

SAR TEST REPORT

Product Name: DECT PTT REMOTE

Model Name: S D200

FCC ID: WF2DW-PTT-W200

Issued For : DASAN ELECTRON CO., LTD

#307, Plant 1 Dong, Kyungi Techno Park, 705, Haean-ro,
Sangnok-gu, Ansan-si, Gyeonggi-do, South Korea

Issued By : Shenzhen LGT Test Service Co., Ltd.

Room 205, Building 13, Zone B, Zhenxiong Industrial Park,
No.177, Renmin West Road, Jinsha, Kengzi Street,
Pingshan District, Shenzhen, Guangdong, China

Report Number: LGT25F279HA02

Sample Received Date: Jul.14, 2025

Date of Test Jul. 23, 2025

Date of Issue Jul. 31, 2025

Max. SAR (1g) Body: 0.155 W/kg

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

Table of Contents

1. General Information	5
1.1 EUT Description	5
1.2 Test Environment	6
1.3 Test Factory	6
2. Test Standards and Limits	7
3. SAR Measurement System	8
3.1 Definition of Specific Absorption Rate (SAR)	8
3.2 SAR System	8
4. Tissue Simulating Liquids	11
4.1 Simulating Liquids Parameter Check	11
5. SAR System Validation	13
5.1 Validation System	13
5.2 Validation Result	13
6. SAR Evaluation Procedures	14
7. EUT Antenna Location Sketch	15
7.1 SAR test exclusion consider table	16
8. EUT Test Position	18
8.1 Body-worn Position Conditions	18
9. Uncertainty	19
9.1 Measurement Uncertainty	19
9.2 System validation Uncertainty	20
10. Conducted Power Measurement	21
10.1 Test Result	21
10.2 Tune up power	21
11. EUT and Test Setup Photo	22
11.1 EUT Photos	22
11.2 Setup Photos	25
12. SAR Result Summary	28
12.1 Body-worn SAR	28
13. Equipment List	29
Appendix A. System Validation Plots	30
Appendix B. SAR Test Plots	32
Appendix C. Probe Calibration and Dipole Calibration Report	33

Revision History

Rev.	Issue Date	Contents
00	Jul. 31, 2025	Initial Issue

TEST REPORT CERTIFICATION

Applicant	DASAN ELECTRON CO., LTD
Address	#307, Plant 1 Dong, Kyungi Techno Park, 705, Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, South Korea
Manufacture	DASAN ELECTRON CO., LTD
Address	#307, Plant 1 Dong, Kyungi Techno Park, 705, Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, South Korea
Product Name	DECT PTT REMOTE
Trademark	N/A
Model Name	S D200
Sample number	LGT2507005-7

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
ANSI/IEEE Std. C95.1-2019 FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013	PASS

Prepared by:

Deng Deng

Deng Deng
Engineer

Approved by:

Vita Li

Vita Li
Manager

1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

Product Name	DECT PTT REMOTE	
Trademark	N/A	
Test Model Name	S D200	
Series Model	N/A	
Model Difference	N/A	
Device Category	Portable	
Product stage	Production unit	
RF Exposure Environment	General Population / Uncontrolled	
Hardware Version	REV02	
Software Version	N/A	
Frequency Range	FCC Frequency: 1920 ~ 1930MHz	
Max. Reported SAR(1g): (Limit:1.6W/kg) Test distance: Body:0mm	Mode	Body Worn
	DECT	0.155
Battery	Rated Voltage:3.7V Capacity: 400mAh	
Operating Mode:	GFSK	
Antenna Specification	Remote: Monopole antenna	
Operating Mode	Maximum continuous output	
Hotspot Mode	Not Support	
DTM Mode	Not Support	

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

Company Name:	Shenzhen LGT Test Service Co., Ltd.
Address:	Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China
Accreditation Certificate	FCC Registration No.: 746540
	A2LA Certificate No.: 6727.01
	IC Registration No.: CN0136

2. Test Standards and Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-2019	IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D01 v06	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
7	FCC KDB 941225 D01 v03r01	SAR Measurement Procedures for 3G Devices
8	FCC KDB 941225 D05 v02r05	SAR for LTE Devices
9	FCC KDB 941225 D06 v02r01	Hotspot Mode SAR
10	FCC KDB 648474 D04 v01r03	SAR Evaluation Considerations for Wireless Handsets
11	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles

0.4 8.0 20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles

0.08 1.6 4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE
GENERAL POPULATION/UNCONTROLLED EXPOSURE
PARTIAL BODY LIMIT
1.6 W/kg

3. SAR Measurement System

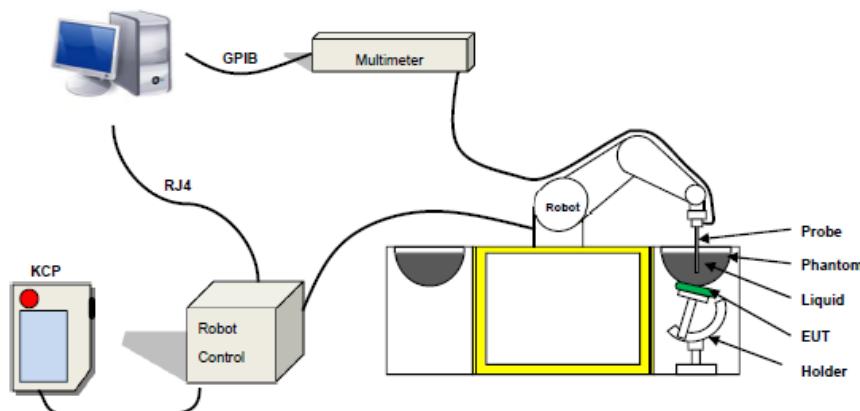
3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$\text{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$\text{SAR} = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue;

ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 1g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 04/22 EPGO364 with following specifications is used

- Probe Length: 330 mm
- Length of Individual Dipoles: 2mm
- Maximum external diameter: 8 mm
- Probe Tip External Diameter: 2.5 mm
- Distance between dipole/probe extremity: 1 mm
- Dynamic range: 0.01-100 W/kg
- Probe linearity: 3%
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: < 0.10 dB
- Calibration range: 600 MHz to 6 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Probe

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

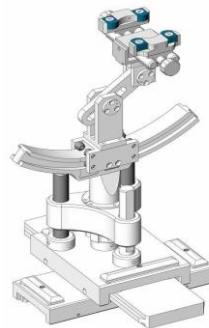


Figure-SN 06/22 SAM 148

Figure-SN 06/22 ELLI 51

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine if the dielectric parameters are within the tolerances of the specified target values

The uncertainty due to the liquid conductivity and permittivity arises from two different sources. The first source of error is the deviation of the liquid conductivity from its target value (max $\pm 5\%$) and the second source of error arises from the measurement procedures used to assess conductivity. The uncertainty shall be assessed using a rectangular probability. For 1 g averaging, the maximum weighting coefficient for SAR is 0.5.

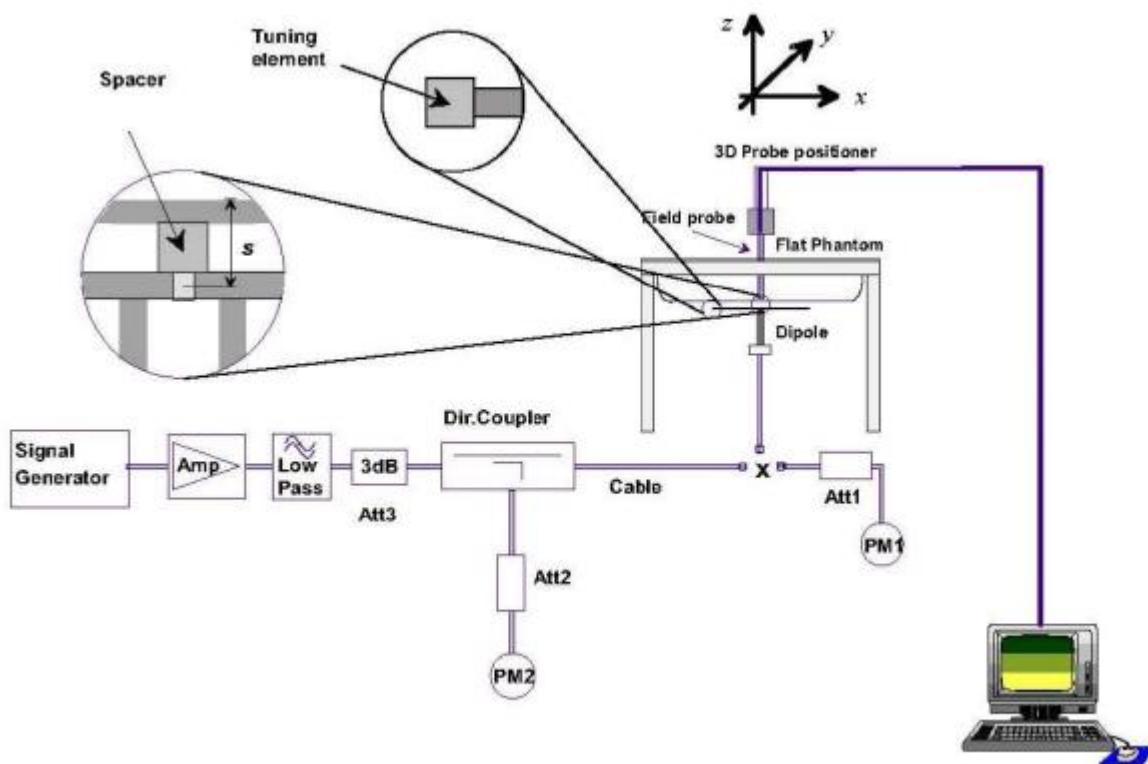
IEEE SCC-34/SC-2 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head and body tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table.

Frequency	ϵ_r	σ_{10g} S/m
300	45.3	0.87
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800 to 2000	40.0	1.40
2100	39.8	1.49
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
3500	37.9	2.91
4000	37.4	3.43
4500	36.8	3.94
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.5	5.07
5800	35.3	5.27

LIQUID MEASUREMENT RESULTS

Date	Ambient		Simulating Liquid		Parameters	Target	Measured	Deviation %	Limited %
	Temp. [°C]	Humidity %	Frequency (MHz)	Temp. [°C]					
2025-07-23	23.7	42	1900	23.3	Permittivity	40.00	40.88	2.20	±5
					Conductivity	1.40	1.41	0.71	±5



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of $\pm 10\%$.

Date	Freq.	Power	Power drift	Tested Value	Normalized SAR	Target SAR	Tolerance
	(MHz)	(mW)	(%)	(W/Kg)	(W/kg)	1g(W/kg)	(%)
2025-07-23	1900	100	4.100	41.00	40.89	0.27	10

Note:

1. The tolerance limit of System validation $\pm 10\%$.
2. The dipole input power (forward power) was 100 mW.
3. The results are normalized to 1 W input power.

