FCC SAR Test Report

Product Name: Tablet PC

Model No. : TR10RS1

FCC ID : WL6-TR10RS1AP6330

Applicant: ELITEGROUP COMPUTER SYSTEMS CO., LTD

Address: No.239, Sec. 2, Tiding Blvd., Neihu Dist, Taipei City 14,

Taiwan (R.O.C)

Date of Receipt: Apr. 03, 2015

Date of Test : Apr. 04, 2015

Issued Date : Apr. 05, 2015

Report No. : 1540164R-HP-US-P03V01

Report Version: V1.1

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: Apr. 05, 2015

Report No.: 1540164R-HP-US-P03V01

Product Name

Tablet PC

Applicant

ELITEGROUP COMPUTER SYSTEMS CO., LTD

Address

No.239, Sec. 2, Tiding Blvd., Neihu Dist, Taipei City 14, Taiwan

(R.O.C)

Model No.

TR10RS1

FCC ID

: WL6-TR10RS1AP6330

Brand Name

: ECS ELITEGROUP

EUT Voltage

DC 5V

Applicable Standard

: FCC KDB Publication 447498 D01v05r02

FCC KDB Publication 865664 D01v01r03 FCC KDB Publication 248227 D01v02 FCC KDB Publication 616217 D04v01r01

Test Result

Max. SAR Measurement (1g)

1.51 W/kg

Performed Location

Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech

Development Zone, Suzhou, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Registration Number: 800392

Documented By

Alice Mi

Reviewed By

1 my mer

Approved By

ream C

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C. : BSMI, NCC

Germany : TUV Rheinland

Norway : Nemko, DNV

USA : FCC
Japan : VCCI
China : CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : http://www.quietek.com/tw/ctg/cts/accreditations.htm
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : http://www.quietek.com/

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8859 E-Mail: service@guietek.com

LinKou Testing Laboratory:

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.

Suzhou Testing Laboratory:

TABLE OF CONTENTS

Description	Page
1. General Information	7
1.1. EUT Description	7
1.2. Test Environment	8
1.3. EUT Antenna Locations	8
1.4. Simultaneous Transmission Configurations	9
1.5. Power Reduction for SAR	9
1.6. Guidance Documents	9
2. SAR Measurement System	10
2.1. DASY5 System Description	10
2.1.1. Applications	11
2.1.2. Area Scans	11
2.1.3. Zoom Scan (Cube Scan Averaging)	11
2.1.4. Uncertainty of Inter-/Extrapolation and Averaging	11
2.2. DASY5 E-Field Probe	12
2.2.1. Isotropic E-Field Probe Specification	12
2.3. Boundary Detection Unit and Probe Mounting Device	13
2.4. DATA Acquisition Electronics (DAE) and Measurement Server	13
2.5. Robot	14
2.6. Light Beam Unit	14
2.7. Device Holder	15
2.8. SAM Twin Phantom	15
3. Tissue Simulating Liquid	16
3.1. The composition of the tissue simulating liquid	16
3.2. Tissue Calibration Result	16
3.3. Tissue Dielectric Parameters for Head and Body Phantoms	17
4. SAR Measurement Procedure	18
4.1. SAR System Validation	18
4.1.1. Validation Dipoles	18
4.1.2. Validation Result	18
4.2. SAR Measurement Procedure	20
5. SAR Exposure Limits	21
6. Test Equipment List	22

7. Me	asurement Uncertainty	26
8. Co	nducted Power Measurement	28
9. Tes	st Results	32
9.1.	Test Results	32
9.2.	SAR Test Notes	35
Append	dix A. SAR System Validation Data	36
Append	dix B. SAR measurement Data	40
Append	dix C. Test Setup Photographs & EUT Photographs	70
Append	dix D. Probe Calibration Data	71
Append	dix E. Dipole Calibration Data	82
Append	dix F. DAE Calibration Data	103

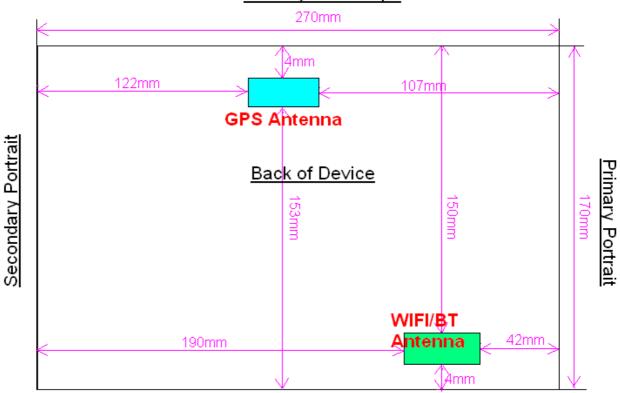
History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
1540164R-HP-US-P03V01	V1.0	Initial Issued Report	Apr. 05, 2015
1540164R-HP-US-P03V01	V1.1	Added the deviation evaluation	Apr. 05, 2015
		of repeated SAR	

1. General Information

1.1. EUT Description

Product Name	Tablet PC
Model No.	TR10RS1
Device Category	Portable
RF Exposure Environment	Uncontrolled
Antenna Type	Integral Antenna
Wi-Fi	
Frequency Range	For 2.4GHz Band
	802.11b/g/n(20MHz): 2412~2462MHz
	For 5.0GHz Band
	802.11a/n(20MHz):
	5180~5240MHz, 5260~5320MHz, 5500~5700MHz,
	5745~5825MHz
Channel Number	11 for 802.11b/g, 802.11n (HT20)
	24 for 802.11a, 802.11n (HT20)
Type of Modulation	802.11b: DSSS
	802.11a/g/n: OFDM
Data Rate	802.11b: up to 11Mbps
	802.11a/g: up to 54Mbps
	802.11n : up to 72.2Mbps
Antenna Gain	0.77dBi for 2.4GHz
	1.08dBi for 5.2GHz
	0.9dBi for 5.3GHz
	0.56dBi for 5.5GHz
	0.53dBi for 5.8GHz
Bluetooth	
Bluetooth Frequency	2402~2480MHz
Bluetooth Version	V3.0, V4.0
Type of modulation	FHSS
Data Rate	1Mbps(GFSK), 2Mbps(Pi/4 DQPSK), 3Mbps (8DPSK)
Antenna Gain	0.77dBi


1.2. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.5± 2
Humidity (%RH)	30-70	52

1.3. EUT Antenna Locations

Primary Landscape

Secondary Landscape

1.4. Simultaneous Transmission Configurations

2.4GHz/5GHz Wi-Fi and Bluetooth share the same antenna path and cannot transmit simultaneously.

1.5. SAR Test Exclusions Applied

(A) WIFI/ Bluetooth

Per FCC KDB 447498 D01v05r02, the SAR exclusion threshold for distances<50mm is defined by the following equation:

$$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \leq 3.0$$

Based on the maximum output power of Bluetooth and the antenna to use separation distance,

Bluetooth SAR was not required;

 $[(1.0 \text{ mW/5})^* \sqrt{2.441}] = 0.31 < 1.25 \text{ for Body.}$

Based on the maximum output power of 2.4GHz WIFI and the antenna to use separation distance, the maximum exclusion distance is 20.61mm;

Based on the maximum output power of 5.2GHz WIFI and the antenna to use separation distance, the maximum exclusion distance is 15.14mm;

Based on the maximum output power of 5.3GHz WIFI and the antenna to use separation distance, the maximum exclusion distance is 15.25mm;

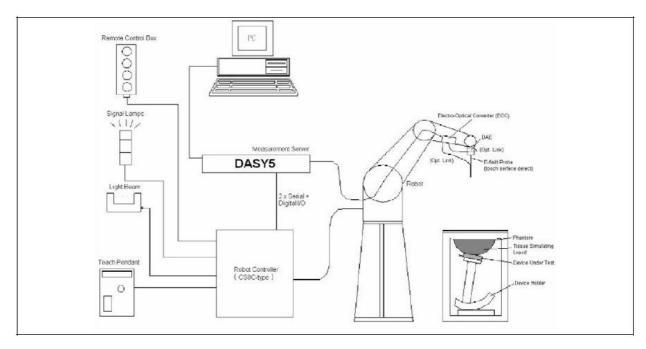
Based on the maximum output power of 5.5GHz WIFI and the antenna to use separation distance, the maximum exclusion distance is 12.41mm;

Based on the maximum output power of 5.8GHz WIFI and the antenna to use separation distance, the maximum exclusion distance is 17.89mm;

IEEE 802.11g/n were not evaluated for SAR since the average output power was not more than 0.25 dB higher than the average output power of IEEE 802.11b.

1.6. Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.


1.7. Guidance Documents

- 1) FCC KDB Publication 447498 D01v05r02 (General SAR Guidance)
- 2) FCC KDB Publication 865664 D01v01r03(SAR measurement 100 MHz to 6 GHz)
- 3) FCC KDB Publication 248227 D01v02 (SAR Considerations for 802.11 Devices)
- 4) FCC KDB Publication 616217 D04v01r01 (SAR evaluation considerations for Laptop, Notebook, Netbook and Tablet Computers)

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

Page: 11 of 107

$$f_1(x,y,z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

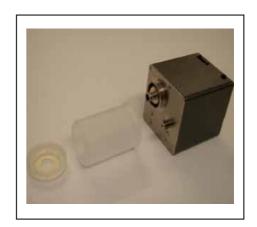
$$f_2(x,y,z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x,y,z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.


2.2.1. Isotropic E-Field Probe Specification

Model	EX3DV4	
Construction	Symmetrical design with triangular core Built-in s charges PEEK enclosure material (resistant to c DGBE)	
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	/
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	
Application	High precision dosimetric measurements in an (e.g., very strong gradient fields). Only pr compliance testing for frequencies up to 6 GHz v 30%.	obe which enables

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- > Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT	2450MHz	5200MHz	5500MHz	5800MHz
(% Weight)	Body	Body	Body	Body
Water	73.2	75.68	75.68	75.68
Salt	0.04	0.43	0.43	0.43
Sugar	0.00	0.00	0.00	0.00
HEC	0.00	0.00	0.00	0.00
Preventol	0.00	0.00	0.00	0.00
DGBE	26.7	4.42	4.42	4.42
Triton X-100	0.00	19.47	19.47	19.47

3.2. Tissue Calibration Result

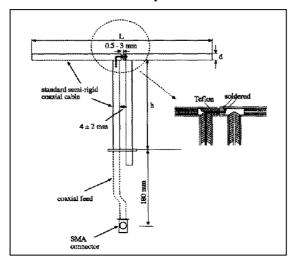
The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Body Tissue Simulant Measurement					
Frequency	Description	Dielectric Pa	Dielectric Parameters		
[MHz]	Description	٤ _r	σ [s/m]	[°C]	
2450MHz	Reference result ± 5% window	52.7 50.07 to 55.34	1.95 1.85 to 2.05	N/A	
	03-04-2015	53.28	2.01	21.0	
5200MHz	Reference result ± 5% window	49.0 46.55 to 51.45	5.30 5.04 to 5.57	N/A	
	03-04-2015	48.94	5.15	21.0	
5500MHz	Reference result ± 5% window	48.6 46.17 to 51.03	5.65 5.33 to 5.94	N/A	
	03-04-2015	48.12	5.59	21.0	
5800MHz	Reference result ± 5% window	48.2 45.79 to 50.61	6.00 5.70 to 6.30	N/A	
	03-04-2015	47.29	6.17	21.0	

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Во	dy
(MHz)	ϵ_{r}	σ (S/m)	٤ _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00


(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6
5GHz	20.6	14.2	3.6

4.1.2. Validation Result

System Perfo	System Performance Check at 2450MHz, 5200MHz, 5500MHz and 5800MHz for Body					
Validation Dip	oole: D2450V2, SN:	839				
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]		
2450 MHz	Reference result ± 10% window	49.9 44.91 to 54.89	23.1 20.79 to 25.41	N/A		
	04-04-2015	48.8	22.12	21.0		
Validation Dip	oole: D5GHzV2, SN:	1078				
5200 MHz	Reference result ± 10% window	73.1 65.79 to 80.41	20.5 18.45 to 22.55	N/A		
	04-04-2015	76.0	21.5	21.0		
Validation Dip	Validation Dipole: D5GHzV2, SN: 1078					
5500 MHz	Reference result ± 10% window	73.3 65.97 to 80.63	20.4 18.36 to 22.44	N/A		
	04-04-2015	78.0	21.9	21.0		
Validation Dipole: D5GHzV2, SN: 1078						

5800 MHz	Reference result ± 10% window	73.5 66.15 to 80.85	20.3 18.27 to 22.33	N/A
	04-04-2015	69.0	19.4	21.0

Note: All SAR values are normalized to 1W forward power.

