

Partial FCC Test Report

(Part 90 Subpart S)

Report No.: RF190925C38A

FCC ID: WIYQSC20A

Original FCC ID: XMR201706SC20A

Test Model: SC20-A

Received Date: Sep. 25, 2019

Test Date: Oct. 08 ~ Oct. 12, 2019

Issued Date: Oct. 30, 2019

Applicant: CASTLES TECHNOLOGY CO., LTD.

Address: 6F, NO. 207-5, SEC. 3, BEIXIN RD., XINDIAN DISTRICT, NEW TAIPEI CITY 23143, TAIWAN (R. O. C.)

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, TAIWAN

FCC Registration / 788550 / TW0003

Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Release Control Record	3
1 Certificate of Conformity.....	4
2 Summary of Test Results.....	5
2.1 Measurement Uncertainty	5
2.2 Test Site and Instruments.....	6
3 General Information.....	7
3.1 General Description of EUT	7
3.2 Configuration of System under Test.....	8
3.2.1 Description of Support Units.....	8
3.3 Test Mode Applicability and Tested Channel Detail	9
3.4 EUT Operating Conditions	9
3.5 General Description of Applied Standards	10
4 Test Types and Results	11
4.1 Output Power Measurement	11
4.1.1 Limits of Output Power Measurement.....	11
4.1.2 Test Procedures.....	11
4.1.3 Test Setup.....	12
4.1.4 Test Results	13
4.2 Radiated Emission Measurement	14
4.2.1 Limits of Radiated Emission Measurement.....	14
4.2.2 Test Procedure	14
4.2.3 Deviation from Test Standard	14
4.2.4 Test Setup.....	15
4.2.5 Test Results	16
5 Pictures of Test Arrangements.....	24
Appendix – Information of the Testing Laboratories	25

Release Control Record

Issue No.	Description	Date Issued
RF190925C38A	Original release	Oct. 30, 2019

1 Certificate of Conformity

Product: LTE module

Brand: Quectel

Test Model: SC20-A

Sample Status: Identical Prototype

Applicant: CASTLES TECHNOLOGY CO., LTD.

Test Date: Oct. 08 ~ Oct. 12, 2019

Standards: FCC Part 90, Subpart S

FCC Part 2

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by : , **Date:** Oct. 30, 2019

Polly Chien / Specialist

Approved by : , **Date:** Oct. 30, 2019

Bruce Chen / Senior Project Engineer

2 Summary of Test Results

Applied Standard: FCC Part 90 & Part 2			
FCC Clause	Test Item	Result	Remarks
2.1046 90.635(b)	Effective radiated power	Pass	Meet the requirement of limit.
2.1046 90.635(b)	Maximum Peak Output Power	N/A	Refer to Note 1
2.1047	Modulation Characteristics	N/A	Refer to Note 1
2.1055 90.213	Frequency Stability	N/A	Refer to Note 1
2.1049 90.209	Occupied Bandwidth	N/A	Refer to Note 1
2.1051 90.691	Emission Masks	N/A	Refer to Note 1
2.1051 90.691	Conducted Spurious Emissions	N/A	Refer to Note 1
2.1053 90.691	Radiated Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -34.4dB at 1683.00MHz.

Note:

1. This report is a partial report. Therefore, only test item of Effective Radiated Power and Radiated Spurious Emissions tests were performed for this report. Other testing data please refer to Sporton International (KunShan) INC. report no.: FW741007 for module (Brand: Quectel, Model: SC20-A).
2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.04 dB
	30MHz ~ 200MHz	3.63 dB
	200MHz ~ 1000MHz	3.64 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.29 dB
	18GHz ~ 40GHz	2.29 dB

2.2 Test Site and Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver KEYSIGHT	N9038A	MY55420137	Apr. 15, 2019	Apr. 14, 2020
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	Jun. 04, 2019	Jun. 03, 2020
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	Nov. 21, 2018	Nov. 20, 2019
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-1169	Nov. 25, 2018	Nov. 24, 2019
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Nov. 25, 2018	Nov. 24, 2019
Loop Antenna TESEQ	HLA 6121	45745	Jul. 01, 2019	Jun. 30, 2020
Preamplifier Agilent (Below 1GHz)	8447D	2944A10638	Jul. 11, 2019	Jul. 10, 2020
Preamplifier Agilent (Above 1GHz)	8449B	3008A02367	Feb. 19, 2019	Feb. 18, 2020
RF signal cable HUBER+SUHNER&EMCI	SUCOFLEX 104 & EMC104-SM-SM8000	CABLE-CH9-02 (248780+171006)	Jan. 19, 2019	Jan. 18, 2020
RF signal cable HUBER+SUHNER	SUCOFLEX 104	CABLE-CH9-(250795/4)	Jul. 11, 2019	Jul. 10, 2020
RF signal cable Woken	8D-FB	Cable-CH9-01	Jul. 30, 2019	Jul. 29, 2020
Software BV ADT	ADT_Radiated_V7.6.15.9.5	NA	NA	NA
Antenna Tower EMCO	2070/2080	512.835.4684	NA	NA
Turn Table EMCO	2087-2.03	NA	NA	NA
Antenna Tower & Turn BV ADT	AT100	AT93021705	NA	NA
Turn Table BV ADT	TT100	TT93021705	NA	NA
Turn Table Controller BV ADT	SC100	SC93021705	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Pre-amplifier (18GHz-40GHz) EMC	EMC184045B	980175	Nov. 14, 2018	Nov. 13, 2019