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

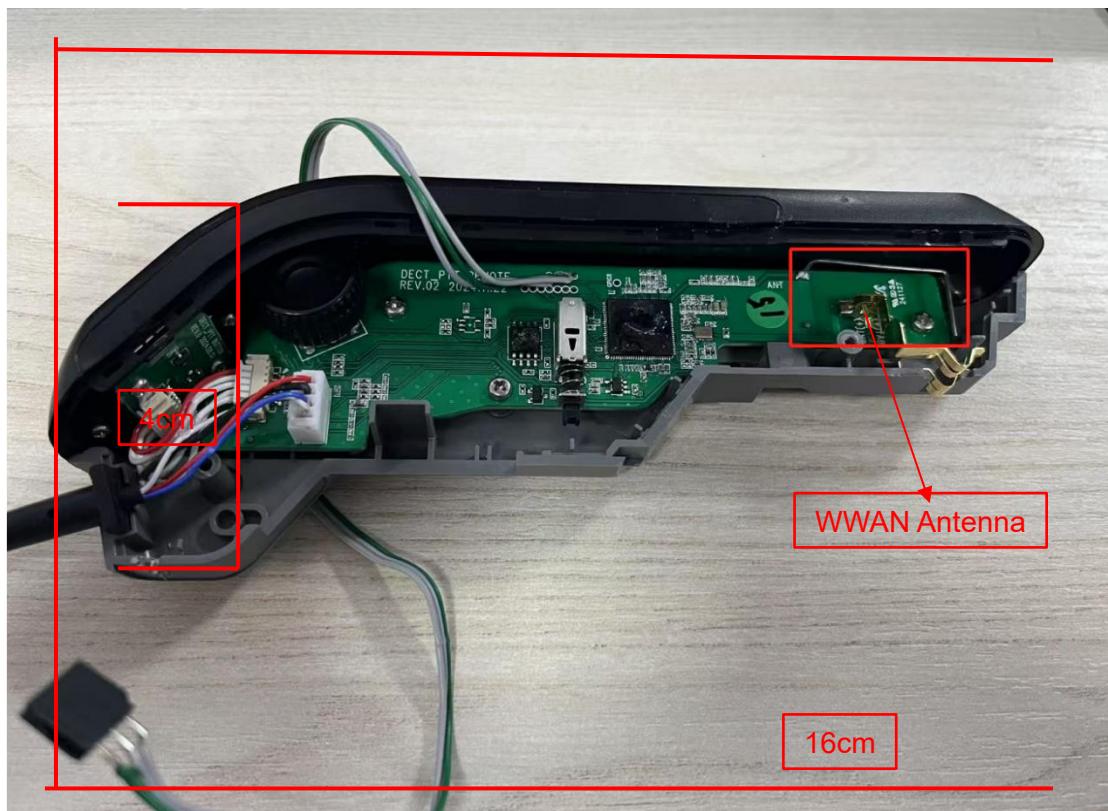
The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

➤ Area Scan& Zoom Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.


7. EUT Antenna Location Sketch

It is a DECT PTT REMOTE, support DECT mode.

Top side

Left side

Right side

Bottom side
(Front view)

Antenna Separation Distance(mm)						
ANT	Front Side	Back Side	Left Side	Right Side	Top Side	Bottom Side
DECT	≤5	≤5	≤5	≤5	125	≤5

Note 1: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

7.1 SAR test exclusion consider table

The DECT SAR evaluation of Maximum power (dBm) summing tolerance.

	Wireless Interface	DECT
Exposure Position	Calculated Frequency (MHz)	1928.7
	Maximum Turn-up power (dBm)	17
	Maximum rated power(mW)	50.12
	Separation distance (mm)	5
Front Side	exclusion threshold(mW)	10.80
	Testing required?	YES
	Separation distance (mm)	5
Back Side	exclusion threshold(mW)	10.80
	Testing required?	YES
	Separation distance (mm)	5
Left Side	exclusion threshold(mW)	10.80
	Testing required?	YES
	Separation distance (mm)	5
Right Edge	exclusion threshold(mW)	10.80
	Testing required?	YES
	Separation distance (mm)	125
Top Edge	exclusion threshold(mW)	270.02
	Testing required?	NO
	Separation distance (mm)	5
Bottom Edge	exclusion threshold(mW)	10.80
	Testing required?	YES

Note:

1. maximum power is the source-based time-average power and represents the maximum RF output power among production units.
2. per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
3. per KDB 447498 D01, standalone SAR test exclusion threshold is applied; if the distance of the antenna to the user is <25mm,25mm is user to determine SAR exclusion threshold
4. per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at

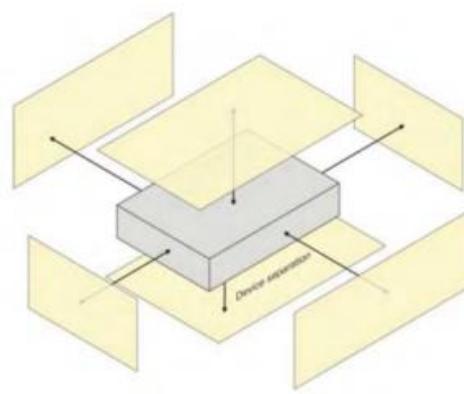
test separation distance $\leq 50\text{mm}$ are determined by:

$[(\text{max.power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] * [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR , $f(\text{GHz})$ is the RF channel transmit frequency in GHz. Power and distance are rounded to the nearest mW and mm before calculation.

The result is rounded to one decimal place for comparison

For $< 50\text{mm}$ distance, we just calculate mW of the exclusion threshold value(3.0)to do compare

5. per KDB 447498 D01, at 100 MHz to 6GHz and for test separation distances $> 50\text{mm}$, the SAR test exclusion threshold is determined according to the following
 - a)[threshold at 50mm in step 1]+(test separation distance -50mm)*(f (MHz)/150)]mW, at 100 MHz to 1500 MHz
 - b) [threshold at 50mm in step1]+(test separation distance -50mm) *10]mW at $> 1500\text{MHz}$ and $\leq 6\text{GHz}$



8. EUT Test Position

This EUT was tested in Front Face and Rear Face.

