

FCC PART 15.247 **TEST REPORT**

For

ANPOSI PRODUCTS LTD.

2/F, EAST OF ZONGHE LOU, No.28 YITIAN GARDEN, FUQIANG ROAD, SHENZHEN, CHINA

FCC ID: WHTD804TH

Report Type: **Product Type:**

2.4G Digital wireless receiver Original Report

Test Engineer: Ares Liu

Report Number: R1DG121205001-00A

Report Date: 2013-03-04

Ivan Cao

Reviewed By: RF Leader

Bay Area Compliance Laboratories Corp. (Dongguan) **Test Laboratory:**

No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Tel: +86-769-8685888 Fax: +86-769-86858891

Jus lin

fram (au

www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan).

Report No.: R1DG121205001-00A

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
EQUIPMENT MODIFICATIONSLOCAL SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
APPLICABLE STANDARD ANTENNA CONNECTOR CONSTRUCTION	10 10
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS.	
TEST RESULTS SUMMARY	
Test Data	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUPEMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	10 1 <i>7</i>
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
Test Results Summary	
TEST DATA	18
FCC §15.247(a) (1) - CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING	
TCC \$15.24/(a) (1) - 20 ud DANDWIDIN IESIING	<u>2</u> 0

Report No.: R1DG121205001-00A

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *ANPOSI PRODUCTS LTD*.'s product, model number: D804TH (*FCC ID: WHTD804TH*) or ("EUT") in this report is a 2.4G Digital wireless receiver, which was measured approximately: 14.3 cm (L) x 11.5 cm (W) x 2.2 cm (H), rated input voltage: DC 12.0V from adapter.

Report No.: R1DG121205001-00A

Adapter information: Swtec Model: SW012S120100U1

Input: AC 100-240V, 50/60Hz, 0.3A

Output: DC 12.0V, 1.0A

* All measurement and test data in this report was gathered from production sample serial number: 121205001 (Assigned by BACL, Dongguan). The EUT was received on 2012-12-06.

Objective

This report is prepared on behalf of *ANPOSI PRODUCTS LTD*. in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine the EUT compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

The uncertainty of any RF tests which use conducted method measurement is ± 0.96 dB, the uncertainty of any radiation on emissions measurement is: $30M\sim200MHz$: 5.0 dB; $200M\sim1GHz$: 6.2 dB; $1G\sim6GHz$: 4.45 dB; $6G\sim18GHz$: 5.23 dB.

FCC Part 15.247 Page 4 of 37

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Report No.: R1DG121205001-00A

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 02, 2012. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.247 Page 5 of 37

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode, which was provided by manufacturer.

Report No.: R1DG121205001-00A

15 hopping channels are provided by manufacturer, and EUT was tested with channel 1, 8 and 15.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2414.250	9	2441.250
2	2417.625	10	2444.625
3	2421.000	11	2448.000
4	2424.375	12	2451.375
5	2427.750	13	2454.750
6	2431.125	14	2458.125
7	2434.500	15	2461.500
8	2437.875	/	/

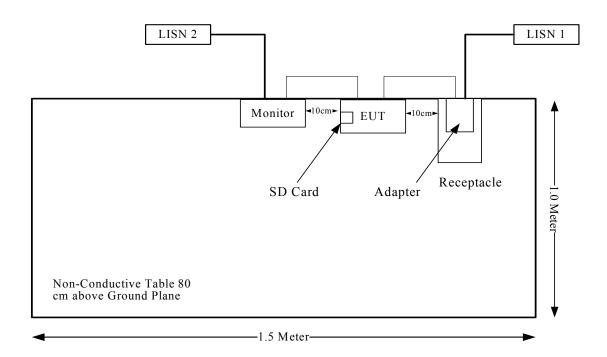
EUT Exercise Software

No EUT exercise software was used.

Equipment Modifications

No modification was made to the EUT tested.

