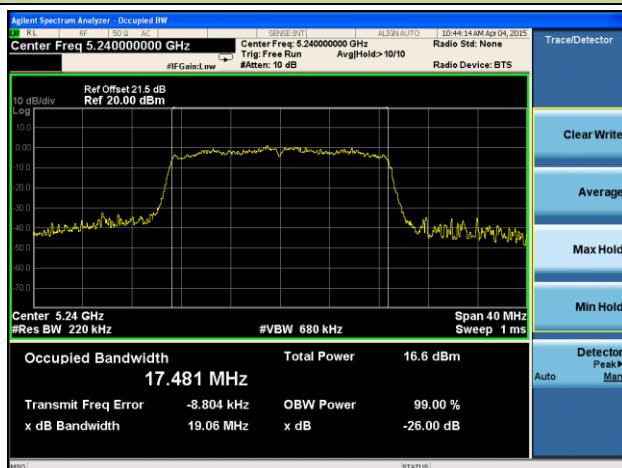

Channel 52 (5260MHz)

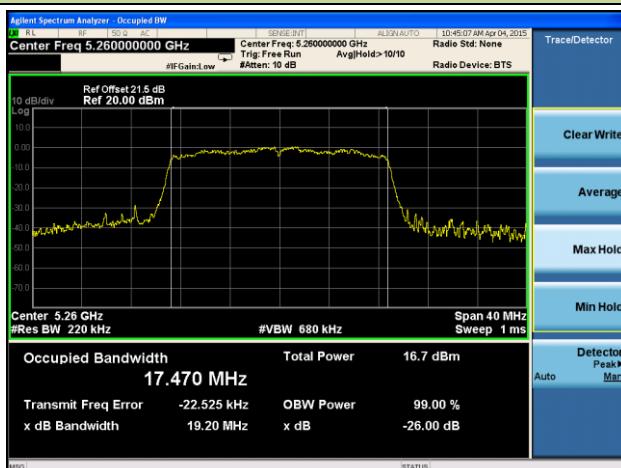


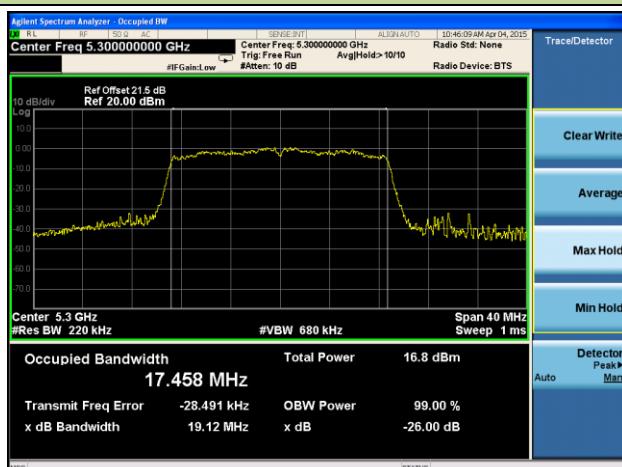
Channel 60 (5300MHz)

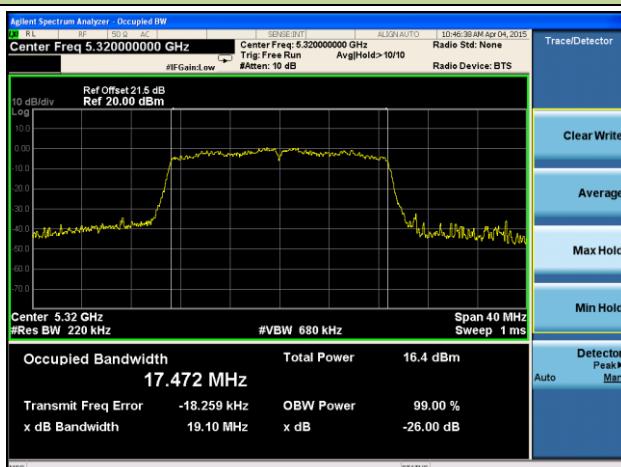

Channel 64 (5320MHz)