4.2. SAR Measurement Procedure

The DASY5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

σ: represents the simulated tissue conductivity

p: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, Tablet PC, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

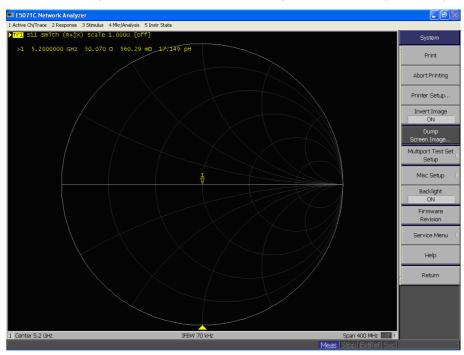
The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. SAR Exposure Limits

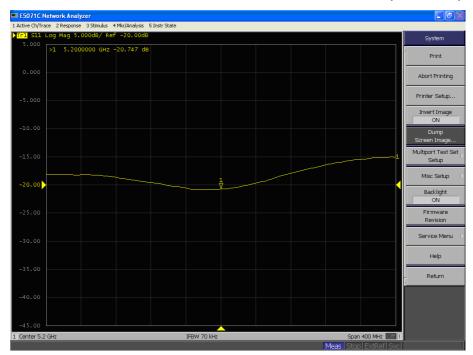
SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled
	Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

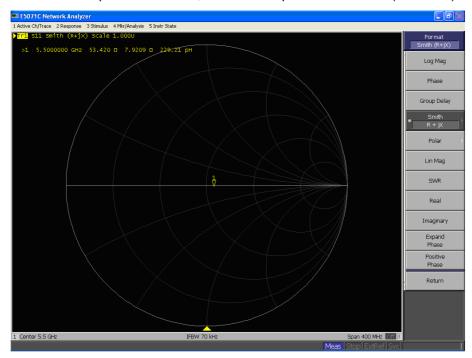

6. Test Equipment List

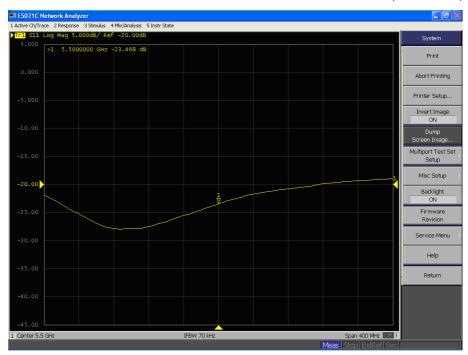
Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	N/A
Controller	Stäubli	SP1	S-0034	N/A
Dipole Validation Kits	Speag	D2450V2	839	2016.02.24
Dipole Validation Kits	Speag	D5GHzV2	1040	2015.07.02
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A
Data	Speag	DAE4	Sn1220	2016.01.20
Acquisition Electronic				
E-Field Probe	Speag	EX3DV4	3801	2016.06.18
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZVA-183-S+	N657400950	N/A
Directional Coupler	Agilent	778D	20160	N/A
Universal Radio	R&S	CMU 200	117088	2016.03.10
Communication Tester				
Vector Network	Agilent	E5071C	MY48367267	2016.03.10
Signal Generator	Agilent	E4438C	MY49070163	2016.03.10
Power Meter	Anritsu	ML2495A	0905006	2015.10.29
Wide Bandwidth	Anritsu	MA2411B	0846014	2015.10.29
Sensor				



5200 Body

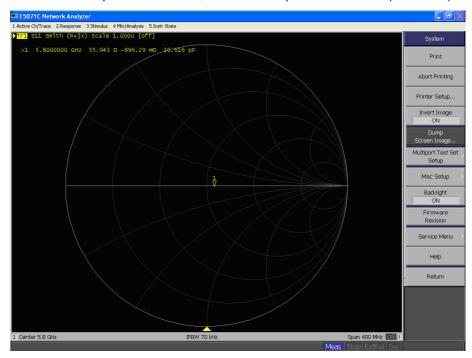
Calibrated impedance: 52.0 Ω ; Measured impedance: 50.1 Ω (within 5 Ω)

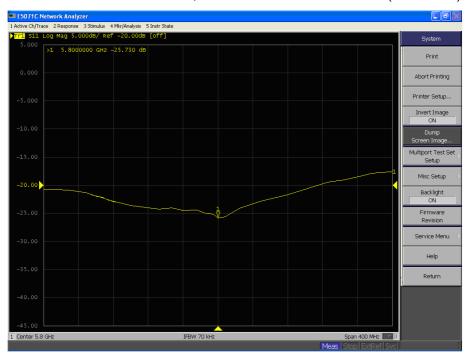

Calibrated return loss: -20.9 dB; Measured return loss: -20.7dB (within 20%)



5500 Body

Calibrated impedance: 51.5 Ω ; Measured impedance: 53.42 Ω (within 5 Ω)


Calibrated return loss: -25.3 dB; Measured return loss: -23.47dB (within 20%)



5800 Body

Calibrated impedance: 53.9 Ω ; Measured impedance: 55.9 Ω (within 5 Ω)

Calibrated return loss: -27.8 dB; Measured return loss: -25.7 dB (within 20%)

7. Measurement Uncertainty

		DASY	′5 Unc	ertain	ity			
Measurement uncertainty	for 300 M	Hz to 3 G	Hz avera	iged ovei	r 1 gram /	' 10 gram.		
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	8
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	8
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Test Sample Related		•			•			1
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity								
(meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity								
(target)	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	8
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
(meas.)			-					
Combined Std. Uncertain	inty					±11.0%	±10.8%	387
Expanded STD Uncertain	inty					±22.0%	±21.5%	

Page: 26 of 107

		DASY	′5 Unc	ertain	tv			
Measurement uncertainty	for 3 GHz					gram.		
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	8
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±2.0%	R	√3	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Probe Positioning	±9.9%	R	√3	1	1	±5.7%	±5.7%	∞
Max. SAR Eval.	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Test Sample Related		•	•	•	ı	•		•
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup		•	•	•	1			•
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity	. F. O0/	Б	(F)	0.64	0.42	14.00/	14.20/	∞
(target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	ω
Liquid Conductivity	+2 50/	N	1	0.64	0.43	±1 60/	±1 10/	∞
(meas.)	±2.5%	IN		0.04	0.43	±1.6%	±1.1%	ω
Liquid Permittivity	±5.0%	R	9	0.6	0.49	±1.7%	±1.4%	8
(target)	10.0 /0	11	√3	0.0	0.43	±1.7 /0	⊥1.4/0	
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
(meas.)	±2.0 /0	1 4	'	0.0	0.70	±1.570	±1.∠/0	
Combined Std. Uncerta	inty					±12.8%	±12.6%	330
Expanded STD Uncerta	inty					±25.6%	±25.2%	

8. Conducted Power Measurement

WLAN output power

Test Mode	Channel No.	Frequency (MHz)	Average Power (dBm)	Max. Average Power (dBm)	Scaling Factor
	01	2412	15.65	16.00	1.084
802.11b	06	2437	15.49	16.00	1.125
	11	2462	15.30	16.00	1.175
	01	2412	14.59	15.00	1.099
802.11g	06	2437	14.48	15.00	1.127
	11	2462	14.31	15.00	1.172
	01	2412	13.56	14.00	1.107
802.11n(20MHz)	06	2437	13.36	14.00	1.159
	11	2462	13.19	14.00	1.205

Test Mode	Channel No.	Frequency (MHz)	Average Power (dBm)	Max. Average Power (dBm)	Scaling Factor
	36	5180	12.76	13.00	1.057
	40	5200	12.66	13.00	1.081
	44	5220	12.63	13.00	1.089
	48	5240	12.56	13.00	1.107
	52	5260	12.50	13.00	1.122
	56	5280	12.48	13.00	1.127
	60	5300	12.39	13.00	1.151
	64	5320	12.36	13.00	1.159
	100	5500	11.98	12.00	1.005
	104	5520	11.76	12.00	1.057
	108	5540	11.69	12.00	1.074
000.44	112	5560	11.53	12.00	1.114
802.11a	116	5580	11.49	12.00	1.125
	120	5600	11.75	12.00	1.059
	124	5620	11.65	12.00	1.084
	128	5640	11.71	12.00	1.069
	132	5660	11.39	12.00	1.151
	136	5680	11.44	12.00	1.138
	140	5700	11.55	12.00	1.109
	149	5745	13.10	13.50	1.096
	153	5765	13.06	13.50	1.107
	157	5785	13.22	13.50	1.067
	161	5805	13.14	13.50	1.086
	165	5825	13.21	13.50	1.069

36	5180	10.15	10.50	1.084
40	5200	10.08	10.50	1.102
44	5220	10.12	10.50	1.091
48	5240	10.03	10.50	1.114
52	5260	9.93	10.50	1.140
56	5280	9.84	10.50	1.164
60	5300	9.78	10.50	1.180
64	5320	9.72	10.50	1.197
100	5500	11.39	11.50	1.026
104	5520	11.16	11.50	1.081
108	5540	11.24	11.50	1.062
112	5560	11.28	11.50	1.052
116	5580	11.06	11.50	1.107
120	5600	11.14	11.50	1.086
124	5620	11.13	11.50	1.089
128	5640	11.04	11.50	1.112
132	5660	11.06	11.50	1.107
136	5680	10.93	11.50	1.140
140	5700	10.96	11.50	1.132
149	5745	12.69	13.00	1.074
153	5765	12.66	13.00	1.081
157	5785	12.78	13.00	1.052
161	5805	12.71	13.00	1.069
165	5825	12.75	13.00	1.059
	40 44 48 52 56 60 64 100 104 108 112 116 120 124 128 132 136 140 149 153 157 161	40 5200 44 5220 48 5240 52 5260 56 5280 60 5300 64 5320 100 5500 104 5520 108 5540 112 5560 116 5580 120 5600 124 5620 128 5640 132 5660 136 5680 140 5700 149 5745 153 5765 157 5785 161 5805	40 5200 10.08 44 5220 10.12 48 5240 10.03 52 5260 9.93 56 5280 9.84 60 5300 9.78 64 5320 9.72 100 5500 11.39 104 5520 11.16 108 5540 11.24 112 5560 11.28 116 5580 11.06 120 5600 11.14 124 5620 11.13 128 5640 11.04 132 5660 11.06 136 5680 10.93 140 5700 10.96 149 5745 12.69 153 5765 12.66 157 5785 12.78 161 5805 12.71	40 5200 10.08 10.50 44 5220 10.12 10.50 48 5240 10.03 10.50 52 5260 9.93 10.50 56 5280 9.84 10.50 60 5300 9.78 10.50 64 5320 9.72 10.50 100 5500 11.39 11.50 104 5520 11.16 11.50 108 5540 11.24 11.50 112 5560 11.28 11.50 116 5580 11.06 11.50 120 5600 11.14 11.50 124 5620 11.13 11.50 128 5640 11.04 11.50 132 5660 11.06 11.50 132 5660 11.06 11.50 140 5700 10.96 11.50 149 5745 12.69 13.00

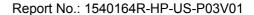
Note 1: Justification for reduced test configurations for Wi-Fi channels per KDB Publication 248227 D01v02.