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 2. The test was performed in HwaYa Chamber 9.

3 General Information

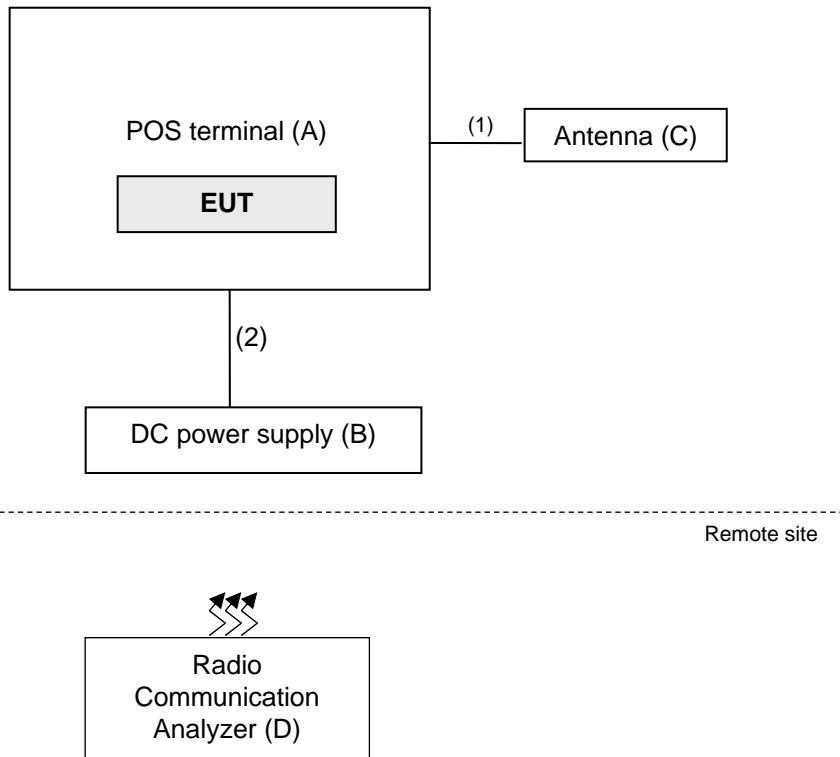
3.1 General Description of EUT

Product	LTE module		
Brand	SC20-A		
Test Model	SC20-A		
Sample Status	Identical Prototype		
Power Supply Rating	9Vdc~48Vdc, 1.5A~0.5A 3Vdc (Battery)		
Modulation Type	LTE: QPSK, 16QAM		
Operating Frequency	LTE Band 26 (Channel Bandwidth 1.4MHz)		814.7~823.3MHz
	LTE Band 26 (Channel Bandwidth 3MHz)		815.5~822.5MHz
	LTE Band 26 (Channel Bandwidth 5MHz)		816.5~821.5MHz
	LTE Band 26 (Channel Bandwidth 10MHz)		819.0MHz
Max. ERP Power			QPSK
	LTE Band 26 (Channel Bandwidth 1.4MHz)		186.209mW (22.7dBm)
	LTE Band 26 (Channel Bandwidth 3MHz)		181.970mW (22.6dBm)
	LTE Band 26 (Channel Bandwidth 5MHz)		186.209mW (22.7dBm)
	LTE Band 26 (Channel Bandwidth 10MHz)		190.546mW (22.8dBm)
Antenna Type	Refer to Note		
Antenna Connector	Refer to Note		
Accessory Device	Refer to note		
Cable Supplied	NA		

Note:

1. This report is a partial report. Therefore, only test item of Effective Radiated Power and Radiated Spurious Emissions tests were performed for this report. Other testing data please refer to Sporton International (KunShan) INC. report no.: FW741007 for module (Brand: Quectel, Model: SC20-A).
2. The EUT uses following antennas.

