

Global United Technology Services Co., Ltd.

Report No.: GTS201704000092F01

FCC REPORT

Applicant: Centrica Connected Home Limited

Address of Applicant: Millstream Maidenhead road, Berkshire SL4 5GD, United

Kingdom

Computime Electronics(Shenzhen)Company Limited Manufacturer/ Factory:

Yuekenguangyu Industrial Park, Kanggiao Road 88#, Address of

Danzhutou Community, Nanwan Street Office Longgang **Manufacturer/ Factory:**

District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Thermostat

Model No.: SLT4, BGSTU41

FCC ID: WJHSLT4A

FCC CFR Title 47 Part 15 Subpart C Section 15.247:2016 **Applicable standards:**

April 13, 2017 Date of sample receipt:

Date of Test: April 14-17, 2017

Date of report issued: April 18, 2017

PASS * Test Result:

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	April 05, 2017	Original
01	April 18, 2017	Change to 24MHz NDK(P/N:NX2520SA-24MHZ- EXS00A-CS09515) ±10ppm 11.5pF crystal, change the supplier of Q11&Q14 transistor

Prepared By:	Edward.Pan	Date:	April 18, 2017	
	Project Engineer			
Check By:	Andy un	Date:	April 18, 2017	
	Poviowor			

3 Contents

			Page
1	CO/	/ER PAGE	1
2	VER	RSION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	
5	GEN	NERAL INFORMATION	5
	5.1 5.2 5.3 5.4 5.5	GENERAL DESCRIPTION OF EUT TEST MODE DESCRIPTION OF SUPPORT UNITS TEST FACILITY TEST LOCATION	6 6 7
6		T INSTRUMENTS LIST	
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5 7.6	Power Spectral Density Band edges	
	7.6.		-
	7.6.2		
	7.7	Spurious Emission	
	7.7.		
	7.7.2		
8	TES	ST SETUP PHOTO	30
9	EUT	CONSTRUCTIONAL DETAILS	32

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of	95%.

5 General Information

5.1 General Description of EUT

Product Name:	Thermostat
Model No.:	SLT4, BGSTU41
Test Model No.:	SLT4
	e identical in the same PCB layout, interior structure and electrical
Operation Frequency:	2405MHz~2475MHz
Channel numbers:	15
Channel separation:	5MHz
Modulation type:	O-QPSK
Antenna Type:	PCB Antenna
Antenna gain:	0.52dBi
Power supply:	AC 24V/60Hz

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2405MHz	5	2425MHz	9	2445MHz	13	2465MHz
2	2410MHz	6	2430MHz	10	2450MHz	14	2470MHz
3	2415MHz	7	2435MHz	11	2455MHz	15	2475MHz
4	2420MHz	8	2440MHz	12	2460MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2405MHz
The middle channel	2440MHz
The Highest channel	2475MHz

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
XINYING	AC Adapter	XY-400K	N/A

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road,

Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radi	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	ESU EMI Test Receiver	R&S	ESU26	GTS203	June. 29 2016	June. 28 2017
4	Loop Antenna	Zhinan	ZN30900A	GTS534	June. 29 2016	June. 28 2017
5	BiConiLog Antenna	SCHWARZBECK	VULB9163	GTS214	June. 29 2016	June. 28 2017
6	Double-ridged horn antenna	SCHWARZBECK	9120D	GTS208	June. 29 2016	June. 28 2017
7	Horn Antenna	ETS-LINDGREN	3160-09	GTS218	June. 29 2016	June. 28 2017
8	RF Amplifier	HP	8347A	GTS204	June. 29 2016	June. 28 2017
9	RF Amplifier	HP	8349B	GTS206	June. 29 2016	June. 28 2017
10	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	June. 29 2016	June. 28 2017
11	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	June. 29 2016	June. 28 2017
12	Universal Radio Communication tester	ROHDE&SCHWARZ	CMU 200	GTS538	June. 29 2016	June. 28 2017
13	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
14	Coaxial Cable	GTS	N/A	GTS210	June. 29 2016	June. 28 2017
15	Coaxial Cable	GTS	N/A	GTS211	June. 29 2016	June. 28 2017
16	Coaxial Cable	GTS	N/A	GTS210	June. 29 2016	June. 28 2017