Local Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
DELL	Monitor	U3011t	CN-OPH5NY-74445- 16T-290L
Kinston	SD Card	4G	N/A

External I/O Cable

Cable Description	Length (m)	From	То
Un-shielded Detachable AV Cable	1.5	EUT	Monitor

FCC Part 15.247 Page 6 of 37

Block Diagram of Test Setup

Report No.: R1DG121205001-00A

FCC Part 15.247 Page 7 of 37

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307,§2.1091	Maximum Permissible Exposure	Compliace
§15.203	Antenna Requirement	Compliance
§15.207 (a)	Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Emissions	Compliance
§15.247 (a)(1)	20 dB Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band Edges	Compliance

Report No.: R1DG121205001-00A

FCC Part 15.247 Page 8 of 37

FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i)and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: R1DG121205001-00A

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)			
0.3–1.34	614	1.63	*(100)	30			
1.34–30	824/f	2.19/f	*(180/f²)	30			
30–300	27.5	0.073	0.2	30			
300–1500	/	/	f/1500	30			
1500-100,000	/	/	1.0	30			

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Frequency	Ante	enna Gain	Conducted Power		Evaluation Distance	Power Density	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm^2)
2437.875	2	1.58	16.7	46.77	20.00	0.01476	1.0

Result: The device meet FCC MPE at 20cm distance

FCC Part 15.247 Page 9 of 37

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: R1DG121205001-00A

Antenna Connector Construction

The EUT has a dipole antenna, which was using unique type of connector to attach to the EUT, the maximum gain is 2 dBi, please refer to the internal photos.

Result: Compliance.

FCC Part 15.247 Page 10 of 37

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

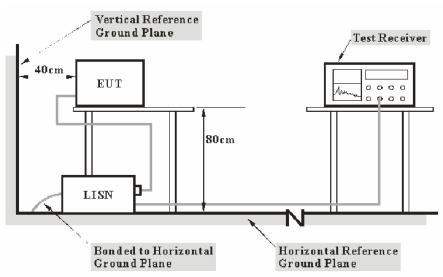
FCC§15.207

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

Report No.: R1DG121205001-00A

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:


- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If U_{lab} is greater than U_{cispr} of Table 1, then:
- compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} U_{cispr})$, exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit.

Based on CISPR 16-4-2: 2011, measurement uncertainty of conducted disturbance at mains port using AMN at Bay Area Compliance Laboratories Corp. (Dongguan) is 3.46 dB (150 kHz to 30 MHz).

Table 1 – Values of
$$U_{cispr}$$

Measurement	$U_{ m cispr}$
Conducted disturbance at mains port using AMN (150 kHz to 30 MHz)	3.4 dB

EUT Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

FCC Part 15.247 Page 11 of 37

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.207 limits.

Report No.: R1DG121205001-00A

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$
$$C_f = A_C + VDF$$

Herein,

V_C (cord. Reading): corrected voltage amplitude

V_R: reading voltage amplitude A_c: attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

FCC Part 15.247 Page 12 of 37

Test Equipment List and Details

Manufacturer Description		Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCS 30	830245/006	2012-11-29	2013-11-28
R&S	R&S LISN1		843331/015	2012-09-17	2013-09-16
R&S	LISN2	ESH3-Z5	100113	2012-11-29	2013-11-28
BACL	Test Software	BACL-EMC	V1.0-2010	N/A	N/A

Report No.: R1DG121205001-00A

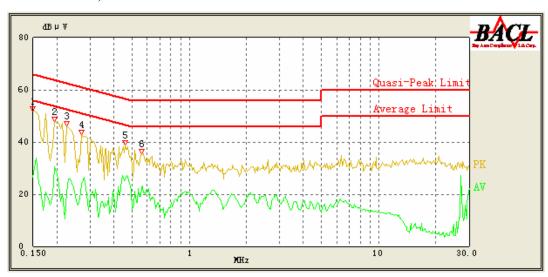
Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207, with the worst margin reading of:

20.05 dB at 0.150 MHz in the Line conducted mode.

