FCC PART 15, SUBPART B and C TEST REPORT

for

TRANSMITTER

P/N: 123 FENCING

Prepared for

ZIVKOVIC MODERN FENCING EQUIPMENT, INC. 77 ARNOLD ROAD WELLESLEY HILLS, MA 02481-2820

Prepared by:

KYLE FUJIMOTO

Approved by:

MICHAEL CHRISTENSEN

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: JULY 30, 2008

	REPORT		APPENDICES			TOTAL	
	BODY	A	В	С	D	E	
PAGES	18	2	2	2	10	11	45

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

Transmitter P/N: 123 Fencing

TABLE OF CONTENTS

Section	n / Title	PAGE
GENER	RAL REPORT SUMMARY	4
SUMM	ARY OF TEST RESULTS	5
1.	PURPOSE	6
2.	ADMINISTRATIVE DATA	7
2.1	Location of Testing	7
2.2	Traceability Statement	7
2.3	Cognizant Personnel	7
2.4	Date Test Sample was Received	7
2.5	Disposition of the Test Sample	7
2.6	Abbreviations and Acronyms	7
3.	APPLICABLE DOCUMENTS	8
4.	DESCRIPTION OF TEST CONFIGURATION	9
4.1	Description Of Test Configuration - EMI	9
4.1.1	•	10
5.	LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	11
5.1	EUT and Accessory List	11
5.2	EMI Test Equipment	12
6.	TEST SITE DESCRIPTION	13
6.1	Test Facility Description	13
6.2	EUT Mounting, Bonding and Grounding	13
7.	TEST PROCEDURES	14
7.1	Conducted Emissions Test	14
7.2	Radiated Emissions (Spurious and Harmonics) Test	15
7.3	Radiated Emissions (Spurious and Harmonics) Test (Continued)	16
7.4	Bandwidth of the Fundamental	17
8.	CONCLUSIONS	18

LIST OF APPENDICES

APPENDIX	TITLE		
A	Laboratory Recognitions		
В	Modifications to the EUT		
С	Additional Models Covered Under This Report		
D	Diagrams, Charts, and Photos		
	Test Setup Diagrams		
	Radiated Emissions Photos		
	Antenna and Effective Gain Factors		
Е	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Plot Map And Layout of Radiated Site

Transmitter P/N: 123 Fencing

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Device Tested: Transmitter

P/N: 123 Fencing

S/N: N/A

Product Description: See Expository Statement

Modifications: The EUT was modified in order to meet the specifications. Please see Appendix B for a list

of the modifications.

Customer: Zivkovic Modern Fencing Equipment, Inc.

77 Arnold Road

Wellesley Hills, MA 02481-2820

Test Dates: July 1, 2008

Test Specifications: EMI requirements

CFR Title 47, Part 15 Subpart B; and Subpart C, Sections 15.205, 15.209 and 15.231

Test Procedure: ANSI C63.4

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz – 30 MHz	This test was not performed because the EUT operates on battery power only and will not be connected to the AC public mains.
2	Radiated RF Emissions, 10 kHz – 4400 MHz (Transmitter Portion)	Complies with the limits of CFR Title 47, Part 15, Subpart C, section 15.205, 15.209, and 15.231.
3	Radiated RF Emissions, 10 kHz – 4400 MHz (Digital Portion)	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B.
4	-20 dB Bandwidth	Complies with the limits of CFR Title 47, Part 15, Subpart C, section 15.231(c).

Transmitter P/N: 123 Fencing

PURPOSE 1.

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the Transmitter, P/N: 123 Fencing. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B for the digital portion; and the limits defined in Subpart C, sections 15.205, 15.207, 15.209, and 15.231 for the transmitter portion.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Zivkovic Modern Fencing Equipment, Inc.

Branimir Zivkovic President

Compatible Electronics, Inc.

Kyle Fujimoto Test Engineer Michael Christensen Lab Manager

2.4 Date Test Sample was Received

The test sample was received on July 1, 2008.

