

TESTING
CERT #803.01, 803.02, 803.05, 803.06

CIMARRON SYSTEMS LLC TEST REPORT

FOR THE

WIRELESS SENSOR NETWORK MODULE, 915-1000-0-NIU

**FCC PART 15 SUBPART B SECTIONS 15.107 & 15.109 CLASS B,
FCC PART 15 SUBPART C SECTIONS 15.207 & 15.247 & RSS-210 ISSUE 7**

TESTING

DATE OF ISSUE: DECEMBER 8, 2008

PREPARED FOR:

Cimarron Systems LLC
20311Spoonwood Drive
Humble, TX 77346

PREPARED BY:

Joyce Walker
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

P.O. No.: CSLLC-1004
W.O. No.: 88433

Date of test: November 30, 2008

Report No.: FC08-113

This report contains a total of 66 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Summary of Results	4
Conditions During Testing	4
FCC 15.31(e) Voltage Variation	5
FCC 15.31(m) Number Of Channels	5
FCC 15.33(a) Frequency Ranges Tested	5
FCC 15.203 Antenna Requirements	5
EUT Operating Frequency	5
Equipment Under Test (EUT) Description	6
Equipment Under Test	6
Peripheral Devices	6
Report of Emissions Measurements	7
Testing Parameters	7
FCC 15.107 – AC Conducted Emissions	9
FCC 15.109 – Radiated Emissions –	22
FCC 15.207 – AC Conducted Emissions	26
FCC Part 15.247(a)(1) - Bandwidth - Plot	40
FCC Part 15.247(a)(1) - Carrier Frequency Spectrum	43
FCC Part 15.247(a)(1)(iii) - Number of Hopping Frequencies	45
FCC 15.247(b)(2) – RF Power Output	48
FCC 15.247(d) – Band Edge	50
FCC 15.247(d) – OATS Radiated Spurious Emissions	53
RSS-210 – 99% Bandwidth	63

ADMINISTRATIVE INFORMATION

DATE OF TEST: November 30, 2008

DATE OF RECEIPT: November 30, 2008

REPRESENTATIVE: Bill Mathews

MANUFACTURER:

Cimarron Systems LLC
20311 Spoonwood Drive
Humble, TX 77346

TEST LOCATION:

CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

TEST METHOD: ANSI C63.4 (2003), RSS-210 Issue 7 & RSS-GEN Issue 2

PURPOSE OF TEST: To perform the testing of the Wireless Sensor Network Module, 915-1000-0-NIU with the requirements for FCC Part 15 Subpart C Sections 15.207 & 15.247, Subpart B Sections 15.107 & 15.109 Class B and RSS 210 devices.

APPROVALS

Steve Behm, Director of Engineering Services

TEST PERSONNEL:

Eddie Wong, Senior EMC Engineer

SUMMARY OF RESULTS

Test	Specification/Method	Results
Mains Conducted Emissions	FCC Part 15 Subpart B Section 15.107 Class B	Pass
Radiated Emissions	FCC Part 15 Subpart B Section 15.109 Class B	Pass
Mains Conducted Emissions	FCC Part 15 Subpart C Section 15.207	Pass
6 dB Bandwidth	FCC Part 15.247(a)(1)	Pass
Carrier Frequency Separation	FCC Part 15.247(a)(1)	Pass
Number of Hopping Frequencies	FCC Part 15.247(a)(1)(iii)	Pass
RF Power Output	FCC Part 15.247(b)(2)	Pass
Band Edge	FCC Part 15.247(d)	Pass
OATS Radiated Spurious Emissions	FCC Part 15.247(d)	Pass
99% Bandwidth	RSS-210	Pass
Site Filing Nos.	FCC Site No. 90473 Industry of Canada File No. IC 3172-A	

CONDITIONS DURING TESTING

Added a SAW filter between the output of the transceiver and the input of the power amplifier. Mounting holes are isolated from the ground plane. The board is screwed to the standoffs. A 10MOhm resistor was added between the analog input amplifier and ground.

FCC 15.31(e) Voltage Variations

AC power level was varied + - 15 %. RF Output power remained unchanged.

FCC 15.31(m) Number Of Channels

Tested in low, middle and high frequencies.

FCC 15.33(a) Frequency Ranges Tested

15.107 Conducted Emissions: 150 kHz – 30 MHz

15.109 Radiated Emissions: 30 MHz – 10 GHz

15.207 Conducted Emissions: 150 kHz – 30 MHz

15.247 Radiated Emissions: 9 kHz – 10GHz

FCC 15.203 Antenna Requirements

The antenna is attached with an MMCX connector. This meets the 15.203 requirement per DA 00-2225.

EUT Operating Frequency

The EUT was operating at 916-926 MHz.

The EUT is a frequency hopping spread spectrum device operating in the 902 – 928 MHz band.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit. The EUT collects data from analog transducers and switch contacts and transmits via ad hoc mesh network to a central data collection unit. All modules use the same PC board and have identical RF properties. The different model numbers are the result of differing network functions performed. The unit tested by CKC was: **Wireless Data Collection System, 915-1000-0-NIU**. Since the time of testing the manufacturer has chosen to use the following model name in its place. **Wireless Sensor Network Module, 915-1000-0-NIU**

The manufacturer states that the following additional models are identical electrically to the one which was tested, or any differences between them do not affect their EMC characteristics, and therefore they meet the level of testing equivalent to the tested models:

915-1000-0-DCU
915-1000-0-PRI
915-1000-0-SEC
915-1000-0-NTU

EQUIPMENT UNDER TEST

Wireless Sensor Network Module

Manuf: Cimarron Systems LLC
Model: 915-1000-0-NIU
Serial: NA
FCC ID: WK5-915-1000-0 (pending)
IC #: 7893A-91510000

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Pressure Transducer

Manuf: Omegadyne
Model: PX-319-200GV
Serial: 091906D028

Pressure Transducer

Manuf: Omegadyne
Model: PX-319-1KGV
Serial: 053007D300

Power Supply

Manuf: Cincon
Model: TR1505
Serial: NA

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within +15°C and + 35°C.

The relative humidity was between 20% and 75%.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS	
Meter reading	(dB μ V)
+	Antenna Factor (dB)
+	Cable Loss (dB)
-	Distance Correction (dB)
-	Preamplifier Gain (dB)
=	Corrected Reading (dB μ V/m)

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings were recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

FCC 15.107 – AC CONDUCTED EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: **Cimarron Systems LLC**
 Specification: **FCC 15.107 Class B COND [AVE]**
 Work Order #: **88433** Date: 11/30/2008
 Test Type: **Conducted Emissions** Time: 16:03:54
 Equipment: **Wireless Data Collection System** Sequence#: 12
 Manufacturer: Cimarron Systems LLC Tested By: E. Wong
 Model: 915-1000-0-NIU 110V 60Hz
 S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
6dB Attenuator	None	10/14/2008	10/14/2010	P05886
150kHz HPF	G7755	01/09/2008	01/09/2010	02610
Conducted Emission	Cable #21	05/12/2008	05/12/2010	P04358
Cable				
LISN	1102	05/11/2007	05/11/2009	00848

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Data Collection System*	Cimarron Systems LLC	915-1000-0-NIU	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Pressure transducer	Omegadyne	PX-319-200GV	091906D028
Pressure transducer	Omegadyne	PX-319-1KGV	053007D300
Power Supply	Cincon	TR1505	NA

Test Conditions / Notes:

FCC15.107(2007)

The EUT is placed on the wooden table. The serial port is connected to a support 5V AC-DC power supply and a remotely located support laptop.

Two analog inputs are connected to support pressure transducers. Four discrete inputs are connected to a section of unterminated cable. All four cables are of shielded cable.

Freq range : 916MHz - 926MHz

Mode: RX

Test software setting: Transceiver power = -8

PA Gain voltage: 1.8

The device is to be used in three different orientations, with transmit antenna perpendicular to the ground reference plane. The emission profile of all three device orientations will be tested and worse case emission presented.

Note: In normal application, this low transmit duty cycle device has a transmit interval in the order of once a minute. The primary power source is non-rechargeable and rechargeable battery with external AC-DC power supply or solar panel. To support continuous transmit in test mode, a support 5V AC-DC power supply is used to simulate testing with a new battery.

AC Cond emission:

Modification:

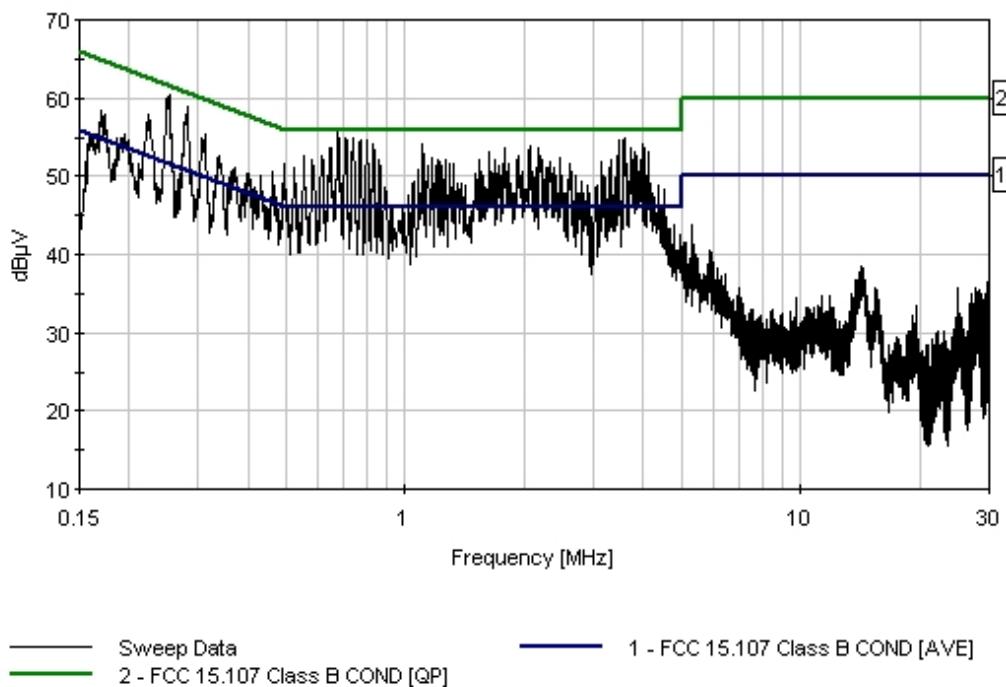
Added a SAW filter between the output of the transceiver and the input of the power amplifier.

Mounting holes are isolated from the ground plane. The board is screwed to the standoffs.

A 10MOhm resistor was added between the analog input amplifier and ground.

Transducer Legend:

T1=150kHz HPF AN02610_010910
T3=6dB Attenuator


T2=Cable #21 -P04358- Site A 05/12/10
T4=(L1) LISN Insertion Loss 00848

Measurement Data:		Reading listed by margin.						Test Lead: Black			
#	Freq MHz	Rdng dB μ V	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
1	680.670k QP	45.4	+0.2	+0.0	+6.0	+0.0	+0.0	51.6	56.0	-4.4	Black
^	675.770k	49.4	+0.2	+0.0	+6.0	+0.0	+0.0	55.6	46.0	+9.6	Black
3	708.494k Ave	32.5	+0.3	+0.0	+6.0	+0.0	+0.0	38.8	46.0	-7.2	Black
^	708.494k	48.6	+0.3	+0.0	+6.0	+0.0	+0.0	54.9	46.0	+8.9	Black
5	679.140k Ave	32.0	+0.2	+0.0	+6.0	+0.0	+0.0	38.2	46.0	-7.8	Black
6	770.307k Ave	31.4	+0.3	+0.0	+6.0	+0.0	+0.0	37.7	46.0	-8.3	Black
^	770.307k	48.4	+0.3	+0.0	+6.0	+0.0	+0.0	54.7	46.0	+8.7	Black
8	276.447k Ave	36.1	+0.2	+0.0	+6.0	+0.0	+0.0	42.3	50.9	-8.6	Black
9	802.304k Ave	31.0	+0.3	+0.0	+6.0	+0.0	+0.0	37.3	46.0	-8.7	Black
^	802.304k	48.4	+0.3	+0.0	+6.0	+0.0	+0.0	54.7	46.0	+8.7	Black
11	646.682k Ave	30.9	+0.2	+0.0	+6.0	+0.0	+0.0	37.1	46.0	-8.9	Black
^	646.682k	47.4	+0.2	+0.0	+6.0	+0.0	+0.0	53.6	46.0	+7.6	Black
13	3.127M Ave	29.1	+0.2	+0.1	+6.0	+0.1	+0.0	35.5	46.0	-10.5	Black
^	3.127M	45.4	+0.2	+0.1	+6.0	+0.1	+0.0	51.8	46.0	+5.8	Black
15	1.141M Ave	28.7	+0.3	+0.1	+6.0	+0.0	+0.0	35.1	46.0	-10.9	Black
^	1.141M	45.0	+0.3	+0.1	+6.0	+0.0	+0.0	51.4	46.0	+5.4	Black
17	1.264M Ave	28.7	+0.3	+0.1	+6.0	+0.0	+0.0	35.1	46.0	-10.9	Black
^	1.264M	45.7	+0.3	+0.1	+6.0	+0.0	+0.0	52.1	46.0	+6.1	Black
19	1.787M Ave	28.2	+0.2	+0.1	+6.0	+0.0	+0.0	34.5	46.0	-11.5	Black
^	1.787M	47.4	+0.2	+0.1	+6.0	+0.0	+0.0	53.7	46.0	+7.7	Black
21	583.415k Ave	28.2	+0.2	+0.0	+6.0	+0.0	+0.0	34.4	46.0	-11.6	Black
^	583.415k	45.9	+0.2	+0.0	+6.0	+0.0	+0.0	52.1	46.0	+6.1	Black
23	858.299k	27.5	+0.3	+0.1	+6.0	+0.0	+0.0	33.9	46.0	-12.1	Black

Ave												
^	858.299k	45.6	+0.3	+0.1	+6.0	+0.0	+0.0	52.0	46.0	+6.0	Black	
25	4.114M	27.4	+0.2	+0.1	+6.0	+0.1	+0.0	33.8	46.0	-12.2	Black	
Ave		4.114M	46.7	+0.2	+0.1	+6.0	+0.1	+0.0	53.1	46.0	+7.1	Black
27	1.694M	27.3	+0.2	+0.1	+6.0	+0.0	+0.0	33.6	46.0	-12.4	Black	
Ave		1.694M	45.9	+0.2	+0.1	+6.0	+0.0	+0.0	52.2	46.0	+6.2	Black
29	1.634M	27.0	+0.2	+0.1	+6.0	+0.0	+0.0	33.3	46.0	-12.7	Black	
Ave		1.634M	46.8	+0.2	+0.1	+6.0	+0.0	+0.0	53.1	46.0	+7.1	Black
31	280.897k	31.2	+0.2	+0.0	+6.0	+0.0	+0.0	37.4	50.8	-13.4	Black	
Ave		280.897k	52.7	+0.2	+0.0	+6.0	+0.0	+0.0	58.9	50.8	+8.1	Black
33	1.383M	26.1	+0.3	+0.1	+6.0	+0.0	+0.0	32.5	46.0	-13.5	Black	
Ave		1.383M	42.8	+0.3	+0.1	+6.0	+0.0	+0.0	49.2	46.0	+3.2	Black
35	521.602k	26.2	+0.2	+0.0	+6.0	+0.0	+0.0	32.4	46.0	-13.6	Black	
Ave		521.602k	44.8	+0.2	+0.0	+6.0	+0.0	+0.0	51.0	46.0	+5.0	Black
37	369.616k	28.3	+0.2	+0.0	+6.0	+0.0	+0.0	34.5	48.5	-14.0	Black	
Ave		369.616k	44.8	+0.2	+0.0	+6.0	+0.0	+0.0	51.0	48.5	+2.5	Black
39	432.156k	26.5	+0.2	+0.0	+6.0	+0.0	+0.0	32.7	47.2	-14.5	Black	
Ave		432.156k	43.8	+0.2	+0.0	+6.0	+0.0	+0.0	50.0	47.2	+2.8	Black
41	310.713k	29.3	+0.2	+0.0	+6.0	+0.0	+0.0	35.5	50.0	-14.5	Black	
Ave		310.713k	49.3	+0.2	+0.0	+6.0	+0.0	+0.0	55.5	50.0	+5.5	Black
43	3.948M	25.1	+0.2	+0.1	+6.0	+0.1	+0.0	31.5	46.0	-14.5	Black	
Ave		3.948M	45.6	+0.2	+0.1	+6.0	+0.1	+0.0	52.0	46.0	+6.0	Black
45	2.795M	24.9	+0.2	+0.1	+6.0	+0.1	+0.0	31.3	46.0	-14.7	Black	
Ave		2.795M	43.0	+0.2	+0.1	+6.0	+0.1	+0.0	49.4	46.0	+3.4	Black
47	2.332M	24.3	+0.2	+0.1	+6.0	+0.1	+0.0	30.7	46.0	-15.3	Black	
Ave		2.332M	45.4	+0.2	+0.1	+6.0	+0.1	+0.0	51.8	46.0	+5.8	Black
49	2.162M	24.2	+0.2	+0.1	+6.0	+0.0	+0.0	30.5	46.0	-15.5	Black	