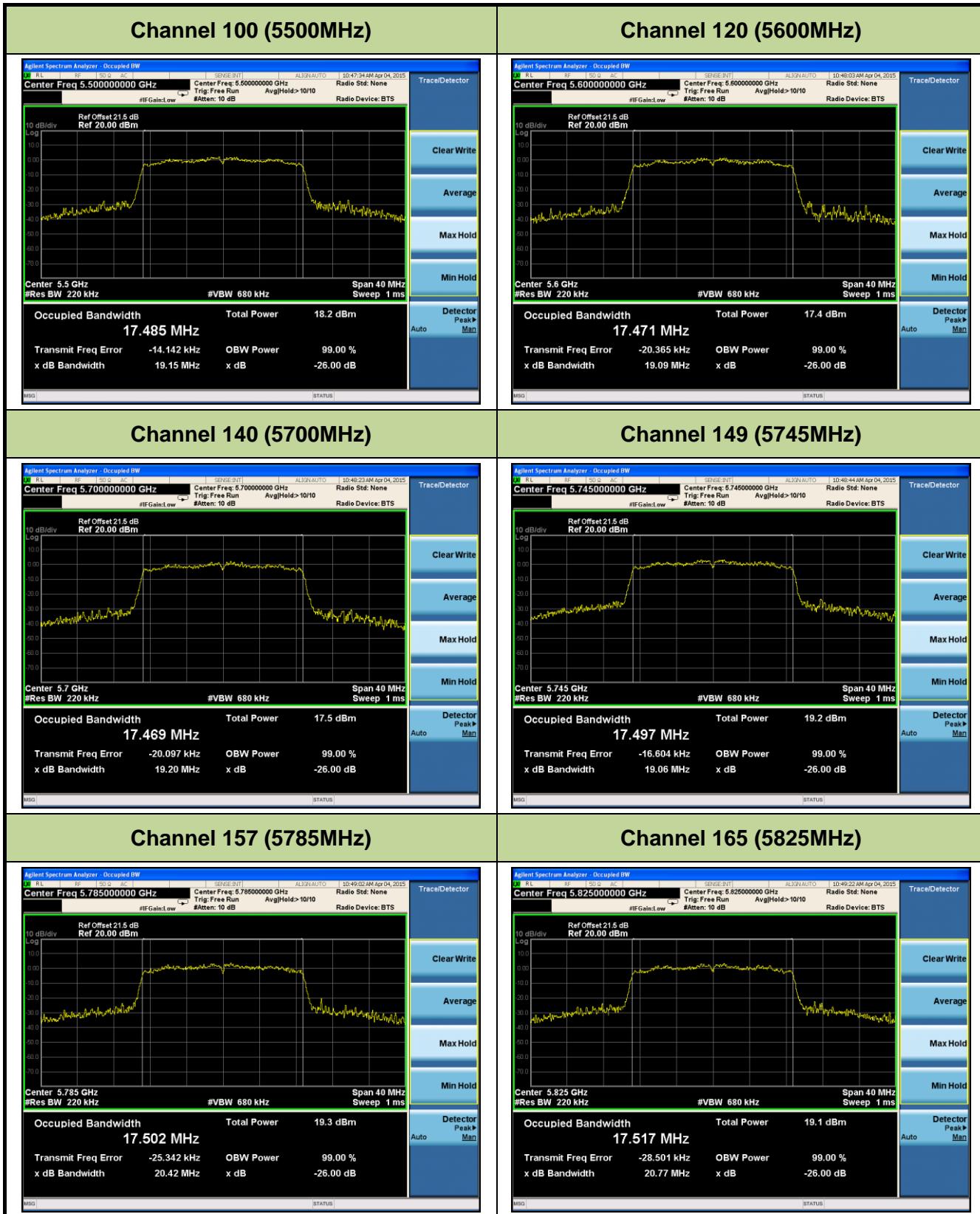
802.11n-HT20 26dB Bandwidth & 99% Bandwidth


Channel 36 (5180MHz)


Channel 44 (5220MHz)


Channel 48 (5240MHz)


Channel 52 (5260MHz)



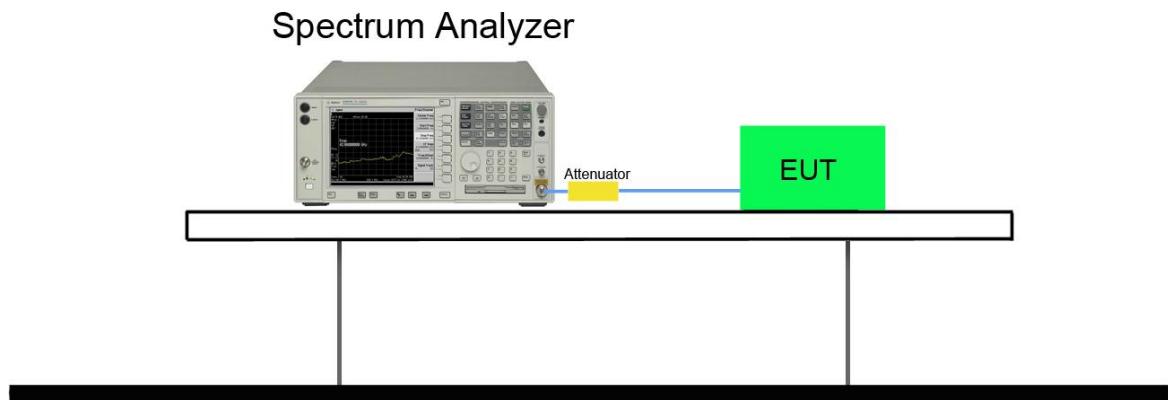
Channel 60 (5300MHz)

Channel 64 (5320MHz)