Test Data

Environmental Conditions

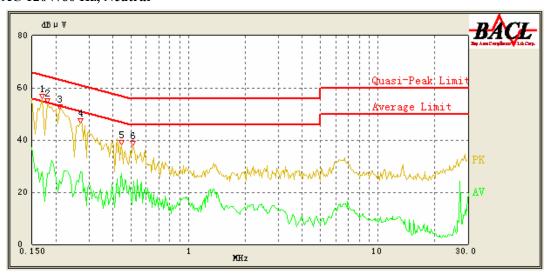

Temperature:	20.1° C
Relative Humidity:	50 %
ATM Pressure:	101.7 kPa

The testing was performed by Ares Liu on 2013-01-16.

Test Mode: Transmitting

FCC Part 15.247 Page 13 of 37

AC 120V/60 Hz, Line



Report No.: R1DG121205001-00A

Frequency (MHz)	Cord. Reading (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/AV/QP)
0.150	45.95	1.06	66.00	20.05	QP
0.150	26.62	1.06	56.00	29.38	AV
0.195	43.55	0.98	64.71	21.16	QP
0.195	30.43	0.98	54.71	24.28	AV
0.225	39.40	0.93	63.86	24.46	QP
0.225	20.83	0.93	53.86	33.03	AV
0.270	37.18	0.86	62.57	25.39	QP
0.270	23.71	0.86	52.57	28.86	AV
0.460	34.79	0.59	57.14	22.35	QP
0.460	25.61	0.59	47.14	21.53	AV
0.560	31.05	0.50	56.00	24.95	QP
0.560	22.46	0.50	46.00	23.54	AV

FCC Part 15.247 Page 14 of 37

AC 120V/60 Hz, Neutral

Report No.: R1DG121205001-00A

Frequency (MHz)	Cord. Reading (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/AV/QP)
0.170	44.10	1.74	65.43	21.33	QP
0.170	27.97	1.74	55.43	27.46	AV
0.180	41.84	1.69	65.14	23.30	QP
0.180	27.07	1.69	55.14	28.07	AV
0.210	42.00	1.53	64.29	22.29	QP
0.210	24.36	1.53	54.29	29.93	AV
0.270	40.56	1.22	62.57	22.01	QP
0.270	27.69	1.22	52.57	24.88	AV
0.445	34.01	0.69	57.57	23.56	QP
0.445	27.27	0.69	47.57	20.30	AV
0.510	27.78	0.54	56.00	28.22	QP
0.510	19.63	0.54	46.00	26.37	AV

FCC Part 15.247 Page 15 of 37

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

Report No.: R1DG121205001-00A

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If U_{lab} is greater than U_{cispr} of Table 1, then:
- compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} U_{cispr})$, exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit.

Based on CISPR 16-4-2: 2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Dongguan) is:

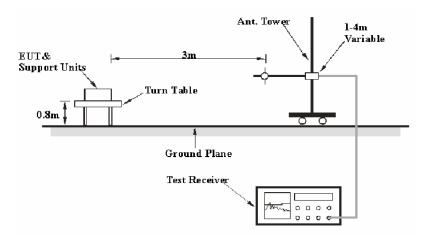
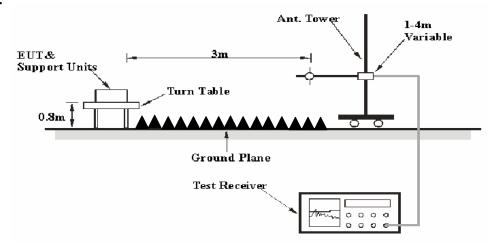

30M~200MHz: 5.0 dB 200M~1GHz: 6.2 dB 1G~6GHz: 4.45 dB 6G~18GHz: 5.23 dB

Table 1 – Values of U_{cispr}

Measurement				
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB			
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB			
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB			


EUT Setup

Below 1GHz:

FCC Part 15.247 Page 16 of 37

Above 1GHz:

Report No.: R1DG121205001-00A

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video BW	<u>Detector</u>
30 MHz – 1000 MHz	100 kHz	300 kHz	QP
1000 MHz – 25 GHz	1 MHz	3 MHz	PK
1000 MHz – 25 GHz	1 MHz	10 Hz	Ave.

Test Procedure

For the radiated emissions test, the adapter was connected to the first AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak and Average detection modes for frequencies above 1 GHz.