Antenna Type	Antenna Connector	Frequency	Antenna Gain (dBi)
Dipole	SMA PLUG	824-960MHz	-0.68


3. The EUT was installed in a specific End-product.

Product	Brand	Model
POS terminal	CASTLES TECHNOLOGY	SATURN1000-E UPT

4. The End-product contains following accessory device.

Product	Brand	Model	Description
Battery	MITSUBISHI	Lithium Manganese Dioxide Battery	CR2032

3.2 Configuration of System under Test

3.2.1 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	POS terminal	CASTLES TECHNOLOGY	SATURN1000-E UPT	NA	FCC DoC Approved	Provided by client.
B.	DC power supply	Keysight	U8002A	MY56330015	NA	-
C.	Antenna	ARISTOTLE ENTERPRISES INC.	RFA-LTE-T100-41-3M	NA	NA	Provided by client.
D.	Radio Communication Analyzer	Anritsu	MT8860C	1702001	NA	-

Note:

1. All power cords of the above support units are non-shielded (1.8m).
2. Item D acted as a communication partner to transfer data.

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	Antenna cable	1	3	N	0	Provided by client.
2.	Power cable	1	1	N	0	Provided by client.

3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports. The worst case was found when positioned on Z-plane. Following channel(s) was (were) selected for the final test as listed below.

LTE Band 26

EUT Configure Mode	Test item	Available channel	Tested channel	Channel Bandwidth	Modulation	Mode
-	ERP	26697 to 26783	26740 (819.0MHz)	1.4MHz	QPSK	1 RB / 0 RB Offset
		26705 to 26775	26740 (819.0MHz)	3MHz	QPSK	1 RB / 0 RB Offset
		26715 to 26765	26740 (819.0MHz)	5MHz	QPSK	1 RB / 0 RB Offset
		26740	26740 (819.0MHz)	10MHz	QPSK	1 RB / 0 RB Offset
-	Radiated Emission Below 1GHz	26697 to 26783	26740 (819.0MHz)	1.4MHz	QPSK	1 RB / 0 RB Offset
		26715 to 26765	26740 (819.0MHz)	5MHz	QPSK	1 RB / 0 RB Offset
		26740	26740 (819.0MHz)	10MHz	QPSK	1 RB / 0 RB Offset
-	Radiated Emission Above 1GHz	26697 to 26783	26740 (819.0MHz)	1.4MHz	QPSK	1 RB / 0 RB Offset
		26705 to 26775	26740 (819.0MHz)	3MHz	QPSK	1 RB / 0 RB Offset
		26715 to 26765	26740 (819.0MHz)	5MHz	QPSK	1 RB / 0 RB Offset
		26740	26740 (819.0MHz)	10MHz	QPSK	1 RB / 0 RB Offset

Note:

1. For radiated emission below 1GHz, mid channel was the worst case for all final tests.
2. This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

Test Condition:

Test Item	Environmental Conditions	Input Power (System)	Tested By
ERP	22deg. C, 66%RH	12Vdc	Han Wu
Radiated Emission	22deg. C, 66%RH	12Vdc	Han Wu

3.4 EUT Operating Conditions

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2

FCC 47 CFR Part 90

KDB 971168 D02 Misc Rev Approv License Devices v02r01

ANSI/TIA/EIA-603-E 2016

ANSI 63.26-2015

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Output Power Measurement

4.1.1 Limits of Output Power Measurement

The radiated peak output power shall be according to the specific rule Part 90.635 that "Mobile station are limited to 100 watts e.r.p".

4.1.2 Test Procedures

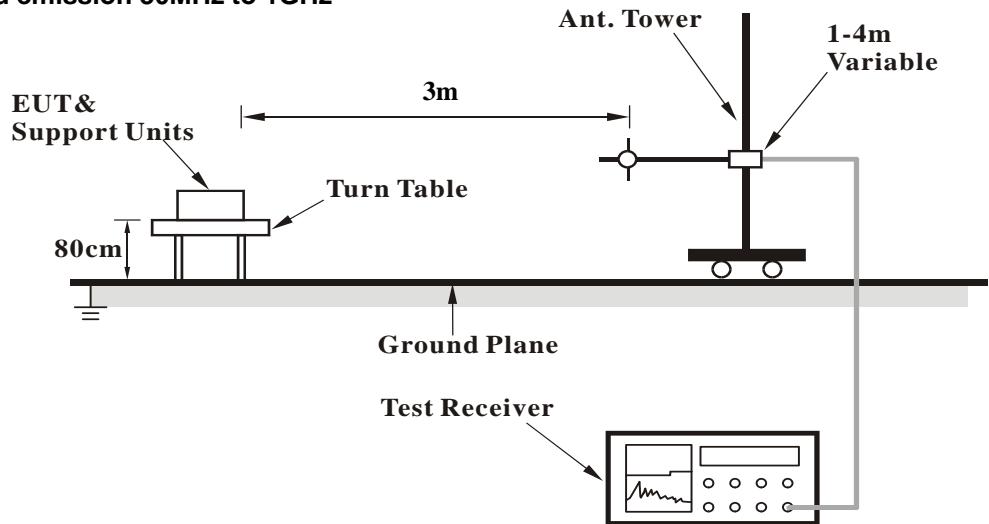
EIRP / ERP Measurement:

- a. All measurements were done at low, middle and high operational frequency range. RWB is 1MHz and VBW is 3MHz.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m(below or equal 1GHz) and/or 1.5m(above 1GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G
- d. EIRP = Output power level of S.G – TX cable loss + Antenna gain of substitution horn. E.R.P power can be calculated from E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power - 2.15dBi.