8.1 Body-worn Position Conditions

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing function, the relevant hand and body exposure condition are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surface and edges with a transmitting antenna located within 25 mm from that surface or edge. When form factor of a handset is smaller than 9cm x 5cm, a test separation distance of 5mm (instead of 10mm) is required for testing hotspot mode. When the separate distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

9. Uncertainty

9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System								
Probe calibration	5.8	N	1	1	1	5.8	5.8	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	$\sqrt{0.5}$	$\sqrt{0.5}$	1.43	1.43	∞
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	$\sqrt{0.5}$	$\sqrt{0.5}$	2.41	2.41	∞
Boundary effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
System detection limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
Response Time	0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	1	1	1.81	1.81	∞
RF ambient conditions-Noise	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient conditions-reflections	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner mechanical tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to phantom shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, Interpolation and Integration Algorithms for Max, SAR	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Test sample Related								
Test sample positioning	2.6	N	1	1	1	2.60	2.60	11
Device holder uncertainty	3	N	1	1	1	3.00	3.00	7
Output Power Variation - SAR Drift Measurement	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
SAR scaling	2	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and tissue parameters								
Phantom uncertainty (shape and thickness uncertainty)	4	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	2	N	1	1	0.84	2.00	1.68	∞
Liquid Conductivity - Measurement Uncertainty)	4	N	1	0.78	0.71	3.12	2.84	5
Liquid Permittivity - Measurement Uncertainty	5	N	1	0.23	0.26	1.15	1.30	5
Liquid Conductivity (Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	∞
Liquid Permittivity (Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Combined Standard Uncertainty		RSS				10.47	10.34	
Expanded Uncertainty (95% Confidence interval)		K				20.95	20.69	

9.2 System validation Uncertainty

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System								
Probe calibration	5.8	N	1	1	1	5.8	5.8	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	∞
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Boundary effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	0.71	0.71	∞
System detection limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	0	N	$\sqrt{3}$	0	0	0.00	0.00	∞
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
Response Time	0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF ambient conditions-Noise	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient conditions-reflections	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner mechanical tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to phantom shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, Interpolation and Integration Algorithms for Max, SAR	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Dipole								
Deviation of Experimental Source from Numerical Source	5	N	1	1	1	5.00	5.00	∞
Input Power and SAR Drift Measurement	0.5	R	$\sqrt{3}$	1	1	0.29	0.29	∞
Dipole Axis to Liquid Distance	2	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and Tissue Parameters								
Phantom uncertainty (shape and thickness uncertainty)	4	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	2	N	1	1	0.84	2.00	1.68	∞
Liquid Conductivity - Measurement Uncertainty)	4	N	1	0.78	0.71	3.12	2.84	5
Liquid Permittivity - Measurement Uncertainty	5	N	1	0.23	0.26	1.15	1.30	5
Liquid Conductivity (Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	∞
Liquid Permittivity (Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Combined Standard Uncertainty		RSS				10.16	10.03	
Expanded Uncertainty (95% Confidence interval)		K				20.32	20.06	

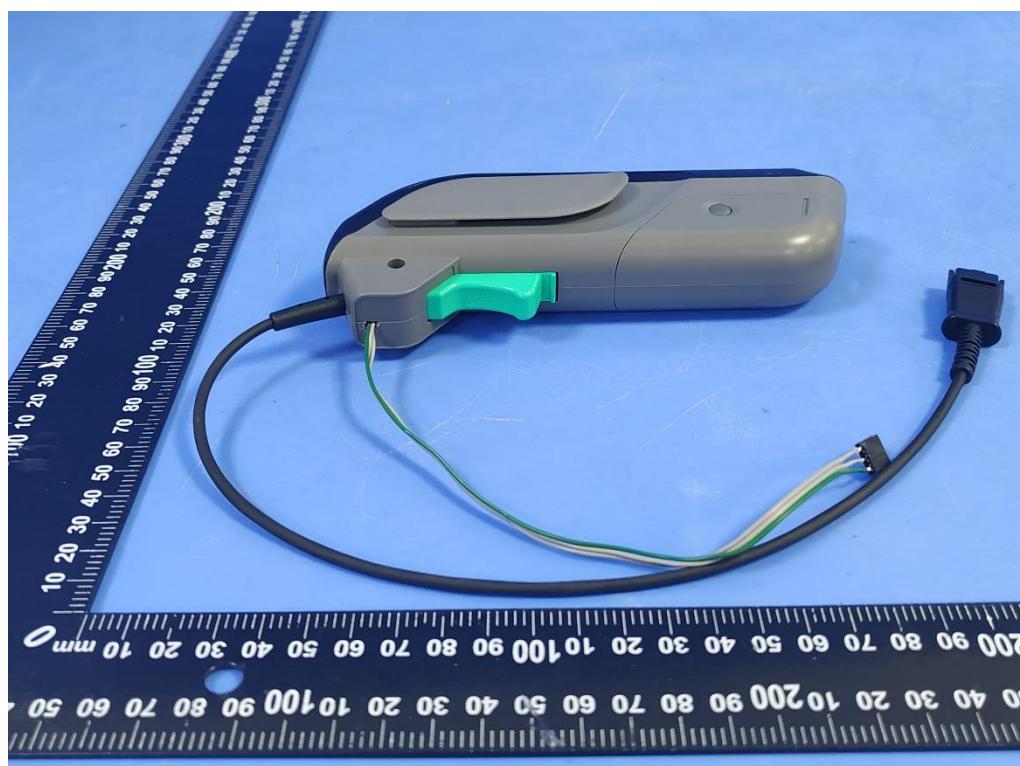
10. Conducted Power Measurement

10.1 Test Result

DECT				
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)
DECT	Low	1921.536	16.61	45.81
	Middle	1924.992	16.55	45.19
	High	1928.448	16.49	44.57