FCC Part 15.247 Page 17 of 37

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2012-05-14	2013-05-13
Sunol Sciences	Hybrid Antennas	JB3	A060611-1	2011-09-06	2013-09-05
HP	Pre-amplifier	8447E	2434A02181	2012-10-08	2013-10-07
R&S	Spectrum Analyzer	FSEM 30	DE31388	2012-03-15	2013-03-14
ETS-LINDGREN	Horn Antenna	3115	000 527 35	2012-09-06	2014-09-05
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2013-01-30	2014-01-29

Report No.: R1DG121205001-00A

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, and section 15.205, 15.209 and 15.247,</u> with the worst margin reading of:

2.23 dB at 9751.5 MHz in the Horizontal polarization

Test Data

Environmental Conditions

Temperature:	22°C
Relative Humidity:	55%
ATM Pressure:	101.5 kPa

The testing was performed by Ares Liu on 2013-01-31.

Test Mode: Tansmitting

FCC Part 15.247 Page 18 of 37

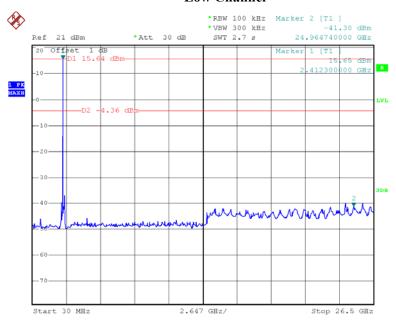
Frequency	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	FCC 1	5.247
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
			Lov	w Channel:	2414.25	MHz			
2414.18	68.41	AV	Н	25.68	3.93	0.00	98.02	N/A	N/A
2414.18	73.94	PK	Н	25.68	3.93	0.00	103.55	N/A	N/A
2414.18	71.86	AV	V	25.68	3.93	0.00	101.47	N/A	N/A
2414.18	78.99	PK	V	25.68	3.93	0.00	108.60	N/A	N/A
2390	37.51	PK	V	25.61	3.84	0.00	66.96	74.00	7.04
2390	19.83	AV	V	25.61	3.84	0.00	49.28	54.00	4.72
4828.36	41.77	PK	V	30.65	4.74	27.26	49.90	74.00	24.10
4828.36	30.29	AV	V	30.65	4.74	27.26	38.42	54.00	15.58
7242.54	41.02	PK	V	34.18	6.57	26.37	55.40	74.00	18.60
7242.54	27.49	AV	V	34.18	6.57	26.37	41.87	54.00	12.13
9656.72	47.8	PK	V	36.08	8.69	26.03	66.54	74.00	7.46
9656.72	32.15	AV	V	36.08	8.69	26.03	50.89	54.00	3.11 *
372.46	31.69	QP	V	15.69	2.34	21.70	28.02	46.00	17.98
			Midd	le Channel:	2437.87	5 MHz			
2437.875	66.18	AV	Н	25.74	3.98	0.00	95.90	N/A	N/A
2437.875	71.09	PK	Н	25.74	3.98	0.00	100.81	N/A	N/A
2437.875	73.24	AV	V	25.74	3.98	0.00	102.96	N/A	N/A
2437.875	79.12	PK	V	25.74	3.98	0.00	108.84	N/A	N/A
4875.75	42.96	PK	V	30.78	4.76	27.26	51.24	74.00	22.76
4875.75	32.87	AV	V	30.78	4.76	27.26	41.15	54.00	12.85
7313.625	43.58	PK	V	34.35	6.71	26.52	58.12	74.00	15.88
7313.625	31.05	AV	V	34.35	6.71	26.52	45.59	54.00	8.41
9751.5	46.25	PK	V	36.30	8.59	25.67	65.47	74.00	8.53
9751.5	32.55	AV	V	36.30	8.59	25.67	51.77	54.00	2.23 *
373.51	30.49	QP	V	15.71	2.34	21.70	26.84	46.00	19.16