Ave												
^	2.162M	45.1	+0.2	+0.1	+6.0	+0.0	+0.0	51.4	46.0	+5.4	Black	
51	3.837M	23.6	+0.2	+0.1	+6.0	+0.1	+0.0	30.0	46.0	-16.0	Black	
Ave												
^	3.837M	46.1	+0.2	+0.1	+6.0	+0.1	+0.0	52.5	46.0	+6.5	Black	
53	2.412M	23.2	+0.2	+0.1	+6.0	+0.1	+0.0	29.6	46.0	-16.4	Black	
Ave												
^	2.412M	43.4	+0.2	+0.1	+6.0	+0.1	+0.0	49.8	46.0	+3.8	Black	
55	3.301M	23.2	+0.2	+0.1	+6.0	+0.1	+0.0	29.6	46.0	-16.4	Black	
Ave												
^	3.301M	45.8	+0.2	+0.1	+6.0	+0.1	+0.0	52.2	46.0	+6.2	Black	
57	3.722M	22.9	+0.2	+0.1	+6.0	+0.1	+0.0	29.3	46.0	-16.7	Black	
Ave												
^	3.722M	47.2	+0.2	+0.1	+6.0	+0.1	+0.0	53.6	46.0	+7.6	Black	
59	1.983M	22.7	+0.2	+0.1	+6.0	+0.0	+0.0	29.0	46.0	-17.0	Black	
Ave												
^	1.983M	43.6	+0.2	+0.1	+6.0	+0.0	+0.0	49.9	46.0	+3.9	Black	
61	885.710k	22.0	+0.3	+0.1	+6.0	+0.0	+0.0	28.4	46.0	-17.6	Black	
Ave												
^	885.710k	42.2	+0.3	+0.1	+6.0	+0.0	+0.0	48.6	46.0	+2.6	Black	
63	688.132k	22.1	+0.2	+0.0	+6.0	+0.0	+0.0	28.3	46.0	-17.7	Black	
Ave												
^	688.132k	42.9	+0.2	+0.0	+6.0	+0.0	+0.0	49.1	46.0	+3.1	Black	
65	2.651M	21.8	+0.2	+0.1	+6.0	+0.1	+0.0	28.2	46.0	-17.8	Black	
Ave												
^	2.651M	43.4	+0.2	+0.1	+6.0	+0.1	+0.0	49.8	46.0	+3.8	Black	
67	169.635k	30.6	+0.4	+0.0	+6.0	+0.0	+0.0	37.0	55.0	-18.0	Black	
Ave												
^	169.635k	51.9	+0.4	+0.0	+6.0	+0.0	+0.0	58.3	55.0	+3.3	Black	
69	3.318M	21.4	+0.2	+0.1	+6.0	+0.1	+0.0	27.8	46.0	-18.2	Black	
Ave												
^	3.318M	45.7	+0.2	+0.1	+6.0	+0.1	+0.0	52.1	46.0	+6.1	Black	
71	1.528M	21.2	+0.2	+0.1	+6.0	+0.0	+0.0	27.5	46.0	-18.5	Black	
Ave												
^	1.528M	42.5	+0.2	+0.1	+6.0	+0.0	+0.0	48.8	46.0	+2.8	Black	
73	3.476M	20.1	+0.2	+0.1	+6.0	+0.1	+0.0	26.5	46.0	-19.5	Black	
Ave												
^	3.476M	42.6	+0.2	+0.1	+6.0	+0.1	+0.0	49.0	46.0	+3.0	Black	
75	4.364M	19.2	+0.2	+0.1	+6.0	+0.1	+0.0	25.6	46.0	-20.4	Black	

Ave											
^	4.364M	42.3	+0.2	+0.1	+6.0	+0.1	+0.0	48.7	46.0	+2.7	Black
77	4.518M	18.3	+0.2	+0.1	+6.0	+0.1	+0.0	24.7	46.0	-21.3	Black
Ave											
^	4.518M	42.0	+0.2	+0.1	+6.0	+0.1	+0.0	48.4	46.0	+2.4	Black

CKC Laboratories, Inc. Date: 11/30/2008 Time: 16:03:54 Cimarron Systems LLC WO#: 88433
FCC 15.107 Class B COND [AVE] Test Lead: Black 110V 60Hz Sequence#: 12

Test Location: CKC Laboratories, Inc. • 110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: **Cimarron Systems LLC**
 Specification: **FCC 15.107 Class B COND [AVE]**
 Work Order #: **88433** Date: **11/30/2008**
 Test Type: **Conducted Emissions** Time: **15:44:39**
 Equipment: **Wireless Data Collection System** Sequence#: **11**
 Manufacturer: Cimarron Systems LLC Tested By: E. Wong
 Model: 915-1000-0-NIU 110V 60Hz
 S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
6dB Attenuator	None	10/14/2008	10/14/2010	P05886
150kHz HPF	G7755	01/09/2008	01/09/2010	02610
Conducted Emission	Cable #21	05/12/2008	05/12/2010	P04358
Cable				
LISN	1102	05/11/2007	05/11/2009	00848

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Data Collection System*	Cimarron Systems LLC	915-1000-0-NIU	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Pressure transducer	Omegadyne	PX-319-200GV	091906D028
Pressure transducer	Omegadyne	PX-319-1KGV	053007D300
Power Supply	Cincon	TR1505	NA

Test Conditions / Notes:

FCC15.107(2007)

The EUT is placed on the wooden table. The serial port is connected to a support 5V AC-DC power supply and a remotely located support laptop.

Two analog inputs are connected to support pressure transducers. Four discrete inputs are connected to a section of unterminated cable. All four cables are of shielded cable.

Freq range : 916MHz - 926MHz

Mode: RX

Test software setting: Transceiver power = -8

PA Gain voltage: 1.8

The device is to be used in three different orientations, with transmit antenna perpendicular to the ground reference plane. The emission profile of all three device orientations will be tested and worse case emission presented.

Note: In normal application, this low transmit duty cycle device has a transmit interval in the order of once a minute. The primary power source is non-rechargeable and rechargeable battery with external AC-DC power supply or solar panel. To support continuous transmit in test mode, a support 5V AC-DC power supply is used to simulate testing with a new battery.

AC Cond emission:

Modification:

Added a SAW filter between the output of the transceiver and the input of the power amplifier.

Mounting holes are isolated from the ground plane. The board is screwed to the standoffs.

A 10MOhm resistor was added between the analog input amplifier and ground.

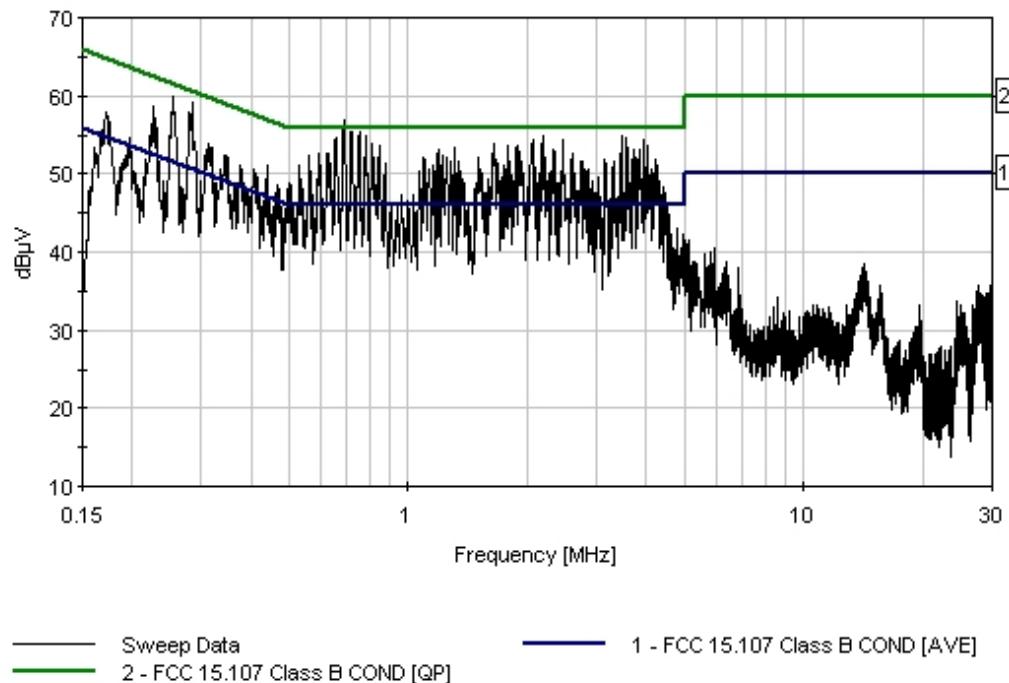
Transducer Legend:

T1=150kHz HPF AN02610_010910

T2=Cable #21 -P04358- Site A 05/12/10

T3=6dB Attenuator

T4=(L2) LISN Insertion Loss 00848


Measurement Data:		Reading listed by margin.					Test Lead: White				
#	Freq MHz	Rdng dB μ V	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
1	684.604k QP	45.7	+0.2	+0.0	+6.0	+0.0	+0.0	51.9	56.0	-4.1	White
2	715.201k Ave	27.9	+0.3	+0.0	+6.0	+0.0	+0.0	34.2	46.0	-11.8	White
^	719.402k	49.1	+0.3	+0.0	+6.0	+0.0	+0.0	55.4	46.0	+9.4	White
4	3.459M Ave	24.0	+0.2	+0.1	+6.0	+0.2	+0.0	30.5	46.0	-15.5	White
^	3.459M	48.4	+0.2	+0.1	+6.0	+0.2	+0.0	54.9	46.0	+8.9	White
6	687.405k Ave	23.1	+0.2	+0.0	+6.0	+0.0	+0.0	29.3	46.0	-16.7	White
^	687.405k	50.6	+0.2	+0.0	+6.0	+0.0	+0.0	56.8	46.0	+10.8	White
8	638.682k Ave	22.8	+0.2	+0.0	+6.0	+0.0	+0.0	29.0	46.0	-17.0	White
^	638.682k	45.2	+0.2	+0.0	+6.0	+0.0	+0.0	51.4	46.0	+5.4	White

10	1.514M	22.5	+0.2	+0.1	+6.0	+0.1	+0.0	28.9	46.0	-17.1	White
Ave											
^	1.511M	45.6	+0.2	+0.1	+6.0	+0.1	+0.0	52.0	46.0	+6.0	White
12	2.064M	22.3	+0.2	+0.1	+6.0	+0.1	+0.0	28.7	46.0	-17.3	White
Ave											
^	2.064M	47.9	+0.2	+0.1	+6.0	+0.1	+0.0	54.3	46.0	+8.3	White
14	3.986M	21.5	+0.2	+0.1	+6.0	+0.2	+0.0	28.0	46.0	-18.0	White
Ave											
^	3.986M	43.8	+0.2	+0.1	+6.0	+0.2	+0.0	50.3	46.0	+4.3	White
16	3.152M	20.3	+0.2	+0.1	+6.0	+0.1	+0.0	26.7	46.0	-19.3	White
Ave											
^	3.152M	44.9	+0.2	+0.1	+6.0	+0.1	+0.0	51.3	46.0	+5.3	White
18	1.753M	19.9	+0.2	+0.1	+6.0	+0.1	+0.0	26.3	46.0	-19.7	White
Ave											
^	1.753M	44.6	+0.2	+0.1	+6.0	+0.1	+0.0	51.0	46.0	+5.0	White
20	719.402k	19.6	+0.3	+0.0	+6.0	+0.0	+0.0	25.9	46.0	-20.1	White
Ave											
21	1.809M	19.4	+0.2	+0.1	+6.0	+0.1	+0.0	25.8	46.0	-20.2	White
Ave											
^	1.809M	45.2	+0.2	+0.1	+6.0	+0.1	+0.0	51.6	46.0	+5.6	White
23	2.340M	19.2	+0.2	+0.1	+6.0	+0.1	+0.0	25.6	46.0	-20.4	White
Ave											
^	2.340M	46.4	+0.2	+0.1	+6.0	+0.1	+0.0	52.8	46.0	+6.8	White
25	2.276M	18.8	+0.2	+0.1	+6.0	+0.1	+0.0	25.2	46.0	-20.8	White
Ave											
^	2.276M	43.8	+0.2	+0.1	+6.0	+0.1	+0.0	50.2	46.0	+4.2	White
27	3.565M	18.7	+0.2	+0.1	+6.0	+0.2	+0.0	25.2	46.0	-20.8	White
Ave											
^	3.565M	48.2	+0.2	+0.1	+6.0	+0.2	+0.0	54.7	46.0	+8.7	White
29	1.923M	18.6	+0.2	+0.1	+6.0	+0.1	+0.0	25.0	46.0	-21.0	White
Ave											
^	1.923M	46.5	+0.2	+0.1	+6.0	+0.1	+0.0	52.9	46.0	+6.9	White
31	3.863M	18.4	+0.2	+0.1	+6.0	+0.2	+0.0	24.9	46.0	-21.1	White
Ave											
^	3.863M	46.6	+0.2	+0.1	+6.0	+0.2	+0.0	53.1	46.0	+7.1	White
33	3.701M	18.3	+0.2	+0.1	+6.0	+0.2	+0.0	24.8	46.0	-21.2	White
Ave											
^	3.701M	46.6	+0.2	+0.1	+6.0	+0.2	+0.0	53.1	46.0	+7.1	White
35	2.595M	17.5	+0.2	+0.1	+6.0	+0.1	+0.0	23.9	46.0	-22.1	White
Ave											

^	2.595M	46.1	+0.2	+0.1	+6.0	+0.1	+0.0	52.5	46.0	+6.5	White
37	781.215k Ave	17.6	+0.3	+0.0	+6.0	+0.0	+0.0	23.9	46.0	-22.1	White
^	781.215k	48.6	+0.3	+0.0	+6.0	+0.0	+0.0	54.9	46.0	+8.9	White
39	1.375M Ave	17.2	+0.3	+0.1	+6.0	+0.0	+0.0	23.6	46.0	-22.4	White
^	1.375M	42.9	+0.3	+0.1	+6.0	+0.0	+0.0	49.3	46.0	+3.3	White
41	4.279M Ave	16.9	+0.2	+0.1	+6.0	+0.2	+0.0	23.4	46.0	-22.6	White
^	4.279M	44.7	+0.2	+0.1	+6.0	+0.2	+0.0	51.2	46.0	+5.2	White
43	313.621k Ave	20.8	+0.2	+0.0	+6.0	+0.0	+0.0	27.0	49.9	-22.9	White
^	313.621k	47.6	+0.2	+0.0	+6.0	+0.0	+0.0	53.8	49.9	+3.9	White
45	4.041M Ave	16.1	+0.2	+0.1	+6.0	+0.2	+0.0	22.6	46.0	-23.4	White
^	4.041M	44.3	+0.2	+0.1	+6.0	+0.2	+0.0	50.8	46.0	+4.8	White
47	1.315M Ave	15.9	+0.3	+0.1	+6.0	+0.0	+0.0	22.3	46.0	-23.7	White
^	1.315M	47.0	+0.3	+0.1	+6.0	+0.0	+0.0	53.4	46.0	+7.4	White
49	563.780k Ave	15.0	+0.2	+0.0	+6.0	+0.0	+0.0	21.2	46.0	-24.8	White
^	563.780k	46.1	+0.2	+0.0	+6.0	+0.0	+0.0	52.3	46.0	+6.3	White
51	3.943M Ave	14.1	+0.2	+0.1	+6.0	+0.2	+0.0	20.6	46.0	-25.4	White
^	3.943M	47.9	+0.2	+0.1	+6.0	+0.2	+0.0	54.4	46.0	+8.4	White
53	438.701k Ave	14.6	+0.2	+0.0	+6.0	+0.0	+0.0	20.8	47.1	-26.3	White
^	438.701k	44.8	+0.2	+0.0	+6.0	+0.0	+0.0	51.0	47.1	+3.9	White
55	532.510k Ave	12.9	+0.2	+0.0	+6.0	+0.0	+0.0	19.1	46.0	-26.9	White
^	532.510k	45.0	+0.2	+0.0	+6.0	+0.0	+0.0	51.2	46.0	+5.2	White
57	4.339M Ave	12.5	+0.2	+0.1	+6.0	+0.2	+0.0	19.0	46.0	-27.0	White
^	4.339M	42.5	+0.2	+0.1	+6.0	+0.2	+0.0	49.0	46.0	+3.0	White
59	1.124M Ave	12.1	+0.3	+0.1	+6.0	+0.0	+0.0	18.5	46.0	-27.5	White
^	1.124M	44.2	+0.3	+0.1	+6.0	+0.0	+0.0	50.6	46.0	+4.6	White
61	227.084k Ave	17.9	+0.2	+0.0	+6.0	+0.0	+0.0	24.1	52.6	-28.5	White