2: For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.

3: When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.

BT output power

Test Mode	Channel No.	Frequency (MHz)	Average Power (dBm)	Max. Power (dBm)	Scaling Factor
	00	2402	-1.30	0.00	1.349
DH5	39	2441	-0.61	0.00	1.151
	79	2480	-0.49	0.00	1.119
	00	2402	-1.56	-0.50	1.276
2DH5	39	2441	-0.85	-0.50	1.084
	79	2480	-0.78	-0.50	1.067
	00	2402	-1.05	0.00	1.274
3DH5	39	2441	-0.27	0.00	1.064
	79	2480	-0.90	0.00	1.230
	00	2402	-5.06	-4.00	1.276
BLE	19	2440	-4.77	-4.00	1.194
	39	2480	-4.27	-4.00	1.064



9. Test Results

9.1. Test Results

SAR MEASUREMENT												
Ambient Temperature (Relative Humidity (%): 52											
Liquid Temperature (°C	c): 21.0 ± 2			Depth of	Liquid (cn	n):>15						
Product: Tablet PC												
Test Mode: 802.11b	Test Mode: 802.11b											
Test Position	Antenna	Freque	ency	Frame	Power	SAR 1g	Scaling	Scaled	Limit			
Body at 0mm	Position	Channel	MHz	Power (dBm)	Drift (<±0.2)	(W/kg)	Factor	SAR 1g (W/kg)	(W/kg)			
Bottom	Fixed	01	2412	15.65	-0.12	0.573	1.084	0.621	1.6			
Secondary Landscape	Fixed	01	2412	15.65	-0.11	0.566	1.084	0.614	1.6			
Bottom	Fixed	06	2437	15.49	0.07	0.639	1.125	0.719	1.6			
Bottom	Fixed	11	2462	15.30	-0.03	0.445	1.175	0.523	1.6			
Test Mode: 802.11a 51	Test Mode: 802.11a 5180~5220MHz											
Bottom	Fixed	36	5180	12.76	0.13	0.699	1.057	0.739	1.6			
Secondary Landscape	Fixed	36	5180	12.76	0.19	1.43	1.057	1.51	1.6			
Secondary Landscape*	Fixed	36	5180	12.76	0.01	1.41	1.057	1.49	1.6			
Secondary Landscape	Fixed	44	5220	12.63	-0.07	1.11	1.089	1.21	1.6			
Test Mode: 802.11a 52	60~5300MI	Hz										
Secondary Landscape	Fixed	52	5260	12.50	-0.18	1.24	1.122	1.39	1.6			
Secondary Landscape*	Fixed	52	5260	12.50	-0.01	1.21	1.122	1.36	1.6			
Bottom	Fixed	60	5300	12.39	0.10	0.524	1.151	0.603	1.6			
Secondary Landscape	Fixed	60	5300	12.39	0.04	1.23	1.151	1.42	1.6			
Test Mode: 802.11a 55	00~5725MI	Hz										
Bottom	Fixed	104	5520	11.76	-0.07	0.784	1.057	0.829	1.6			

Page: 32 of 107

Secondary Landscape	Fixed	104	5520	11.76	-0.02	1.23	1.057	1.30	1.6
Secondary Landscape*	Fixed	104	5520	11.76	-0.02	1.21	1.057	1.28	1.6
Secondary Landscape	Fixed	116	5580	11.49	-0.18	1.01	1.125	1.14	1.6
Secondary Landscape	Fixed	124	5620	11.65	-0.08	0.61	1.084	0.661	1.6
Secondary Landscape	Fixed	136	5680	11.44	-0.16	0.495	1.138	0.563	1.6
Test Mode: 802.11a 57	45~5825MI	Hz							
Bottom	Fixed	149	5745	13.10	0.02	0.771	1.096	0.845	1.6
Bottom	Fixed	157	5785	13.22	-0.04	1.08	1.067	1.15	1.6
Bottom*	Fixed	157	5785	13.22	-0.14	1.06	1.067	1.13	1.6
Secondary Landscape	Fixed	157	5785	13.22	-0.09	0.909	1.067	0.970	1.6
Bottom	Fixed	165	5825	13.21	-0.10	0.978	1.069	1.04	1.6

Note1: when the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498.

^{2: *} Maximum measured SAR was repeated according to KDB 865664D01v01r03

Test Position	Frequ	uency	Scaled SAR 1g	Repeated SAR	Deviation (%)					
Body at 0mm	Channel	MHz	(W/kg)	1g (W/kg)						
Test Mode: 802.1	1a 5180~5220MH	Z								
Secondary	0.0	5 400			-1.32					
Landscape	36	5180	1.51	1.49						
Test Mode: 802.1	Test Mode: 802.11a 5260~5300MHz									
Secondary	50	5000	4.00	4.00	-2.16					
Landscape	52	5260	1.39	1.36						
Test Mode: 802.1	1a 5500~5725MH	Z								
Secondary	404	5500	4.00	4.00	-1.54					
Landscape	104	5520	1.30	1.28						
Test Mode: 802.1	Test Mode: 802.11a 5745~5825MHz									
Bottom	157	5785	1.15	1.13	-1.74					

Note1: Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg;

steps 2) through 4) do not apply. 20

Note2: When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

Note3: Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

Note4: Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

9.2. SAR Test Notes

General Notes:

- 1. Batteries are fully charged at the beginning of the SAR measurements.
- 2. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 3. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 4. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05r02.
- 5. Per FCC KDB 616217 D04 Section 4.3, SAR tests are required for the back surface and edges of the tablet with the tablet touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D01v05r02 was applied to determine SAR test exclusion for adjacent edge configurations. SAR tests were required for bottom and secondary landscape for the WLAN antenna and bottom and primary landscape for the BT Antenna.

WLAN/BT Notes:

- 1. Justification for reduced test configurations for Wi-Fi channels per KDB Publication 248227 D01v02 and April 2010 FCC/TCB Meeting Notes for 2.4 GHz Wi-Fi: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other default channels is not required.

Appendix A. SAR System Validation Data

Date/Time: 04-04-2015

Test Laboratory: QuieTek Lab System Check Body 2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

Communication System: UID 0, CW; Communication System Band: D2450(2450MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ S/m; $\epsilon r = 53.28$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section; Input Power=250mW

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(6.9, 6.9, 6.9); Calibrated: 18/06/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/System Check Body 2450MHz/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 11.6 W/kg

Configuration/System Check Body 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 75.94 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 25.6 W/kg

SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.53 W/kg Maximum value of SAR (measured) = 14.0 W/kg

0 dB = 14.0 W/kg = 11.46 dBW/kg

Test Laboratory: QuieTek Lab System Check Body 5200MHz

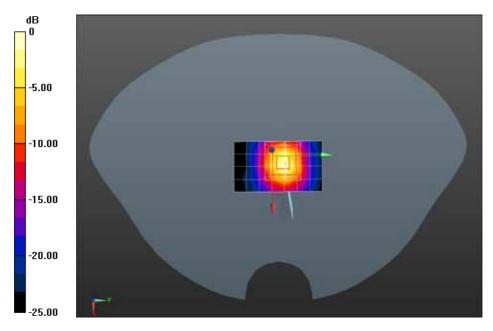
DUT: Dipole D5GHzV2; Type: D5GHzV2

Communication System: UID 0, CW; Communication System Band: 5GHz; Duty Cycle: 1:1; Frequency: 5200 MHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.15$ S/m; $\epsilon r = 48.94$; $\rho = 1000$ kg/m3; Phantom

section: Flat Section; Input Power=100mW

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3801; ConvF(4.17, 4.17, 4.17); Calibrated: 18/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body 5200MHz/Area Scan (5x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 14.7 W/kg

Configuration/Body 5200MHz/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 37.00 V/m; Power Drift = 0.21 dB

Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 7.6 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 15.1 W/kg

0 dB = 15.1 W/kg = 11.79 dBW/kg

Test Laboratory: QuieTek Lab System Check Body 5500MHz

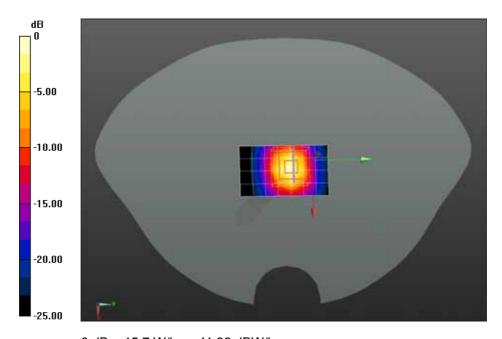
DUT: Dipole D5GHzV2; Type: D5GHzV2

Communication System: UID 0, CW; Communication System Band: 5GHz; Duty Cycle: 1:1; Frequency: 5500 MHz; Medium parameters used: f = 5500 MHz; $\sigma = 5.59$ S/m; $\epsilon r = 48.12$; $\rho = 1000$ kg/m3; Phantom

section: Flat Section; Input Power=100mW

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3801; ConvF(3.93, 3.93, 3.93); Calibrated: 18/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body 5500MHz/Area Scan (5x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 16.2 W/kg

Configuration/Body 5500MHz/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 35.81 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 32.3 W/kg

SAR(1 g) = 7.8 W/kg; SAR(10 g) = 2.19 W/kg Maximum value of SAR (measured) = 15.7 W/kg

0 dB = 15.7 W/kg = 11.96 dBW/kg

Test Laboratory: QuieTek Lab System Check Body 5800MHz

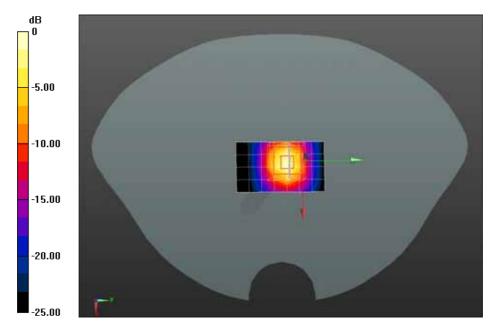
DUT: Dipole D5GHzV2; Type: D5GHzV2

Communication System: UID 0, CW; Communication System Band: 5GHz; Duty Cycle: 1:1; Frequency: 5800 MHz; Medium parameters used: f = 5800 MHz; $\sigma = 6.17$ S/m; $\epsilon r = 47.29$; $\rho = 1000$ kg/m3; Phantom

section: Flat Section; Input Power=100mW

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3801; ConvF(3.94, 3.94, 3.94); Calibrated: 18/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body 5800MHz/Area Scan (5x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.2 W/kg

Configuration/Body 5800MHz/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 30.84 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 6.9 W/kg; SAR(10 g) = 1.94 W/kg Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

Appendix B. SAR measurement Data

Date/Time: 04-04-2015

Test Laboratory: QuieTek Lab 802.11b 2412MHz Body-Bottom **DUT: Tablet PC; Type: TR10RS1**

Communication System: UID 0, Wi-Fi (0); Communication System Band: 802.11b; Duty Cycle: 1:1.0;

Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ S/m; $\epsilon r = 53.52$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