2.5 Disposition of the Test Sample

The sample has not been returned to Zivkovic Modern Fencing Equipment, Inc. as of July 30, 2008.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference

EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
CFR Title 47, Part 15	FCC Rules – Radio frequency devices (including digital devices)
ANSI C63.4 2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description Of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT and Peripherals Tested

The Transmitter, P/N: 123 Fencing (EUT) was connected to a probe. The probe was shorted via copper tape. The EUT was transmitting on a continuous basis. The EUT's antenna is a wire soldered onto the PCB.

The transmitter shuts off within a 5 seconds of being turned on during normal operation.

The final radiated data was taken in mode described above. Please see Appendix E for the data sheets.

P/N: 123 Fencing

4.1.1 Cable Construction and Termination

<u>Cable</u> 1 This is a 1.5-meter unshielded cable connecting the EUT to the probe. The cable is hard wired at each end.

P/N: 123 Fencing

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
TRANSMITTER (EUT)	ZIVKOVIC MODERN FENCING EQUIPMENT, INC.	P/N: 123 FENCING	N/A	TBD
PROBE	ZIVKOVIC MODERN FENCING EQUIPMENT, INC.	N/A	N/A	N/A

P/N: 123 Fencing

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CALIBRATION DUE DATE		
	RF RADIATED EMISSIONS TEST EQUIPMENT						
Computer	Hewlett Packard	4530	US91912319	N/A	N/A		
EMI Receiver	Rohde & Schwarz	ESIB40	100172	November 27, 2006	Nov. 27, 2008		
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A		
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	3638A08768	August 14, 2007	August 14, 2008		
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	3701A22262	August 14, 2007	August 14, 2008		
Quasi-Peak Adapter	Hewlett Packard	85650A	2811A01363	August 14, 2007	August 14, 2008		
Biconical Antenna	Com Power	AB-900	15227	February 28, 2008	Feb. 28, 2009		
Log Periodic Antenna	Com Power	AL-100	16241	July 9, 2007	July 9, 2008		
Preamplifier	Com-Power	PA-103	1582	January 11, 2008	Jan. 11, 2009		
Loop Antenna	Com-Power	AL-130	17089	September 24, 2007	Sept. 24, 2008		
Double Ridge Horn Antenna	Com-Power	AH-118	10073	July 17, 2006	July 17, 2008		
Microwave Preamplifier	Com-Power	PA-122	181921	March 3, 2008	March 3, 2009		
Antenna Mast	Com-Power	AM-100	N/A	N/A	N/A		

P/N: 123 Fencing

FCC Part 15 Subpart B and FCC Section 15.231 Test Report

Transmitter

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

P/N: 123 Fencing

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A transient limiter was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix E.

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15 Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Section 15.207 for conducted emissions.

P/N: 123 Fencing

7.2 Radiated Emissions (Spurious and Harmonics) Test

The EMI Receiver was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com-Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, and the Com-Power Microwave Preamplifier Model: PA-122 was used for frequencies above 1 GHz. The EMI Receiver was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer or EMI Receiver records the highest measured reading over all the sweeps.

The readings were averaged by a "duty cycle correction factor", derived from 20 log (dwell time / one pulse train with blanking interval).

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
9 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 4.4 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results. The loop antenna was also rotated in the horizontal and vertical axis in order to ensure accurate results.

P/N: 123 Fencing

7.3 Radiated Emissions (Spurious and Harmonics) Test (Continued)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance to obtain the final test data. The final qualification data sheets are located in Appendix E.

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and CFR Title 47, Part 15, Subpart C, sections 15.205, 15.209, and 15.231(e).

P/N: 123 Fencing

7.4 Bandwidth of the Fundamental

The -20 dB bandwidth was checked to see that it was within 0.25% of the fundamental frequency for the EUT. Plots of the -20 dB bandwidth are located in Appendix E.

Test Results:

Complies with the limits of CFR Title 47, Part 15, Subpart C, section 15.231(c).

P/N: 123 Fencing

8. CONCLUSIONS

The Transmitter, P/N: 123 Fencing meets all of the **Class B** specification limits defined in CFR Title 47, Part 15, Subpart B for the digital portion; and the limits defined in Subpart C, sections 15.205, 15.207, 15.209, and 15.231 for the transmitter portion.