^	227.084k	52.5	+0.2	+0.0	+6.0	+0.0	+0.0	58.7	52.6	+6.1	White
63	172.543k Ave	19.3	+0.4	+0.0	+6.0	+0.0	+0.0	25.7	54.8	-29.1	White
^	172.543k	51.4	+0.4	+0.0	+6.0	+0.0	+0.0	57.8	54.8	+3.0	White
65	1.247M Ave	10.2	+0.3	+0.1	+6.0	+0.0	+0.0	16.6	46.0	-29.4	White
^	1.247M	45.6	+0.3	+0.1	+6.0	+0.0	+0.0	52.0	46.0	+6.0	White
67	2.821M Ave	9.7	+0.2	+0.1	+6.0	+0.1	+0.0	16.1	46.0	-29.9	White
^	2.821M	44.0	+0.2	+0.1	+6.0	+0.1	+0.0	50.4	46.0	+4.4	White
69	347.800k Ave	12.7	+0.2	+0.0	+6.0	+0.0	+0.0	18.9	49.0	-30.1	White
^	347.800k	46.2	+0.2	+0.0	+6.0	+0.0	+0.0	52.4	49.0	+3.4	White
71	2.914M Ave	9.3	+0.2	+0.1	+6.0	+0.1	+0.0	15.7	46.0	-30.3	White
^	2.914M	42.6	+0.2	+0.1	+6.0	+0.1	+0.0	49.0	46.0	+3.0	White
73	874.297k Ave	8.8	+0.3	+0.1	+6.0	+0.0	+0.0	15.2	46.0	-30.8	White
^	874.297k	45.0	+0.3	+0.1	+6.0	+0.0	+0.0	51.4	46.0	+5.4	White

CKC Laboratories, Inc. Date: 11/30/2008 Time: 15:44:39 Cimarron Systems LLC WO#: 88433
FCC 15.107 Class B COND [AVE] Test Lead: White 110V 60Hz Sequence#: 11

FCC 15.109 – RADIATED EMISSIONS

Test Setup Photos

Front - X Orientation

Back - X Orientation

Front - Y Orientation

Back - Y Orientation

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: **Cimarron Systems LLC**
 Specification: **FCC 15.109 Class B**
 Work Order #: **88433** Date: 11/30/2008
 Test Type: **Radiated Scan** Time: 12:18:04
 Equipment: **Wireless Data Collection System** Sequence#: 5
 Manufacturer: Cimarron Systems LLC Tested By: E. Wong
 Model: 915-1000-0-NIU
 S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Pre amp to SA Cable	Cable #10	05/16/2007	05/16/2009	P05050
Cable	Cable15	01/05/2007	01/05/2009	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309
Horn Antenna	6246	06/06/2008	06/06/2010	00849
Microwave Pre-amp	3123A00281	07/28/2008	07/28/2010	00786
2'-40GHz cable	NA	09/18/2007	09/18/2009	P2948
Heliax Antenna Cable	P5565	09/04/2008	09/04/2010	P05565
Cable, 36" 2.92mm	NA	09/18/2007	09/18/2009	P02945
40GHz				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Data Collection System*	Cimarron Systems LLC	915-1000-0-NIU	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Pressure transducer	Omegadyne	PX-319-200GV	091906D028
Pressure transducer	Omegadyne	PX-319-1KGV	053007D300
Power Supply	Cincon	TR1505	NA

Test Conditions / Notes:

FCC15.109(2007)

The EUT is placed on the wooden table with Styrofoam padding of 10 cm thickness. The serial port is connected to a support 5V AC-DC power supply and a remotely located support laptop.

Two analog inputs are connected to support pressure transducers. Four discrete inputs are connected to a section of unterminated cable. All four cables are of shielded cable.

Freq range : 916MHz - 926MHz

Mode: RX

Test software setting: Transceiver power = -8

PA Gain voltage: 1.8

The device is to be used in three different orientations, with transmit antenna perpendicular to the ground reference plane. The emission profile of all three device orientations will be tested and worse case emission presented.

Note: In normal application, this low transmit duty cycle device has a transmit interval in the order of once a minute.. The primary power source is non-rechargeable and rechargeable battery with external AC-DC power supply or solar panel. To support continuous transmit in test mode, a support 5V AC-DC power supply is used to simulate testing with a new battery.

Frequency range of measurement = 30MHz- 10 GHz.

Frequency 30 MHz- 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz-10,000 MHz RBW=1 MHz, VBW=1 MHz.

Modification:

Added a SAW filter between the output of the transceiver and the input of the power amplifier.

Mounting holes are isolated from the ground plane. The board is screwed to the standoffs.

A 10MOhm resistor was added between the analog input amplifier and ground.

Transducer Legend:

T1=Bilog-AN01995 BILOG_012110	T2=Cable #10_P05050_051609
T3=Cable #15_P05198_Site A, 010509	T4=Pre_amp_HP8447D-AN00309-050210
T5=Heliax Cable_54'_091808 P05565_091808	T6=HF_pre AMP-1-26GHz_AN00786-072810.TRN
T7=Horn Ant AN00849 060610	T8=Hi Freq_40GHz_3ft_CAB-ANP02945-091809

Measurement Data:

Reading listed by margin.

Test Distance: 3 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8	Table	dB μ V/m	dB μ V/m		
	MHz	dB μ V	dB	dB	dB	dB					Ant
1	142.700M	45.9	+11.6	+0.2	+2.1	-27.9	+0.0	31.9	43.5	-11.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
2	170.150M	44.8	+9.7	+0.3	+2.4	-27.9	+0.0	29.3	43.5	-14.2	Horiz
			+0.0	+0.0	+0.0	+0.0					
3	122.942M	40.9	+11.7	+0.3	+2.0	-27.9	+0.0	27.0	43.5	-16.5	Horiz
			+0.0	+0.0	+0.0	+0.0					
4	76.958M	42.1	+7.3	+0.1	+1.6	-28.0	+0.0	23.1	40.0	-16.9	Horiz
			+0.0	+0.0	+0.0	+0.0					
5	171.449M	41.8	+9.6	+0.3	+2.4	-27.9	+0.0	26.2	43.5	-17.3	Vert
			+0.0	+0.0	+0.0	+0.0					
6	2014.180M	40.7	+0.0	+0.0	+0.0	+0.0	+0.0	33.8	54.0	-20.2	Horiz
			+3.2	-38.0	+27.4	+0.5					
7	140.899M	36.2	+11.7	+0.2	+2.1	-27.9	+0.0	22.3	43.5	-21.2	Vert
			+0.0	+0.0	+0.0	+0.0					

FCC 15.207 – AC CONDUCTED EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: **Cimarron Systems LLC**
 Specification: **FCC 15.207 COND [AVE]**
 Work Order #: **88433** Date: 11/30/2008
 Test Type: **Conducted Emissions** Time: 14:58:23
 Equipment: **Wireless Data Collection System** Sequence#: 9
 Manufacturer: Cimarron Systems LLC Tested By: E. Wong
 Model: 915-1000-0-NIU 110V 60Hz
 S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
6dB Attenuator	None	10/14/2008	10/14/2010	P05886
150kHz HPF	G7755	01/09/2008	01/09/2010	02610
Conducted Emission	Cable #21	05/12/2008	05/12/2010	P04358
Cable				
LISN	1102	05/11/2007	05/11/2009	00848

Equipment Under Test (= EUT):*

Function	Manufacturer	Model #	S/N
Wireless Data Collection System*	Cimarron Systems LLC	915-1000-0-NIU	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Pressure transducer	Omegadyne	PX-319-200GV	091906D028
Pressure transducer	Omegadyne	PX-319-1KGV	053007D300
Power Supply	Cincon	TR1505	NA

Test Conditions / Notes:

FCC15.207(2007)

The EUT is placed on the wooden table with Styrofoam padding of 10 cm thickness. The serial port is connected to a support 5V AC-DC power supply and a remotely located support laptop.

Two analog inputs are connected to support pressure transducers. Four discrete inputs are connected to a section of unterminated cable. All four cables are of shielded cable.

Freq range : 916MHz - 926MHz

Mode: TX

Test software setting: Transceiver power = -8

PA Gain voltage: 1.8

The device is to be used in three different orientations, with transmit antenna perpendicular to the ground reference plane. The emission profile of all three device orientations is to be tested and worse case emission is presented.

Note: In normal application, this low transmit duty cycle device has a transmit interval in the order of once a minute.. The primary power source is non-rechargeable and rechargeable battery with external AC-DC power supply or solar panel. To support continuous transmit in test mode, a support 5V AC-DC power supply is used to simulate testing with a new battery.

AC Cond emission: TX mode, Hopping

Modification:

Added a SAW filter between the output of the transceiver and the input of the power amplifier.

Mounting holes are isolated from the ground plane. The board is now screwed to the standoffs.

A 10MOhm resistor was added between the analog input amplifier and ground.

Transducer Legend:

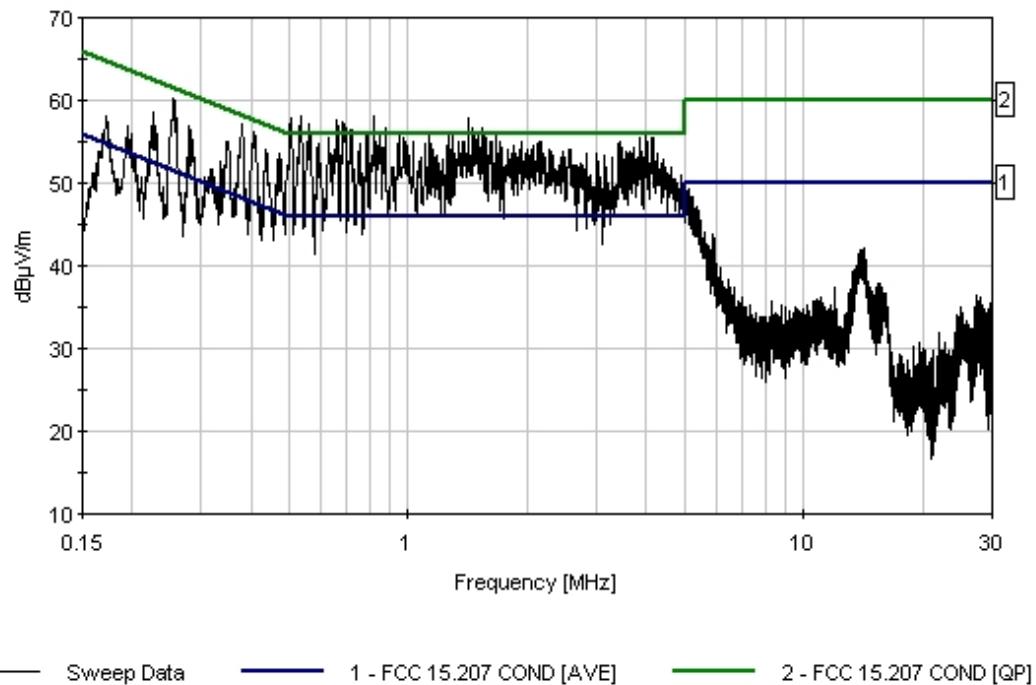
T1=150kHz HPF AN02610_010910

T2=Cable #21 -P04358- Site A 05/12/10

T3=6dB Attenuator

T4=(L1) LISN Insertion Loss 00848

Measurement Data:		Reading listed by margin.					Test Lead: Black				
#	Freq MHz	Rdng dB μ V	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar Ant
1	536.146k QP	48.8	+0.2	+0.0	+6.0	+0.0	+0.0	55.0	56.0	-1.0	Black
^	536.146k	51.9	+0.2	+0.0	+6.0	+0.0	+0.0	58.1	46.0	+12.1	Black
3	663.401k QP	48.7	+0.2	+0.0	+6.0	+0.0	+0.0	54.9	56.0	-1.1	Black
^	659.771k	51.5	+0.2	+0.0	+6.0	+0.0	+0.0	57.7	46.0	+11.7	Black
5	819.757k QP	47.5	+0.3	+0.0	+6.0	+0.0	+0.0	53.8	56.0	-2.2	Black
^	819.757k	51.7	+0.3	+0.0	+6.0	+0.0	+0.0	58.0	46.0	+12.0	Black
7	1.454M QP	47.5	+0.2	+0.1	+6.0	+0.0	+0.0	53.8	56.0	-2.2	Black
^	1.451M	50.4	+0.2	+0.1	+6.0	+0.0	+0.0	56.7	46.0	+10.7	Black
9	503.422k QP	46.9	+0.2	+0.0	+6.0	+0.0	+0.0	53.1	56.0	-2.9	Black


^	503.422k	51.6	+0.2	+0.0	+6.0	+0.0	+0.0	57.8	46.0	+11.8	Black
11	564.076k	46.7	+0.2	+0.0	+6.0	+0.0	+0.0	52.9	56.0	-3.1	Black
	QP										
^	562.326k	50.9	+0.2	+0.0	+6.0	+0.0	+0.0	57.1	46.0	+11.1	Black
13	562.326k	46.7	+0.2	+0.0	+6.0	+0.0	+0.0	52.9	56.0	-3.1	Black
	QP										
14	849.572k	45.2	+0.3	+0.1	+6.0	+0.0	+0.0	51.6	56.0	-4.4	Black
	QP										
^	849.572k	49.9	+0.3	+0.1	+6.0	+0.0	+0.0	56.3	46.0	+10.3	Black
16	716.493k	45.2	+0.3	+0.0	+6.0	+0.0	+0.0	51.5	56.0	-4.5	Black
	QP										
17	685.224k	44.9	+0.2	+0.0	+6.0	+0.0	+0.0	51.1	56.0	-4.9	Black
	QP										
^	685.224k	51.2	+0.2	+0.0	+6.0	+0.0	+0.0	57.4	46.0	+11.4	Black
19	536.146k	34.7	+0.2	+0.0	+6.0	+0.0	+0.0	40.9	46.0	-5.1	Black
	Ave										
20	663.401k	34.0	+0.2	+0.0	+6.0	+0.0	+0.0	40.2	46.0	-5.8	Black
	Ave										
21	1.454M	33.7	+0.2	+0.1	+6.0	+0.0	+0.0	40.0	46.0	-6.0	Black
	Ave										
22	1.545M	43.6	+0.2	+0.1	+6.0	+0.0	+0.0	49.9	56.0	-6.1	Black
	QP										
^	1.545M	50.4	+0.2	+0.1	+6.0	+0.0	+0.0	56.7	46.0	+10.7	Black
24	819.757k	33.2	+0.3	+0.0	+6.0	+0.0	+0.0	39.5	46.0	-6.5	Black
	Ave										
25	503.422k	33.2	+0.2	+0.0	+6.0	+0.0	+0.0	39.4	46.0	-6.6	Black
	Ave										
26	406.704k	34.8	+0.2	+0.0	+6.0	+0.0	+0.0	41.0	47.7	-6.7	Black
	Ave										
^	406.704k	50.0	+0.2	+0.0	+6.0	+0.0	+0.0	56.2	47.7	+8.5	Black
28	564.076k	33.1	+0.2	+0.0	+6.0	+0.0	+0.0	39.3	46.0	-6.7	Black
	Ave										
29	562.326k	32.9	+0.2	+0.0	+6.0	+0.0	+0.0	39.1	46.0	-6.9	Black
	Ave										
30	1.672M	42.3	+0.2	+0.1	+6.0	+0.0	+0.0	48.6	56.0	-7.4	Black
	QP										
^	1.672M	49.8	+0.2	+0.1	+6.0	+0.0	+0.0	56.1	46.0	+10.1	Black
32	379.797k	34.7	+0.2	+0.0	+6.0	+0.0	+0.0	40.9	48.3	-7.4	Black
	Ave										
^	379.797k	50.9	+0.2	+0.0	+6.0	+0.0	+0.0	57.1	48.3	+8.8	Black
34	412.412k	33.8	+0.2	+0.0	+6.0	+0.0	+0.0	40.0	47.6	-7.6	Black
	Ave										
35	633.491k	31.6	+0.2	+0.0	+6.0	+0.0	+0.0	37.8	46.0	-8.2	Black
	Ave										