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 29 2016	June. 28 2017	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 29 2016	June. 28 2017	
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 29 2016	June. 28 2017	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 29 2016	June. 28 2017	

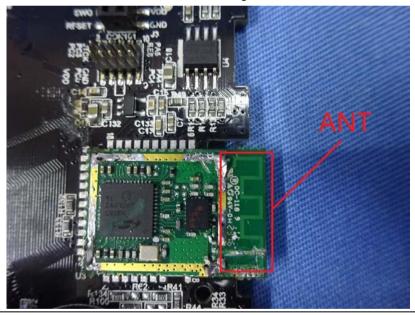
General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Barometer	ChangChun	DYM3	GTS257	June. 29 2016	June. 28 2017

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

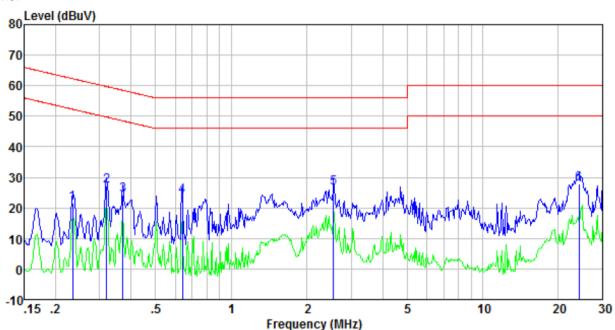
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

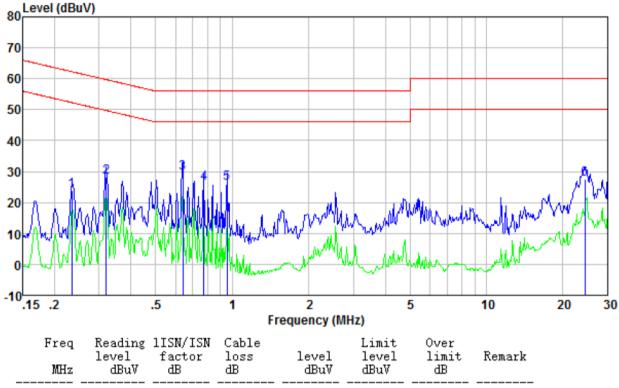
The antenna is PCB Antenna, the best case gain of the antenna is 0.52dBi

Xixiang Road, Baoan District, Shenzhen, Guangdong, China


7.2 Conducted Emissions

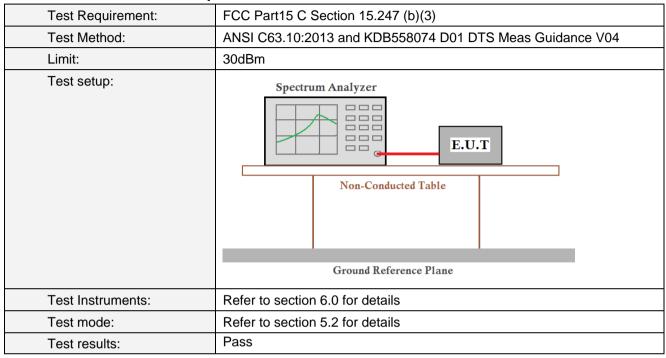
Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto		
Limit:	Limit (dRu\/)		dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithn	n of the frequency.	
Test setup:	Reference Plane		_
	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow	
Test procedure:	 The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impedance. The peripheral devices are LISN that provides a 50ohn termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10:2 	n network (L.I.S.N.). The edance for the measuri also connected to the n/50uH coupling imped to the block diagram of checked for maximum d the maximum emissic all of the interface cab	nis provides a sing equipment. main power through a dance with 500hm the test setup and conducted on, the relative bles must be changed
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement data


Line:

Freq MHz	Reading level dBuV	lISN/ISN factor dB	Cable loss dB	level dBuV	Limit level dBuV	Over limit dB	Remark
0.23	21.04	0.43	0.12	21.59	62.30	-40.71	QP
0.32	26.51	0.44	0.10	27.05	59.71	-32.66	QP
0.37	23.75	0.42	0.10	24.27	58.47	-34.20	QP
0.64	23.55	0.30	0.13	23.98	56.00	-32.02	QP
2.55	26.15	0.20	0.15	26.50	56.00	-29.50	QP
24 14	27 32	0.37	0.23	27 02	60 00	-32 08	OP

