

KES Co., Ltd.
3701, 40, Simin-daero 365beon-gil,
Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

Test report No.:
KES-RF-18T0024-R1
Page (1) of (19)

TEST REPORT

Part 15 Subpart C 15.225

Equipment under test EV Guest Tag

Model name J1801

FCC ID WDC-J1801

Applicant JTECH an HME Company

Manufacturer Lee Technology Korea Co., Ltd.

Date of test(s) 2018.02.12 ~ 2018.02.22, 02.28

Date of issue 2018.02.28

Issued to

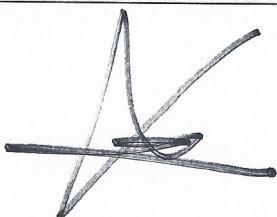
JTECH an HME Company

1400 Northbrook Parkway Suite #320

Suwanee, GA USA

Tel: +1-678-280-2707 / Fax: +1-700-682-3459

Issued by


KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,

Gyeonggi-do, 14057, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
Kwon-se Kim Test engineer	Hyeon-Su, Jang Technical manager

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Revision history

Revision	Date of issue	Test report No.	Description
-	2018.02.24	KES-RF-18T0024	Initial
R1	2018.02.28	KES-RF-18T0024-R1	Retest a 20dB bandwidth

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

TABLE OF CONTENTS

1.	General information	4
1.1.	EUT description	4
1.2.	Test configuration.....	4
1.3.	Accessory information.....	4
1.4.	Software and Firmware description.....	4
1.5.	Measurement results explanation example.....	5
1.6.	Measurement Uncertainty	5
1.7.	Test frequency/Channel operation.....	5
2.	Summary of tests	6
3.1.	Radiated spurious emissions.....	7
3.2	20 dB bandwidth	13
3.3.	Frequency Stability.....	14
3.4.	AC conducted emissions	16
Appendix A.	Measurement equipment	18
Appendix B.	Test setup photos	19

1. General information

Applicant: JTECH an HME Company
Applicant address: 1400 Northbrook Parkway Suite #320 Suwanee, GA USA
Test site: KES Co., Ltd.
Test site address: 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,
Gyeonggi-do, 14057, Korea
473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea
Test Facility FCC Accreditation Designation No.: KR0100, Registration No.: 444148
FCC rule part(s): 15.225
FCC ID: WDC-J1801
Test device serial No.: Production Pre-production Engineering

1.1. EUT description

Equipment under test EV Guest Tag
Frequency range UHF : 450.0250 MHz ~ 469.9750 MHz
NFC : 13.56 MHz
Model: J1801
Type of emission 5K93F1D
Channel separation 12.5 kHz
Rated power 11 dBm
Antenna specification Antenna type(UHF) : Helical antenna, Peak gain: -2.34dBi
Antenna type(NFC): Pattern antenna
Power source DC 3.7 V (Internal Rechargeable Battery)

1.2. Test configuration

The **JTECH an HME Company EV Guest Tag FCC ID: WDC-J1801** was tested according to the specification of EUT, the EUT must comply with following standards

FCC Part 15
FCC Part 2
ANSI C63.10-2013

1.3. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
AC adaptor	Zhonghan Electronics(Shenzhen)Co., Ltd.	FSP060-DIBAN2	H00000863	AC 120 V (Output : DC 12.0V/5.0A)
Tag-charger	Lee Technology Korea Co., Ltd.	Guest Paging	-	-

1.4. Software and Firmware description

The software and firmware installed in the EUT is version 1.0

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

1.5. Measurement results explanation example

For all conducted test items :

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

$$\begin{aligned}\text{Offset(dB)} &= \text{RF cable loss(dB)} + \text{attenuator factor(dB)} \\ &= 1.05 + 10 = 11.05 \text{ (dB)}\end{aligned}$$

1.6 Measurement Uncertainty

Test Item	Uncertainty	
Uncertainty for Conduction emission test		2.62 dB
Uncertainty for Radiation emission test (include Fundamental emission)	9kHz - 30MHz	4.54 dB
	30MHz - 1GHz	4.36 dB
	Above 1GHz	5.00 dB