Report Number: **B80701B1**FCC Part 15 Subpart B and FCC Section 15.231 Test Report

Transmitter P/N: 123 Fencing

APPENDIX A

LABORATORY RECOGNITIONS

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200528-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Conformity Assessment Body for the EMC Directive Under the US/EU MRA Appointed by NIST

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission

Industry Canada

Radio-Frequency Technologies (Competent Body)

Report Number: **B80701B1 FCC Part 15 Subpart B** and **FCC Section 15.231** Test Report

Transmitter P/N: 123 Fencing

APPENDIX B

MODIFICATIONS TO THE EUT

P/N: 123 Fencing

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.231 or FCC Class B specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

1) Resistor R2 was changed to 2700 ohms.

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

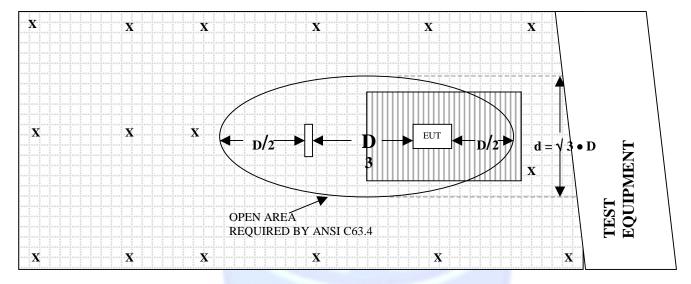
Transmitter P/N: 123 Fencing

S/N: N/A

There were no additional models covered under this report.

Report Number: **B80701B1**FCC Part 15 Subpart B and FCC Section 15.231 Test Report

Transmitter P/N: 123 Fencing


APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS

P/N: 123 Fencing

FIGURE 1: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

X = GROUND RODS = GROUND SCREEN

= WOOD COVER D = TEST DISTANCE (meters)

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15227

CALIBRATION DATE: FEBRUARY 28, 2008

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	12.3	100	10.6
35	9.4	120	13.6
40	9.0	140	11.8
45	9.9	160	12.3
50	11.3	180	15.7
60	9.4	200	16.8
70	7.4	250	14.5
80	6.2	275	18.7
90	6.8	300	21.4

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16241

CALIBRATION DATE: JULY 9, 2007

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	15.2	700	19.9
400	15.4	800	22.3
500	17.0	900	22.3
600	19.1	1000	24.2

COM-POWER PA-103

PREAMPLIFIER

S/N: 1582

CALIBRATION DATE: JANUARY 11, 2008

P			
FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	32.9	300	32.4
40	32.7	350	32.4
50	32.8	400	32.2
60	32.9	450	31.7
70	32.9	500	32.1
80	32.9	550	31.8
90	32.7	600	32.0
100	32.8	650	32.0
125	32.9	700	32.1
150	32.6	750	32.0
175	32.7	800	31.6
200	32.7	850	31.6
225	32.5	900	31.5
250	32.7	950	31.7
275	32.5	1000	31.3

COM-POWER PA-122

PREAMPLIFIER

S/N: 181921

CALIBRATION DATE: MARCH 3, 2008

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	36.32	10.0	35.47
1.5	35.40	10.5	35.05
2.0	34.77	11.0	34.16
2.5	35.07	11.5	33.75
3.0	34.86	12.0	34.65
3.5	34.48	12.5	34.41
4.0	34.30	13.0	35.36
4.5	33.96	13.5	35.30
5.0	34.06	14.0	35.87
5.5	34.54	14.5	36.44
6.0	35.90	15.0	36.24
6.5	36.85	15.5	35.92
7.0	36.55	16.0	35.53
7.5	35.31	16.5	35.29
8.0	33.57	17.0	34.96
8.5	33.36	17.5	34.02
9.0	35.01	18.0	33.39
9.5	35.97	18.5	32.70