10.2 Tune up power

Mode	Tune up power
DECT	16±1dBm
	16±1dBm
	15.5±1dBm


11. EUT and Test Setup Photo

11.1 EUT Photos

Front side

Back side

Right Edge

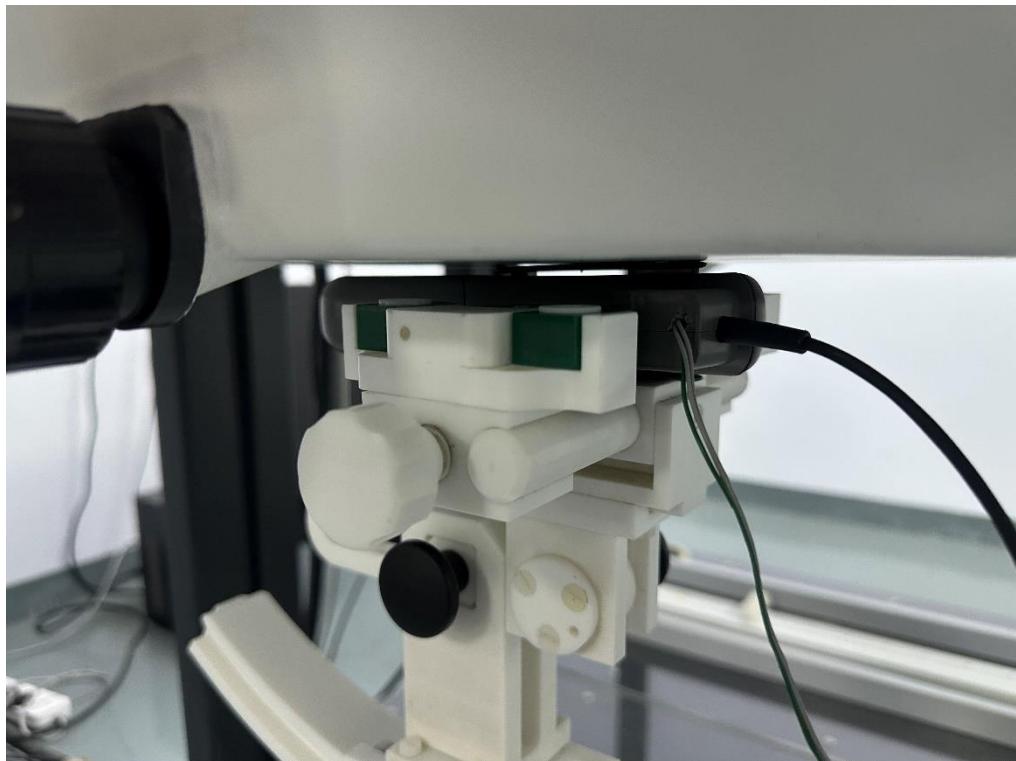
Left Edge

Top Edge

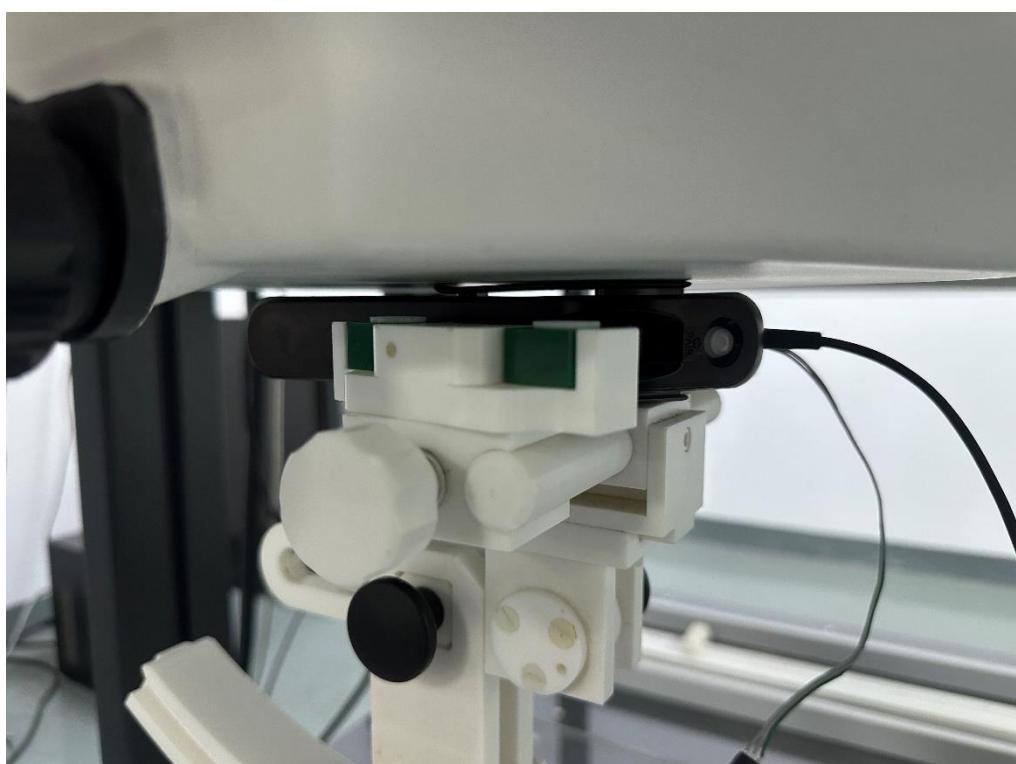
Bottom Edge

11.2 Setup Photos

Body Front side (separation distance is 0mm)

