

RF Exposure REPORT

Company: Williams Enterprises
1714 Hwy. 14 West
Carmi, IL 62821

Contact: David Camp

Product: Watchfire Remote Video Web Server

FCC ID: WK2-WFV100

Test Report No: RFE121808-01

Issued by: NCEE Labs
4740 Discovery Dr.
Lincoln, NE 68521

DATE: 18 March 2008

Total Pages: 3

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

RF Exposure Calculations:

The minimum separation distance is calculated from FCC OET 65 Appendix B, Table 1B “Guidelines for General Population/Uncontrolled Exposure.” This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain.

RF Power Measurement

The RF output of the transceiver was connected to a power sensor and power meter. Measurements were made with the transmitter continuously active. The highest power settings were chosen from the 2.4GHz and the 5.7GHz bands

Frequency (GHz)	Output Power dBm	Output Power mW
2.437	21.57	143.55

Test Equipment Used

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE
Hewlett Packard Power Meter	4378	100307	20 Jan 2009
Hewlett Packard Power Sensor	8481A	2702A63981	20 Jan 2009

Test Environment

Testing was performed at the NCEE Labs Lincoln facility. Laboratory environmental conditions varied slightly throughout the test:

Relative humidity of $40 \pm 5\%$

Temperature of $20 \pm 2^\circ$ Celsius

Exposure Limit (mW/cm ²) = F/1200	2.03
Frequency (MHz)	2437
Maximum peak output power (mW)	143.55
Antenna Gain (Numeric)	1.5
Antenna type	Dipole

$$P_d = (P_{out} \times G) / (4\pi \times R^2)$$

$$R = \sqrt{(P_{out} \times G) / (4\pi \times P_d)}$$

P_d = Power density limit, mW/cm²

P_{out} = Peak power output, mW

G = Numeric Antenna Gain

R = Distance from antenna, cm

P _{out} mW	G Numeric	P _d mW/cm ²	R cm	Frequency MHz	Calculation
143.55	1.5	2.03	2.91	2437	Minimum distance to meet limit
143.55	1.5	0.04	20.0	2437	Power density at 20 cm

Notes:

1. The minimum safe distance is based on a conservative “worst case” prediction, i.e. using the formula shown above and no duty factor. In practice the minimum distance will be much shorter. (Ref. 2)

References:

1. FCC OET Bulletin 65, Edition 97-01
2. FCC Supplement C to OET Bulletin 65, edition 01-01
3. IEEE C95.1, 1999