COM-POWER AH-118

DOUBLE RIDGE HORN ANTENNA

S/N: 10073

CALIBRATION DATE: JULY 17, 2006

-			
FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	25.331	10.0	42.391
1.5	27.507	10.5	39.194
2.0	31.581	11.0	38.504
2.5	30.906	11.5	40.724
3.0	30.276	12.0	41.079
3.5	30.396	12.5	41.014
4.0	30.881	13.0	41.201
4.5	32.77	13.5	42.335
5.0	34.067	14.0	43.248
5.5	33.914	14.5	45.639
6.0	34.028	15.0	43.197
6.5	35.779	15.5	41.751
7.0	38.347	16.0	42.462
7.5	39.096	16.5	41.908
8.0	39.377	17.0	40.277
8.5	38.646	17.5	48.117
9.0	37.438	18.0	54.113
9.5	38.403		

COM-POWER AL-130

LOOP ANTENNA

S/N: 17089

CALIBRATION DATE: SEPTEMBER 24, 2007

FREQUENCY	MAGNETIC	ELECTRIC
(MHz)	(dB/m)	(dB/m)
0.009	-41.27	10.23
0.01	-41.96	9.54
0.02	-41.73	9.77
0.05	-42.0	9.5
0.07	-41.5	10.0
0.1	-41.43	10.07
0.2	-43.9	7.9
0.3	-41.43	10.07
0.5	-41.40	10.1
0.7	-41.13	10.37
1	-40.83	10.67
2	-40.30	11.20
3	-40.60	10.90
4	-41.00	10.50
5	-40.20	11.30
10	-40.40	11.10
15	-41.67	9.83
20	-41.10	10.40
25	-42.80	8.70
30	-42.80	8.70

FRONT VIEW

ZIVKOVIC MODERN FENCING EQUIPMENT, INC. TRANSMITTER P/N: 123 FENCING FCC SUBPART B AND C - RADIATED EMISSIONS

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

ZIVKOVIC MODERN FENCING EQUIPMENT, INC.
TRANSMITTER
P/N: 123 FENCING
FCC SUBPART B AND C – RADIATED EMISSIONS

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

Report Number: **B80701B1 FCC Part 15 Subpart B** and **FCC Section 15.231** Test Report

Transmitter P/N: 123 Fencing

APPENDIX E

DATA SHEETS

RADIATED EMISSIONS

DATA SHEETS

Zivkovic Modern Fencing Equipment, Inc. Date:07/01/08
Transmitter Labs: A and B

P/N: 123 Fencing Tested By: Kyle Fujimoto

X-Axis Duty Cycle = 42.24%

					Peak /	Ant.	Table	
Freq.	Level			l	QP /	Height	Angle	_
(MHz)	, ,	Pol (v/h)		Margin	Avg	(m)	(deg)	Comments
433.92	84.05	V	100.8	-16.75	Peak	1.5	180	
433.92	76.5645	V	80.8	-4.2355	Avg	1.5	180	
867.84	42.51	V	80.8	-38.29	Peak	2	180	
867.84	35.0245	V	8.08	-25.776	Avg	2	180	
1301.76		V	74	-42.14	Peak	2.23	150	
1301.76	24.3745	V	54	-29.626	Avg	2.23	150	
1735.68	36.34	V	80.8	-44.46	Peak	1.44	125	
1735.68	28.8545	V	8.08	-31.946	Avg	1.44	125	
2169.6	47.22	V	80.8	-33.58	Peak	2.06	150	
2169.6	39.7345	V	8.08	-21.066	Avg	2.06	150	
2603.52	42.57	V	80.8	-38.23	Peak	1.77	135	
2603.52	35.0845	V	60.8	-25.716	Avg	1.77	135	
3037.44	42.84	V	80.8	-37.96	Peak	1.29	205	
3037.44	35.3545	V	60.8	-25.446	Avg	1.29	205	
3471.36	42.98	V	80.8	-37.82	Peak	1.17	150	
3471.36	35.4945	V	60.8	-25.306	Avg	1.17	150	
3905.28		V	74	-34.65	Peak	1.18	180	
3905.28	31.8645	V	54	-22.136	Avg	1.18	180	
4339.2	40.31	V	74	-33.69	Peak	1.29	205	
4339.2	32.8245	V	54	-21.176	Avg	1.29	205	