7.3. 6dB Bandwidth Measurement

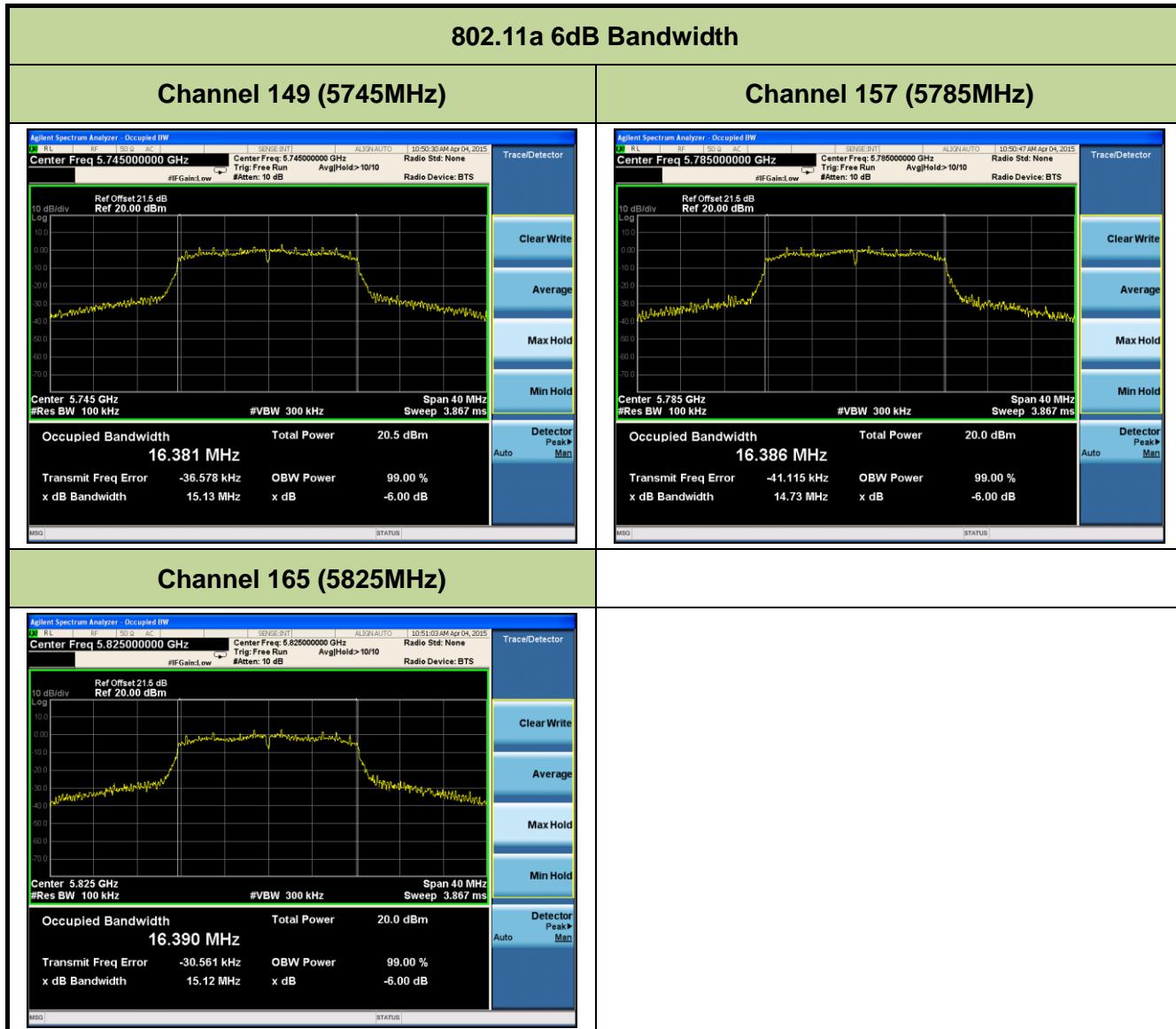
7.3.1. Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

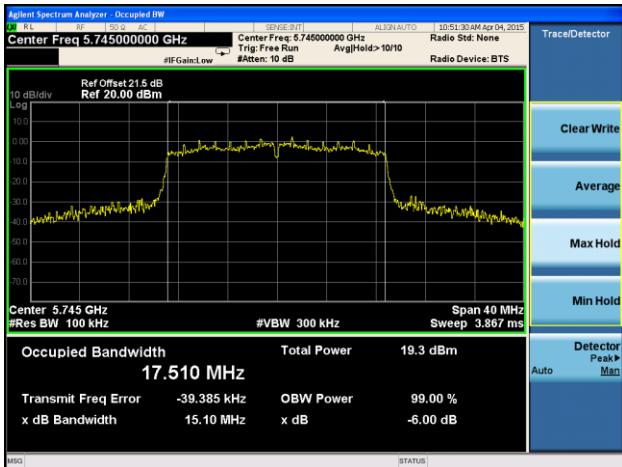

7.3.2. Test Procedure used

KDB 789033 D02v01 - Section C.2

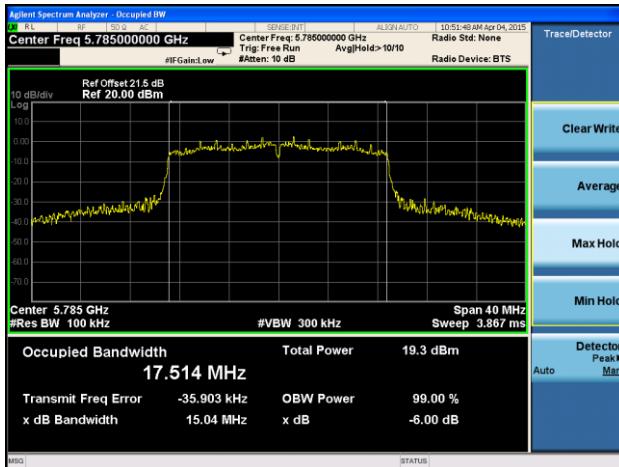
7.3.3. Test Setting


1. Set center frequency to the nominal EUT channel center frequency.
2. RBW = 100 kHz.
3. VBW $\geq 3 \times$ RBW.
4. Detector = Peak.
5. Trace mode = max hold.
6. Sweep = auto couple.
7. Allow the trace to stabilize.
8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