Note. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

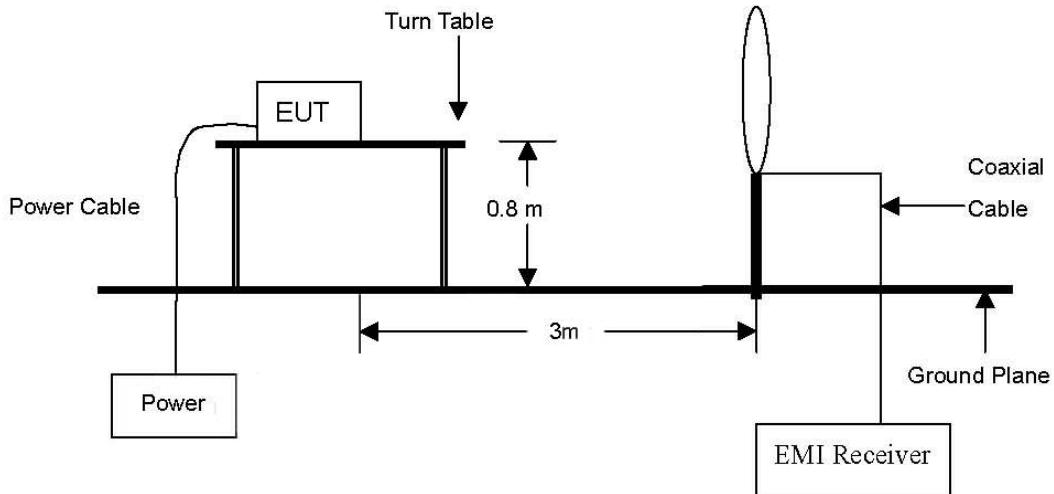
1.7. Test frequency/Channel operation

Ch.	Frequency (MHz)
01	13.56

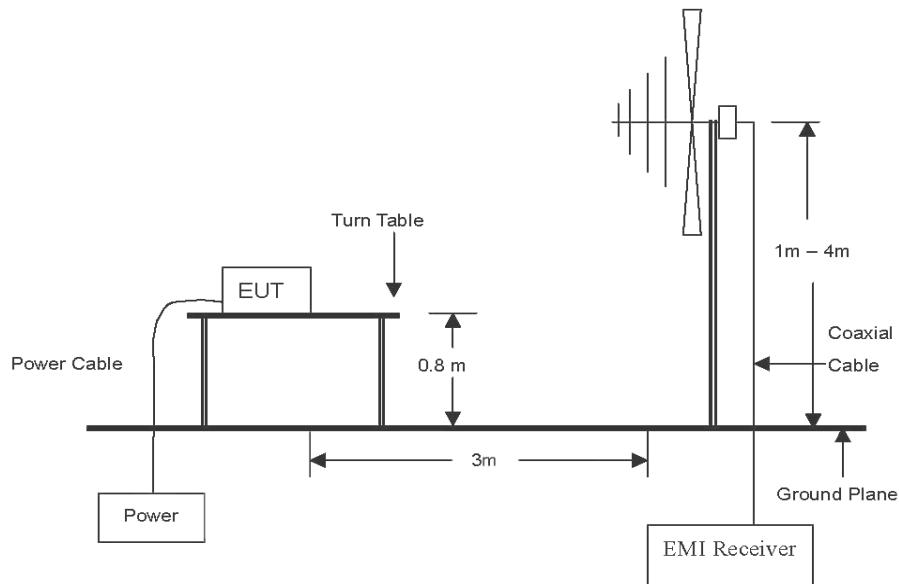
2. Summary of tests

Section in FCC Part 15 & 2	Parameter	Test results
15.225(a)	The field strength of fundamental	Pass
15.225(b)(c)	The field strength of spurious emission(In-band)	Pass
15.225(d) 15.209	The field strength of spurious emission(Out-band)	Pass
15.225(e)	Frequency stability	Pass
2.1049	20 dB bandwidth	Pass
15.207(a)	AC power line conducted emissions	Pass

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.


The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

3. Test results


3.1. Radiated spurious emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz emissions.

Test procedure

[9 kHz to 30 MHz]

The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Quasi-peak function and specified bandwidth with maximum hold mode.

The spectrum analyzer is set to:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 200 Hz for Quasi-peak detection (QP) at frequency below 9 kHz~ 150 kHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 9 kHz for Quasi-peak detection (QP) at frequency below 150 kHz~ 30 MHz.

[30 MHz to 1 GHz]

The height of the measuring antenna was varied between 1 to 4 m and the table was rotated a full revolution in order to obtain maximum values of the electric field intensity.

The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report.

The spectrum analyzer is set to:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 GHz.

Note.

According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz.