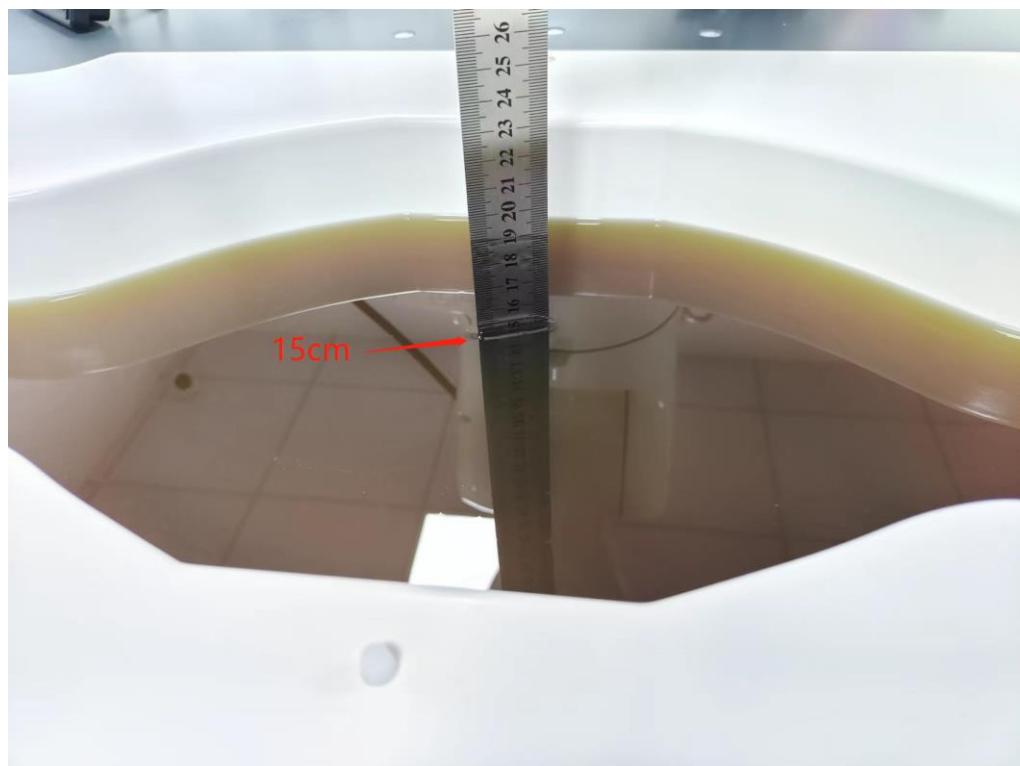


Body Back side (separation distance 0mm)



Body Left side (separation distance is 0mm)

Body Right side (separation distance is 0mm)



Body Bottom side (separation distance is 0mm)

Liquid depth (15 cm)

12. SAR Result Summary

12.1 Body-worn SAR

Band	Model	Test Position	Freq.	SAR (1g) (W/kg)	Power Drift (%)	Max. Turn-up Power (dBm)	Meas. Output Power (dBm)	Scaling Factor	Scaled SAR (W/Kg)	Meas. No.
DECT	GFSK	Front Side	1921.536	0.109	2.72	17.00	16.61	1.094	0.119	/
		Back Side	1921.536	0.121	-2.22	17.00	16.61	1.094	0.132	/
		Left Side	1921.536	0.142	-2.53	17.00	16.61	1.094	0.155	1
		Left Side	1924.992	0.125	-2.41	17.00	16.55	1.109	0.139	/
		Left Side	1928.448	0.107	-0.59	17.00	16.49	1.125	0.120	/
		Right Side	1921.536	0.131	2.99	17.00	16.61	1.094	0.143	/
		Bottom Side	1921.536	0.113	-3.33	17.00	16.61	1.094	0.124	/

Note:

1. The test separation of all above table is 0mm.
2. Per KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. Scaled SAR(W/kg) = Measured SAR(W/kg) *Tune-up Scaling Factor