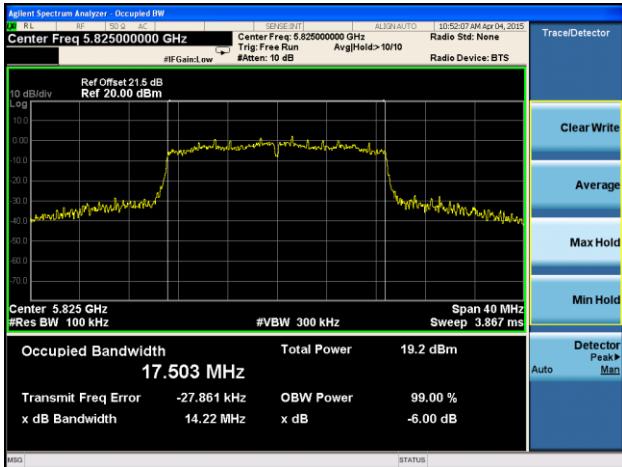
7.3.4. Test Setup


7.3.5. Test Result

Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Result
802.11a	6	149	5745	15.13	≥0.5	Pass
802.11a	6	157	5785	14.73	≥0.5	Pass
802.11a	6	165	5825	15.12	≥0.5	Pass
802.11n-HT20	6.5	149	5745	15.10	≥0.5	Pass
802.11n-HT20	6.5	157	5785	15.04	≥0.5	Pass
802.11n-HT20	6.5	165	5825	14.22	≥0.5	Pass



802.11n-HT20 6dB Bandwidth


Channel 149 (5745MHz)

Channel 157 (5785MHz)

Channel 165 (5825MHz)

7.4. Output Power Measurement

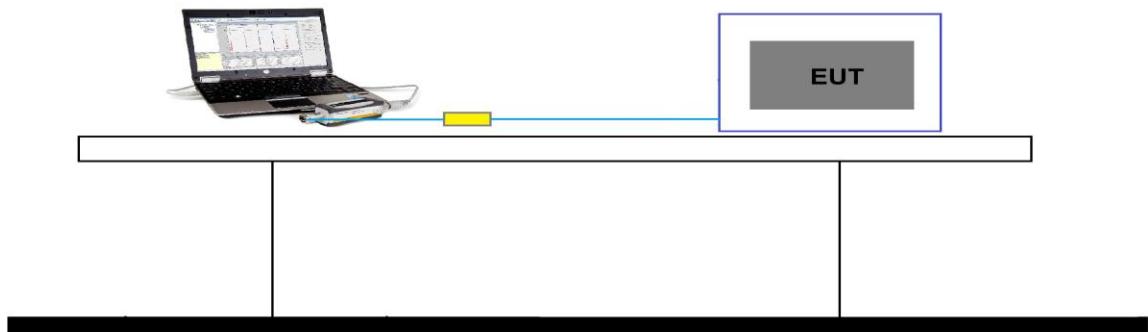
7.4.1. Test Limit

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm).

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW (23.98dBm) or 11 dBm 10 log (26dB BW).

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm).

If transmitting antennas of directional gain greater than 6dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


7.4.2. Test Procedure Used

KDB 789033 D02v01 - Section E) 3) b) Method PM-G

7.4.3. Test Setting

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

7.4.4. Test Setup

7.4.5. Test Result

Output power at various data rates for 802.11a/n

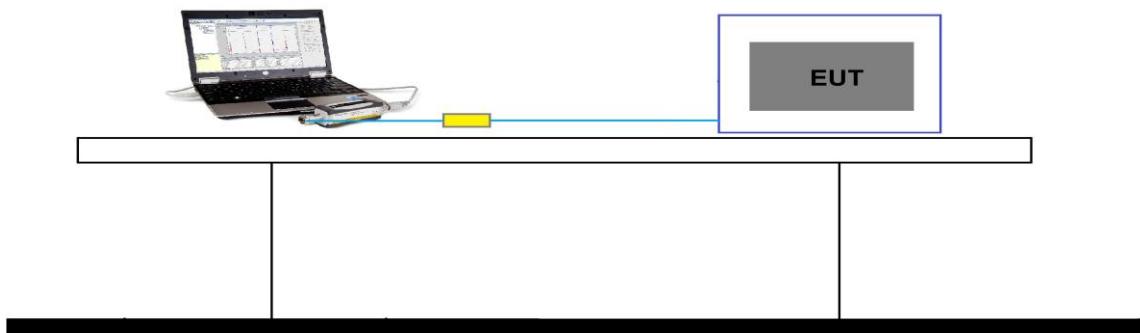
Test Mode	Bandwidth (MHz)	Channel	Frequency (MHz)	Data Rate (Mbps)	Average Power (dBm)
802.11a	20	60	5180	6	12.76
				24	12.54
				54	12.49
802.11n	20	60	5180	6.5	10.15
				7.2	10.06
				39	9.92
				43.3	9.88
				65	9.77
				72.2	9.73

Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	Average Power (dBm)	Limit (MHz)	Result
802.11a	6	36	5180	12.76	≤30.00	Pass
802.11a	6	44	5220	12.63	≤30.00	Pass
802.11a	6	48	5240	12.56	≤30.00	Pass
802.11a	6	52	5260	12.50	≤23.98	Pass
802.11a	6	60	5300	12.39	≤23.98	Pass
802.11a	6	64	5320	12.36	≤23.98	Pass
802.11a	6	100	5500	11.98	≤23.98	Pass
802.11a	6	120	5600	11.75	≤23.98	Pass
802.11a	6	140	5700	11.55	≤23.98	Pass
802.11a	6	149	5745	13.10	≤30.00	Pass
802.11a	6	157	5785	13.22	≤30.00	Pass
802.11a	6	165	5825	13.21	≤30.00	Pass
802.11n-HT20	6.5	36	5180	10.15	≤30.00	Pass
802.11n-HT20	6.5	44	5220	10.12	≤30.00	Pass
802.11n-HT20	6.5	48	5240	10.03	≤30.00	Pass
802.11n-HT20	6.5	52	5260	9.93	≤23.98	Pass
802.11n-HT20	6.5	60	5300	9.78	≤23.98	Pass
802.11n-HT20	6.5	64	5320	9.72	≤23.98	Pass
802.11n-HT20	6.5	100	5500	11.39	≤23.98	Pass
802.11n-HT20	6.5	120	5600	11.14	≤23.98	Pass
802.11n-HT20	6.5	140	5700	10.96	≤23.98	Pass
802.11n-HT20	6.5	149	5745	12.69	≤30.00	Pass
802.11n-HT20	6.5	157	5785	12.78	≤30.00	Pass
802.11n-HT20	6.5	165	5825	12.75	≤30.00	Pass

7.5. Transmit Power Control

7.5.1. Test Limit

The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm.


7.5.2. Test Procedure Used

KDB 789033 D02v01 - Section E) 3) b) Method PM-G

7.5.3. Test Setting

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

7.5.4. Test Setup

7.5.5. Test Result

The device maximum e.i.r.p power less than 500mW (27dBm), not assessed this test.

7.6. Power Spectral Density Measurement

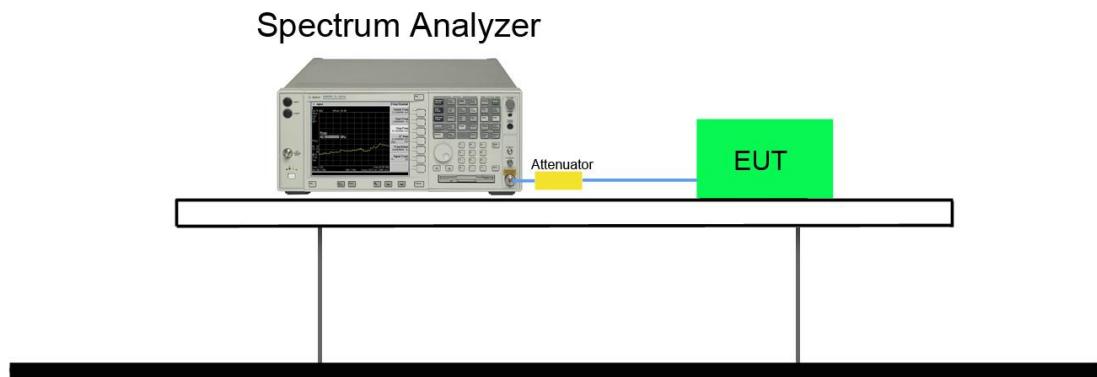
7.6.1. Test Limit

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

If transmitting antennas of directional gain greater than 6dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