^	630.683k	49.3	+0.2	+0.0	+6.0	+0.0	+0.0	55.5	46.0	+9.5	Black
37	849.572k	30.6	+0.3	+0.1	+6.0	+0.0	+0.0	37.0	46.0	-9.0	Black
Ave											
38	437.974k	31.8	+0.2	+0.0	+6.0	+0.0	+0.0	38.0	47.1	-9.1	Black
Ave											
^	437.974k	47.8	+0.2	+0.0	+6.0	+0.0	+0.0	54.0	47.1	+6.9	Black
40	630.683k	30.5	+0.2	+0.0	+6.0	+0.0	+0.0	36.7	46.0	-9.3	Black
Ave											
41	255.445k	36.0	+0.2	+0.0	+6.0	+0.0	+0.0	42.2	51.6	-9.4	Black
Ave											
^	255.445k	54.0	+0.2	+0.0	+6.0	+0.0	+0.0	60.2	51.6	+8.6	Black
43	280.170k	35.0	+0.2	+0.0	+6.0	+0.0	+0.0	41.2	50.8	-9.6	Black
Ave											
^	280.170k	50.8	+0.2	+0.0	+6.0	+0.0	+0.0	57.0	50.8	+6.2	Black
^	283.079k	50.2	+0.2	+0.0	+6.0	+0.0	+0.0	56.4	50.7	+5.7	Black
46	716.493k	30.0	+0.3	+0.0	+6.0	+0.0	+0.0	36.3	46.0	-9.7	Black
Ave											
^	716.494k	50.1	+0.3	+0.0	+6.0	+0.0	+0.0	56.4	46.0	+10.4	Black
48	685.224k	30.0	+0.2	+0.0	+6.0	+0.0	+0.0	36.2	46.0	-9.8	Black
Ave											
49	3.123M	29.7	+0.2	+0.1	+6.0	+0.1	+0.0	36.1	46.0	-9.9	Black
Ave											
^	3.123M	46.9	+0.2	+0.1	+6.0	+0.1	+0.0	53.3	46.0	+7.3	Black
51	787.760k	29.8	+0.3	+0.0	+6.0	+0.0	+0.0	36.1	46.0	-9.9	Black
Ave											
^	787.760k	49.4	+0.3	+0.0	+6.0	+0.0	+0.0	55.7	46.0	+9.7	Black
53	348.527k	32.8	+0.2	+0.0	+6.0	+0.0	+0.0	39.0	49.0	-10.0	Black
Ave											
^	348.527k	48.8	+0.2	+0.0	+6.0	+0.0	+0.0	55.0	49.0	+6.0	Black
55	592.141k	29.4	+0.2	+0.0	+6.0	+0.0	+0.0	35.6	46.0	-10.4	Black
Ave											
^	592.141k	48.5	+0.2	+0.0	+6.0	+0.0	+0.0	54.7	46.0	+8.7	Black
57	1.545M	29.3	+0.2	+0.1	+6.0	+0.0	+0.0	35.6	46.0	-10.4	Black
Ave											
58	1.928M	29.2	+0.2	+0.1	+6.0	+0.0	+0.0	35.5	46.0	-10.5	Black
Ave											
^	1.928M	48.6	+0.2	+0.1	+6.0	+0.0	+0.0	54.9	46.0	+8.9	Black
60	4.118M	28.9	+0.2	+0.1	+6.0	+0.1	+0.0	35.3	46.0	-10.7	Black
Ave											
^	4.118M	49.1	+0.2	+0.1	+6.0	+0.1	+0.0	55.5	46.0	+9.5	Black

62	472.879k	29.5	+0.2	+0.0	+6.0	+0.0	+0.0	35.7	46.5	-10.8	Black
Ave											
^	472.880k	47.3	+0.2	+0.0	+6.0	+0.0	+0.0	53.5	46.5	+7.0	Black
64	4.118M	28.5	+0.2	+0.1	+6.0	+0.1	+0.0	34.9	46.0	-11.1	Black
Ave											
65	945.249k	28.3	+0.3	+0.1	+6.0	+0.0	+0.0	34.7	46.0	-11.3	Black
Ave											
^	945.249k	49.2	+0.3	+0.1	+6.0	+0.0	+0.0	55.6	46.0	+9.6	Black
67	945.249k	28.3	+0.3	+0.1	+6.0	+0.0	+0.0	34.7	46.0	-11.3	Black
Ave											
68	975.018k	28.2	+0.3	+0.1	+6.0	+0.0	+0.0	34.6	46.0	-11.4	Black
Ave											
69	1.672M	28.3	+0.2	+0.1	+6.0	+0.0	+0.0	34.6	46.0	-11.4	Black
Ave											
70	975.018k	28.0	+0.3	+0.1	+6.0	+0.0	+0.0	34.4	46.0	-11.6	Black
Ave											
^	975.018k	49.0	+0.3	+0.1	+6.0	+0.0	+0.0	55.4	46.0	+9.4	Black
72	873.570k	27.2	+0.3	+0.1	+6.0	+0.0	+0.0	33.6	46.0	-12.4	Black
Ave											
^	873.570k	50.2	+0.3	+0.1	+6.0	+0.0	+0.0	56.6	46.0	+10.6	Black
^	877.205k	47.2	+0.3	+0.1	+6.0	+0.0	+0.0	53.6	46.0	+7.6	Black
75	2.302M	27.1	+0.2	+0.1	+6.0	+0.1	+0.0	33.5	46.0	-12.5	Black
Ave											
^	2.302M	47.4	+0.2	+0.1	+6.0	+0.1	+0.0	53.8	46.0	+7.8	Black
77	3.994M	27.0	+0.2	+0.1	+6.0	+0.1	+0.0	33.4	46.0	-12.6	Black
Ave											
^	3.994M	49.2	+0.2	+0.1	+6.0	+0.1	+0.0	55.6	46.0	+9.6	Black
79	2.302M	26.7	+0.2	+0.1	+6.0	+0.1	+0.0	33.1	46.0	-12.9	Black
Ave											
80	756.490k	26.6	+0.3	+0.0	+6.0	+0.0	+0.0	32.9	46.0	-13.1	Black
Ave											
^	756.490k	48.4	+0.3	+0.0	+6.0	+0.0	+0.0	54.7	46.0	+8.7	Black
82	996.281k	26.1	+0.3	+0.1	+6.0	+0.0	+0.0	32.5	46.0	-13.5	Black
Ave											
^	996.281k	48.2	+0.3	+0.1	+6.0	+0.0	+0.0	54.6	46.0	+8.6	Black
84	3.748M	25.8	+0.2	+0.1	+6.0	+0.1	+0.0	32.2	46.0	-13.8	Black
Ave											
^	3.748M	46.1	+0.2	+0.1	+6.0	+0.1	+0.0	52.5	46.0	+6.5	Black
86	3.748M	25.7	+0.2	+0.1	+6.0	+0.1	+0.0	32.1	46.0	-13.9	Black
Ave											
87	3.416M	25.7	+0.2	+0.1	+6.0	+0.1	+0.0	32.1	46.0	-13.9	Black
Ave											

^	3.416M	48.5	+0.2	+0.1	+6.0	+0.1	+0.0	54.9	46.0	+8.9	Black
89	318.712k Ave	29.0	+0.2	+0.0	+6.0	+0.0	+0.0	35.2	49.7	-14.5	Black
^	318.712k	45.5	+0.2	+0.0	+6.0	+0.0	+0.0	51.7	49.7	+2.0	Black
91	1.230M Ave	24.9	+0.3	+0.1	+6.0	+0.0	+0.0	31.3	46.0	-14.7	Black
^	1.230M	46.4	+0.3	+0.1	+6.0	+0.0	+0.0	52.8	46.0	+6.8	Black
93	4.883M Ave	24.4	+0.2	+0.1	+6.0	+0.1	+0.0	30.8	46.0	-15.2	Black
^	4.883M	44.5	+0.2	+0.1	+6.0	+0.1	+0.0	50.9	46.0	+4.9	Black
95	226.357k Ave	31.1	+0.2	+0.0	+6.0	+0.0	+0.0	37.3	52.6	-15.3	Black
^	226.357k	52.4	+0.2	+0.0	+6.0	+0.0	+0.0	58.6	52.6	+6.0	Black
97	1.030M Ave	24.2	+0.3	+0.1	+6.0	+0.0	+0.0	30.6	46.0	-15.4	Black
^	1.030M	48.6	+0.3	+0.1	+6.0	+0.0	+0.0	55.0	46.0	+9.0	Black
99	417.612k Ave	25.7	+0.2	+0.0	+6.0	+0.0	+0.0	31.9	47.5	-15.6	Black
^	417.612k	43.4	+0.2	+0.0	+6.0	+0.0	+0.0	49.6	47.5	+2.1	Black
101	195.087k Ave	29.8	+0.2	+0.0	+6.0	+0.0	+0.0	36.0	53.8	-17.8	Black
^	195.087k	50.8	+0.2	+0.0	+6.0	+0.0	+0.0	57.0	53.8	+3.2	Black
103	2.676M Ave	21.5	+0.2	+0.1	+6.0	+0.1	+0.0	27.9	46.0	-18.1	Black
^	2.676M	45.8	+0.2	+0.1	+6.0	+0.1	+0.0	52.2	46.0	+6.2	Black
105	274.352k Ave	26.6	+0.2	+0.0	+6.0	+0.0	+0.0	32.8	51.0	-18.2	Black
^	274.352k	45.3	+0.2	+0.0	+6.0	+0.0	+0.0	51.5	51.0	+0.5	Black
107	336.165k Ave	23.9	+0.2	+0.0	+6.0	+0.0	+0.0	30.1	49.3	-19.2	Black
^	336.165k	46.4	+0.2	+0.0	+6.0	+0.0	+0.0	52.6	49.3	+3.3	Black
^	340.528k	45.4	+0.2	+0.0	+6.0	+0.0	+0.0	51.6	49.2	+2.4	Black
^	333.983k	45.1	+0.2	+0.0	+6.0	+0.0	+0.0	51.3	49.4	+1.9	Black
111	172.543k Ave	25.7	+0.4	+0.0	+6.0	+0.0	+0.0	32.1	54.8	-22.7	Black
^	172.543k	51.6	+0.4	+0.0	+6.0	+0.0	+0.0	58.0	54.8	+3.2	Black

CKC Laboratories, Inc. Date: 11/30/2008 Time: 14:58:23 Cimarron Systems LLC WO#: 88433
FCC 15.207 COND [AVE] Test Lead: Black 110V 60Hz Sequence#: 9

Test Location: CKC Laboratories, Inc. • 110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: **Cimarron Systems LLC**
 Specification: **FCC 15.207 COND [AVE]**
 Work Order #: **88433** Date: 11/30/2008
 Test Type: **Conducted Emissions** Time: 15:22:49
 Equipment: **Wireless Data Collection System** Sequence#: 10
 Manufacturer: Cimarron Systems LLC Tested By: E. Wong
 Model: 915-1000-0-NIU 110V 60Hz
 S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
6dB Attenuator	None	10/14/2008	10/14/2010	P05886
150kHz HPF	G7755	01/09/2008	01/09/2010	02610
Conducted Emission	Cable #21	05/12/2008	05/12/2010	P04358
Cable				
LISN	1102	05/11/2007	05/11/2009	00848

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Data Collection System*	Cimarron Systems LLC	915-1000-0-NIU	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Pressure transducer	Omegadyne	PX-319-200GV	091906D028
Pressure transducer	Omegadyne	PX-319-1KGV	053007D300
Power Supply	Cincon	TR1505	NA

Test Conditions / Notes:

FCC15.207(2007)

The EUT is placed on the wooden table with Styrofoam padding of 10 cm thickness. The serial port is connected to a support 5V AC-DC power supply and a remotely located support laptop.

Two analog inputs are connected to support pressure transducers. Four discrete inputs are connected to a section of unterminated cable. All four cables are of shielded cable.

Freq range : 916MHz - 926MHz

Mode: TX

Test software setting: Transceiver power = -8

PA Gain voltage: 1.8

The device is to be used in three different orientations, with transmit antenna perpendicular to the ground reference plane. The emission profile of all three device orientations is to be testes and worse case emission is presented.

Note: In normal application, this low transmit duty cycle device has a transmit interval in the order of once a minute.. The primary power source is non-rechargeable and rechargeable battery with external AC-DC power supply or solar panel. To support continuous transmit in test mode, a support 5V AC-DC power supply is used to simulate testing with a new battery.

AC Cond emission: TX mode, Hopping

Modification:

Added a SAW filter between the output of the transceiver and the input of the power amplifier.

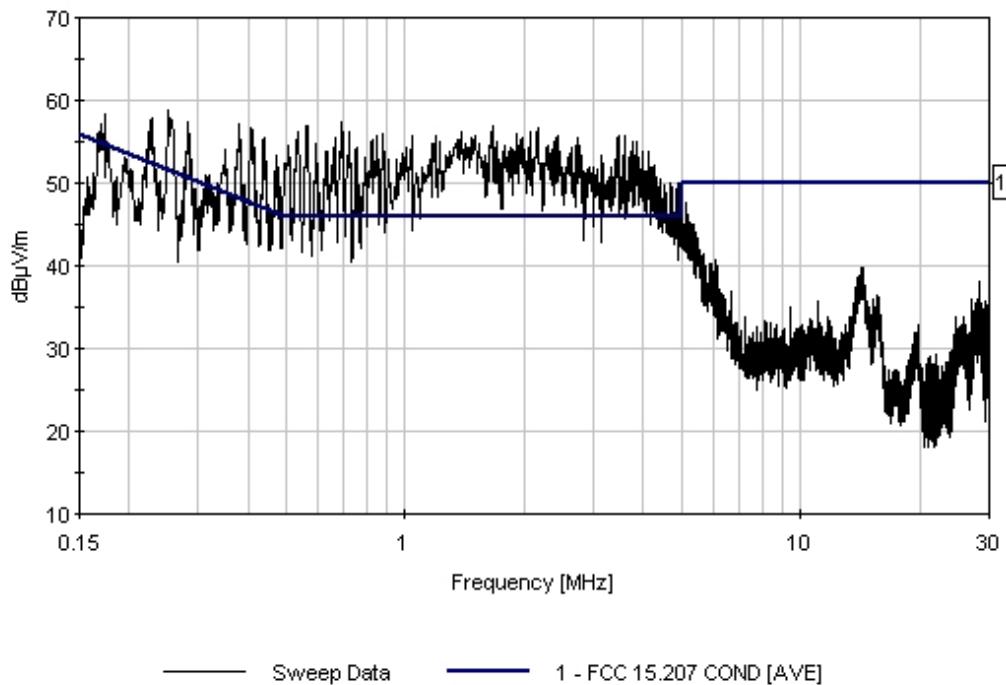
Mounting holes are isolated from the ground plane. The board is now screwed to the standoffs.