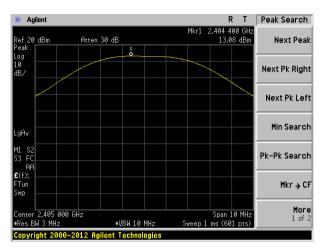
Neutral:


MHz	level dBuV	factor dB	loss dB	level dBuV	level dBuV	limit dB	Remark	
0.23 0.32 0.64 0.78 0.95 24.40	23.38 27.66 29.18 25.94 25.87 27.10	0. 42 0. 42 0. 26 0. 23 0. 21 0. 36	0.12 0.10 0.13 0.13 0.13 0.23	23. 92 28. 18 29. 57 26. 30 26. 21 27. 69	62.30 59.71 56.00 56.00 56.00 60.00	-38.38 -31.53 -26.43 -29.70 -29.79 -32.31	QP QP QP QP QP QP	_

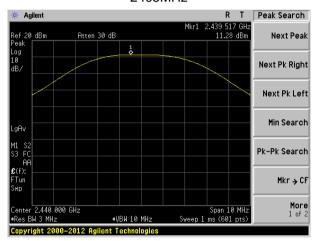
Notes:

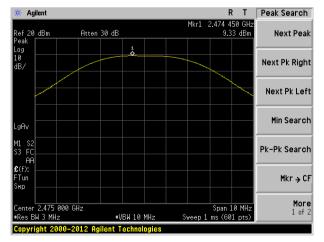
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power



Measurement Data


Frequency (MHz)	Peak Output Power (dBm)	Limit(dBm)	Result
2405	13.08		
2440	11.28	30	PASS
2475	9.33		

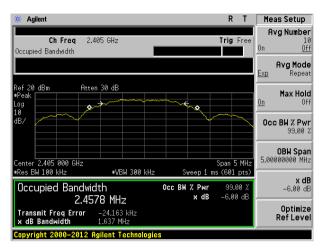

Test plot as follows:

2405MHz

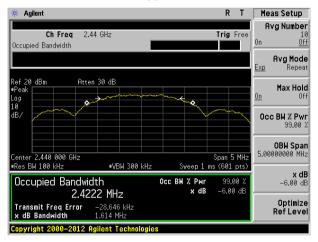
2440MHz

2475MHz

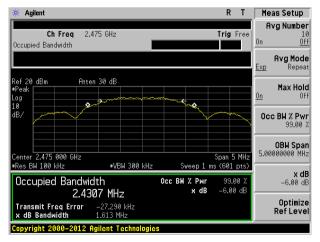
7.4 Channel Bandwidth


Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04	
Limit:	>500KHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data


Frequency (MHz)	Channel Bandwidth (MHz)	Limit(KHz)	Result
2405	1.637		
2440	1.614	>500	Pass
2475	1.613		

Test plot as follows:

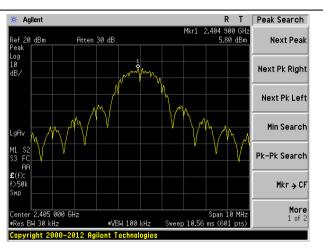


2405MHz

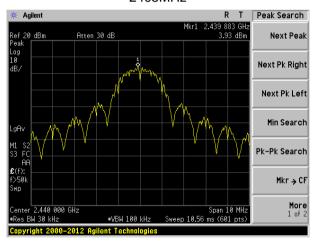
2440MHz

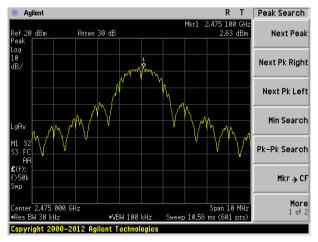
2475MHz

7.5 Power Spectral Density


Test Requirement:	FCC Part15 C Section 15.247 (e)	
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04	
Limit:	8dBm/3kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

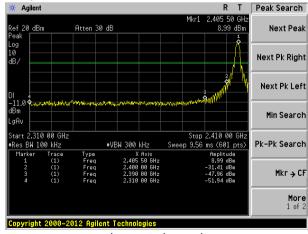

Frequency (MHz)	Power Spectral Density (dBm)	Limit (dBm/3kHz)	Result	
2405	5.80			
2440	3.93	8.00	Pass	
2475	2.63			