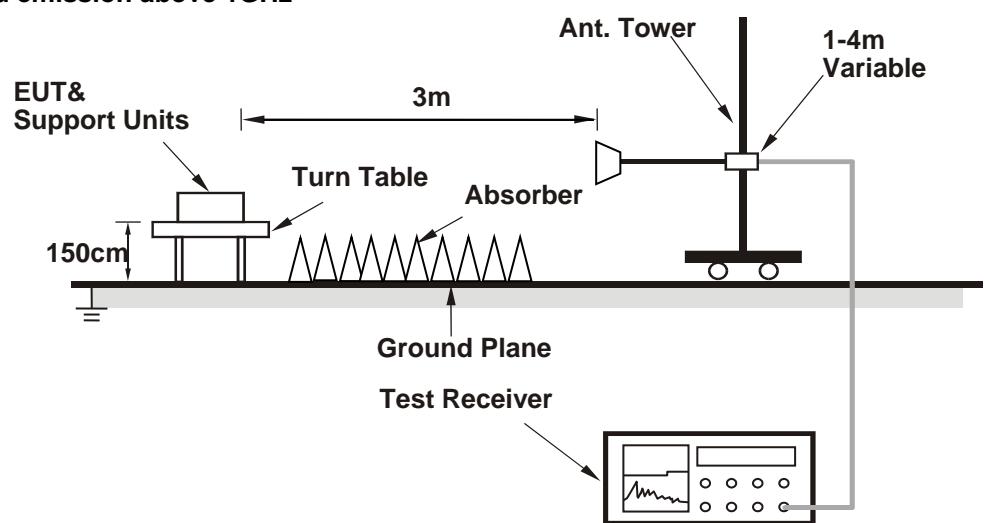
Where:

$$\text{ERP/EIRP} = P_{\text{Meas}} + G_T - L_c$$

P_{Meas} : Measure transmitter output power.


G_T : Gain of the transmitting antenna.

L_c : signal attenuation in the connecting cable between the transmitter and antenna.


4.1.3 Test Setup

EIRP / ERP Measurement:

For radiated emission 30MHz to 1GHz

For radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.4 Test Results

ERP Power

Modulation Type: QPSK

LTE Band 26, Channel Bandwidth 1.4MHz

MODE		TX channel 26740					
Antenna Polarity & Test Distance: Horizontal at 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	819.00	-15.3	11.9	3.9	15.8	50.0	-34.2
Antenna Polarity & Test Distance: Vertical at 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	819.00	-9.3	18.8	3.9	22.7	50.0	-27.3

LTE Band 26, Channel Bandwidth 3MHz

MODE		TX channel 26740					
Antenna Polarity & Test Distance: Horizontal at 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	819.00	-15.2	12.0	3.9	15.9	50.0	-34.1
Antenna Polarity & Test Distance: Vertical at 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	819.00	-9.4	18.7	3.9	22.6	50.0	-27.4

LTE Band 26, Channel Bandwidth 5MHz

MODE		TX channel 26740					
Antenna Polarity & Test Distance: Horizontal at 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	819.00	-15.4	11.8	3.9	15.7	50.0	-34.3
Antenna Polarity & Test Distance: Vertical at 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	819.00	-9.3	18.8	3.9	22.7	50.0	-27.3

LTE Band 26, Channel Bandwidth 10MHz

MODE		TX channel 26740					
Antenna Polarity & Test Distance: Horizontal at 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	819.00	-15.1	12.1	3.9	16.0	50.0	-34.0
Antenna Polarity & Test Distance: Vertical at 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	819.00	-9.2	18.9	3.9	22.8	50.0	-27.2

Note: ERP (dBm) = S.G Power Value (dBm) + Correction Factor (dB).