Although these test were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (MHz)	Distance (Meters)	Radiated (μ N/m)
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 ~ 72 MHz, 76 ~ 88 MHz, 174 ~ 216 MHz or 470 ~ 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

In the section 15.225:

- (a) The field strength of any emissions within the band 13.553 ~ 13.567 MHz shall not exceed 15,848 microvolts/meter (= 84 dB μ V/m) at 30 meters.
- (b) Within the bands 13.410 ~ 13.553 MHz and 13.567 ~ 13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter (=50.5 dB μ V/m) at 30 meters.
- (c) Within the bands 13.110 ~ 13.410 MHz and 13.710 ~ 14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter (=40.5 dB μ V/m) at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110 ~ 14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

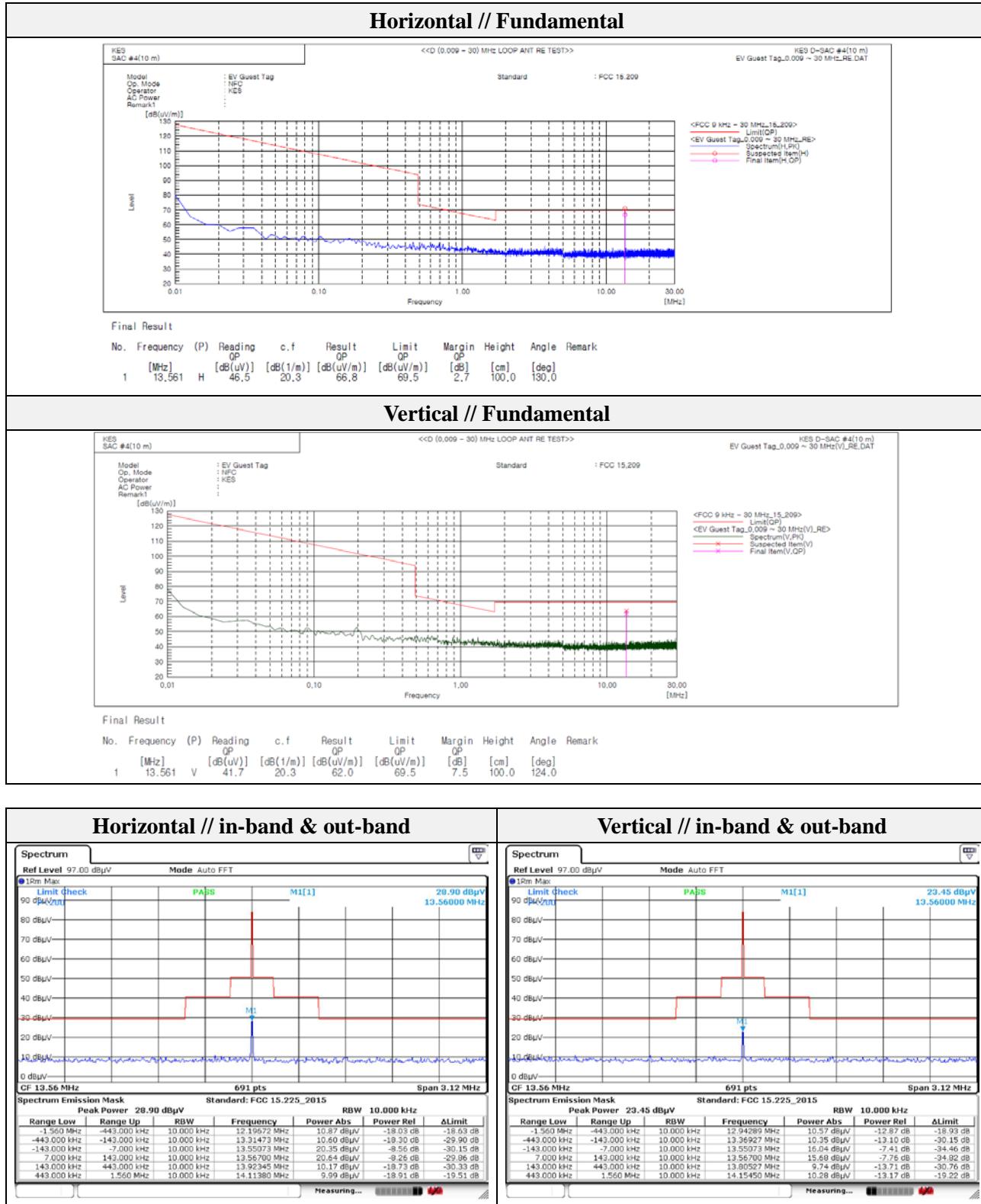
Test results for fundamental

Operating frequency: 13.560 MHz
 Distance of measurement: 3 meter

Radiated emissions		Ant.	Total factors		Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Pol.	Correction factor (dB/m)	Distance factor (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
13.560	46.50	H	20.30	40	26.80	84.00	57.20
13.560	41.70	V	20.30	40	22.00	84.00	62.00