A 10MOhm resistor was added between the analog input amplifier and ground.

Transducer Legend:

T1=150kHz HPF AN02610_010910
T3=6dB Attenuator

T2=Cable #21 -P04358- Site A 05/12/10
T4=(L2) LISN Insertion Loss 00848


Measurement Data:		Reading listed by margin.						Test Lead: White			
#	Freq MHz	Rdng dB μ V	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar Ant
1	563.780k QP	46.5	+0.2	+0.0	+6.0	+0.0	+0.0	52.7	56.0	-3.3	White
2	692.030k QP	45.9	+0.2	+0.0	+6.0	+0.0	+0.0	52.1	56.0	-3.9	White
3	1.915M QP	43.6	+0.2	+0.1	+6.0	+0.1	+0.0	50.0	56.0	-6.0	White
^	1.915M	49.6	+0.2	+0.1	+6.0	+0.1	+0.0	56.0	46.0	+10.0	White
5	2.162M QP	43.3	+0.2	+0.1	+6.0	+0.1	+0.0	49.7	56.0	-6.3	White
6	3.127M Ave	29.9	+0.2	+0.1	+6.0	+0.1	+0.0	36.3	46.0	-9.7	White
^	3.127M	47.0	+0.2	+0.1	+6.0	+0.1	+0.0	53.4	46.0	+7.4	White
8	3.454M Ave	29.8	+0.2	+0.1	+6.0	+0.2	+0.0	36.3	46.0	-9.7	White
^	3.454M	49.1	+0.2	+0.1	+6.0	+0.2	+0.0	55.6	46.0	+9.6	White
10	563.780k	28.3	+0.2	+0.0	+6.0	+0.0	+0.0	34.5	46.0	-11.5	White

Ave												
^	563.780k	50.8	+0.2	+0.0	+6.0	+0.0	+0.0	57.0	46.0	+11.0	White	
12	695.405k	28.3	+0.2	+0.0	+6.0	+0.0	+0.0	34.5	46.0	-11.5	White	Ave
^	695.405k	49.9	+0.2	+0.0	+6.0	+0.0	+0.0	56.1	46.0	+10.1	White	
14	408.885k	29.9	+0.2	+0.0	+6.0	+0.0	+0.0	36.1	47.7	-11.6	White	Ave
^	408.885k	50.4	+0.2	+0.0	+6.0	+0.0	+0.0	56.6	47.7	+8.9	White	
16	506.331k	28.1	+0.2	+0.0	+6.0	+0.0	+0.0	34.3	46.0	-11.7	White	Ave
^	506.331k	48.3	+0.2	+0.0	+6.0	+0.0	+0.0	54.5	46.0	+8.5	White	
18	2.468M	27.8	+0.2	+0.1	+6.0	+0.1	+0.0	34.2	46.0	-11.8	White	Ave
^	2.468M	47.4	+0.2	+0.1	+6.0	+0.1	+0.0	53.8	46.0	+7.8	White	
20	3.782M	27.0	+0.2	+0.1	+6.0	+0.2	+0.0	33.5	46.0	-12.5	White	Ave
^	3.782M	48.6	+0.2	+0.1	+6.0	+0.2	+0.0	55.1	46.0	+9.1	White	
22	2.630M	26.8	+0.2	+0.1	+6.0	+0.1	+0.0	33.2	46.0	-12.8	White	Ave
^	2.629M	47.8	+0.2	+0.1	+6.0	+0.1	+0.0	54.2	46.0	+8.2	White	
24	3.994M	25.7	+0.2	+0.1	+6.0	+0.2	+0.0	32.2	46.0	-13.8	White	Ave
^	3.994M	47.4	+0.2	+0.1	+6.0	+0.2	+0.0	53.9	46.0	+7.9	White	
26	541.237k	25.9	+0.2	+0.0	+6.0	+0.0	+0.0	32.1	46.0	-13.9	White	Ave
^	541.237k	47.2	+0.2	+0.0	+6.0	+0.0	+0.0	53.4	46.0	+7.4	White	
28	2.162M	25.1	+0.2	+0.1	+6.0	+0.1	+0.0	31.5	46.0	-14.5	White	Ave
^	2.162M	50.2	+0.2	+0.1	+6.0	+0.1	+0.0	56.6	46.0	+10.6	White	
30	2.536M	24.7	+0.2	+0.1	+6.0	+0.1	+0.0	31.1	46.0	-14.9	White	Ave
^	2.536M	45.6	+0.2	+0.1	+6.0	+0.1	+0.0	52.0	46.0	+6.0	White	
32	949.501k	24.7	+0.3	+0.1	+6.0	+0.0	+0.0	31.1	46.0	-14.9	White	Ave
^	949.501k	46.5	+0.3	+0.1	+6.0	+0.0	+0.0	52.9	46.0	+6.9	White	
34	1.711M	24.7	+0.2	+0.1	+6.0	+0.1	+0.0	31.1	46.0	-14.9	White	Ave
^	1.711M	48.7	+0.2	+0.1	+6.0	+0.1	+0.0	55.1	46.0	+9.1	White	
36	2.818M	24.6	+0.2	+0.1	+6.0	+0.1	+0.0	31.0	46.0	-15.0	White	

Ave												
^	2.816M	45.0	+0.2	+0.1	+6.0	+0.1	+0.0	51.4	46.0	+5.4	White	
38	790.668k	24.3	+0.3	+0.0	+6.0	+0.0	+0.0	30.6	46.0	-15.4	White	Ave
^	790.669k	46.9	+0.3	+0.0	+6.0	+0.0	+0.0	53.2	46.0	+7.2	White	
40	2.230M	24.0	+0.2	+0.1	+6.0	+0.1	+0.0	30.4	46.0	-15.6	White	Ave
^	2.230M	45.8	+0.2	+0.1	+6.0	+0.1	+0.0	52.2	46.0	+6.2	White	
42	877.205k	23.8	+0.3	+0.1	+6.0	+0.0	+0.0	30.2	46.0	-15.8	White	Ave
^	877.205k	49.5	+0.3	+0.1	+6.0	+0.0	+0.0	55.9	46.0	+9.9	White	
44	350.709k	26.8	+0.2	+0.0	+6.0	+0.0	+0.0	33.0	48.9	-15.9	White	Ave
^	350.709k	47.8	+0.2	+0.0	+6.0	+0.0	+0.0	54.0	48.9	+5.1	White	
46	595.050k	23.6	+0.2	+0.0	+6.0	+0.0	+0.0	29.8	46.0	-16.2	White	Ave
^	595.050k	48.6	+0.2	+0.0	+6.0	+0.0	+0.0	54.8	46.0	+8.8	White	
48	4.467M	23.1	+0.2	+0.1	+6.0	+0.2	+0.0	29.6	46.0	-16.4	White	Ave
^	4.467M	40.7	+0.2	+0.1	+6.0	+0.2	+0.0	47.2	46.0	+1.2	White	
50	470.698k	23.9	+0.2	+0.0	+6.0	+0.0	+0.0	30.1	46.5	-16.4	White	Ave
^	470.698k	46.4	+0.2	+0.0	+6.0	+0.0	+0.0	52.6	46.5	+6.1	White	
52	2.391M	22.8	+0.2	+0.1	+6.0	+0.1	+0.0	29.2	46.0	-16.8	White	Ave
^	2.391M	48.5	+0.2	+0.1	+6.0	+0.1	+0.0	54.9	46.0	+8.9	White	
54	3.578M	22.5	+0.2	+0.1	+6.0	+0.2	+0.0	29.0	46.0	-17.0	White	Ave
^	3.578M	49.2	+0.2	+0.1	+6.0	+0.2	+0.0	55.7	46.0	+9.7	White	
56	2.919M	22.5	+0.2	+0.1	+6.0	+0.1	+0.0	28.9	46.0	-17.1	White	Ave
57	2.919M	22.2	+0.2	+0.1	+6.0	+0.1	+0.0	28.6	46.0	-17.4	White	Ave
^	2.919M	45.5	+0.2	+0.1	+6.0	+0.1	+0.0	51.9	46.0	+5.9	White	
59	752.854k	22.3	+0.3	+0.0	+6.0	+0.0	+0.0	28.6	46.0	-17.4	White	Ave
^	752.854k	48.1	+0.3	+0.0	+6.0	+0.0	+0.0	54.4	46.0	+8.4	White	
61	1.536M	22.2	+0.2	+0.1	+6.0	+0.1	+0.0	28.6	46.0	-17.4	White	Ave
^	1.536M	48.4	+0.2	+0.1	+6.0	+0.1	+0.0	54.8	46.0	+8.8	White	


63	1.226M	21.2	+0.3	+0.1	+6.0	+0.0	+0.0	27.6	46.0	-18.4	White
Ave											
^	1.226M	48.7	+0.3	+0.1	+6.0	+0.0	+0.0	55.1	46.0	+9.1	White
65	911.227k	20.5	+0.3	+0.1	+6.0	+0.0	+0.0	26.9	46.0	-19.1	White
Ave											
^	911.227k	46.4	+0.3	+0.1	+6.0	+0.0	+0.0	52.8	46.0	+6.8	White
67	4.160M	20.3	+0.2	+0.1	+6.0	+0.2	+0.0	26.8	46.0	-19.2	White
Ave											
68	1.039M	20.1	+0.3	+0.1	+6.0	+0.0	+0.0	26.5	46.0	-19.5	White
Ave											
^	1.039M	49.2	+0.3	+0.1	+6.0	+0.0	+0.0	55.6	46.0	+9.6	White
70	4.160M	19.8	+0.2	+0.1	+6.0	+0.2	+0.0	26.3	46.0	-19.7	White
Ave											
^	4.160M	45.5	+0.2	+0.1	+6.0	+0.2	+0.0	52.0	46.0	+6.0	White
72	4.679M	19.2	+0.2	+0.1	+6.0	+0.2	+0.0	25.7	46.0	-20.3	White
Ave											
^	4.679M	43.5	+0.2	+0.1	+6.0	+0.2	+0.0	50.0	46.0	+4.0	White
74	277.261k	23.8	+0.2	+0.0	+6.0	+0.0	+0.0	30.0	50.9	-20.9	White
Ave											
^	277.261k	47.5	+0.2	+0.0	+6.0	+0.0	+0.0	53.7	50.9	+2.8	White
76	4.998M	18.1	+0.2	+0.1	+6.0	+0.2	+0.0	24.6	46.0	-21.4	White
Ave											
^	4.998M	41.7	+0.2	+0.1	+6.0	+0.2	+0.0	48.2	46.0	+2.2	White
78	603.777k	17.5	+0.2	+0.0	+6.0	+0.0	+0.0	23.7	46.0	-22.3	White
Ave											
^	603.777k	43.8	+0.2	+0.0	+6.0	+0.0	+0.0	50.0	46.0	+4.0	White
80	482.333k	14.7	+0.2	+0.0	+6.0	+0.0	+0.0	20.9	46.3	-25.4	White
Ave											
^	482.333k	43.3	+0.2	+0.0	+6.0	+0.0	+0.0	49.5	46.3	+3.2	White
82	228.538k	20.9	+0.2	+0.0	+6.0	+0.0	+0.0	27.1	52.5	-25.4	White
Ave											
^	228.538k	51.6	+0.2	+0.0	+6.0	+0.0	+0.0	57.8	52.5	+5.3	White
84	393.614k	13.6	+0.2	+0.0	+6.0	+0.0	+0.0	19.8	48.0	-28.2	White
Ave											
^	393.614k	43.5	+0.2	+0.0	+6.0	+0.0	+0.0	49.7	48.0	+1.7	White
86	173.998k	17.2	+0.4	+0.0	+6.0	+0.0	+0.0	23.6	54.8	-31.2	White
Ave											
^	173.998k	52.0	+0.4	+0.0	+6.0	+0.0	+0.0	58.4	54.8	+3.6	White

CKC Laboratories, Inc. Date: 11/30/2008 Time: 15:22:49 Cimarron Systems LLC WO#: 88433
FCC 15.207 COND [AVE] Test Lead: White 110V 60Hz Sequence#: 10

FCC Part 15.247(a)(1) - BANDWIDTH PLOT

Test Setup Photos

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	072308	072310
36" 40GHz cable	02945	Strolab	NA	NA	091807	091809

Test Conditions

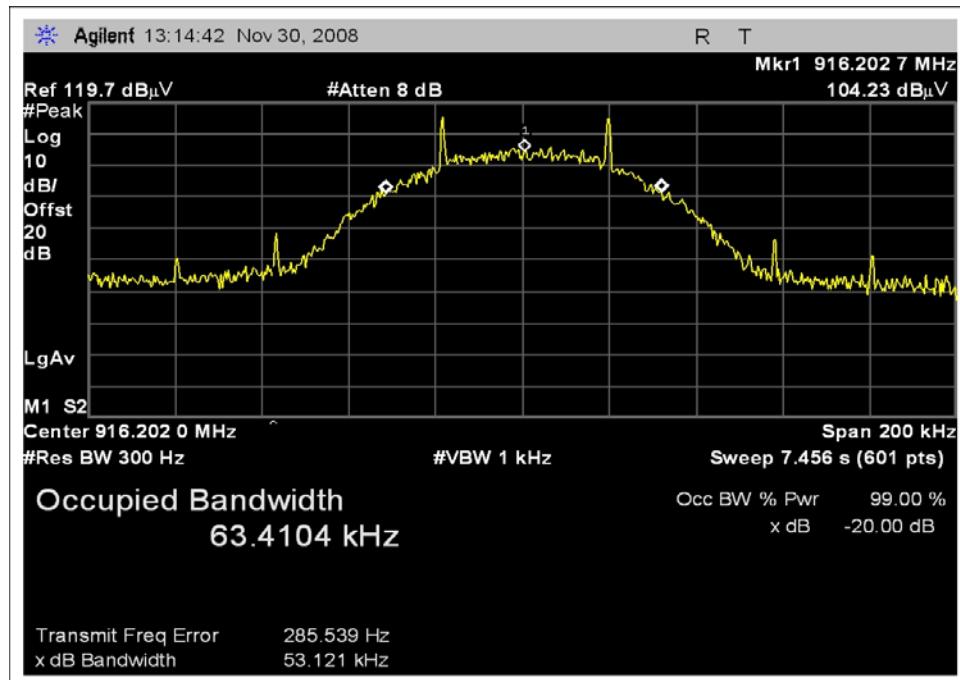
The EUT is placed on the test bench. The serial port is connected to a remotely located support laptop and 5V AC-DC power supply. Two analog inputs are connected to support pressure transducers. Four discrete inputs are connected to a section of unterminated cable. All four cables are of shielded cable.