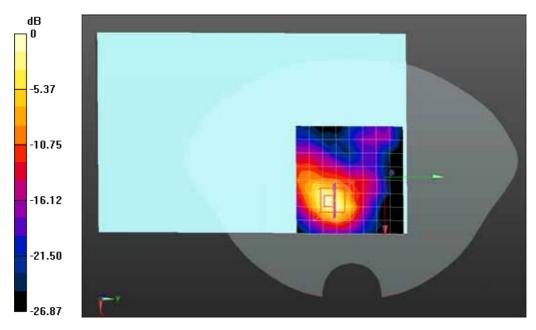
DASY5 Configuration:

• Probe: EX3DV4 - SN3801; ConvF(6.9, 6.9, 6.9); Calibrated: 18/06/2014;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 20/01/2015

• Phantom: SAM2; Type: SAM; Serial: TP1562


Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11b 2412MHz Body-Bottom/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm, Maximum value of SAR (measured) = 0.541 W/kg

Configuration/802.11b 2412MHz Body-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.149 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 0.573 W/kg; SAR(10 g) = 0.237 W/kg Maximum value of SAR (measured) = 0.656 W/kg

0 dB = 0.656 W/kg = -1.83 dBW/kg

Test Laboratory: QuieTek Lab

802.11b 2412MHz Body-Secondary Landscape

DUT: Tablet PC; Type: TR10RS1

Communication System: UID 0, Wi-Fi (0); Communication System Band: 802.11b; Duty Cycle: 1:1.0;

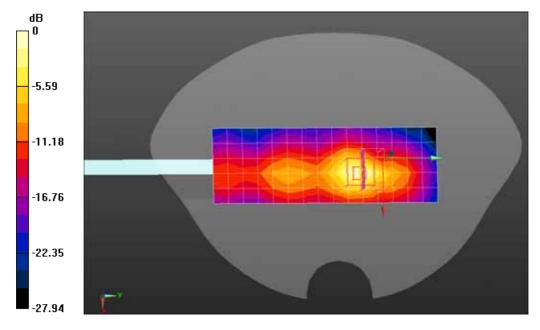
Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ S/m; $\epsilon r = 53.52$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(6.9, 6.9, 6.9); Calibrated: 18/06/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11b 2412MHz Body-Secondary Landscape/Area Scan (6x16x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.671 W/kg

Configuration/802.11b 2412MHz Body-Secondary Landscape/Zoom Scan (5x5x7)/Cube

0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 9.596 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.566 W/kg; SAR(10 g) = 0.236 W/kg Maximum value of SAR (measured) = 0.687 W/kg

0 dB = 0.687 W/kg = -1.63 dBW/kg

Test Laboratory: QuieTek Lab 802.11b 2437MHz Body-Bottom **DUT: Tablet PC; Type: TR10RS1**

Communication System: UID 0, Wi-Fi (0); Communication System Band: 802.11b; Duty Cycle: 1:1.0;

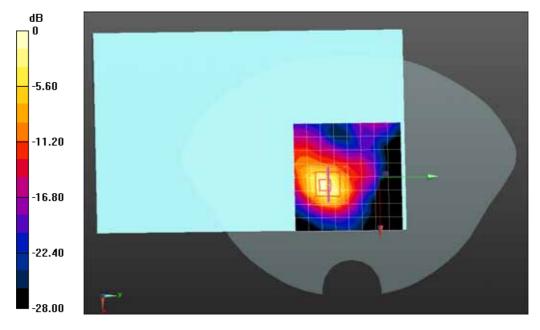
Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ S/m; $\epsilon r = 53.33$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

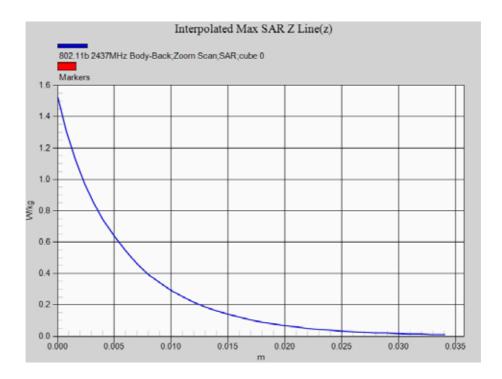
- Probe: EX3DV4 SN3801; ConvF(6.9, 6.9, 6.9); Calibrated: 18/06/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11b 2437MHz Body-Back/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.597 W/kg

Configuration/802.11b 2437MHz Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.999 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.53 W/kg


SAR(1 g) = 0.639 W/kg; SAR(10 g) = 0.263 W/kg Maximum value of SAR (measured) = 0.740 W/kg

0 dB = 0.740 W/kg = -1.31 dBW/kg

Z-Axis Plot

Test Laboratory: QuieTek Lab 802.11b 2462MHz Body-Bottom **DUT: Tablet PC; Type: TR10RS1**

Communication System: UID 0, Wi-Fi (0); Communication System Band: 802.11b; Duty Cycle: 1:1.0;

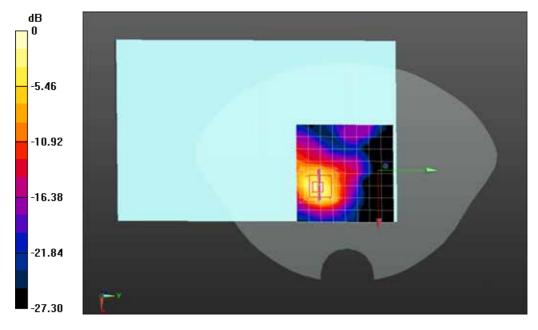
Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.02$ S/m; $\epsilon r = 53.24$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(6.9, 6.9, 6.9); Calibrated: 18/06/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11b 2462MHz Body-Back/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.409 W/kg

Configuration/802.11b 2462MHz Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.859 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.445 W/kg; SAR(10 g) = 0.187 W/kg Maximum value of SAR (measured) = 0.522 W/kg

0 dB = 0.522 W/kg = -2.82 dBW/kg

Test Laboratory: QuieTek Lab 802.11a 5180MHz Body-Bottom **DUT: Tablet PC; Type: TR10RS1**

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

Cycle: 1:1.0; Frequency: 5180 MHz; Medium parameters used: f = 5180 MHz; σ = 5.12 S/m; ϵ r = 49.02; ρ =

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

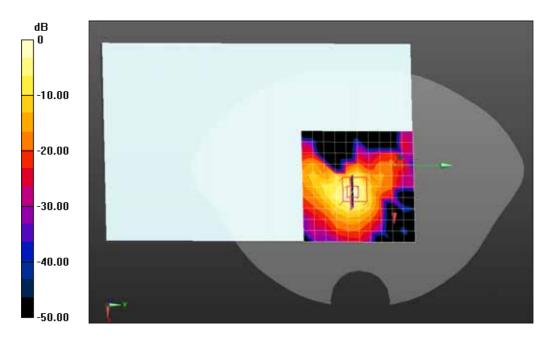
DASY5 Configuration:

Probe: EX3DV4 - SN3801; ConvF(4.17, 4.17, 4.17); Calibrated: 18/06/2014;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 20/01/2015

Phantom: SAM1; Type: SAM; Serial: TP1561


Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11a 5180MHz Body-Bottom/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.33 W/kg

Configuration/802.11a 5180MHz Body-Bottom/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 9.855 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 2.62 W/kg

SAR(1 g) = 0.699 W/kg; SAR(10 g) = 0.204 W/kg Maximum value of SAR (measured) = 1.50 W/kg

0 dB = 1.50 W/kg = 1.76 dBW/kg

Test Laboratory: QuieTek Lab

802.11a 5180MHz Body-Secondary Landscape

DUT: Tablet PC; Type: TR10RS1

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

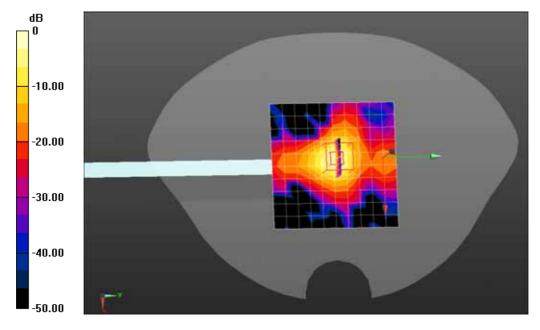
Cycle: 1:1.0; Frequency: 5180 MHz; Medium parameters used: f = 5180 MHz; $\sigma = 5.12$ S/m; $\epsilon r = 49.02$; $\rho = 1.00$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

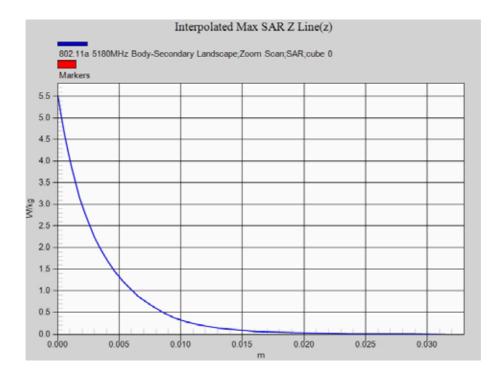
- Probe: EX3DV4 SN3801; ConvF(4.17, 4.17, 4.17); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5180MHz Body-Secondary Landscape/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.32 W/kg

Configuration/802.11a 5180MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 15.40 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 5.54 W/kg


SAR(1 g) = 1.43 W/kg; SAR(10 g) = 0.389 W/kg Maximum value of SAR (measured) = 3.51 W/kg

0 dB = 3.51 W/kg = 5.45 dBW/kg

Z-Axis Plot

Test Laboratory: QuieTek Lab

802.11a 5180MHz Body-Secondary Landscape*

DUT: Tablet PC; Type: TR10RS1

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

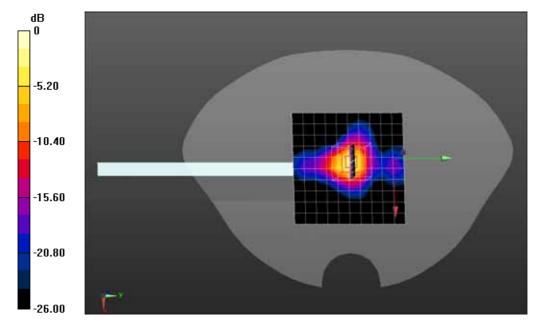
Cycle: 1:1.0; Frequency: 5180 MHz; Medium parameters used: f = 5180 MHz; $\sigma = 5.12$ S/m; $\epsilon r = 49.02$; $\rho = 1.00$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(4.17, 4.17, 4.17); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5180MHz Body-Secondary Landscape/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.28 W/kg

Configuration/802.11a 5180MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 15.40 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 5.46 W/kg

SAR(1 g) = 1.41 W/kg; SAR(10 g) = 0.384 W/kg Maximum value of SAR (measured) = 3.47 W/kg

0 dB = 3.47 W/kg = 5.40 dBW/kg

Test Laboratory: QuieTek Lab

802.11a 5220MHz Body-Secondary Landscape

DUT: Tablet PC; Type: TR10RS1

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

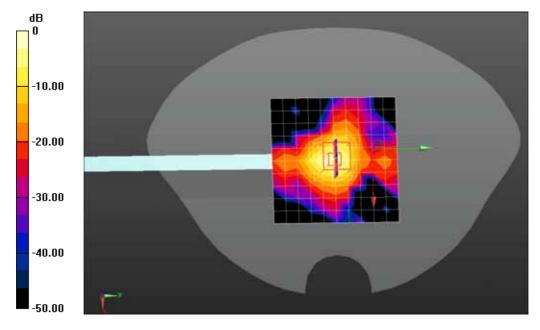
Cycle: 1:1.0; Frequency: 5220 MHz; Medium parameters used: f = 5220 MHz; $\sigma = 5.18$ S/m; $\epsilon r = 48.89$; $\rho = 6.18$ S/m; $\epsilon r = 48.89$; $\epsilon r = 48.89$;