Test plot as follows:

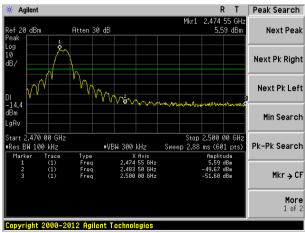
2405MHz

2440MHz

2475MHz



7.6 Band edges


7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Test plot as follows:

Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205		
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	All of the restrict 2500MHz) data		tested, only	the worst ba	ind's (2310MHz to
Test site:	Measurement D	istance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Value
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Average	1MHz	3MHz	Average
Limit:	Freque		Limit (dBuV		Value
	Above 1	GHz	54.0 74.0		Average Peak
	Turn Table*	EUT A		Antenna-	
Test Procedure:	determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremen 4. For each sus and then the and the rota the maximum 5. The test-rece Specified Bai 6. If the emission the limit spec of the EUT w have 10dB m peak or avera sheet. 7. The radiation	t a 3 meter case position of the position of the set 3 meters chewas mount theight is varietermine the moderation of the moderation of the position of the could be reported as measurement of the position of the could be reported as measurement of the position of the could be reported as measurement of the position of the could be reported as measurement of the position of the pos	mber. The taine highest race away from the ed on the toped from one reaximum value rizations of the ed from 0 de as set to Peadaximum Hole EUT in peak ting could be ted. Otherwise re-tested on the are performants are performants.	ble was rotatediation. The interference of a variable of a variable of the field of the field of the antenna at the was arranged that from 1 m to 360 at Detect Furd Mode. The mode was 10 stopped and the emission of the reportmed in X, Y, and the mode was 10 the mode was 10 the the emission of the mode was 10 the	ed 360 degrees to ce-receiving e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find nction and OdB lower than I the peak values ons that did not sing peak, quasi-

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	34.69	27.91	5.30	24.64	43.26	74.00	-30.74	Horizontal
2390.00	35.83	27.59	5.38	24.71	44.09	74.00	-29.91	Horizontal
2310.00	34.87	27.91	5.30	24.64	43.44	74.00	-30.56	Vertical
2390.00	39.64	27.59	5.38	24.71	47.90	74.00	-26.10	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	26.45	27.91	5.30	24.64	35.02	54.00	-18.98	Horizontal
2390.00	26.71	27.59	5.38	24.71	34.97	54.00	-19.03	Horizontal
2310.00	25.38	27.91	5.30	24.64	33.95	54.00	-20.05	Vertical
2390.00	30.17	27.59	5.38	24.71	38.43	54.00	-15.57	Vertical

Test channel:	2475MHz

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	37.59	27.53	5.47	24.80	45.79	74.00	-28.21	Horizontal
2500.00	35.45	27.55	5.49	24.86	43.63	74.00	-30.37	Horizontal
2483.50	34.88	27.53	5.47	24.80	43.08	74.00	-30.92	Vertical
2500.00	36.02	27.55	5.49	24.86	44.20	74.00	-29.80	Vertical

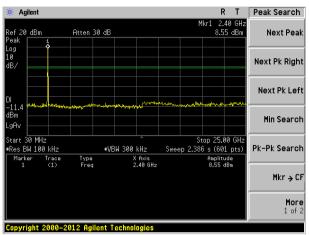
Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	27.15	27.53	5.47	24.80	35.35	54.00	-18.65	Horizontal
2500.00	26.39	27.55	5.49	24.86	34.57	54.00	-19.43	Horizontal
2483.50	27.51	27.53	5.47	24.80	35.71	54.00	-18.29	Vertical
2500.00	26.44	27.55	5.49	24.86	34.62	54.00	-19.38	Vertical

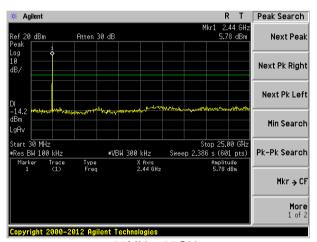
Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