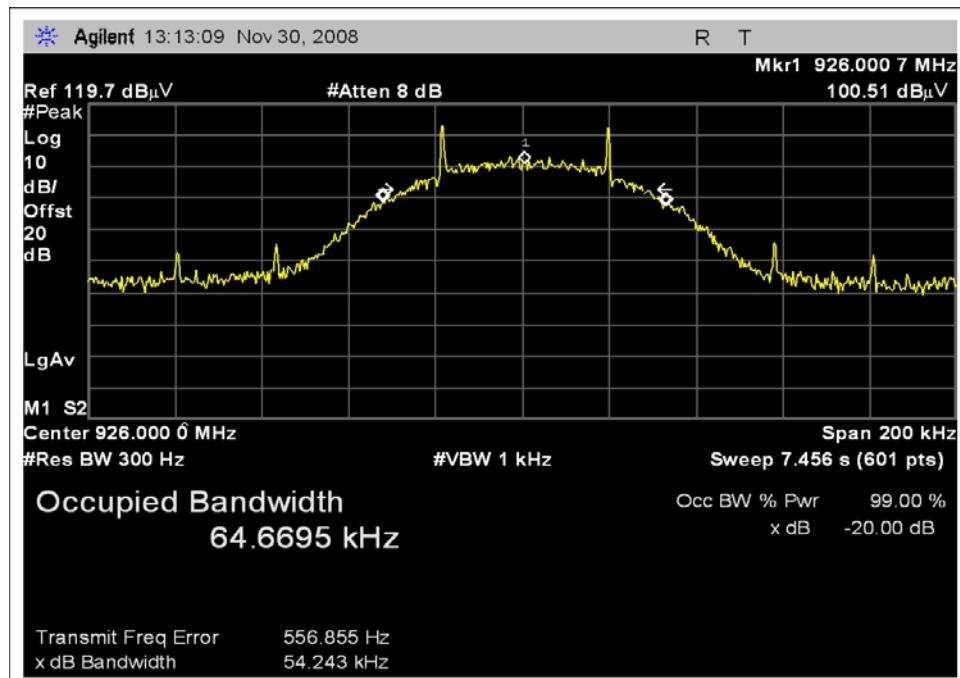
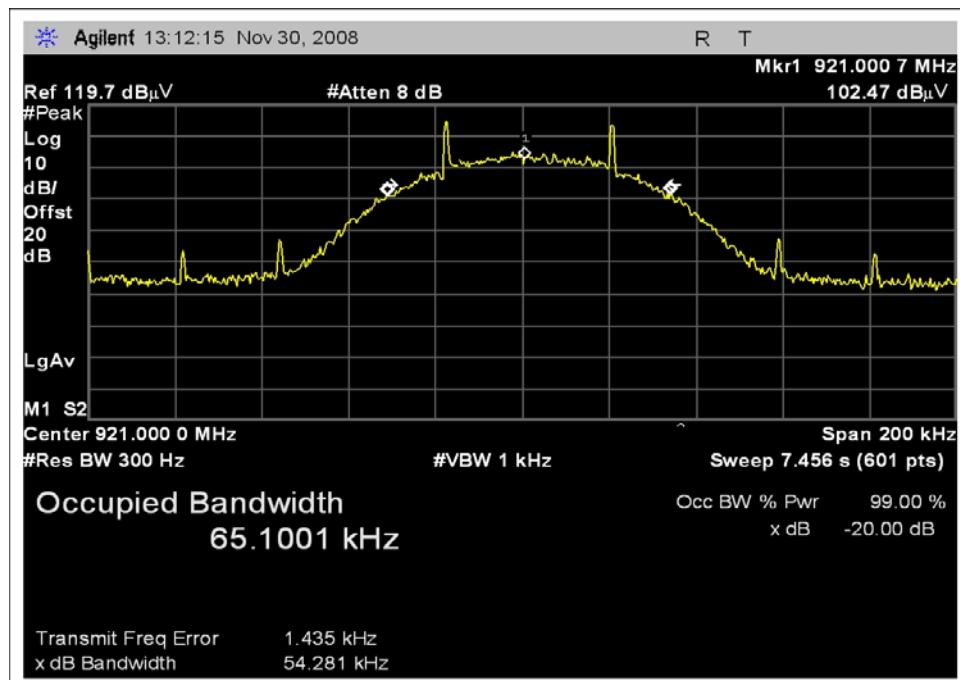
Freq range : 916MHz – 926MHz

TX = 916MHz, 921MHz, 926MHz

Modulation : On

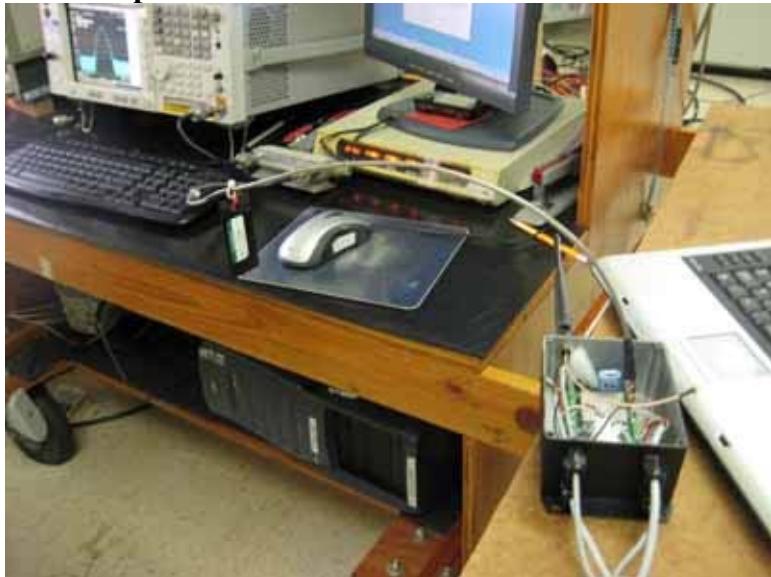
Test software setting: Transceiver power = -8


PA Gain voltage: 1.8



The RF output power is measured at the PCB mounted antenna port with test procedure as prescribed in FCC Document, DA 00-705.

Note: A fresh battery was used for testing. In normal application, this product is a low transmit duty cycle, battery operated device with a transmit interval in the order of once a minute.. To support continuous transmit in testing mode at intended transmit power level, a support 5V AC-DC power supply is used to simulate testing with a new battery.

Test Plots


Tested By: E. Wong

FCC Part 15.247(a)(1) - CARRIER FREQUENCY SPECTRUM

Test Setup Photos

Test Equipment

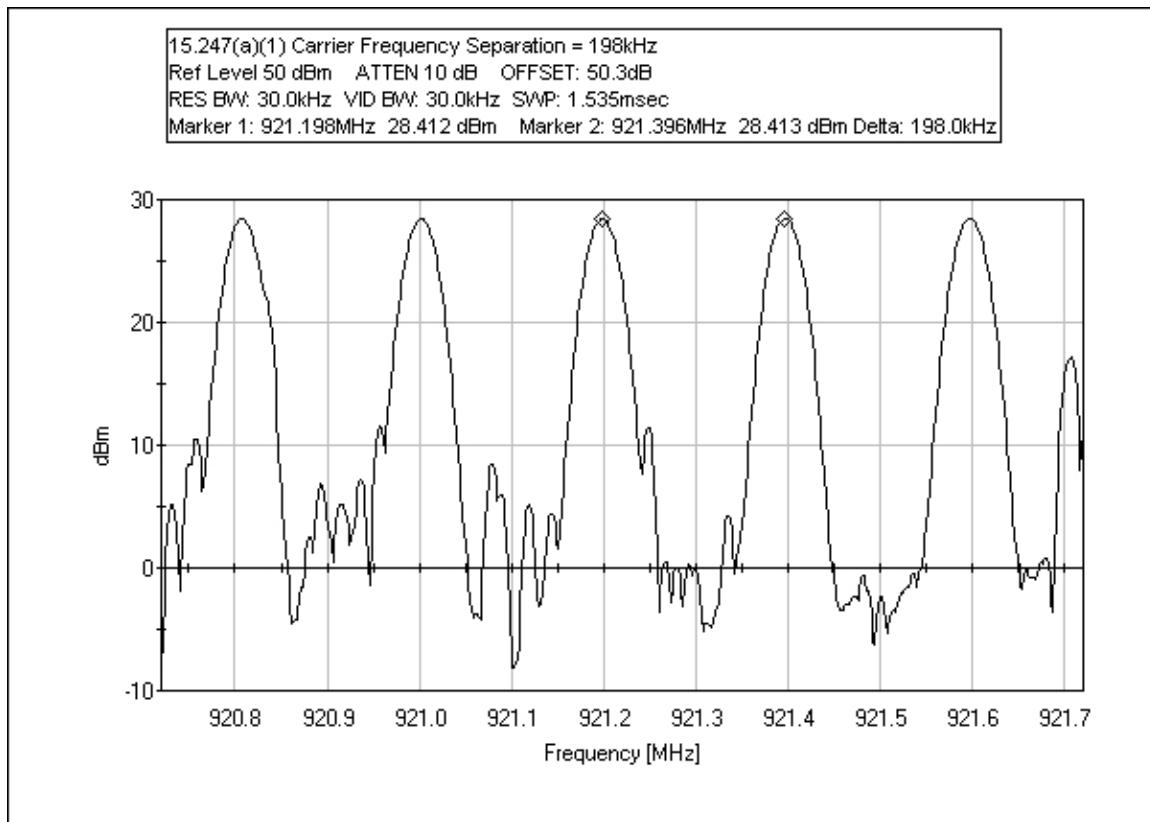
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	072308	072310
36" 40GHz cable	02945	Strolab	NA	NA	091807	091809

Test Conditions

The EUT is placed on the test bench. The serial port is connected to a remotely located support laptop and 5V AC-DC power supply. Two analog inputs are connected to support pressure transducers. Four discrete inputs are connected to a section of unterminated cable. All four cables are of shielded cable.

Freq range: 916MHz – 926MHz

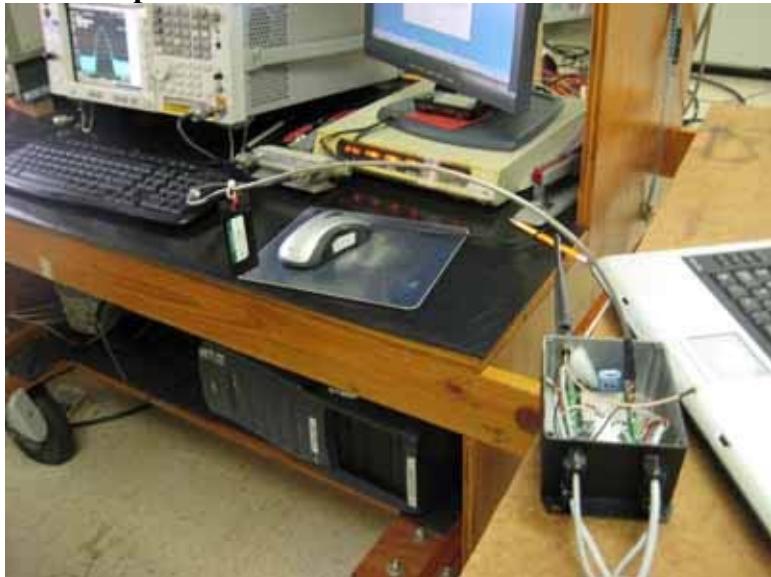
Modulation: On, Hopping.


Test software setting: Transceiver power = -8

PA Gain voltage: 1.8

The Carrier Frequency Separation is measured at the PCB mounted antenna port with test procedure as prescribed in FCC Document, DA 00-705.

Test Plots


Tested By: E. Wong

Note: A fresh battery was used for testing. In normal application, this product is a low transmit duty cycle, battery operated device with a transmit interval in the order of once a minute.. To support continuous transmit in testing mode at intended transmit power level, a support 5V AC-DC power supply is used to simulate testing with a new battery.

FCC Part 15.247(a)(1)(iii) - NUMBER OF HOPPING FREQUENCIES

Test Setup Photos

Test Equipment

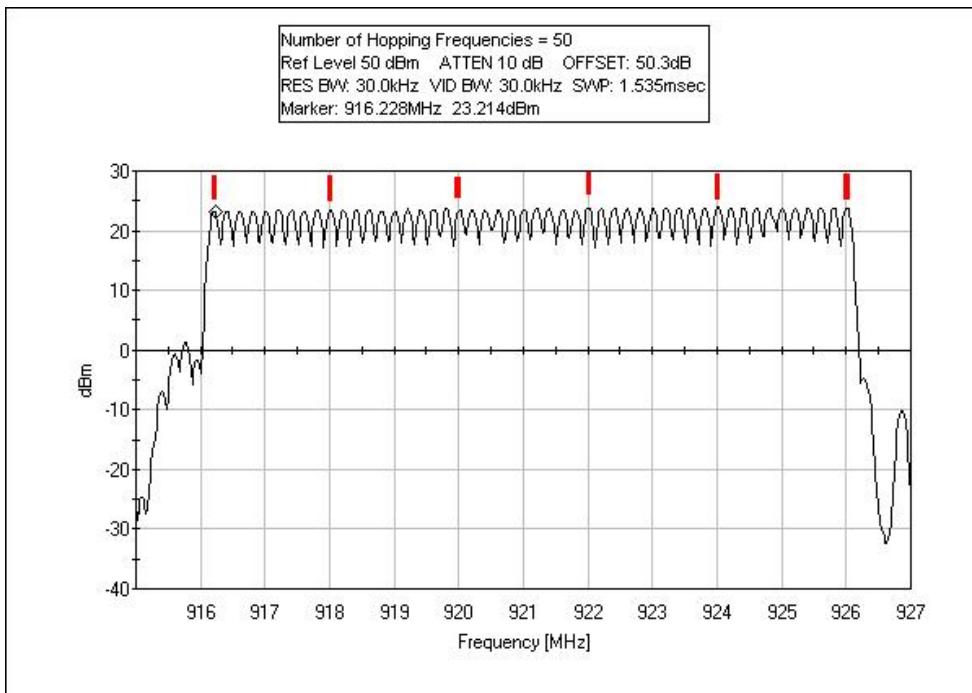
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	072308	072310
36" 40GHz cable	02945	Strolab	NA	NA	091807	091809

The EUT is placed on the test bench .The serial port is connected to a remotely located support laptop and 5V AC-DC power supply. Two analog inputs are connected to support pressure transducers. Four discrete inputs are connected to a section of unterminated cable. All four cables are of shielded cable.

Freq range: 916MHz – 926MHz

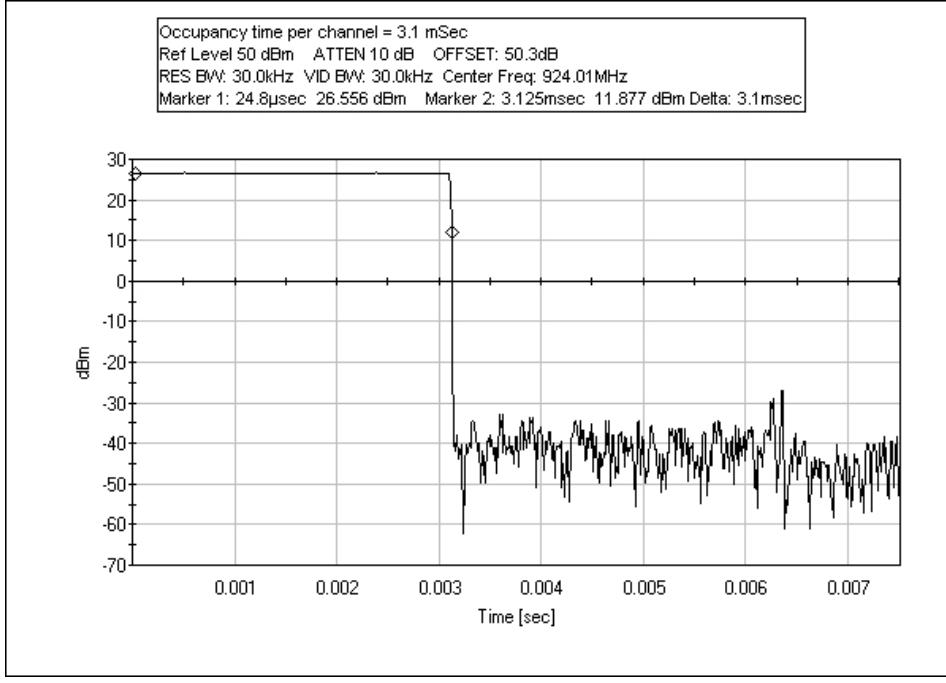
Modulation: On, Hopping.