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(4.17, 4.17, 4.17); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5220MHz Body-Secondary Landscape/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.69 W/kg

Configuration/802.11a 5220MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 16.33 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 4.38 W/kg

SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.306 W/kg Maximum value of SAR (measured) = 2.70 W/kg

0 dB = 2.70 W/kg = 4.31 dBW/kg

Test Laboratory: QuieTek Lab

802.11a 5260MHz Body-Secondary Landscape

DUT: Tablet PC; Type: TR10RS1

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

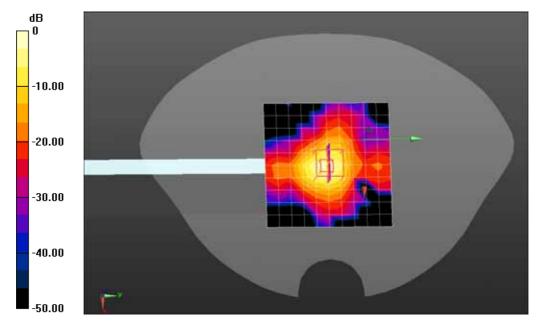
Cycle: 1:1.0; Frequency: 5260 MHz; Medium parameters used: f = 5260 MHz; $\sigma = 5.24$ S/m; $\epsilon r = 48.79$; $\rho = 6.79$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

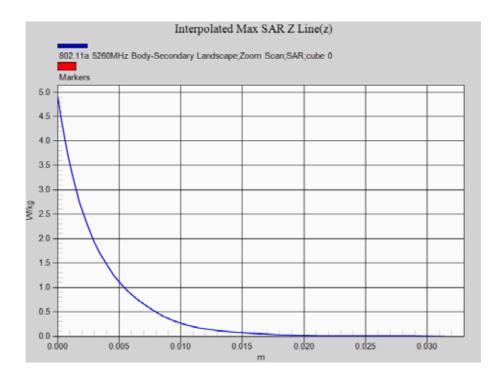
- Probe: EX3DV4 SN3801; ConvF(4.03, 4.03, 4.03); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5260MHz Body-Secondary Landscape/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.86 W/kg

Configuration/802.11a 5260MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 16.78 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 4.91 W/kg


SAR(1 g) = 1.24 W/kg; SAR(10 g) = 0.346 W/kg Maximum value of SAR (measured) = 3.10 W/kg

0 dB = 3.10 W/kg = 4.91 dBW/kg

Z-Axis Plot

Test Laboratory: QuieTek Lab

802.11a 5260MHz Body-Secondary Landscape

DUT: Tablet PC; Type: TR10RS1

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

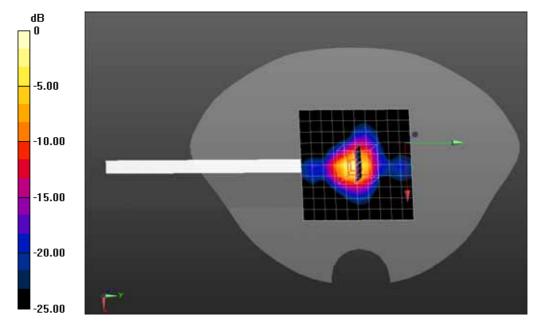
Cycle: 1:1.0; Frequency: 5260 MHz; Medium parameters used: f = 5260 MHz; $\sigma = 5.24$ S/m; $\epsilon r = 48.79$; $\rho = 6.75$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(4.03, 4.03, 4.03); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5260MHz Body-Secondary Landscape/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.81 W/kg

Configuration/802.11a 5260MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 16.78 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 4.82 W/kg

SAR(1 g) = 1.21 W/kg; SAR(10 g) = 0.340 W/kg Maximum value of SAR (measured) = 3.05 W/kg

0 dB = 3.05 W/kg = 4.84 dBW/kg

Test Laboratory: QuieTek Lab 802.11a 5300MHz Body-Bottom **DUT: Tablet PC; Type: TR10RS1**

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

Cycle: 1:1.0; Frequency: 5300 MHz; Medium parameters used: f = 5300 MHz; σ = 5.3 S/m; ϵ r = 48.69; ρ =

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

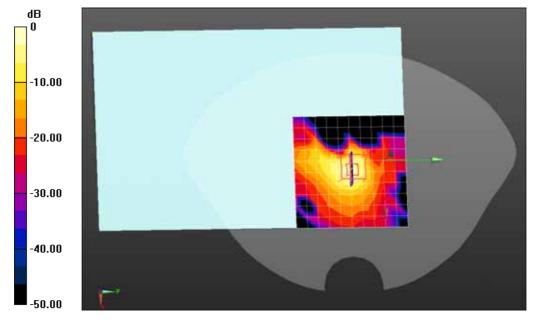
Probe: EX3DV4 - SN3801; ConvF(4.03, 4.03, 4.03); Calibrated: 18/06/2014;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 20/01/2015

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5300MHz Body-Bottom/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.25 W/kg

Configuration/802.11a 5300MHz Body-Bottom/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 10.71 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 2.05 W/kg

SAR(1 g) = 0.524 W/kg; SAR(10 g) = 0.157 W/kg Maximum value of SAR (measured) = 1.25 W/kg

0 dB = 1.25 W/kg = 0.97 dBW/kg

Test Laboratory: QuieTek Lab

802.11a 5300MHz Body-Secondary Landscape

DUT: Tablet PC; Type: TR10RS1

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

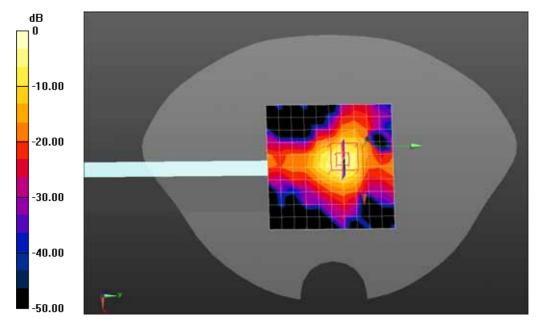
Cycle: 1:1.0; Frequency: 5300 MHz; Medium parameters used: f = 5300 MHz; $\sigma = 5.3$ S/m; $\epsilon r = 48.69$; $\rho = 6.3$ S/m; $\epsilon r = 48.69$; ϵr

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(4.03, 4.03, 4.03); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5300MHz Body-Secondary Landscape/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.23 W/kg

Configuration/802.11a 5300MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 10.02 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 5.03 W/kg

SAR(1 g) = 1.23 W/kg; SAR(10 g) = 0.335 W/kg Maximum value of SAR (measured) = 3.05 W/kg

0 dB = 3.05 W/kg = 4.84 dBW/kg

Test Laboratory: QuieTek Lab 802.11a 5520MHz Body-Bottom **DUT: Tablet PC; Type: TR10RS1**

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

Cycle: 1:1.0; Frequency: 5520 MHz; Medium parameters used: f = 5520 MHz; $\sigma = 5.61$ S/m; $\epsilon r = 48.07$; $\rho = 6.00$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

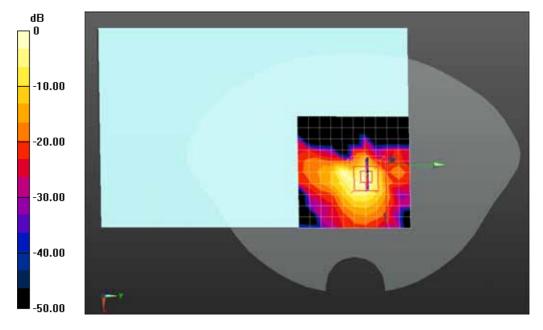
Probe: EX3DV4 - SN3801; ConvF(3.93, 3.93, 3.93); Calibrated: 18/06/2014;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 20/01/2015

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5520MHz Body-Bottom/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.64 W/kg

Configuration/802.11a 5520MHz Body-Bottom/Zoom Scan (7x7x6)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm, Reference Value = 4.400 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 3.21 W/kg

SAR(1 g) = 0.784 W/kg; SAR(10 g) = 0.237 W/kg Maximum value of SAR (measured) = 1.88 W/kg

0 dB = 1.88 W/kg = 2.74 dBW/kg

Test Laboratory: QuieTek Lab

802.11a 5520MHz Body-Secondary Landscape

DUT: Tablet PC; Type: TR10RS1

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

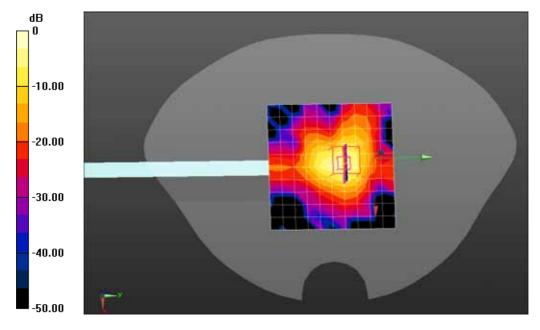
Cycle: 1:1.0; Frequency: 5520 MHz; Medium parameters used: f = 5520 MHz; $\sigma = 5.61$ S/m; $\epsilon r = 48.07$; $\rho = 6.00$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

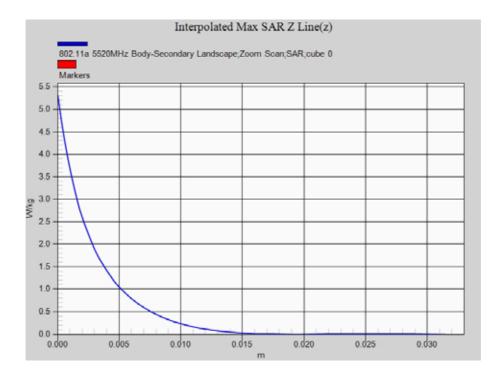
- Probe: EX3DV4 SN3801; ConvF(3.93, 3.93, 3.93); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5520MHz Body-Secondary Landscape/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.94 W/kg

Configuration/802.11a 5520MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 11.19 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 5.32 W/kg


SAR(1 g) = 1.23 W/kg; SAR(10 g) = 0.346 W/kg Maximum value of SAR (measured) = 2.99 W/kg

0 dB = 2.99 W/kg = 4.76 dBW/kg

Z-Axis Plot

Test Laboratory: QuieTek Lab

802.11a 5520MHz Body-Secondary Landscape

DUT: Tablet PC; Type: TR10RS1

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

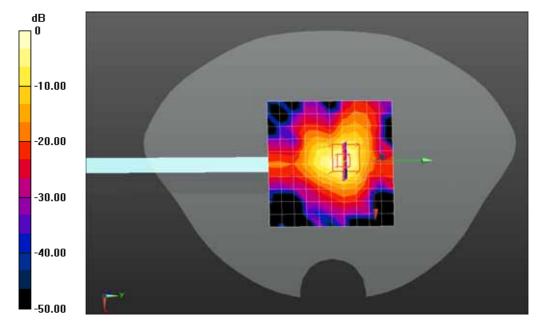
Cycle: 1:1.0; Frequency: 5520 MHz; Medium parameters used: f = 5520 MHz; $\sigma = 5.61$ S/m; $\epsilon r = 48.07$; $\rho = 6.00$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(3.93, 3.93, 3.93); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5520MHz Body-Secondary Landscape/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.88 W/kg

Configuration/802.11a 5520MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 11.19 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 5.22 W/kg