Report No.: R1DG121205001-00A

FCC Part 15.247 Page 19 of 37

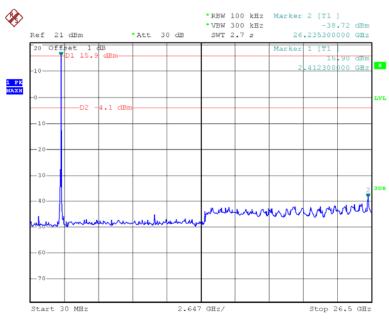
	High Channel: 2461.50 MHz								
2461.5	68.59	AV	Н	25.80	3.94	0.00	98.33	N/A	N/A
2461.5	74.63	PK	Н	25.80	3.94	0.00	104.37	N/A	N/A
2461.5	72.51	AV	V	25.80	3.94	0.00	102.25	N/A	N/A
2461.5	79.84	PK	V	25.80	3.94	0.00	109.58	N/A	N/A
2483.5	38.47	PK	V	25.86	3.80	0.00	68.13	74.00	5.87
2483.5	19.62	AV	V	25.86	3.80	0.00	49.28	54.00	4.72
4923	42.06	PK	V	30.90	4.70	27.27	50.39	74.00	23.61
4923	31.8	AV	V	30.90	4.70	27.27	40.13	54.00	13.87
7384.5	41.24	PK	V	34.52	6.84	26.66	55.94	74.00	18.06
7384.5	28.5	AV	V	34.52	6.84	26.66	43.20	54.00	10.80
9846	47.89	PK	V	36.53	8.49	25.49	67.42	74.00	6.58
9846	30.28	AV	V	36.53	8.49	25.49	49.81	54.00	4.19 *
375.26	30.27	QP	V	15.72	2.35	21.71	26.63	46.00	19.37

Report No.: R1DG121205001-00A


FCC Part 15.247 Page 20 of 37

^{*}Within measurement uncertainty!

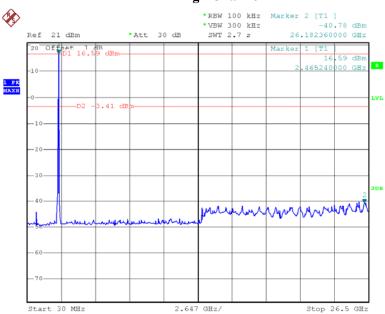
Conducted Spurious Emissions at Antenna Port


Report No.: R1DG121205001-00A

Low Channel

Date: 31.JAN.2013 15:43:14

Middle Channel



Date: 31.JAN.2013 15:21:41

FCC Part 15.247 Page 21 of 37

High Channel

Report No.: R1DG121205001-00A

Date: 31.JAN.2013 15:44:02

FCC Part 15.247 Page 22 of 37

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Report No.: R1DG121205001-00A

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Procedure

- Set the EUT in transmitting mode, spectrum Bandwidth was set at $100~\mathrm{kHz}$, maxhold the channel. Set the adjacent channel of the EUT maxhold another truce
- 3. Measure the channel separation.

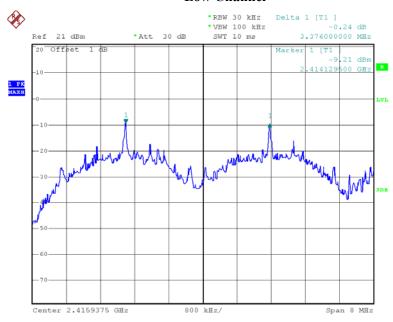
Test Data

Environmental Conditions

Temperature:	23.5 °C
Relative Humidity:	48 %
ATM Pressure:	101.5kPa

^{*} The testing was performed by Ares Liu on 2013-01-31.

Test Result: Compliance.