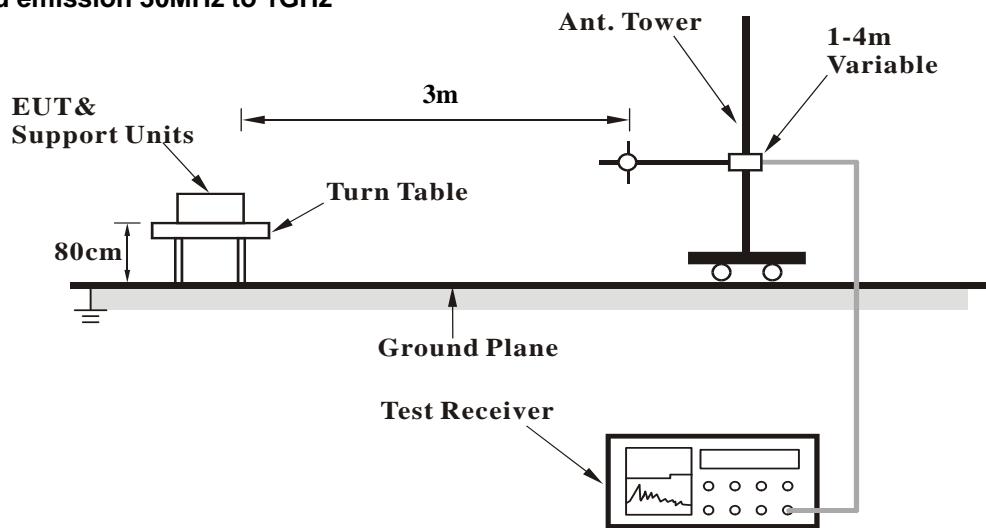
4.2 Radiated Emission Measurement

4.2.1 Limits of Radiated Emission Measurement

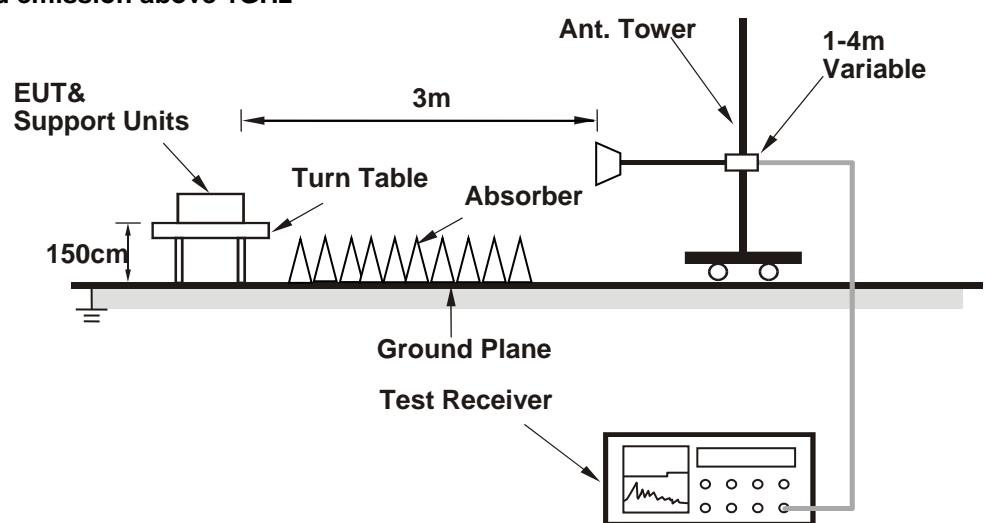
The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10}(P)$ dB. The limit of emission equal to -13dBm .

4.2.2 Test Procedure

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G – TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power - 2.15dBi.


NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

4.2.3 Deviation from Test Standard


No deviation.