SAR(1 g) = 1.21 W/kg; SAR(10 g) = 0.339 W/kg Maximum value of SAR (measured) = 2.93 W/kg

0 dB = 2.93 W/kg = 4.67 dBW/kg

Test Laboratory: QuieTek Lab

802.11a 5580MHz Body-Secondary Landscape

DUT: Tablet PC; Type: TR10RS1

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

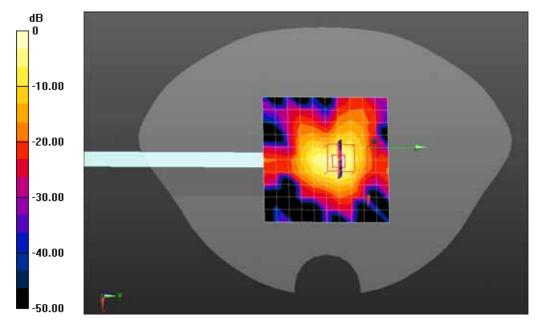
Cycle: 1:1.0; Frequency: 5580 MHz; Medium parameters used: f = 5580 MHz; $\sigma = 5.68$ S/m; $\epsilon r = 47.92$; $\rho = 6.00$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(3.84, 3.84, 3.84); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5580MHz Body-Secondary Landscape/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.35 W/kg

Configuration/802.11a 5580MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 10.13 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 4.30 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.293 W/kg Maximum value of SAR (measured) = 2.57 W/kg

0 dB = 2.57 W/kg = 4.10 dBW/kg

Test Laboratory: QuieTek Lab

802.11a 5620MHz Body-Secondary Landscape

DUT: Tablet PC; Type: TR10RS1

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

Cycle: 1:1.0; Frequency: 5620 MHz; Medium parameters used: f = 5620 MHz; $\sigma = 5.73$ S/m; $\epsilon r = 47.82$; $\rho = 6.73$ S/m; $\epsilon r = 47.82$; ϵ

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(3.84, 3.84, 3.84); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

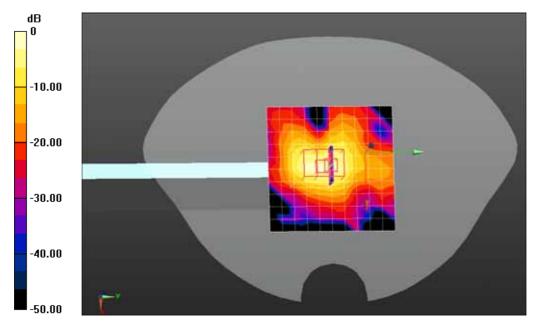
Configuration/802.11a 5620MHz Body-Secondary Landscape/Area Scan (11x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.46 W/kg

Configuration/802.11a 5620MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

1: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 10.90 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 2.63 W/kg


SAR(1 g) = 0.523 W/kg; SAR(10 g) = 0.160 W/kg Maximum value of SAR (measured) = 1.49 W/kg

Configuration/802.11a 5620MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 10.90 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 2.63 W/kg

SAR(1 g) = 0.610 W/kg; SAR(10 g) = 0.192 W/kg Maximum value of SAR (measured) = 1.50 W/kg

0 dB = 1.50 W/kg = 1.76 dBW/kg

Test Laboratory: QuieTek Lab

802.11a 5680MHz Body-Secondary Landscape

DUT: Tablet PC; Type: TR10RS1

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

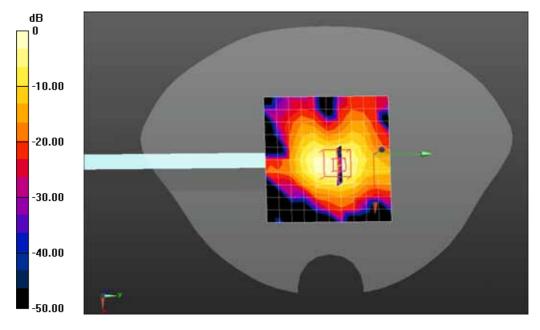
Cycle: 1:1.0; Frequency: 5680 MHz; Medium parameters used: f = 5680 MHz; $\sigma = 5.8$ S/m; $\epsilon r = 47.67$; $\rho = 1.0$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(3.84, 3.84, 3.84); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5680MHz Body-Secondary Landscape/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.848 W/kg

Configuration/802.11a 5680MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 7.236 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 2.12 W/kg

SAR(1 g) = 0.495 W/kg; SAR(10 g) = 0.165 W/kg Maximum value of SAR (measured) = 1.20 W/kg

0 dB = 1.20 W/kg = 0.79 dBW/kg

Test Laboratory: QuieTek Lab 802.11a 5745MHz Body-Bottom **DUT: Tablet PC; Type: TR10RS1**

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

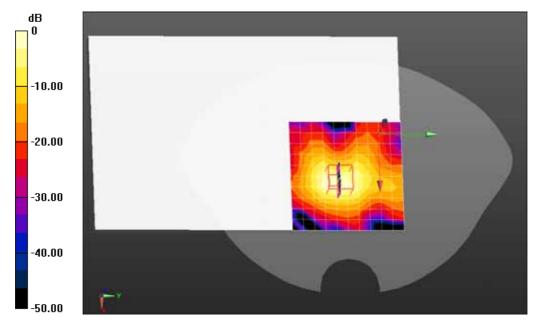
Cycle: 1:1.0; Frequency: 5745 MHz; Medium parameters used: f = 5745 MHz; $\sigma = 5.95$ S/m; $\epsilon r = 47.44$; $\rho = 1.00$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(3.94, 3.94, 3.94); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5745MHz Body-Secondary Landscape/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.62 W/kg

Configuration/802.11a 5745MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 8.174 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.38 W/kg

SAR(1 g) = 0.771 W/kg; SAR(10 g) = 0.252 W/kg Maximum value of SAR (measured) = 1.78 W/kg

0 dB = 1.78 W/kg = 2.50 dBW/kg

Test Laboratory: QuieTek Lab 802.11a 5785MHz Body-Bottom **DUT: Tablet PC; Type: TR10RS1**

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0; Frequency: 5785 MHz; Medium parameters used: f = 5785 MHz; $\sigma = 5.85$ S/m; $\epsilon r = 47.59$; $\rho = 5.85$ S/m; $\epsilon r = 47.59$; $\epsilon r = 47.5$

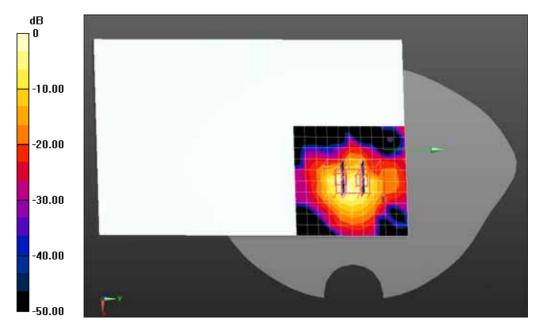
1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(3.94, 3.94, 3.94); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

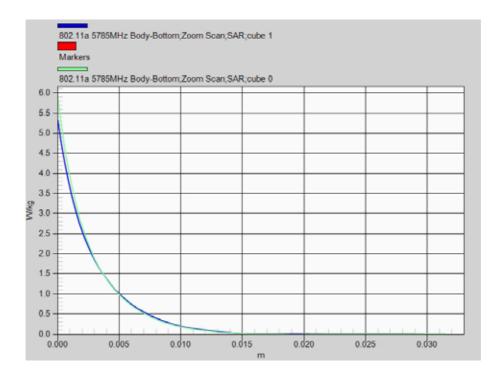
Configuration/802.11a 5785MHz Body-Bottom/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 3.18 W/kg

Configuration/802.11a 5785MHz Body-Bottom/Zoom Scan (7x7x6)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 7.986 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 5.33 W/kg

SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.333 W/kg Maximum value of SAR (measured) = 3.01 W/kg Configuration/802.11a 5785MHz Body-Bottom/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 7.986 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 5.87 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.315 W/kg Maximum value of SAR (measured) = 2.77 W/kg



0 dB = 2.77 W/kg = 4.42 dBW/kg

Z-Axis Plot

Test Laboratory: QuieTek Lab 802.11a 5785MHz Body-Bottom **DUT: Tablet PC; Type: TR10RS1**

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

Cycle: 1:1.0; Frequency: 5785 MHz; Medium parameters used: f = 5785 MHz; $\sigma = 5.85$ S/m; $\epsilon r = 47.59$; $\rho = 1.00$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

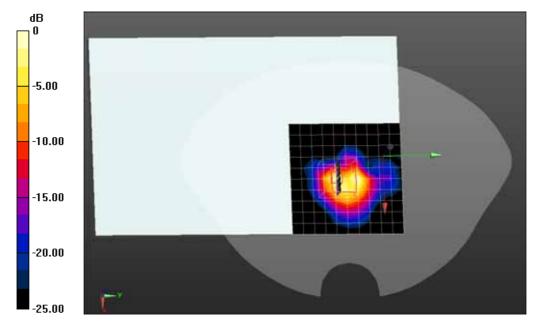
DASY5 Configuration:

Probe: EX3DV4 - SN3801; ConvF(3.94, 3.94, 3.94); Calibrated: 18/06/2014;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 20/01/2015

Phantom: SAM1; Type: SAM; Serial: TP1561


Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11a 5785MHz Body-Bottom/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 3.10 W/kg

Configuration/802.11a 5785MHz Body-Bottom/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 7.986 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 5.72 W/kg

SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.307 W/kg Maximum value of SAR (measured) = 2.70 W/kg

0 dB = 2.70 W/kg = 4.31 dBW/kg

Test Laboratory: QuieTek Lab

802.11a 5785MHz Body-Secondary Landscape

DUT: Tablet PC; Type: TR10RS1

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

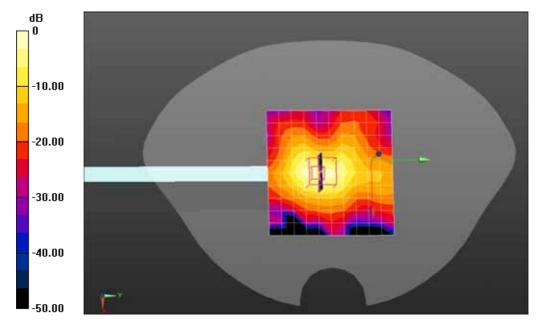
Cycle: 1:1.0; Frequency: 5785 MHz; Medium parameters used: f = 5785 MHz; $\sigma = 5.85$ S/m; $\epsilon r = 47.59$; $\rho = 6.85$ S/m; $\epsilon r = 47.59$; ϵ

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(3.94, 3.94, 3.94); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5785MHz Body-Secondary Landscape/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.16 W/kg

Configuration/802.11a 5785MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 11.43 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 4.05 W/kg

SAR(1 g) = 0.909 W/kg; SAR(10 g) = 0.292 W/kg Maximum value of SAR (measured) = 2.29 W/kg

0 dB = 2.29 W/kg = 3.60 dBW/kg

Test Laboratory: QuieTek Lab 802.11a 5825MHz Body-Bottom **DUT: Tablet PC; Type: TR10RS1**

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty

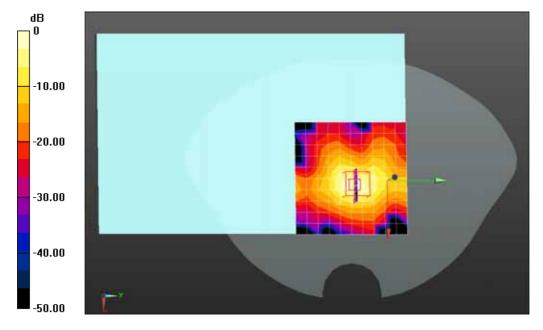
Cycle: 1:1.0; Frequency: 5825 MHz; Medium parameters used: f = 5825 MHz; $\sigma = 5.88$ S/m; $\epsilon r = 47.48$; $\rho = 6.88$ S/m; $\epsilon r = 47.48$; ϵ