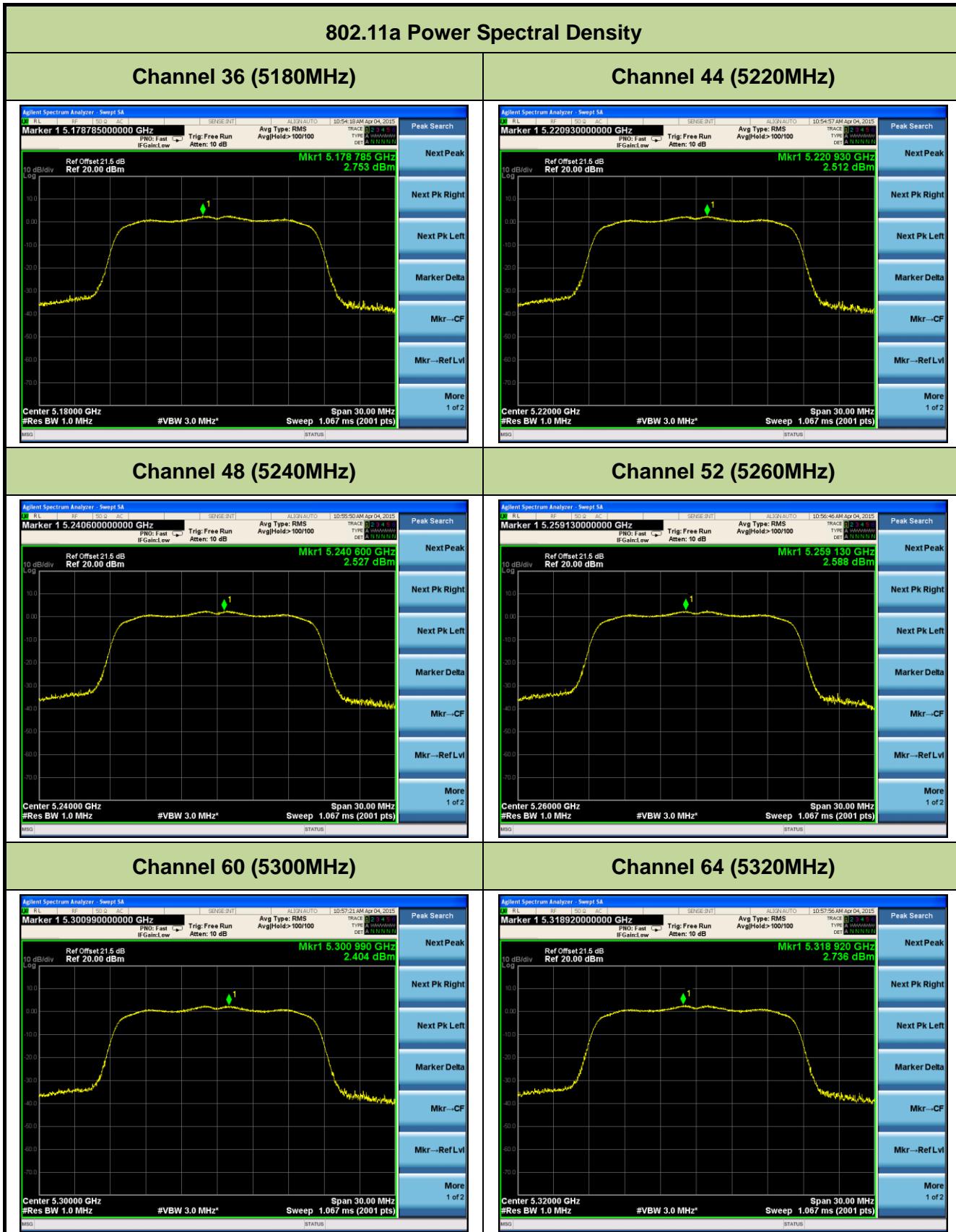

7.6.2. Test Procedure Used

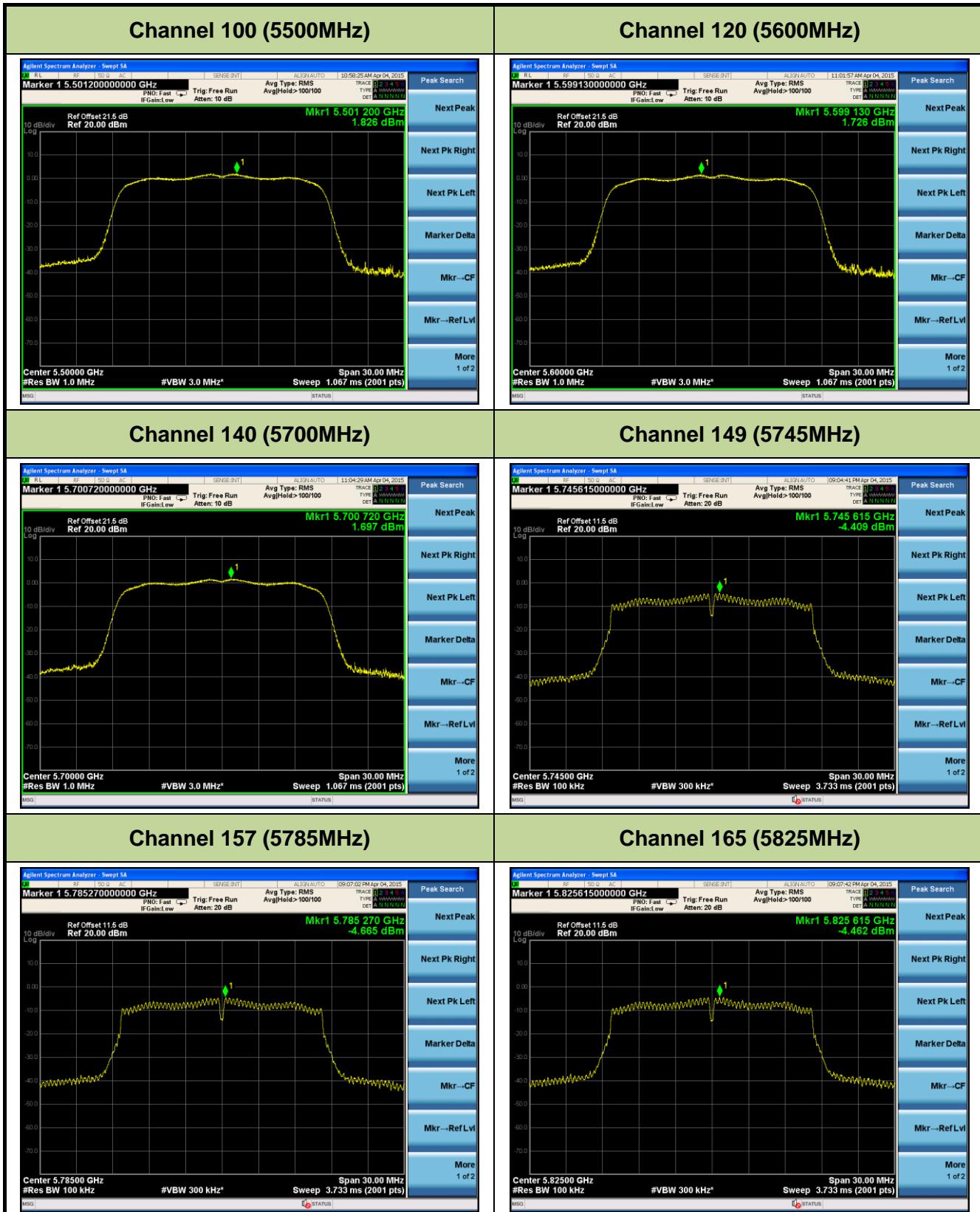
KDB 789033 D02v01 - Section F

7.6.3. Test Setting

1. Analyzer was set to the center frequency of the UNII channel under investigation
2. Span was set to encompass the entire 26dB EBW of the signal.
3. RBW = 1MHz, if measurement bandwidth of Maximum PSD is specified in 500 kHz,
RBW = 100 kHz
4. VBW = 3MHz
5. Number of sweep points $\geq 2 \times (\text{span} / \text{RBW})$
6. Detector = power averaging (RMS)
7. Sweep time = auto
8. Trigger = free run
9. Use the peak search function on the instrument to find the peak of the spectrum and record its value.
10. Add $10 \cdot \log(1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add $10 \cdot \log(1/0.25) = 6$ dB if the duty cycle is 25 percent.
11. When the measurement bandwidth of Maximum PSD is specified in 500 kHz, add a constant factor $10 \cdot \log(500\text{kHz}/100\text{kHz}) = 7$ dB to the measured result

7.6.4. Test Setup


7.6.5. Test Result


Test Mode	Data Rate (Mbps)	Frequency (MHz)	PSD (dBm/MHz)	Duty Cycle (%)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Result
802.11a	6	5180	2.75	97.1	2.88	≤17.00	Pass
802.11a	6	5220	2.51	97.1	2.64	≤17.00	Pass
802.11a	6	5240	2.53	97.1	2.66	≤17.00	Pass