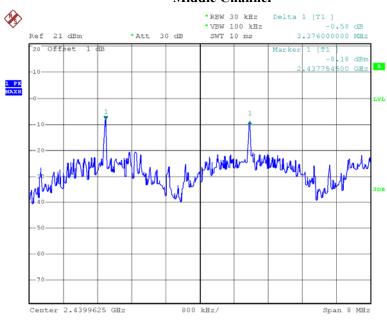

Please refer to following tables and plots

Test Mode: Transmitting

FCC Part 15.247 Page 23 of 37

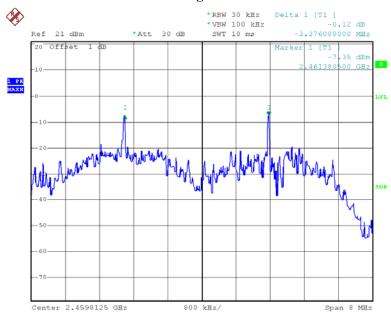
Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
Low	2414.25	3.376	1.90	Pass
Adjacent	2417.625	3.370	1.70	1 ass
Middle	2437.875	3.376	2.25	Pass
Adjacent	2441.25	3.370	2.23	Pass
High	2458.125	3.376	1.80	Pass
Adjacent	2461.5	3.370	1.80	F 488

Low Channel



Date: 31.JAN.2013 15:56:59

FCC Part 15.247 Page 24 of 37


Middle Channel

Report No.: R1DG121205001-00A

Date: 31.JAN.2013 15:58:22

High Channel

Date: 31.JAN.2013 16:01:01

FCC Part 15.247 Page 25 of 37

FCC $\S15.247(a)$ (1) – 20 dB BANDWIDTH TESTING

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Report No.: R1DG121205001-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Data

Environmental Conditions

Temperature:	23.5 °C
Relative Humidity:	48 %
ATM Pressure:	101.5kPa

^{*} The testing was performed by Ares Liu on 2013-01-31.

Test Result: Compliance.

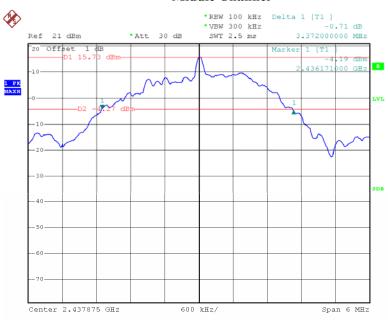
Please refer to following tables and plots

Test Mode: Transmitting

FCC Part 15.247 Page 26 of 37

Report No.: R1DG121205001-00A

Please refer to the following plots.


Low Channel

FCC Part 15.247 Page 27 of 37

Middle Channel

Report No.: R1DG121205001-00A

Date: 31.JAN.2013 15:41:36

High Channel

FCC Part 15.247 Page 28 of 37

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Report No.: R1DG121205001-00A

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Data

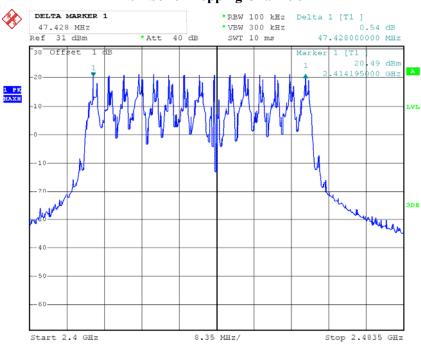
Environmental Conditions

Temperature:	24.1°C
Relative Humidity:	50 %
ATM Pressure:	101.5kPa

The testing was performed by Ares Liu on 2013-02-01.

Test Result: Compliance.

Please refer to following tables and plots


FCC Part 15.247 Page 29 of 37

Test Mode: Transmitting

Frequency Range (MHz)	Number of Hopping Channel	Limit	
2400-2483.5	15	≥15	

Report No.: R1DG121205001-00A

Number of Hopping Channels

Date: 1.FEB.2013 14:55:36

FCC Part 15.247 Page 30 of 37

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: R1DG121205001-00A

Test Procedure

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 * channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Dwell Time= time slot length * hope rate/ number of hopping channels *hopping NO. * 0.4s

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Data

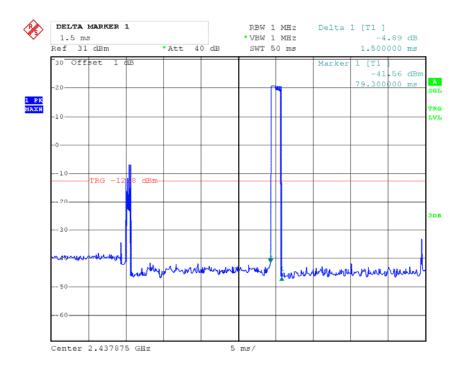
Environmental Conditions

Temperature:	24.1°C
Relative Humidity:	50 %
ATM Pressure:	101.5kPa

^{*} The testing was performed by Ares Liu on 2013-02-01.