Test software setting: Transceiver power = -15

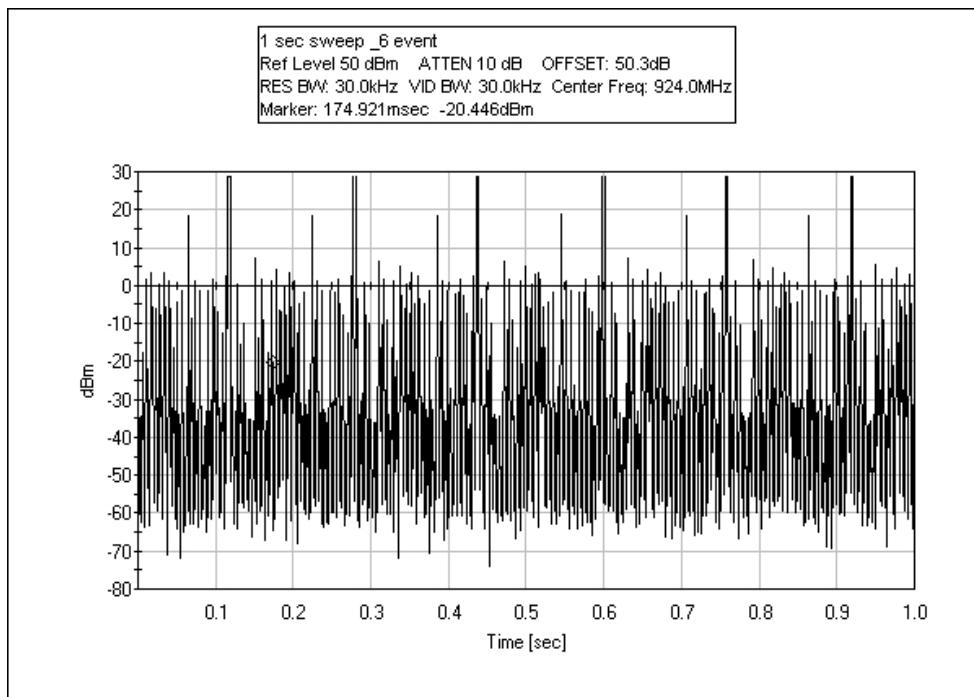

PA Gain voltage: 2.6

The Number of Hopping Frequencies and Time of occupancies is evaluated at the PCB mounted antenna port with test procedure as prescribed in FCC Document, DA 00-705.

Note: A fresh battery was used for testing. In normal application, this product is a low transmit duty cycle, battery operated device with a transmit interval in the order of once a minute.. To support continuous transmit in testing mode at intended transmit power level, a support 5V AC-DC power supply is used to simulate testing with a new battery.


Test Plots

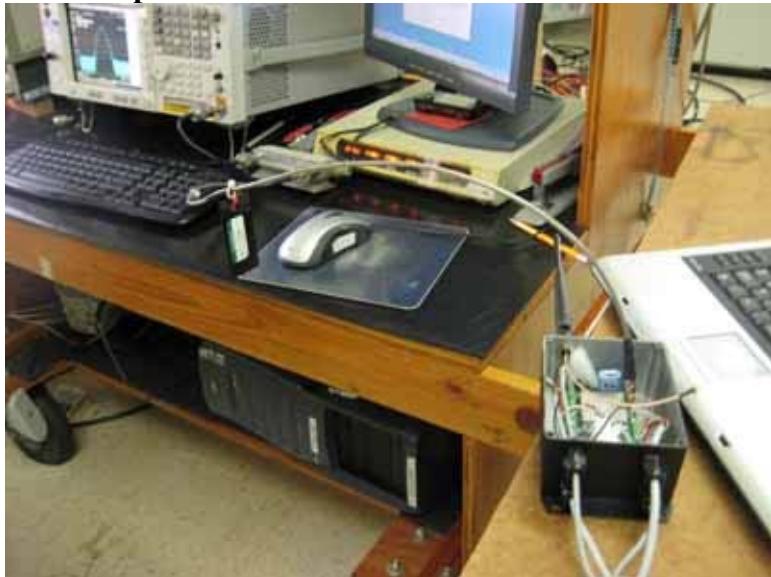
Tested By: E. Wong



Measured number of hopping frequency = 50.

Centered in one channel,

The measure channel occupancy time is 0.0031 Sec, (per event)


Capturing 10 plots of 1 second sweep, the computed averaging number of events occurred per 1 second sweep = 6.2

In 20 second, total average events occurred = $6.2 \times 20 = 124$ events.

Total average time of occupancy within 20 second = 124 events $\times 0.0031$ sec = **0.38Sec.**

FCC 15.247(b)(2) – RF POWER OUTPUT

Test Setup Photos

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	072308	072310
36" 40GHz cable	02945	Strolab	NA	NA	091807	091809
Programmable Power Source	01695/ 01696	Pacific Power	345AMX / UPC32	250 / 245	051507	051509

Test Conditions

The EUT is placed on the test bench. The serial port is connected to a remotely located support laptop and 5V AC-DC power supply. Two analog inputs are connected to support pressure transducers. Four discrete inputs are connected to a section of unterminated cable. All four cables are of shielded cable.

Freq range: 916MHz – 926MHz

TX = 916MHz, 921MHz, 926MHz

Modulation: On

Test software setting: Transceiver power = -8

PA Gain voltage: 1.8

The RF output power is measured at the PCB mounted antenna port with test procedure as prescribed in FCC Document, DA 00-705.

RBW=1MHz, VBW=3MHz.

Tested By: E. Wong

Frequency	dBm	Watts
916MHz	27.8dBm	0.60W
921 MHz	28.1dBm	0.65W
926MHz	28.4 dBm	0.69W

DC Mode

A fresh battery was used for testing. In DC powered mode, this product is a low transmit duty cycle, battery operated device with a transmit interval in the order of once a minute. To support continuous transmit in testing mode at intended transmit power level, a support 5V AC-DC power supply is used to simulate testing with a new battery.

FCC 15.247(d) – BAND EDGE

Test Setup Photos

Test Equipment

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Pre amp to SA Cable	Cable #10	05/16/2007	05/16/2009	P05050
Cable	Cable15	01/05/2007	01/05/2009	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309

Test Conditions

FCC15.109(2007)

The EUT is placed on the wooden table with Styrofoam padding of 10 cm thickness. The serial port is connected to a support 5V AC-DC power supply and a remotely located support laptop. Two analog inputs are connected to support pressure transducers. Four discrete inputs are connected to a section of unterminated cable. All four cables are of shielded cable.

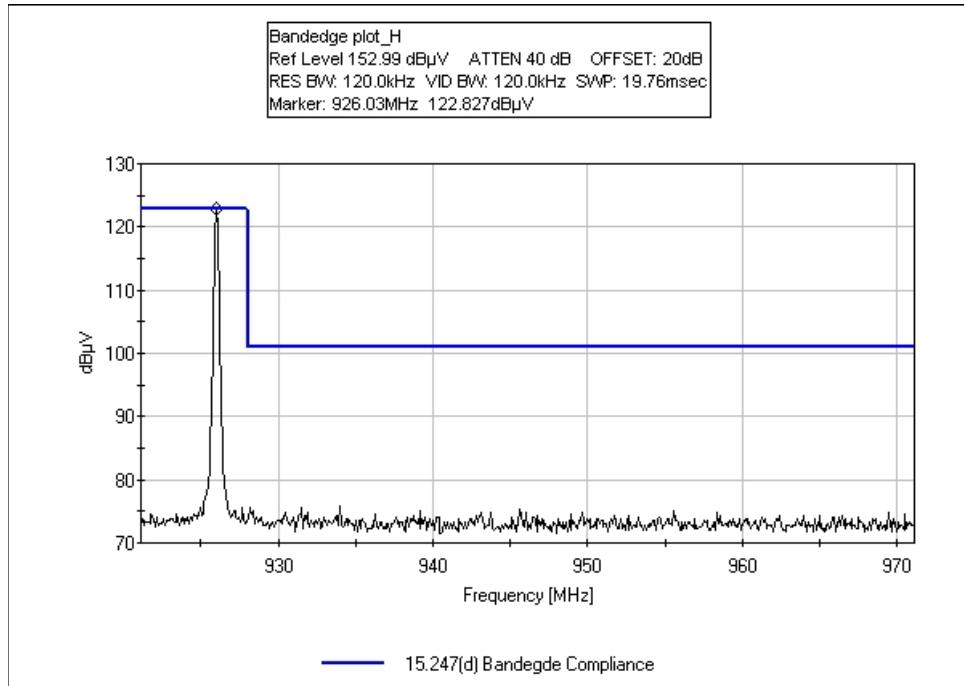
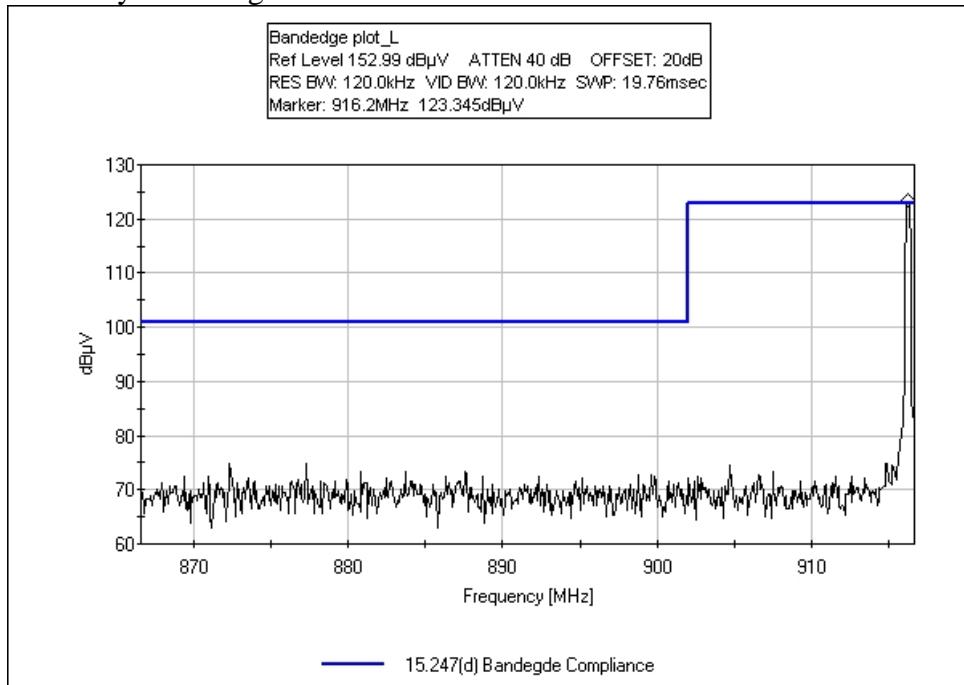
Freq range: 916MHz - 926MHz Mode:

RX Test software setting: Transceiver power = -8

PA Gain voltage: 1.8

The device is to be used in three different orientations, with transmit antenna perpendicular to the ground reference plane. The emission profile of all three device orientations was tested and worse case emission is presented.

Note: In normal application, this low transmit duty cycle device has a transmit interval in the order of once a minute. The primary power source is non-rechargeable and rechargeable battery with external AC-DC power supply or solar panel. To support continuous transmit in test mode, a support 5V AC-DC power supply is used to simulate testing with a new battery.



Frequency range of measurement = 30MHz- 10 GHz.

Frequency 30 MHz - 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz-10,000 MHz RBW=1 MHz, VBW=1 MHz.

Modification: Added a SAW filter between the output of the transceiver and the input of the power amplifier. Mounting holes are isolated from the ground plane. The board is now screwed to the standoffs. A 10MOhm resistor was added between the analog input amplifier and ground.

Plots

Tested by: E. Wong

FCC 15.247(d) – OATS RADIATED SPURIOUS EMISSIONS

Test Setup Photos

Front - X Orientation

Back - X Orientation

Front - Y Orientation

Back - Y Orientation

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: **Cimarron Systems LLC**
 Specification: **FCC 15.247 (d) (FCC 15.205 restricted band)**
 Work Order #: **88433** Date: 11/30/2008
 Test Type: **Radiated Scan** Time: 09:42:26
 Equipment: **Wireless Data Collection System** Sequence#: 7
 Manufacturer: Cimarron Systems LLC Tested By: E. Wong
 Model: 915-1000-0-NIU
 S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Pre amp to SA Cable	Cable #10	05/16/2007	05/16/2009	P05050
Cable	Cable15	01/05/2007	01/05/2009	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309
Horn Antenna	6246	06/06/2008	06/06/2010	00849
Microwave Pre-amp	3123A00281	07/28/2008	07/28/2010	00786
2'-40GHz cable	NA	09/18/2007	09/18/2009	P2948
1.0 GHz HPF	1	01/11/2008	01/11/2010	02749
Loop Antenna	2014	06/16/2008	06/16/2010	00314
Heliax Antenna Cable	P5565	09/04/2008	09/04/2010	P05565

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Data Collection System*	Cimarron Systems LLC	915-1000-0-NIU	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Pressure transducer	Omegadyne	PX-319-200GV	091906D028
Pressure transducer	Omegadyne	PX-319-1KGV	053007D300
Power Supply	Cincon	TR1505	NA

Test Conditions / Notes:

FCC15.247 (2007)

The EUT is placed on the wooden table with Styrofoam padding of 10 cm thickness. The serial port is connected to a support 5V AC-DC power supply and a remotely located support laptop.

Two analog inputs are connected to support pressure transducers. Four discrete inputs are connected to a section of unterminated cable. All four cables are of shielded cable.

Freq range : 916MHz - 926MHz

TX = 916MHz.

Test software setting: Transceiver power = -8

PA Gain voltage: 1.8

The device is to be used in three different orientations, with transmit antenna perpendicular to the ground reference plane. The emission profile of all three device orientations will be tested and worse case emission is presented.

Note: In normal application, this low transmit duty cycle device has a transmit interval in the order of once a minute. The primary power source is non-rechargeable and rechargeable battery with external AC-DC power supply or solar panel. To support continuous transmit in test mode, a support 5V AC-DC power supply is used to simulate testing with a new battery.

Frequency range of measurement = 9 kHz- 10 GHz.

Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz- 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz- 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz-10,000 MHz RBW=1 MHz, VBW=1 MHz.

Modification:

Added a SAW filter between the output of the transceiver and the input of the power amplifier.

Mounting holes are isolated from the ground plane. The board is screwed to the standoffs.

A 10MOhm resistor was added between the analog input amplifier and ground.

1-10GHz

Duty cycle correction applied. correction = 20 Log Time of occupancy/100ms

measured dwell time per channel = 3.1ms,

20 Log (3.1/100) = -30

Transducer Legend:

T1=Bilog-AN01995 BILOG_012110	T2=Cable #10_P05050_051609
T3=Cable #15_P05198_Site A, 010509	T4=Pre_amp_HP8447D-AN00309-050210
T5=Heliax Cable 54' ANP05565 090410	T6=HF_pre AMP-1-26GHz_AN00786-072810.TRN
T7=Hi Freq_40GHz_2ft-ANP02948-091809	T8=Horn Ant AN00849 060610
T9=K&L 1GHz HPF AN02749_011110	T10=Time of Occupancy Corr -30dB

Measurement Data: Reading listed by margin. **Test Distance: 3 Meters**

#	Freq	Rdng	Reading listed by margin.				Dist	Corr	Spec	Margin	Polar
			T1 T5 T9	T2 T6 T10	T3 T7	T4 T8					
	MHz	dB μ V	dB	dB	dB	dB	Table	dB μ V/m	dB μ V/m	dB	Ant
1	973.575M	44.2	+24.4	+0.7	+6.2	-27.3	+0.0	48.2	54.0	-5.8	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
2	960.075M	42.1	+24.2	+0.7	+6.1	-27.2	+0.0	45.9	54.0	-8.1	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
^	960.075M	45.3	+24.2	+0.7	+6.1	-27.2	+0.0	49.1	54.0	-4.9	Vert

			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0								
4	2748.596M	56.4	+0.0	+0.0	+0.0	+0.0	+0.0	23.0	54.0	-31.0	Horiz	
	Ave		+4.1	-37.8	+0.4	+29.3						
			+0.6	-30.0								
^	2748.596M	67.4	+0.0	+0.0	+0.0	+0.0	+0.0	34.0	54.0	-20.0	Horiz	
			+4.1	-37.8	+0.4	+29.3						
			+0.6	-30.0								
6	2748.588M	54.7	+0.0	+0.0	+0.0	+0.0	+0.0	21.3	54.0	-32.7	Vert	
	Ave		+4.1	-37.8	+0.4	+29.3						
			+0.6	-30.0								
^	2748.588M	63.0	+0.0	+0.0	+0.0	+0.0	+0.0	29.6	54.0	-24.4	Vert	
			+4.1	-37.8	+0.4	+29.3						
			+0.6	-30.0								
8	1832.431M	90.0	+0.0	+0.0	+0.0	+0.0	+0.0	52.6	101.0	-48.4	Horiz	
			+3.2	-38.0	+0.3	+26.7						
			+0.4	-30.0								
9	1832.388M	74.2	+0.0	+0.0	+0.0	+0.0	+0.0	36.8	101.0	-64.2	Horiz	
			+3.2	-38.0	+0.3	+26.7						
			+0.4	-30.0								

Test Location: CKC Laboratories, Inc. • 110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: **Cimarron Systems LLC**
 Specification: **FCC 15.247 (d) (FCC 15.205 restricted band)**
 Work Order #: **88433** Date: **11/30/2008**
 Test Type: **Radiated Scan** Time: **10:08:08**
 Equipment: **Wireless Data Collection System** Sequence#: **8**
 Manufacturer: Cimarron Systems LLC Tested By: E. Wong
 Model: 915-1000-0-NIU
 S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Pre amp to SA Cable	Cable #10	05/16/2007	05/16/2009	P05050
Cable	Cable15	01/05/2007	01/05/2009	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309
Horn Antenna	6246	06/06/2008	06/06/2010	00849
Microwave Pre-amp	3123A00281	07/28/2008	07/28/2010	00786
2'-40GHz cable	NA	09/18/2007	09/18/2009	P2948
1.0 GHz HPF	1	01/11/2008	01/11/2010	02749
Loop Antenna	2014	06/16/2008	06/16/2010	00314
Heliax Antenna Cable	P5565	09/04/2008	09/04/2010	P05565

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Data Collection System*	Cimarron Systems LLC	915-1000-0-NIU	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Pressure transducer	Omegadyne	PX-319-200GV	091906D028
Pressure transducer	Omegadyne	PX-319-1KGV	053007D300
Power Supply	Cincon	TR1505	NA

Test Conditions / Notes:

FCC15.247 (2007)

The EUT is placed on the wooden table with Styrofoam padding of 10 cm thickness. The serial port is connected to a support 5V AC-DC power supply and a remotely located support laptop.