4.2.4 Test Setup

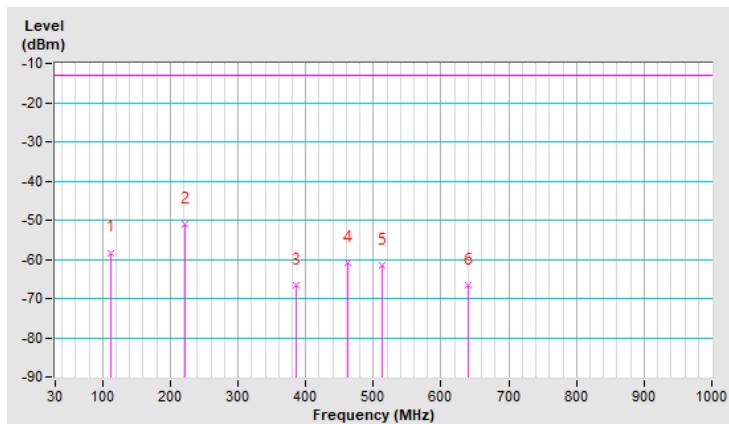
For radiated emission 30MHz to 1GHz

For radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.5 Test Results

Below 1GHz

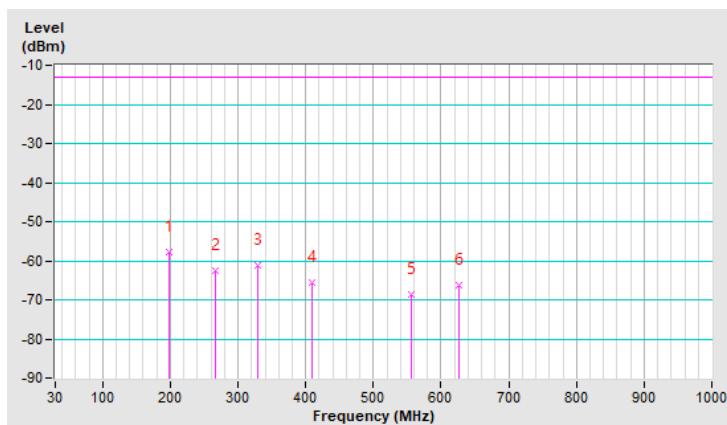

LTE Band 26, Channel Bandwidth 1.4MHz

Mode	TX channel 26740 (819.0MHz)	Frequency Range	Below 1000 MHz
Environmental Conditions	22deg. C, 66%RH	Input Power	12Vdc
Tested By	Han Wu		

Antenna Polarity & Test Distance: Horizontal at 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	111.48	-48.4	-55.8	-2.5	-58.3	-13.0	-45.3
2	222.06	-40.9	-49.2	-1.9	-51.1	-13.0	-38.1
3	385.02	-63.5	-70.0	3.5	-66.5	-13.0	-53.5
4	462.62	-58.8	-64.4	3.4	-61.0	-13.0	-48.0
5	513.06	-59.6	-65.4	3.8	-61.6	-13.0	-48.6
6	641.10	-66.7	-70.3	3.6	-66.7	-13.0	-53.7

Remarks:

1. ERP (dBm) = S.G Value (dBm) + Correction Factor (dB).
2. Correction Factor (dB) = Substitution Antenna Gain (dB) - Cable Loss (dB).

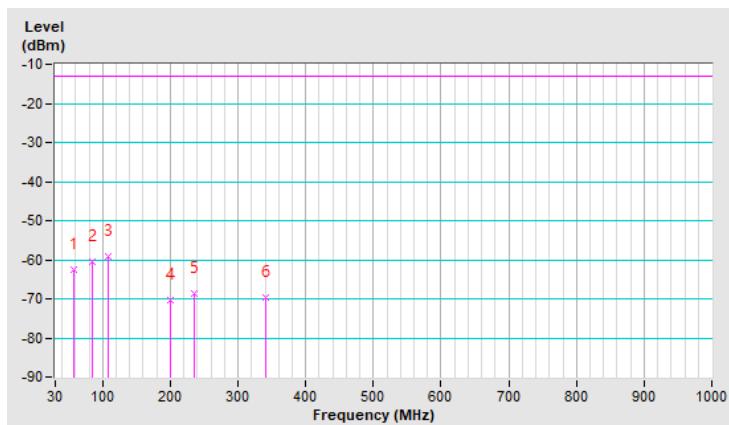

Mode	TX channel 26740 (819.0MHz)	Frequency Range	Below 1000 MHz
Environmental Conditions	22deg. C, 66%RH	Input Power	12Vdc
Tested By	Han Wu		

Antenna Polarity & Test Distance: Vertical at 3 M

No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	198.78	-54.6	-55.3	-2.4	-57.7	-13.0	-44.7
2	266.68	-61.9	-61.1	-1.6	-62.7	-13.0	-49.7
3	328.76	-58.8	-65.4	4.1	-61.3	-13.0	-48.3
4	410.24	-63.1	-69.0	3.3	-65.7	-13.0	-52.7
5	555.74	-68.1	-72.3	3.7	-68.6	-13.0	-55.6
6	625.58	-69.0	-69.9	3.7	-66.2	-13.0	-53.2

Remarks:

1. ERP (dBm) = S.G Value (dBm) + Correction Factor (dB).
2. Correction Factor (dB) = Substitution Antenna Gain (dB) - Cable Loss (dB).

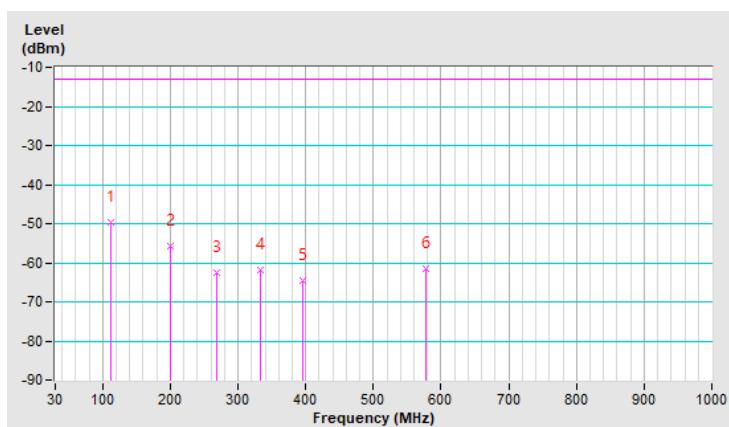

LTE Band 26, Channel Bandwidth 5MHz

Mode	TX channel 26740 (819.0MHz)	Frequency Range	Below 1000 MHz
Environmental Conditions	22deg. C, 66%RH	Input Power	12Vdc
Tested By	Han Wu		

