

# RF Exposure Evaluation declaration

Product Name : Wireless Motherboard

Model No. : TA70CA1

FCC ID : WL6-TABC7CA1

Applicant : ELITEGROUP COMPUTER SYSTEMS CO., LTD.

Address : No.239, Sec. 2, Ti Ding Blvd., Taipei, Taiwan

Date of Receipt : Nov. 27, 2013

Date of Declaration : Dec. 24, 2013

Report No. : 13C0051R-RFUSP74V00

The declaration results relate only to the samples calculated.

The declaration shall not be reproduced except in full without the written approval of QuieTek Corporation.

## 1. RF Exposure Evaluation

### 1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

**LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)**

| Frequency Range (MHz)                                     | Electric Field Strength (V/m) | Magnetic Field Strength (A/m) | Power Density (mW/cm <sup>2</sup> ) | Average Time (Minutes) |
|-----------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------------|------------------------|
| (A) Limits for Occupational/ Control Exposures            |                               |                               |                                     |                        |
| 300-1500                                                  | --                            | --                            | F/300                               | 6                      |
| 1500-100,000                                              | --                            | --                            | 5                                   | 6                      |
| (B) Limits for General Population/ Uncontrolled Exposures |                               |                               |                                     |                        |
| 300-1500                                                  | --                            | --                            | F/1500                              | 6                      |
| 1500-100,000                                              | --                            | --                            | 1                                   | 30                     |

F= Frequency in MHz

Friis Formula

Friis transmission formula:  $P_d = (P_{out} * G) / (4 * \pi * r^2)$

Where

$P_d$  = power density in  $\text{mW/cm}^2$

$P_{out}$  = output power to antenna in mW

$G$  = gain of antenna in linear scale

$\pi$  = 3.1416

$R$  = distance between observation point and center of the radiator in cm

$P_d$  is the limit of MPE, 1  $\text{mW/cm}^2$ . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance  $r$  where the MPE limit is reached.

### 1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°C and 78% RH.

### 1.3. Test Result of RF Exposure Evaluation

Product : Wireless Motherboard  
Test Item : RF Exposure Evaluation  
Test Site : No.3 OATS

#### BT

##### Output Power Into Antenna & RF Exposure Evaluation Distance (2.98dBi):

| Output Power to Antenna<br>(mW) | Power Density at R = 20 cm<br>(mW/cm <sup>2</sup> ) |
|---------------------------------|-----------------------------------------------------|
| 2.6363                          | 0.001042                                            |

Note: Power density is much lower than the limit (1 mW/cm<sup>2</sup>).

#### WLAN

##### Output Power Into Antenna & RF Exposure Evaluation Distance (2.98dBi):

| Output Power to Antenna<br>(mW) | Power Density at R = 20 cm<br>(mW/cm <sup>2</sup> ) |
|---------------------------------|-----------------------------------------------------|
| 292.4152                        | 0.115540                                            |

Note: Power density is much lower than the limit (1 mW/cm<sup>2</sup>).