Two analog inputs are connected to support pressure transducers. Four discrete inputs are connected to a section of unterminated cable. All four cables are of shielded cable.

Freq range : 916MHz - 926MHz

TX = 921MHz.

Test software setting: Transceiver power = -8

PA Gain voltage: 1.8

The device is to be used in three different orientations, with transmit antenna perpendicular to the ground reference plane. The emission profile of all three device orientations will be tested and worse case emission is presented.

Note: In normal application, this low transmit duty cycle device has a transmit interval in the order of once a minute. The primary power source is non-rechargeable and rechargeable battery with external AC-DC power supply or solar panel. To support continuous transmit in test mode, a support 5V AC-DC power supply is used to simulate testing with a new battery.

Frequency range of measurement = 9 kHz- 10 GHz.

Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz- 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz- 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz-10,000 MHz RBW=1 MHz, VBW=1 MHz.

Modification:

Added a SAW filter between the output of the transceiver and the input of the power amplifier.

Mounting holes are isolated from the ground plane. The board is screwed to the standoffs.

A 10MOhm resistor was added between the analog input amplifier and ground.

1-10GHz

Duty cycle correction applied. correction = 20 Log Time of occupancy/100ms

measured dwell time per channel = 3.1ms,

20 Log (3.1/100) = -30

Transducer Legend:

T1=Bilog-AN01995 BILOG_012110	T2=Cable #10_P05050_051609
T3=Cable #15_P05198_Site A, 010509	T4=Pre_amp_HP8447D-AN00309-050210
T5=Heliax Cable 54' ANP05565 090410	T6=HF_pre AMP-1-26GHz_AN00786-072810.TRN
T7=Hi Freq_40GHz_2ft-ANP02948-091809	T8=Horn Ant AN00849 060610
T9=K&L 1GHz HPF AN02749_011110	T10=Time of Occupancy Corr -30dB

Measurement Data:

Reading listed by margin.

Test Distance: 3 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10							
	MHz	dB μ V	dB	dB	dB	dB	Table	dB μ V/m	dB μ V/m	dB	Ant
1	960.000M	42.1	+24.2	+0.7	+6.1	-27.2	+0.0	45.9	54.0	-8.1	Vert
	QP		+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
^	960.000M	45.6	+24.2	+0.7	+6.1	-27.2	+0.0	49.4	54.0	-4.6	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
3	2763.046M	66.6	+0.0	+0.0	+0.0	+0.0	+0.0	33.3	54.0	-20.7	Horiz

			+4.1	-37.7	+0.4	+29.4						
			+0.5	-30.0								
4	2762.995M	64.7	+0.0	+0.0	+0.0	+0.0	+0.0	31.4	54.0	-22.6	Vert	
			+4.1	-37.7	+0.4	+29.4						
			+0.5	-30.0								
5	1842.046M	65.7	+0.0	+0.0	+0.0	+0.0	+0.0	28.3	101.0	-72.7	Horiz	
			+3.2	-38.0	+0.3	+26.7						
			+0.4	-30.0								
6	1841.995M	65.5	+0.0	+0.0	+0.0	+0.0	+0.0	28.1	101.0	-72.9	Vert	
			+3.2	-38.0	+0.3	+26.7						
			+0.4	-30.0								

Test Location: CKC Laboratories, Inc. • 110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: **Cimarron Systems LLC**
 Specification: **FCC 15.247 (d) (FCC 15.205 restricted band)**
 Work Order #: **88433** Date: **11/30/2008**
 Test Type: **Radiated Scan** Time: **10:22:10**
 Equipment: **Wireless Data Collection System** Sequence#: **9**
 Manufacturer: Cimarron Systems LLC Tested By: E. Wong
 Model: 915-1000-0-NIU
 S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	07/23/2008	07/23/2010	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Pre amp to SA Cable	Cable #10	05/16/2007	05/16/2009	P05050
Cable	Cable15	01/05/2007	01/05/2009	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309
Horn Antenna	6246	06/06/2008	06/06/2010	00849
Microwave Pre-amp	3123A00281	07/28/2008	07/28/2010	00786
2'-40GHz cable	NA	09/18/2007	09/18/2009	P2948
1.0 GHz HPF	1	01/11/2008	01/11/2010	02749
Loop Antenna	2014	06/16/2008	06/16/2010	00314
Heliax Antenna Cable	P5565	09/04/2008	09/04/2010	P05565

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Data Collection System*	Cimarron Systems LLC	915-1000-0-NIU	NA

Support Devices:

Function	Manufacturer	Model #	S/N
Pressure transducer	Omegadyne	PX-319-200GV	091906D028
Pressure transducer	Omegadyne	PX-319-1KGV	053007D300
Power Supply	Cincon	TR1505	NA

Test Conditions / Notes:

FCC15.247 (2007)

The EUT is placed on the wooden table with Styrofoam padding of 10 cm thickness. The serial port is connected to a support 5V AC-DC power supply and a remotely located support laptop.

Two analog inputs are connected to support pressure transducers. Four discrete inputs are connected to a section of unterminated cable. All four cables are of shielded cable.

Freq range : 916MHz - 926MHz

TX = 926MHz.

Test software setting: Transceiver power = -8

PA Gain voltage: 1.8

The device is to be used in three different orientations, with transmit antenna perpendicular to the ground reference plane. The emission profile of all three device orientations will be tested and worse case emission is presented.

Note: In normal application, this low transmit duty cycle device has a transmit interval in the order of once a minute. The primary power source is non-rechargeable and rechargeable battery with external AC-DC power supply or solar panel. To support continuous transmit in test mode, a support 5V AC-DC power supply is used to simulate testing with a new battery.

Frequency range of measurement = 9 kHz- 10 GHz.

Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz- 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz- 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz-10,000 MHz RBW=1 MHz, VBW=1 MHz.

Modification:

Added a SAW filter between the output of the transceiver and the input of the power amplifier.

Mounting holes are isolated from the ground plane. The board is screwed to the standoffs.

A 10MOhm resistor was added between the analog input amplifier and ground.

1-10GHz

Duty cycle correction applied. correction = 20 Log Time of occupancy/100ms

measured dwell time per channel = 3.1ms,

20 Log (3.1/100) = -30

Transducer Legend:

T1=Heliax Cable 54' ANP05565 090410	T2=HF_pre AMP-1-26GHz_AN00786-072810.TRN
T3=Hi Freq_40GHz_2ft-ANP02948-091809	T4=Horn Ant AN00849 060610
T5=K&L 1GHz HPF AN02749_011110	T6=Time of Occupancy Corr -30dB

Measurement Data:

Reading listed by margin.

Test Distance: 3 Meters

#	Freq	Rdng	T1 T5	T2 T6	T3	T4	Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar
	MHz	dB μ V	dB	dB	dB	dB				Ant	
1	2778.018M	65.5	+4.1 +0.5	-37.7 -30.0	+0.4	+29.4	+0.0	32.2	54.0	-21.8	Horiz
2	2768.018M	63.0	+4.1 +0.5	-37.7 -30.0	+0.4	+29.4	+0.0	29.7	54.0	-24.3	Vert
3	1852.035M	66.2	+3.2 +0.4	-38.0 -30.0	+0.3	+26.8	+0.0	28.9	101.0	-72.1	Horiz
4	1847.018M	64.9	+3.2 +0.4	-38.0 -30.0	+0.3	+26.7	+0.0	27.5	101.0	-73.5	Vert

RSS-210 – 99% BANDWIDTH

Test Setup Photos

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	072308	072310
36" 40GHz cable	02945	Strolab	NA	NA	091807	091809

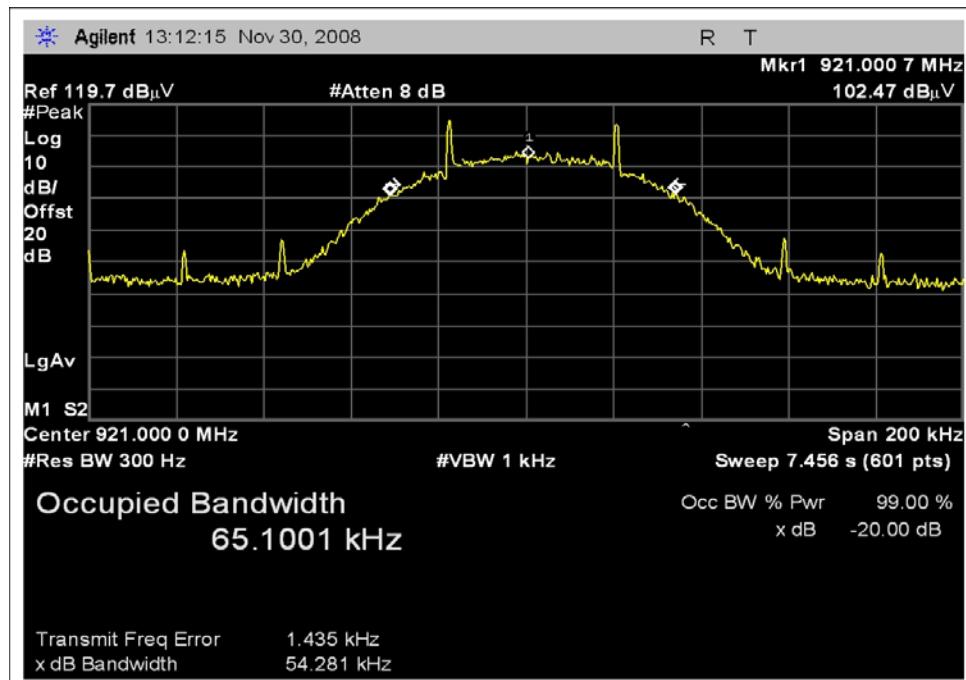
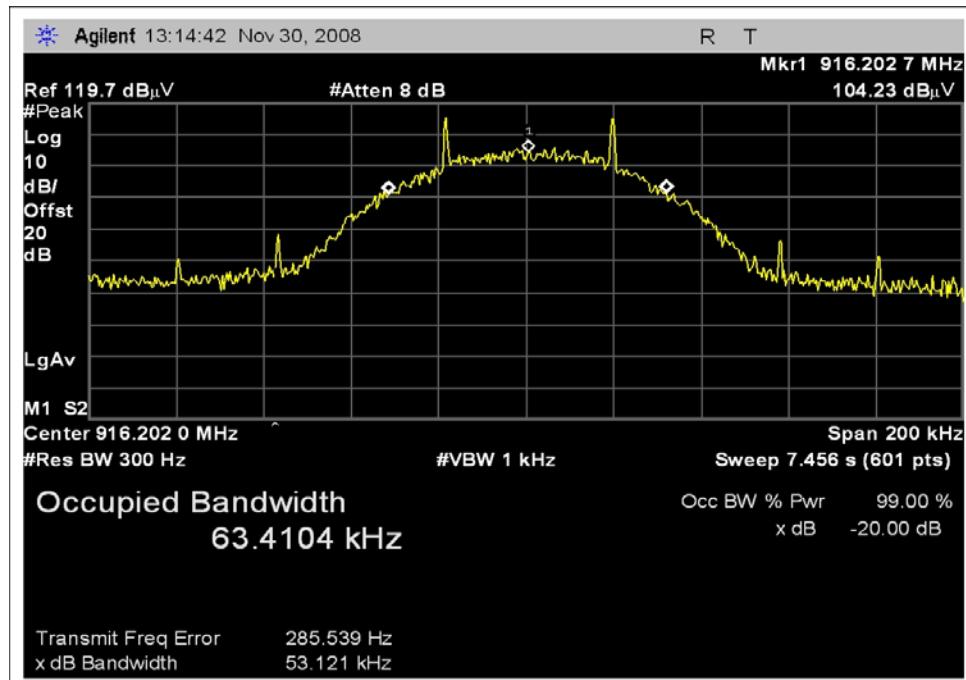
Test Conditions

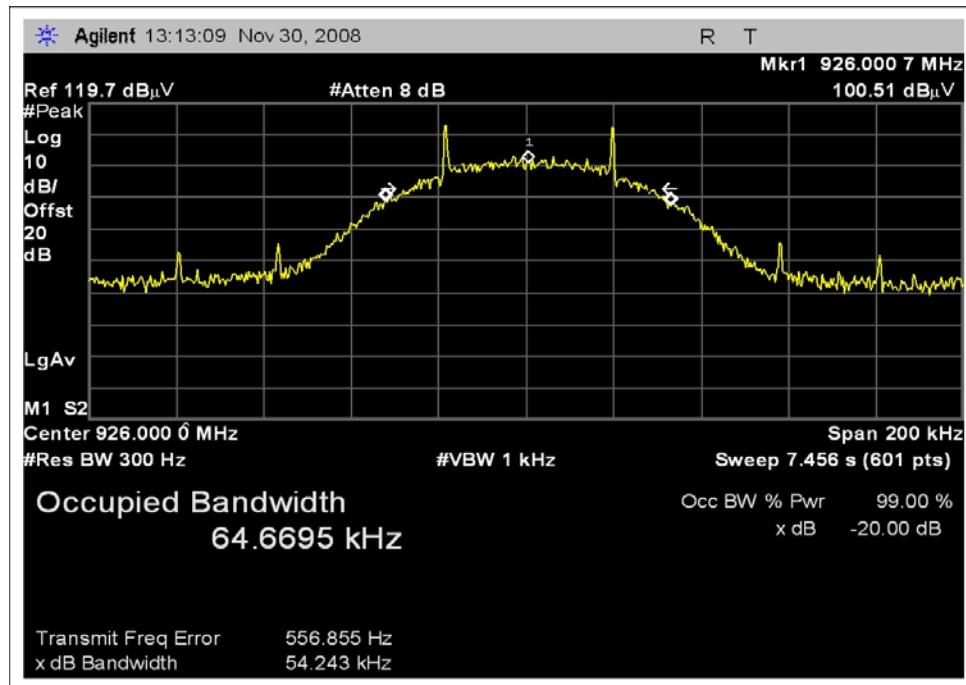
The EUT is placed on the test bench. The serial port is connected to a remotely located support laptop and 5V AC-DC power supply. Two analog inputs are connected to support pressure transducers. Four discrete inputs are connected to a section of unterminated cable. All four cables are of shielded cable. The PCB is attached to the chassis using double sided sticking tape. The ground pad of the PCB is intentionally isolated from the chassis.

Freq range : 916MHz – 926MHz

TX = 916MHz, 921MHz, 926MHz

Modulation : On



Test software setting: Transceiver power = -8


PA Gain voltage: 1.8

Note: A fresh battery was used for testing. In normal application, this product is a low transmit duty cycle, battery operated device with a transmit interval in the order of once a minute. To support continuous transmit in testing mode at intended transmit power level, a support 5V AC-DC power supply is used to simulate testing with a new battery.

Plot

Tested by: E. Wong