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(3.94, 3.94, 3.94); Calibrated: 18/06/2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

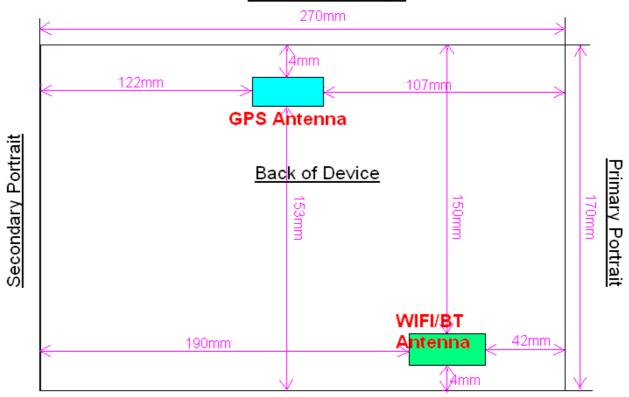

Configuration/802.11a 5825MHz Body-Secondary Landscape/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.84 W/kg

Configuration/802.11a 5825MHz Body-Secondary Landscape/Zoom Scan (7x7x6)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=2mm, Reference Value = 10.17 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 4.35 W/kg

SAR(1 g) = 0.978 W/kg; SAR(10 g) = 0.309 W/kg Maximum value of SAR (measured) = 2.33 W/kg


0 dB = 2.33 W/kg = 3.67 dBW/kg

Appendix C. Test Setup Photographs & EUT Photographs

Antenna to Antenna/User Separation Distances

Primary Landscape

Secondary Landscape

Antenna-to-user separation distances:	<u>Wi-Fi Antenna</u>		
separation distances.	Tablet-Bottom face: 4mm from Wi-Fi Antenna-to-user		
	Tablet-Edges with the following configurations		
	Primary landscape: 150mm from Wi-Fi Antenna-to-user		
	Secondary landscape: 4mm from Wi-Fi Antenna-to-user		
	Primary portrait: 42mm from Wi-Fi Antenna-to-user		
	Secondary portrait: 190mm from Wi-Fi Antenna-to-user		

Appendix D. Probe Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Auden

Certificate No: EX3-3801_Jun14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3801

Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: June 18, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID .	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	1D	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:

Jeton Kastrati
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: June 18, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3801_Jun14

Page 1 of 11

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal
A. B. C. D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". June 2013
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3801_Jun14 Page 2 of 11

June 18, 2014 EX3DV4 - SN:3801

Probe EX3DV4

SN:3801

Manufactured: April 5, 2011 June 18, 2014 Calibrated:

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Page 3 of 11

Page: 73 of 107

Certificate No: EX3-3801_Jun14

EX3DV4-SN:3801 June 18, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801

Basic Calibration Parameters

Judio Guilbration Fara	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.53	0.60	0.53	± 10.1 %
DCP (mV) ^B	100.2	98.4	100.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc* (k=2)
0	CW	X	0.0	0.0	1.0	0.00	128.0	±2.7 %
~	1	Y	0.0	0.0	1.0		134.4	
		Z	0.0	0.0	1.0		146.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁶ The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

EX3DV4-SN:3801

June 18, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.44	9.44	9.44	0.35	1.00	± 12.0 %
835	41.5	0.90	9.15	9.15	9.15	0.80	0.64	± 12.0 %
900	41.5	0.97	8.92	8.92	8.92	0.50	0.79	± 12.0 %
1450	40.5	1.20	7.90	7.90	7.90	0.41	1.02	± 12.0 %
1750	40.1	1.37	7.82	7.82	7.82	0.80	0.58	± 12.0 %
1900	40.0	1.40	7.51	7.51	7.51	0.76	0.59	± 12.0 %
2000	40.0	1.40	7.55	7.55	7.55	0.80	0.57	± 12.0 %
2300	39.5	1.67	7.25	7.25	7.25	0.44	0.75	± 12.0 %
2450	39.2	1.80	6.85	6.85	6.85	0.53	0.70	± 12.0 %
2600	39.0	1.96	6.76	6.76	6.76	0.63	0.66	± 12.0 %
5200	36.0	4.66	4.96	4.96	4.96	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.74	4.74	4.74	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.73	4.73	4.73	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.54	4.54	4.54	0.35	1.80	± 13.1 %
5800	35.3	5.27	4.45	4.45	4.45	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

June 18, 2014 EX3DV4- SN:3801

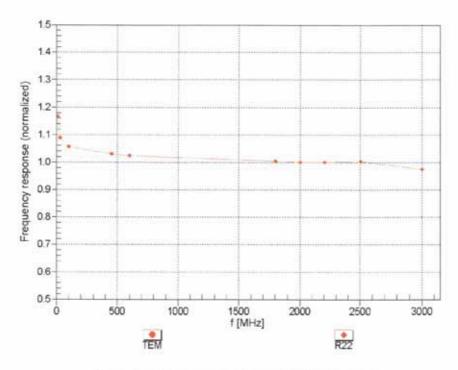
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.11	9.11	9.11	0.65	0.75	± 12.0 %
835	55.2	0.97	9.12	9.12	9.12	0.80	0.66	± 12.0 %
900	55.0	1.05	8.91	8.91	8.91	0.80	0.67	± 12.0 %
1450	54.0	1.30	7.97	7.97	7.97	0.54	0.76	± 12.0 %
1750	53.4	1.49	7.62	7.62	7.62	0.63	0.71	± 12.0 %
1900	53.3	1.52	7.29	7.29	7.29	0.60	0.71	± 12.0 %
2000	53.3	1.52	7.47	7.47	7.47	0.37	0.90	± 12.0 %
2300	52.9	1.81	7.18	7.18	7.18	0.80	0.60	± 12.0 %
2450	52.7	1.95	6.90	6.90	6.90	0.80	0.50	± 12.0 %
2600	52.5	2.16	6.74	6.74	6.74	0.80	0.50	± 12.0 9
5200	49.0	5.30	4.17	4.17	4.17	0.45	1.90	± 13.1 9
5300	48.9	5.42	4.03	4.03	4.03	0.45	1.90	± 13.1 9
5500	48.6	5.65	3.93	3.93	3.93	0.45	1.90	± 13.1 9
5600	48.5	5.77	3.84	3.84	3.84	0.45	1.90	± 13.1 9
5800	48.2	6.00	3.94	3.94	3.94	0.50	1.90	± 13.1 9

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^g At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3801_Jun14

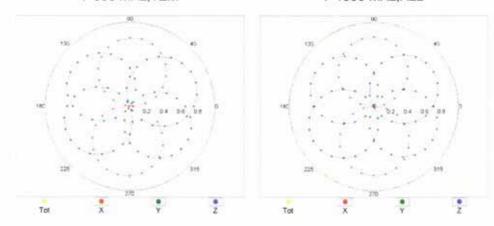
EX3DV4- SN:3801 June 18, 2014

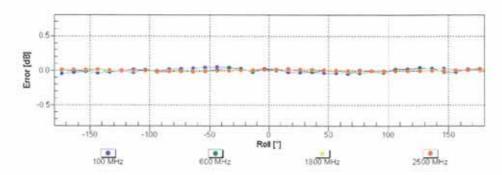
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3801_Jun14

Page 7 of 11





Receiving Pattern (\$\phi\$), 9 = 0°

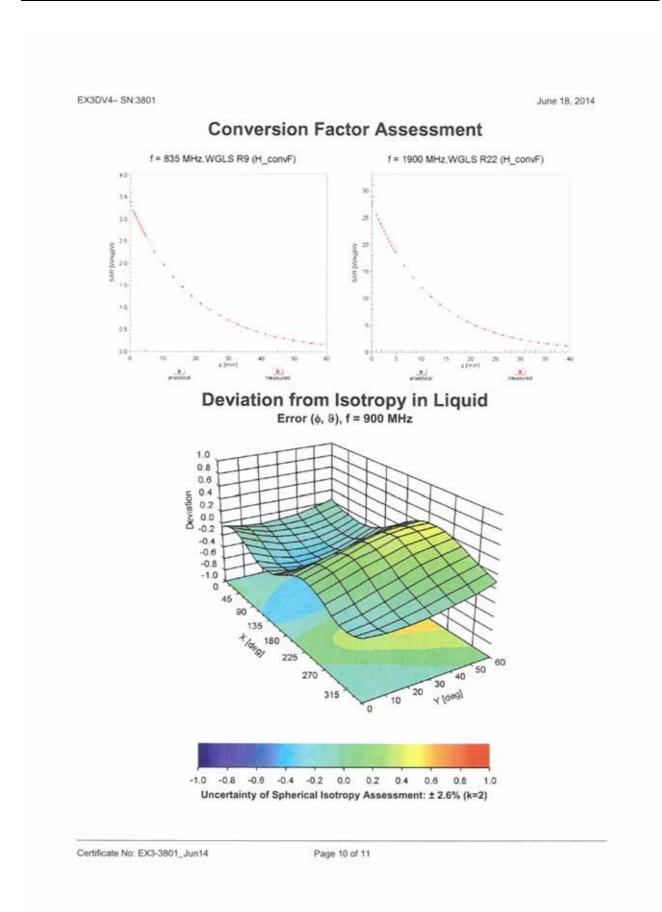
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: EX3-3801_Jun14

Page 8 of 11

EX3DV4- SN:3801 June 18, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3801_Jun14

Page 9 of 11

EX3DV4- SN:3801 June 18, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-53.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3801_Jun14 Page 11 of 11

Appendix E. Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

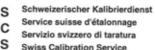
Client Quitek-CN (Auden)

Certificate No: D2450V2-839_Feb14

Accreditation No.: SCS 108

Object	D2450V2 - SN: 8	39	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	February 24, 201	4	
The measurements and the unce	rtainties with confidence p	onal standards, which realize the physical un robability are given on the following pages ar ry facility: environment temperature (22 ± 3)°	nd are part of the certificate.
Calibration Equipment used (M&			
	ID#	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards	ID # GB37480704	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14
rimary Standards ower meter EPM-442A	The state of the s	- Control of the Cont	
rimary Standards ower meter EPM-442A ower sensor HP 8481A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
rimary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	GB37480704 US37292783	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Oct-14 Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	GB37480704 US37292783 MY41092317	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828)	Oct-14 Oct-14 Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	GB37480704 US37292783 MY41092317 SN: 5058 (20k)	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736)	Oct-14 Oct-14 Oct-14 Apr-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 d8 Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards RF generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards RF generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Retwork Analyzer HP 8753E	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 d8 Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14

Certificate No: D2450V2-839_Feb14


Page 1 of 8

Calibration Laboratory of

Accreditation No.: SCS 108

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-839_Feb14 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.1 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.7 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.1 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.5 Ω + 2.4 jΩ
Return Loss	- 26.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.6 Ω + 4.3 jΩ
Return Loss	- 27.4 dB

General Antenna Parameters and Design

1.159 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 20, 2009

DASY5 Validation Report for Head TSL

Date: 24.02.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 839

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

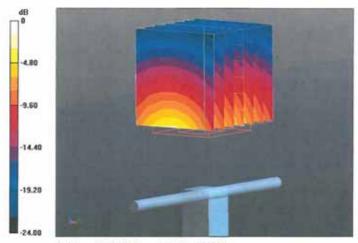
DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