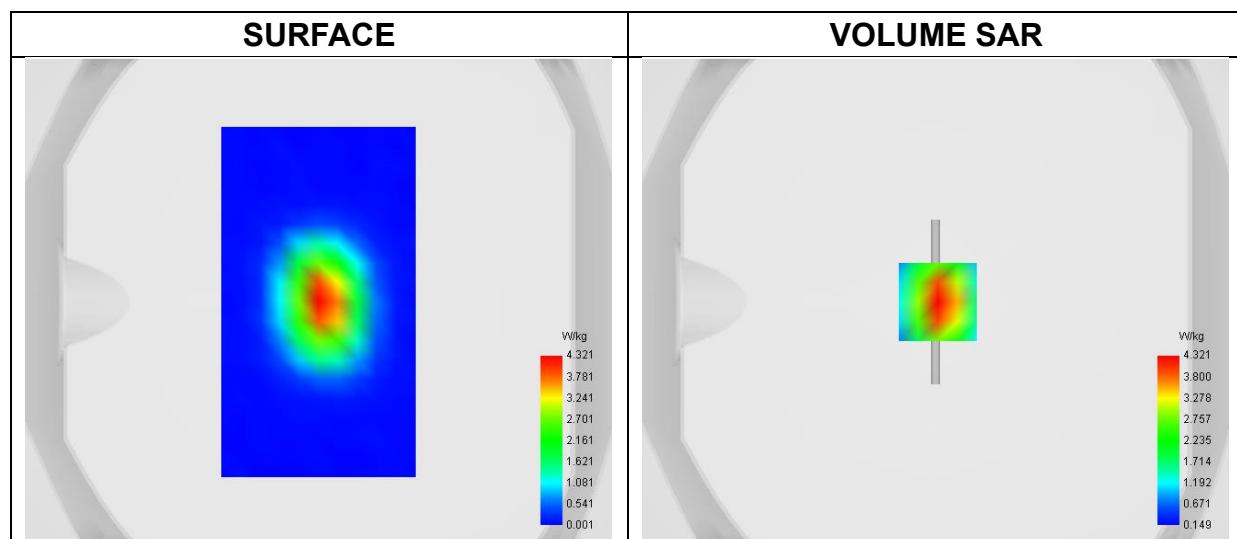
13. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
1900MHz Dipole	MVG	DIP1G900	SN 06/22 DIP1G900-641	2025.02.05	2028.02.04
E-Field Probe	MVG	EPGO364	SN 04/22 EPGO364	2025.02.05	2026.02.04
Liquid Calibration Kit	MVG	OCPG 87	SN 06/22 OCPG87	2025.02.05	2026.02.04
Antenna	MVG	ANTA 73	SN 06/22 ANTA 73	N/A	N/A
Ellipsoid Phantom	MVG	ELLI 51	SN 06/22 ELLI 51	N/A	N/A
Phantom	MVG	SAM 148	SN 06/22 SAM148	N/A	N/A
Phone holder	MVG	MSH 117	SN 06/22 MSH 117	N/A	N/A
Laptop positioner	MVG	LSH 36	SN 06/22 LSH 38	N/A	N/A
Directional coupler	SHW	SHWDCP	202203280013	N/A	N/A
Network Analyzer	ZVL	R&S	116184	2025.03.05	2026.03.04
Multi Meter	DMM6500	Keithley	4527252	2025.03.06	2026.03.05
Signal Generator	Keysight	N5182B	MY59100717	2025.03.05	2026.03.04
Wireless Communication Test Set	R&S	CMW500	137737	2025.03.05	2026.03.04
Power Sensor	R&S	Z11	116184	2025.03.05	2026.03.04
Electronic Temperature hygrometer	N/A	ST-W2318	N/A	2025.03.05	2026.03.04
Temperature hygrometer	N/A	TP101	N/A	2025.03.05	2026.03.04

Appendix A. System Validation Plots

System Performance Check Data (1900MHz)

Type: Phone measurement (Complete)

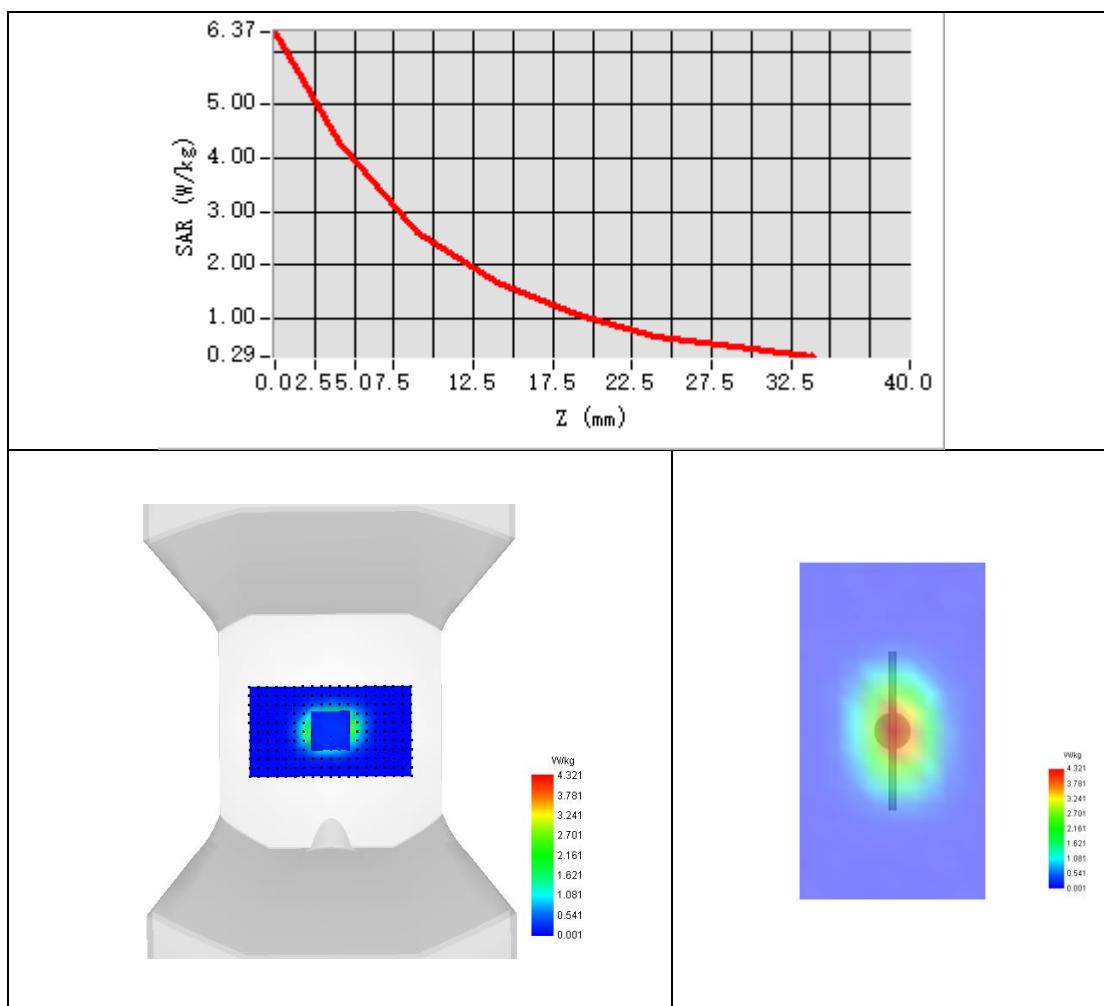

Area scan resolution: dx=8mm, dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2025-07-23

Experimental conditions.