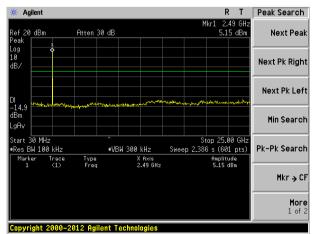
7.7 Spurious Emission


7.7.1 Conducted Emission Method

7.7.1 Odnadeted Emission Method								
Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							


Test plot as follows:

Lowest channel


30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209									
Test Method:	ANSI C63.10: 2013									
Test Frequency Range:	30MHz to 25GHz	30MHz to 25GHz								
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency	Frequency Detector RBW VBW Val								
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak					
	Above 1GHz	Peak	1MHz	3MHz	Peak					
	Above 1GHZ	RMS	1MHz	3MHz	Average					
Limit:	Frequen	су	Limit (dBuV/	/m @3m)	Value					
	30MHz-88	MHz	40.0	0	Quasi-peak					
	88MHz-216	6MHz	43.5	0	Quasi-peak					
	216MHz-96	0MHz	46.0	0	Quasi-peak					
	960MHz-1	GHz	54.0	0	Quasi-peak					
	Above 10	24-7	54.0	0	Average					
	Above ic	JI 12	74.0	0	Peak					
Test setup:	Below 1GHz	EUT+		Antenna 4m >	ier-					
	Above 1GHz									

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	Tum Table < 1m 4m > v
Test Procedure:	The EUT was placed on the top of a rotating table (0.8 meters for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

 ${\it Xixiang Road, Baoan District, Shenzhen, Guangdong, China}$

Measurement Data

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
38.21	41.34	12.30	0.64	30.10	24.18	40.00	-15.82	Vertical
54.64	45.76	11.93	0.81	30.06	28.44	40.00	-11.56	Vertical
92.79	46.97	10.98	1.13	29.84	29.24	43.50	-14.26	Vertical
128.56	46.99	8.43	1.43	29.68	27.17	43.50	-16.33	Vertical
246.82	42.69	11.75	2.11	29.76	26.79	46.00	-19.21	Vertical
387.99	39.75	15.26	2.79	29.67	28.13	46.00	-17.87	Vertical
55.61	44.51	11.67	0.82	30.06	26.94	40.00	-13.06	Horizontal
125.45	39.86	8.75	1.40	29.69	20.32	43.50	-23.18	Horizontal
230.10	43.23	11.17	2.02	29.64	26.78	46.00	-19.22	Horizontal
366.82	36.17	14.79	2.70	29.80	23.86	46.00	-22.14	Horizontal
566.62	30.52	18.72	3.59	29.43	23.40	46.00	-22.60	Horizontal
798.98	26.13	21.30	4.45	29.10	22.78	46.00	-23.22	Horizontal

■ Above 1GHz

Test channel: Lowest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4810.00	33.15	31.78	8.60	37.66	35.87	74.00	-38.13	Vertical
7215.00	25.74	36.15	11.66	35.69	37.86	74.00	-36.14	Vertical
9620.00	26.59	38.01	14.14	34.91	43.83	74.00	-30.17	Vertical
12025.00	26.45	39.08	15.03	36.13	44.43	74.00	-29.57	Vertical
14430.00	24.75	42.46	17.17	36.01	48.37	74.00	-25.63	Vertical
4810.00	33.08	31.78	8.60	37.66	35.80	74.00	-38.20	Horizontal
7215.00	27.31	36.15	11.66	35.69	39.43	74.00	-34.57	Horizontal
9620.00	26.79	38.01	14.14	34.91	44.03	74.00	-29.97	Horizontal
12025.00	26.86	39.08	15.03	36.13	44.84	74.00	-29.16	Horizontal
14430.00	26.33	42.46	17.17	36.01	49.95	74.00	-24.05	Horizontal