· Electronics: DAE4 Sn601; Calibrated: 25.04.2013

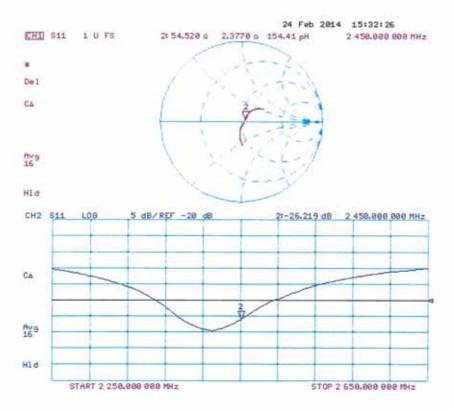
Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001


DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.591 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.9 W/kg


SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.15 W/kg Maximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 12.30 dBW/kg

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-839_Feb14

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 24.02.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 839

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;

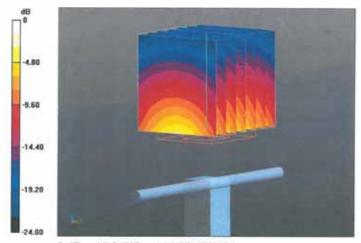
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

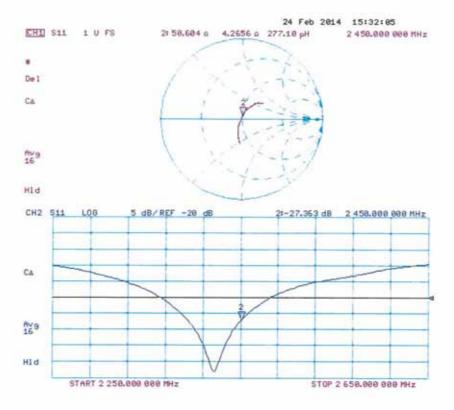
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.267 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.86 W/kg


Maximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 12.30 dBW/kg

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-839_Feb14

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Quitek-CN (Auden)

Accreditation No.: SCS 108

Certificate No: D5GHzV2-1078_Mar14

CALIBRATION CERTIFICATE

D5GHzV2 - SN: 1078 Object

QA CAL-22.v2 Calibration procedure(s)

Calibration procedure for dipole validation kits between 3-6 GHz

March 03, 2014 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14	
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14	
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14	
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14	
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14	
Reference Probe EX3DV4	SN: 3503	30-Dec-13 (No. EX3-3503_Dec13)	Dec-14	
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check	
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16	
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14	

Name Function Calibrated by: Jeton Kastrati Laboratory Technician

Katja Pokovic Technical Manager Approved by:

Issued: March 3, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1078_Mar14

Page 1 of 13

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1078_Mar14

Page 2 of 13

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.1 ± 6 %	4.52 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.7 ± 6 %	4.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.3 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1078_Mar14

Page 3 of 13

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	5.16 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.03 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1078_Mar14

Body TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.8 ± 6 %	5.40 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.64 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.80 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1078_Mar14

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.69 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1078_Mar14

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	52.3 Ω - 10.4 jΩ
Return Loss	- 19.7 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50.6 Ω - 6.3 jΩ
Return Loss	- 24.1 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	54.1 Ω - 2.7 jΩ
Return Loss	- 26.5 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	52.0 Ω - 9.0 jΩ
Return Loss	- 20.9 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.5 Ω - 5.3 jΩ
Return Loss	- 25.3 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	53.9 Ω - 1.5 jΩ
Return Loss	- 27.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns
, ,	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 26, 2008

Certificate No: D5GHzV2-1078_Mar14

Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 28.02.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1078

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.52$ S/m; $\epsilon_r = 37.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.84$ S/m; $\epsilon_r = 36.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.16$ S/m; $\epsilon_r = 36.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.52, 5.52, 5.52); Calibrated: 30.12.2013, ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2013;
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.986 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 7.8 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.169 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 8.59 W/kg; SAR(10 g) = 2.43 W/kg

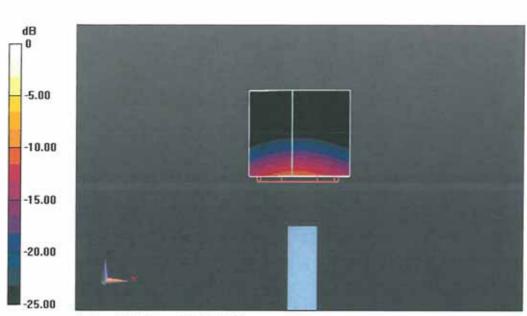
Maximum value of SAR (measured) = 20.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.474 V/m; Power Drift = 0.02 dB

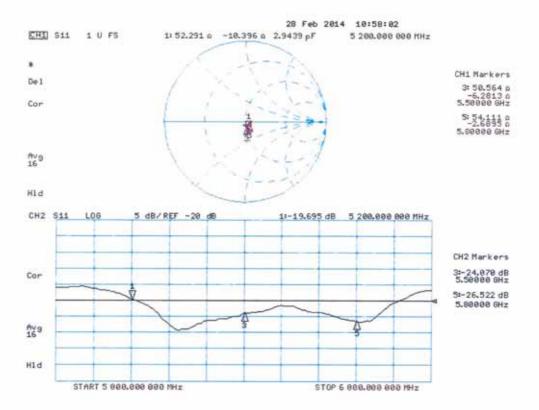
Peak SAR (extrapolated) = 34.2 W/kg


SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.27 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

Certificate No: D5GHzV2-1078_Mar14

Page 8 of 13


0 dB = 19.7 W/kg = 12.94 dBW/kg

Certificate No: D5GHzV2-1078_Mar14

Page 9 of 13

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1078_Mar14

Page 10 of 13

DASY5 Validation Report for Body TSL

Date: 03.03.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1078

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.4$ S/m; $\varepsilon_r = 47.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.8$ S/m; $\varepsilon_r = 47.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.21$

S/m; $\varepsilon_r = 46.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.52, 4.52, 4.52); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013;
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.230 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 30.8 W/kg

SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.820 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 35.7 W/kg

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.24 W/kg

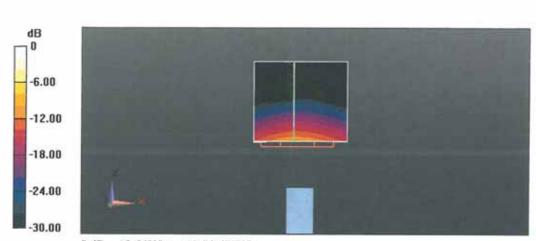
Maximum value of SAR (measured) = 20.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.732 V/m; Power Drift = 0.01 dB

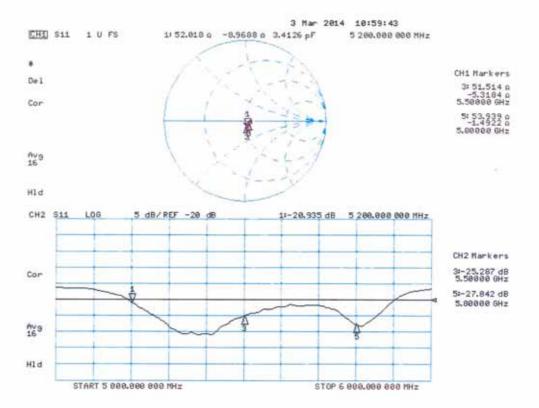
Peak SAR (extrapolated) = 36.8 W/kg


SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.12 W/kg

Maximum value of SAR (measured) = 19.6 W/kg

Certificate No: D5GHzV2-1078_Mar14

Page 11 of 13


0 dB = 19.6 W/kg = 12.92 dBW/kg

Certificate No: D5GHzV2-1078_Mar14

Page 12 of 13

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1078_Mar14

Page 13 of 13

Appendix F. DAE Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Quietek (Auden)

Certificate No: DAE4-1220 Jan 15

	CERTIFICATE		
Object	DAE4 - SD 000 D04 BM - SN: 1220		
Calibration procedure(s)	QA CAL-06.v29 Calibration proce	dure for the data acquisition elect	ronics (DAE)
Calibration date:	January 20, 2015		
The measurements and the unce	ertainties with confidence proceed in the closed laboratory	onal standards, which realize the physical units obability are given on the following pages and y facility; environment temperature (22 \pm 3) $^{\circ}$ C	are part of the certificate.
Notification that is next to a distant			
	M.	6.15.4.16.45.4.W.	sportuned sector are
Primary Standards	ID # SN: 0810278	Cal Date (Certificate No.) 03-Oct-14 (No:15573)	Scheduled Calibration
Primary Standards Keithley Multimeter Type 2001	ID# SN: 0810278	Cal Date (Certificate No.) 03-Oct-14 (No:15573)	Scheduled Calibration Oct-15
Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ID # SN: 0810278 ID #	03-Oct-14 (No:15573) Check Date (in house)	Oct-15 Scheduled Check
Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001	03-Oct-14 (No:15573)	Oct-15
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	03-Oct-14 (No:15573) Check Date (in house) 06-Jan-15 (in house check)	Oct-15 Scheduled Check In house check: Jan-16 In house check: Jan-16 Signature
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 Name	03-Oct-14 (No:15573) Check Date (in house) 06-Jan-15 (in house check) 06-Jan-15 (in house check)	Oct-15 Scheduled Check In house check: Jan-16 In house check: Jan-16

Certificate No: DAE4-1220_Jan15

Page 1 of 5

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an
 input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1220_Jan15 Page 2 of 5

DC Voltage Measurement A/D - Converter Resolution nominal

High Range: 1LSB = Low Range: 1LSB =

full range = -100...+300 mV full range = -1......+3mV 6.1µV,

61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Υ	z
High Range	405.223 ± 0.02% (k=2)	404.945 ± 0.02% (k=2)	404.175 ± 0.02% (k=2)
Low Range	3.97823 ± 1.50% (k=2)	3.99514 ± 1.50% (k=2)	3.98736 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	176.0 ° ± 1 °
---	---------------

Certificate No: DAE4-1220_Jan15

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	199992.82	-0.19	-0.00
Channel X + Input	20002.86	2.81	0.01
Channel X - Input	-19998.10	3.32	-0.02
Channel Y + Input	199994.68	1.45	0.00
Channel Y + Input	19999.81	-0.26	-0.00
Channel Y - Input	-20001.22	0.12	-0.00
Channel Z + Input	199994.31	1.35	0.00
Channel Z + Input	19998.36	-1.71	-0.01
Channel Z - Input	-20002.63	-1.17	0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	1999.97	0.08	0.00
Channel X + Input	200.10	-0.38	-0.19
Channel X - Input	-199.36	0.04	-0.02
Channel Y + Input	2000.09	-0.01	-0.00
Channel Y + Input	200.15	-0.56	-0.28
Channel Y - Input	-199.46	-0.29	0.14
Channel Z + Input	2000.03	-0.05	-0.00
Channel Z + Input	199.13	-1.44	-0.72
Channel Z - Input	-200.51	-1.24	0.62

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	9.93	8.00
	- 200	-7.88	-9.65
Channel Y	200	-9.33	-9.42
	- 200	8.41	8.39
Channel Z	200	12.43	11.97
	- 200	-14.76	-14.78

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	1.54	-4.32
Channel Y	200	8.10	-	1.97
Channel Z	200	9.58	6.10	

Certificate No: DAE4-1220_Jan15

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15890	15669
Channel Y	16013	16062
Channel Z	15704	15896

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MO

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.74	-0.62	2.42	0.43
Channel Y	-0.09	-1.45	1.41	0.49
Channel Z	-0.84	-1.63	0.22	0.40

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1220_Jan15