802.11a	6	5260	2.59	97.1	2.72	≤11.00	Pass
802.11a	6	5300	2.40	97.1	2.53	≤11.00	Pass
802.11a	6	5320	2.74	97.1	2.87	≤11.00	Pass
802.11a	6	5500	1.83	97.1	1.96	≤11.00	Pass
802.11a	6	5600	1.73	97.1	1.86	≤11.00	Pass
802.11a	6	5700	1.70	97.1	1.83	≤11.00	Pass
802.11n-HT20	6.5	5180	-0.33	96.9	-0.19	≤17.00	Pass
802.11n-HT20	6.5	5220	-0.57	96.9	-0.43	≤17.00	Pass
802.11n-HT20	6.5	5240	-0.76	96.9	-0.62	≤17.00	Pass
802.11n-HT20	6.5	5260	-0.68	96.9	-0.54	≤11.00	Pass
802.11n-HT20	6.5	5300	-0.86	96.9	-0.72	≤11.00	Pass
802.11n-HT20	6.5	5320	-0.43	96.9	-0.29	≤11.00	Pass
802.11n-HT20	6.5	5500	0.91	96.9	1.05	≤11.00	Pass
802.11n-HT20	6.5	5600	0.38	96.9	0.52	≤11.00	Pass
802.11n-HT20	6.5	5700	0.55	96.9	0.69	≤11.00	Pass

Note: When EUT duty cycle < 98%, the total PSD = PSD + 10*log(1/duty cycle)

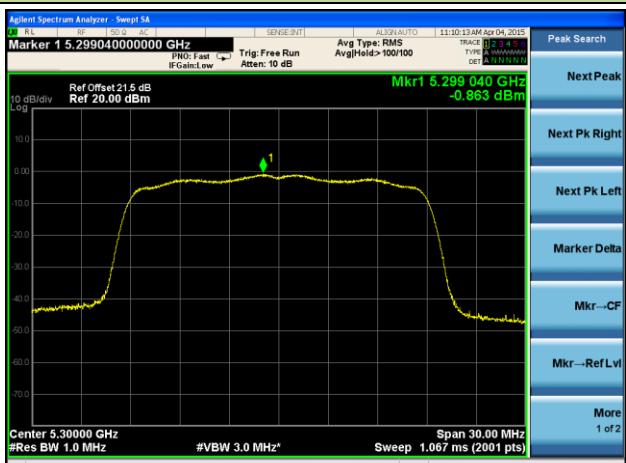
Test Mode	Data Rate (Mbps)	Frequency (MHz)	PSD (dBm/100kHz)	Duty Cycle (%)	Constant Factor	Total PSD (dBm/500kHz)	Limit (dBm/500kHz)	Result
802.11a	6	5745	-4.41	97.1	7	-4.28	≤30.00	Pass
802.11a	6	5785	-4.67	97.1	7	-4.54	≤30.00	Pass
802.11a	6	5825	-4.46	97.1	7	-4.33	≤30.00	Pass
802.11n-HT20	6.5	5745	-5.27	96.9	7	-5.13	≤30.00	Pass
802.11n-HT20	6.5	5785	-5.77	96.9	7	-5.63	≤30.00	Pass
802.11n-HT20	6.5	5825	-5.54	96.9	7	-5.40	≤30.00	Pass