Antenna Polarity & Test Distance: Horizontal at 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	57.16	-56.9	-57.9	-4.7	-62.6	-13.0	-49.6
2	84.32	-52.2	-60.8	0.4	-60.4	-13.0	-47.4
3	107.60	-49.0	-56.7	-2.3	-59.0	-13.0	-46.0
4	200.72	-60.0	-68.1	-2.3	-70.4	-13.0	-57.4
5	235.64	-59.1	-67.0	-1.5	-68.5	-13.0	-55.5
6	340.40	-63.9	-73.5	4.0	-69.5	-13.0	-56.5

Remarks:

1. ERP (dBm) = S.G Value (dBm) + Correction Factor (dB).
2. Correction Factor (dB) = Substitution Antenna Gain (dB) - Cable Loss (dB).

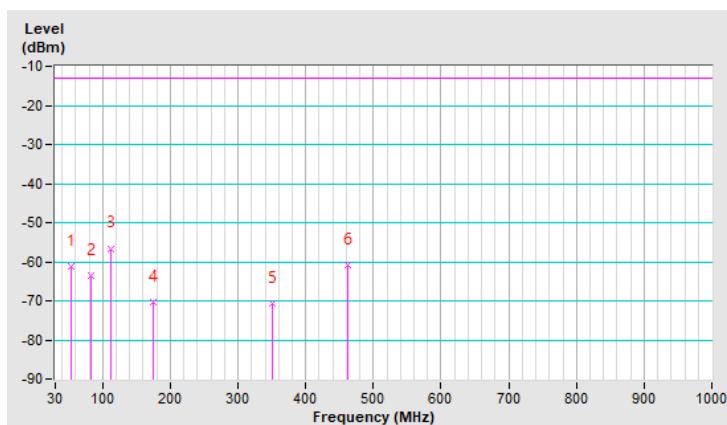

Mode	TX channel 26740 (819.0MHz)	Frequency Range	Below 1000 MHz
Environmental Conditions	22deg. C, 66%RH	Input Power	12Vdc
Tested By	Han Wu		

Antenna Polarity & Test Distance: Vertical at 3 M

No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	111.48	-39.9	-47.2	-2.5	-49.7	-13.0	-36.7
2	200.72	-52.5	-53.6	-2.3	-55.9	-13.0	-42.9
3	268.62	-62.1	-61.1	-1.5	-62.6	-13.0	-49.6
4	332.64	-59.0	-65.8	4.0	-61.8	-13.0	-48.8
5	396.66	-61.6	-67.8	3.3	-64.5	-13.0	-51.5
6	577.08	-61.4	-65.2	3.7	-61.5	-13.0	-48.5

Remarks:

1. ERP (dBm) = S.G Value (dBm) + Correction Factor (dB).
2. Correction Factor (dB) = Substitution Antenna Gain (dB) - Cable Loss (dB).

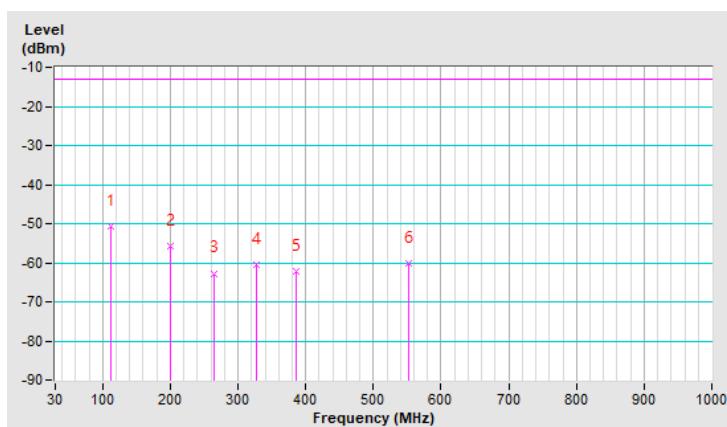

LTE Band 26, Channel Bandwidth 10MHz

Mode	TX channel 26740 (819.0MHz)	Frequency Range	Below 1000 MHz
Environmental Conditions	22deg. C, 66%RH	Input Power	12Vdc
Tested By	Han Wu		

Antenna Polarity & Test Distance: Horizontal at 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	53.28	-57.4	-55.1	-6.2	-61.3	-13.0	-48.3
2	82.38	-55.8	-63.8	0.4	-63.4	-13.0	-50.4
3	111.48	-46.8	-54.1	-2.5	-56.6	-13.0	-43.6
4	175.50	-60.5	-67.4	-2.8	-70.2	-13.0	-57.2
5	350.10	-65.1	-74.5	3.9	-70.6	-13.0	-57.6
6	462.62	-58.6	-64.3	3.4	-60.9	-13.0	-47.9

Remarks:

1. ERP (dBm) = S.G Value (dBm) + Correction Factor (dB).
2. Correction Factor (dB) = Substitution Antenna Gain (dB) - Cable Loss (dB).