Test Result: Compliance.

Please refer to following tables and plots


FCC Part 15.247 Page 31 of 37

Test Mode: Transmitting

Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result
Middle	1.500	0.0300	0.4	Pass
Dwell Time(s)= time slot length(s)* $50/15*15*0.4$				

Report No.: R1DG121205001-00A

Note: The EUT hopping 50times per second, which was declared by manufacturer.

Date: 1.FEB.2013 14:20:46

FCC Part 15.247 Page 32 of 37

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts

Report No.: R1DG121205001-00A

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI test receiver.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Data

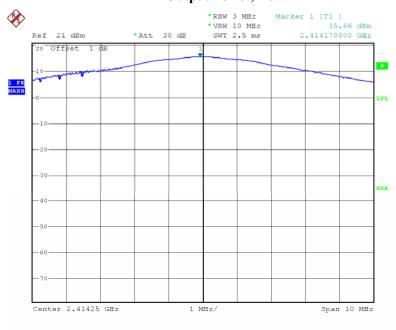
Environmental Conditions

Temperature:	23.5°C
Relative Humidity:	48%
ATM Pressure:	101.5kPa

^{*} The testing was performed by Ares Liu on 2013-01-31.

Test Result: Compliance.

FCC Part 15.247 Page 33 of 37

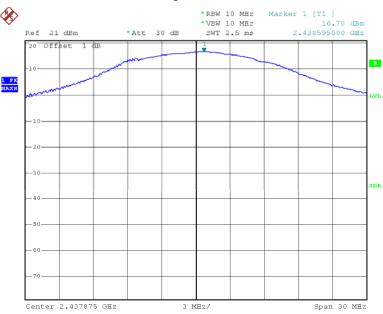

Test Mode: Transmitting

Channel	Frequency (MHz)	Output power (dBm)	Limit (dBm)	
Low	2414.25	15.66	21	
Middle	2437.875	16.7	21	
High	2461.5	16.64	21	

Report No.: R1DG121205001-00A

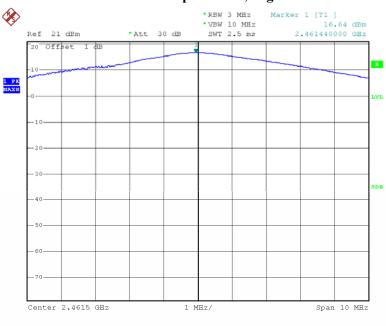
Note: The data above was tested in conducted mode.

Output Power, Low



Date: 31.JAN.2013 15:23:36

FCC Part 15.247 Page 34 of 37


Output Power, Middle

Report No.: R1DG121205001-00A

Date: 31.JAN.2013 15:42:00

Output Power, High

Date: 31.JAN.2013 15:45:52

FCC Part 15.247 Page 35 of 37

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: R1DG121205001-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Data

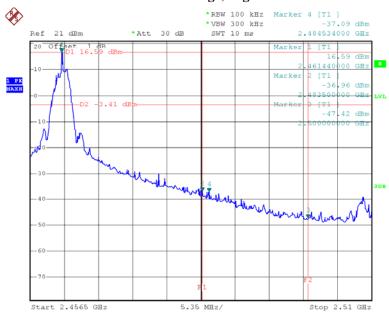
Environmental Conditions

Temperature:	23.5°C
Relative Humidity:	48%
ATM Pressure:	101.5kPa


^{*}The testing was performed by Ares Liu on 2013-01-31.

FCC Part 15.247 Page 36 of 37

Test Result: Compliance


Band Edge, Left Side

Report No.: R1DG121205001-00A

Date: 31.JAN.2013 15:39:52

Band Edge, Right Side

Date: 31.JAN.2013 15:47:01

***** END OF REPORT *****

FCC Part 15.247 Page 37 of 37