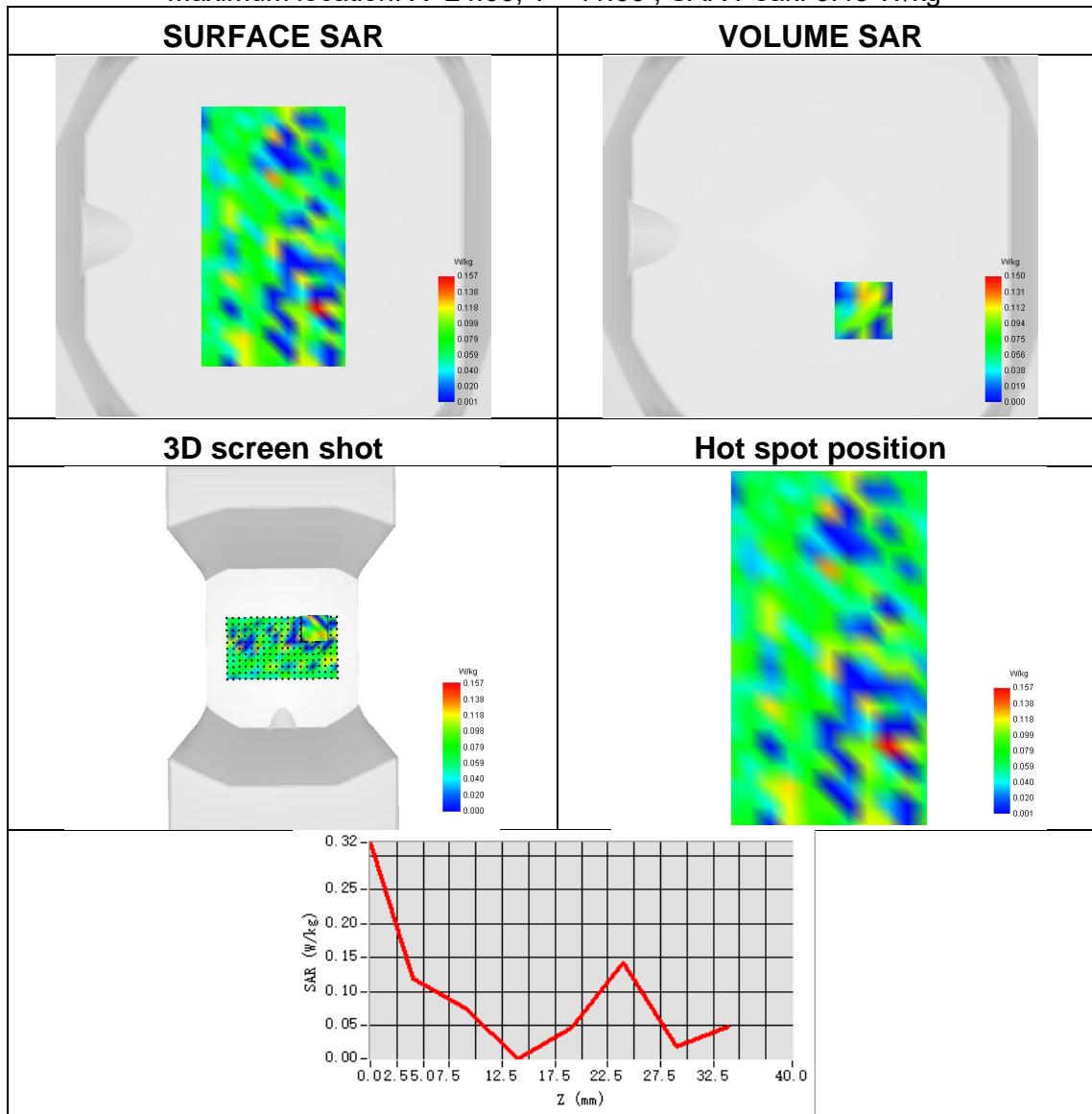
Phantom	Validation plane
Device Position	Dipole
Band	CW1900
Channels	Middle
Signal	CW
Frequency (MHz)	1900.000
Relative permittivity	40.88
Conductivity (S/m)	1.41
Probe	SN 04/22 EPGO364
ConvF	2.20
Crest factor:	1:1



Maximum location: X=1.00, Y=0.00 ; SAR Peak: 6.42 W/kg

SAR 10g (W/Kg)	2.082
SAR 1g (W/Kg)	4.100

Z Axis Scan



Appendix B. SAR Test Plots

Plot 1:

Test Date	2025-07-23
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7, dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Left Side
Band	DECT
Signal	DECT
Frequency	1921.536
SAR 10g (W/Kg)	0.063
SAR 1g (W/Kg)	0.142
ConvF	2.20
Relative permittivity	40.88
Conductivity (S/m)	1.41

Maximum location: X=24.00, Y=-41.00 ; SAR Peak: 0.45 W/kg

Appendix C. Probe Calibration and Dipole Calibration Report

Refer the appendix Calibration Report.

*****END OF THE REPORT*****