Zivkovic Modern Fencing Equipment, Inc. Date:07/01/08
Transmitter Labs: A and B

P/N: 123 Fencing Tested By: Kyle Fujimoto

Y-Axis Duty Cycle = 42.24%

					Peak /	Ant.	Table	
Freq. (MHz)	Level	Pol (v/h)	Limit	Margin	QP / Avg	Height (m)	Angle (deg)	Comments
,	, ,					` ,		Comments
433.92	85.45	V	100.8	-15.35	Peak	1.5	180	
433.92	77.9645	V	80.8	-2.8355	Avg	1.5	180	
007.04	44.7		00.0	00.4	Darata		400	
867.84	44.7	V	80.8	-36.1	Peak	2	180	
867.84	37.2145	V	60.8	-23.586	Avg	2	180	
1301.76	33.96	V	74	-40.04	Peak	2.04	135	
1301.76	26.4745	V	54	-27.526	Avg	2.04	135	
1735.68	36.92	V	80.8	-43.88	Peak	1.62	135	
1735.68	29.4345	V	60.8	-31.366	Avg	1.62	135	
2169.6	44.33	V	80.8	-36.47	Peak	1.64	125	
2169.6	36.8445	V	60.8	-23.956	Avg	1.64	125	
2603.52	40.75	V	80.8	-40.05	Peak	2.14	135	
2603.52	33.2645	V	60.8	-27.536	Avg	2.14	135	
3037.44	40.39	V	80.8	-40.41	Peak	1.61	150	
3037.44	32.9045	V	60.8	-27.896	Avg	1.61	150	
3471.36	41.49	V	80.8	-39.31	Peak	1.45	155	
3471.36	34.0045	V	60.8	-26.796	Avg	1.45	155	
3905.28	39.35	V	74	-34.65	Peak	1.39	155	
3905.28	31.8645	V	54	-22.136	Avg	1.39	155	
					-			
4339.2	40.93	V	74	-33.07	Peak	1.39	150	
4339.2	33.4445	V	54	-20.556	Avg	1.39	150	
					-			

Zivkovic Modern Fencing Equipment, Inc. Date:07/01/08
Transmitter Labs: A and B

P/N: 123 Fencing Tested By: Kyle Fujimoto

Z-Axis Duty Cycle = 42.24%

_					Peak /	Ant.	Table	
Freq.	Level				QP /	Height	Angle	
(MHz)	(dBuV)	Pol (v/h)		Margin	Avg	(m)	(deg)	Comments
433.92	84.55	V	100.8	-16.25	Peak	1.5	180	
433.92	77.0645	V	80.8	-3.7355	Avg	1.5	180	
867.84	45.2	V	80.8	-35.6	Peak	2	180	
867.84	37.7145	V	60.8	-23.086	Avg	2	180	
1301.76	31.44	V	74	-42.56	Peak	1.83	150	
1301.76	23.9545	V	54	-30.046	Avg	1.83	150	
1735.68	37.66	V	80.8	-43.14	Peak	1.69	150	
1735.68	30.1745	V	60.8	-30.626	Avg	1.69	150	
2169.6	48.15	V	80.8	-32.65	Peak	1.44	125	
2169.6	40.6645	V	60.8	-20.136	Avg	1.44	125	
2603.52	45.07	V	80.8	-35.73	Peak	1.19	135	
2603.52	37.5845	V	60.8	-23.216	Avg	1.19	135	
3037.44	41.52	V	80.8	-39.28	Peak	2.34	150	
3037.44	34.0345	V	60.8	-26.766	Avg	2.34	150	
3471.36		V	80.8	-37.38	Peak	1.39	205	
3471.36	35.9345	V	60.8	-24.866	Avg	1.39	205	
3905.28	39.44	V	74	-34.56	Peak	1.22	175	
3905.28	31.9545	V	54	-22.046	Avg	1.22	175	
4339.2	40.91	V	74	-33.09	Peak	1.25	90	
4339.2	33.4245	V	54	-20.576	Avg	1.25	90	