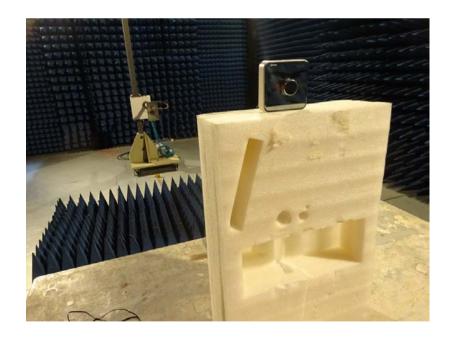
Test channel: Middle

Peak value:

i cak value.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	33.46	31.85	8.66	37.68	36.29	74.00	-37.71	Vertical
7320.00	29.38	36.37	11.72	35.64	41.83	74.00	-32.17	Vertical
9760.00	26.94	38.35	14.25	34.98	44.56	74.00	-29.44	Vertical
12200.00	26.50	38.92	15.14	36.26	44.30	74.00	-29.70	Vertical
14640.00	25.15	42.21	17.28	35.72	48.92	74.00	-25.08	Vertical
4880.00	33.51	31.85	8.66	37.68	36.34	74.00	-37.66	Horizontal
7320.00	28.71	36.37	11.72	35.64	41.16	74.00	-32.84	Horizontal
9760.00	26.01	38.35	14.25	34.98	43.63	74.00	-30.37	Horizontal
12200.00	26.13	38.92	15.14	36.26	43.93	74.00	-30.07	Horizontal
14640.00	24.58	42.21	17.28	35.72	48.35	74.00	-25.65	Horizontal

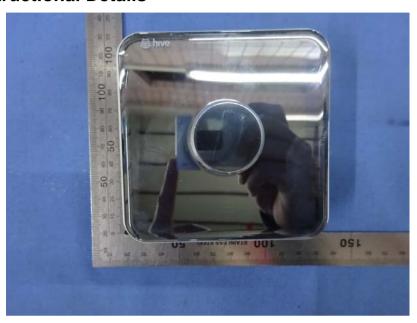
Test channel:				High	Highest			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4950.00	34.86	31.91	8.71	37.69	37.79	74.00	-36.21	Vertical
7425.00	27.24	36.56	11.79	35.59	40.00	74.00	-34.00	Vertical
9900.00	27.01	38.81	14.35	35.06	45.11	74.00	-28.89	Vertical
12375.00	27.05	38.78	15.25	36.40	44.68	74.00	-29.32	Vertical
14850.00	25.26	41.52	17.37	35.41	48.74	74.00	-25.26	Vertical
4950.00	34.07	31.91	8.71	37.69	37.00	74.00	-37.00	Horizontal
7425.00	26.12	36.56	11.79	35.59	38.88	74.00	-35.12	Horizontal
9900.00	26.93	38.81	14.35	35.06	45.03	74.00	-28.97	Horizontal
12375.00	27.62	38.78	15.25	36.40	45.25	74.00	-28.75	Horizontal
14850.00	25.71	41.52	17.37	35.41	49.19	74.00	-24.81	Horizontal

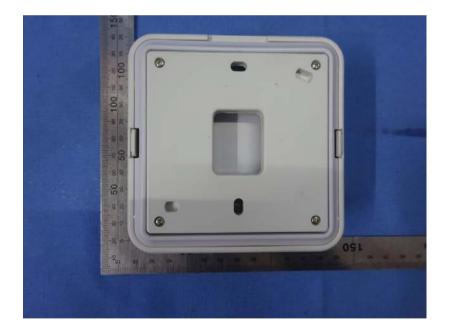
Remark:


1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

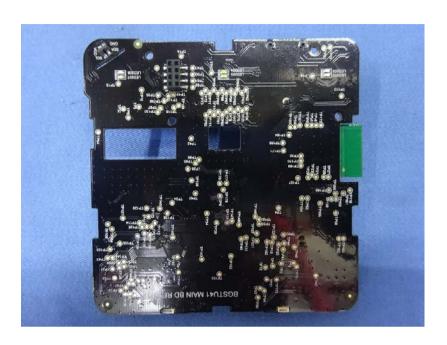
8 Test Setup Photo

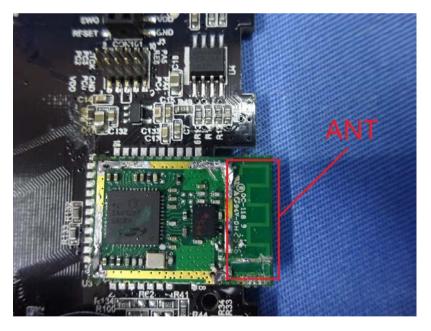
Radiated Emission




Conducted Emission

9 EUT Constructional Details





-----End-----