Note: When EUT duty cycle < 98%, the total PSD = PSD + 10*log(1/duty cycle) + Constant Factor.

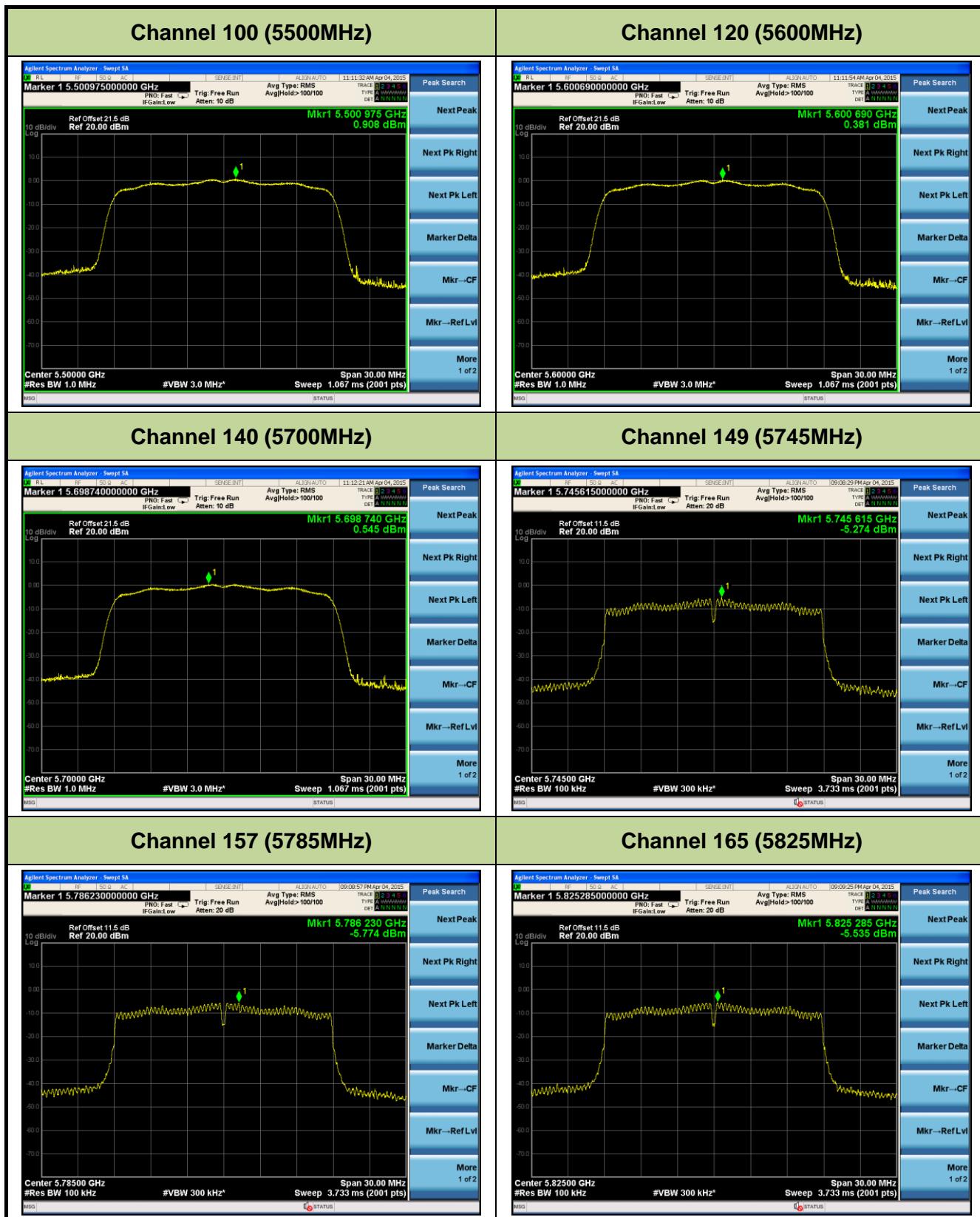
802.11n-HT20 Power Spectral Density

Channel 36 (5180MHz)

Channel 44 (5220MHz)


Channel 48 (5240MHz)

Channel 52 (5260MHz)



Channel 60 (5300MHz)

Channel 64 (5320MHz)

7.7. Frequency Stability Measurement

7.7.1. Test Limit

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

7.7.2. Test Procedure Used

Frequency Stability Under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to highest. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C decreased per stage until the lowest temperature reached.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation ($\pm 15\%$) and endpoint, record the maximum frequency change.

7.7.3. Test Setup