Zivkovic Modern Fencing Equipment, Inc. Transmitter

Transmitter Labs: A and B P/N: 123 Fencing Tested By: Kyle Fujimoto

X-Axis Duty Cycle = 42.24%

					Peak /	Ant.	Table	
Freq.	Level				QP /	Height	Angle	
	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
433.92	88.05	H H	100.8	-12.75	Peak	1	90	Comments
	80.5645	Н	80.8	-0.2355		1	90	
433.92	00.3043	П	00.0	-0.2333	Avg	ı	90	
867.84	44.5	Н	80.8	-36.3	Peak	2	180	
	37.0145	Н	60.8	-23.786	Avg	2	180	
007.04	37.0143	11	00.0	-23.700	Avy		100	
1301.76	31.95	Н	74	-42.05	Peak	1.96	225	
	24.4645	Н	54	-29.536	Avg	1.96	225	
1735.68	36.54	Н	80.8	-44.26	Peak	2.89	90	
	29.0545	Н	60.8	-31.746	Avg	2.89	90	
					, and the second			
2169.6	47.69	Н	80.8	-33.11	Peak	2.24	150	
2169.6	40.2045	Н	60.8	-20.596	Avg	2.24	150	
2603.52	41.45	Н	80.8	-39.35	Peak	2.38	315	
2603.52	33.9645	Н	60.8	-26.836	Avg	2.38	315	
3037.44	38.38	Н	80.8	-42.42	Peak	1.25	135	
3037.44	30.8945	Н	60.8	-29.906	Avg	1.25	135	
3471.36	38.87	Н	80.8	-41.93	Peak	1.66	135	
3471.36	31.3845	Н	60.8	-29.416	Avg	1.66	135	
3905.28	41.19	Н	74	-32.81	Peak	1.66	90	
3905.28	33.7045	Н	54	-20.296	Avg	1.66	90	
4339.2	42.37	Н	74	-31.63	Peak	1.25	90	
4339.2	34.8845	Н	54	-19.116	Avg	1.25	90	

Date:07/01/08

Zivkovic Modern Fencing Equipment, Inc. Transmitter

P/N: 123 Fencing

Date:07/01/08 Labs: A and B

Tested By: Kyle Fujimoto

Y-Axis Duty Cycle = 42.24%

					Peak /	Ant.	Table	
Freq.	Level				QP /	Height	Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
433.92	76.15	Н	100.8	-24.65	Peak	1.5	180	
433.92	68.6645	Н	80.8	-12.136	Avg	1.5	180	
867.84	33.6	Н	80.8	-47.2	Peak	2	180	
867.84	26.1145	Н	60.8	-34.686	Avg	2	180	
1301.76	32.76	Н	74	-41.24	Peak	1.98	225	
1301.76	25.2745	Н	54	-28.726	Avg	1.98	225	
1735.68	38.17	Н	80.8	-42.63	Peak	2.23	150	
1735.68	30.6845	Н	60.8	-30.116	Avg	2.23	150	
2169.6	42.37	Н	80.8	-38.43	Peak	2.08	135	
2169.6	34.8845	Н	60.8	-25.916	Avg	2.08	135	
2603.52	39.22	Н	80.8	-41.58	Peak	1.25	150	
2603.52	31.7345	Н	60.8	-29.066	Avg	1.25	150	
200= 44	40.00			00.54	.	0.0=	40=	
3037.44	42.26	Н	80.8	-38.54	Peak	3.25	125	
3037.44	34.7745	Н	60.8	-26.026	Avg	3.25	125	
0474.00	40.00		00.0	27.07	Daals	4.05	450	
3471.36	42.93	H	80.8	-37.87	Peak	1.35	150	
3471.36	35.4445	Н	60.8	-25.356	Avg	1.35	150	
2005.20	38.75	Н	74	-35.25	Peak	1.00	150	
3905.28 3905.28	38.75	<u>н</u> Н	74 54	-35.25		1.99 1.99	150	
3903.28	31.2045	П	54	-22.130	Avg	1.99	100	
4339.2	41.06	Н	74	-32.94	Peak	2.01	135	
4339.2	33.5745	Н	54	-32.94	Avg	2.01	135	
7000.2	33.3743	11	J -	-20.720	۸۷y	2.01	100	