Mode	TX channel 26740 (819.0MHz)	Frequency Range	Below 1000 MHz
Environmental Conditions	22deg. C, 66%RH	Input Power	12Vdc
Tested By	Han Wu		

Antenna Polarity & Test Distance: Vertical at 3 M

No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	111.48	-40.8	-48.1	-2.5	-50.6	-13.0	-37.6
2	200.72	-52.5	-53.6	-2.3	-55.9	-13.0	-42.9
3	264.74	-61.6	-61.1	-1.6	-62.7	-13.0	-49.7
4	326.82	-58.2	-64.7	4.1	-60.6	-13.0	-47.6
5	385.02	-59.8	-65.8	3.5	-62.3	-13.0	-49.3
6	551.86	-59.5	-63.8	3.8	-60.0	-13.0	-47.0

Remarks:

1. ERP (dBm) = S.G Value (dBm) + Correction Factor (dB).
2. Correction Factor (dB) = Substitution Antenna Gain (dB) - Cable Loss (dB).

Above 1GHz

LTE Band 26, Channel Bandwidth 1.4MHz

Mode	TX channel 26740 (819.0MHz)	Frequency Range	1GHz~10GHz
Environmental Conditions	22deg. C, 66%RH	Input Power	12Vdc
Tested By	Han Wu		

Antenna Polarity & Test Distance: Horizontal at 3 M

No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	1638.00	-56.2	-48.5	1.0	-47.5	-13.0	-34.5

Antenna Polarity & Test Distance: Vertical at 3 M

No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	1638.00	-58.8	-51.5	1.0	-50.5	-13.0	-37.5

Remarks:

1. ERP (dBm) = S.G Value (dBm) + Correction Factor (dB).
2. Correction Factor (dB) = Substitution Antenna Gain (dB) - Cable Loss (dB).

LTE Band 26, Channel Bandwidth 3MHz

Mode	TX channel 26740 (819MHz)	Frequency Range	1GHz~10GHz
Environmental Conditions	22deg. C, 66%RH	Input Power	12Vdc
Tested By	Han Wu		

Antenna Polarity & Test Distance: Horizontal at 3 M

No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	1638.00	-56.1	-48.4	1.0	-47.4	-13.0	-34.4

Antenna Polarity & Test Distance: Vertical at 3 M

No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	1638.00	-58.6	-51.4	1.0	-50.4	-13.0	-37.4

Remarks:

1. ERP (dBm) = S.G Value (dBm) + Correction Factor (dB).
2. Correction Factor (dB) = Substitution Antenna Gain (dB) - Cable Loss (dB).

LTE Band 26, Channel Bandwidth 5MHz

Mode	TX channel 26740 (819MHz)	Frequency Range	1GHz~10GHz
Environmental Conditions	22deg. C, 66%RH	Input Power	12Vdc
Tested By	Han Wu		

Antenna Polarity & Test Distance: Horizontal at 3 M

No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	1638.00	-56.5	-48.8	1.0	-47.8	-13.0	-34.8

Antenna Polarity & Test Distance: Vertical at 3 M

No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	1638.00	-59.0	-51.8	1.0	-50.8	-13.0	-37.8

Remarks:

1. ERP (dBm) = S.G Value (dBm) + Correction Factor (dB).
2. Correction Factor (dB) = Substitution Antenna Gain (dB) - Cable Loss (dB).

LTE Band 26, Channel Bandwidth 10MHz

Mode	TX channel 26740 (819MHz)	Frequency Range	1GHz~10GHz
Environmental Conditions	22deg. C, 66%RH	Input Power	12Vdc
Tested By	Han Wu		

Antenna Polarity & Test Distance: Horizontal at 3 M

No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	1638.00	-56.4	-48.6	1.0	-47.6	-13.0	-34.6

Antenna Polarity & Test Distance: Vertical at 3 M

No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)
1	1638.00	-58.9	-51.6	1.0	-50.6	-13.0	-37.6

Remarks:

1. ERP (dBm) = S.G Value (dBm) + Correction Factor (dB).
2. Correction Factor (dB) = Substitution Antenna Gain (dB) - Cable Loss (dB).

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180

Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232

Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---