Zivkovic Modern Fencing Equipment, Inc. Transmitter

Transmitter Labs: A and B P/N: 123 Fencing Tested By: Kyle Fujimoto

Date:07/01/08

Z-Axis Duty Cycle = 42.24%

					Peak /	Ant.	Table	
Freq.	Level				QP/	Height	Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
433.92	87.45	Н	100.8	-13.35	Peak	1.5	180	
433.92	79.9645	Н	80.8	-0.8355	Avg	1.5	180	
867.84	31.56	Н	80.8	-49.24	Peak	2	180	
867.84	24.0745	Н	60.8	-36.726	Avg	2	180	
1301.76	32.51	Н	74	-41.49	Peak	1	225	
1301.76	25.0245	Н	54	-28.976	Avg	1	225	
4505.00	00.40			40.04			400	
1735.68	38.46	Н	80.8	-42.34	Peak	1.5	180	
1735.68	30.9745	Н	60.8	-29.826	Avg	1.5	180	
2169.6	45.44	Н	80.8	-35.36	Peak	2.24	135	
2169.6	37.9545	Н	60.8	-22.846	Avg	2.24	135	
2109.0	37.9343	П	00.6	-22.040	Avy	2.24	133	
2603.52	43.28	Н	80.8	-37.52	Peak	2.38	150	
2603.52	35.7945	Н	60.8	-25.006	Avg	2.38	150	
3037.44	41.34	Н	80.8	-39.46	Peak	1.23	150	
3037.44	33.8545	Н	60.8	-26.946	Avg	1.23	150	
3471.36	42.21	Н	80.8	-38.59	Peak	1.85	135	
3471.36	34.7245	Н	60.8	-26.076	Avg	1.85	135	
3905.28	40.13	Н	74	-33.87	Peak	1.98	180	
3905.28	32.6445	Н	54	-21.356	Avg	1.98	180	
4000.0	40.07		7.4	04.40	Da -!-	0.00	450	
4339.2	42.87	H	74	-31.13	Peak	2.03	150	
4339.2	35.3845	Н	54	-18.616	Avg	2.03	150	

FCC 15.231 and FCC Class B

Zivkovic Modern Fencing Equipment, Inc. Date:07/01/08
Transmitter Labs: A and B

P/N: 123 Fencing Tested By: Kyle Fujimoto

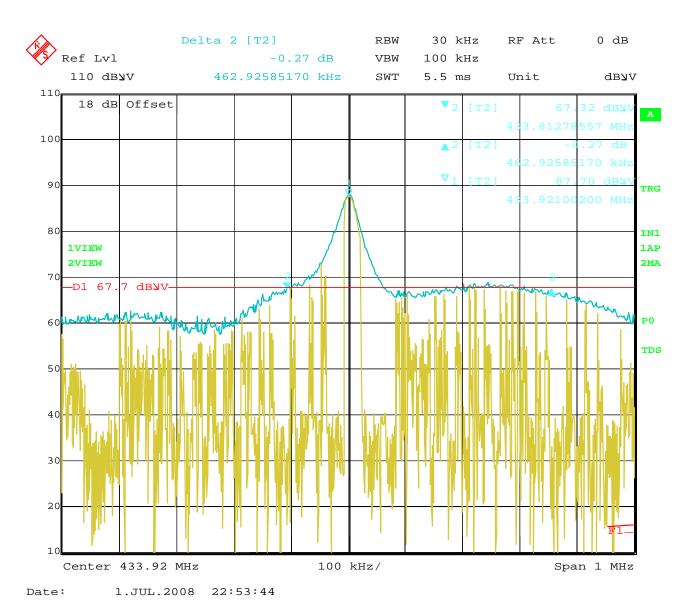
Transmit Mode - X-Axis (Worst Case)

Duty Cycle = 42.24%

Digital Portion and Non-Harmonic Emissions from the Tx

10 kHz to 4400 MHz - Vertical and Horizontal Polarization

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
						` ,	(0,	
								No Emissions Detected
								from the Digital Portion
								from 10 kHz to 4400 MHz
								HOM TO KILL TO THOU WILL
								No Emissions Detected
								from the Non_Harmonic
								Emissions from the Tx
								from 10 kHz to 4400 MHz



Report Number: **B80701B1**FCC Part 15 Subpart B and FCC Section 15.231 Test Report

Transmitter P/N: 123 Fencing

-20 dB BANDWIDTH

DATA SHEET

Bandwidth 20 dB of the Fundamental