Test results for in-band & out-band(9 kHz to 30 MHz)

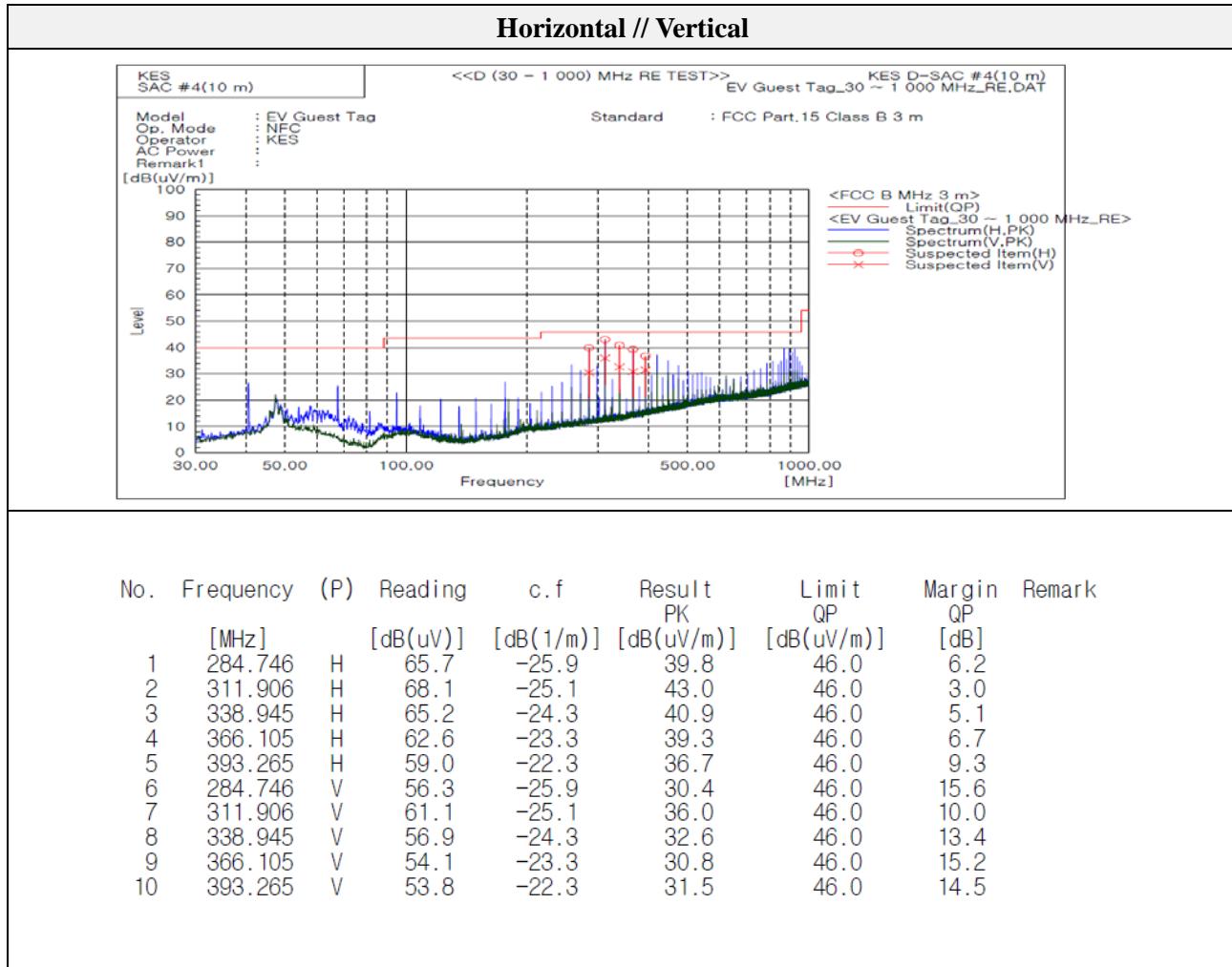
Radiated emissions		Ant.	Total factors		Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Pol.	Correction factor (dB/m)	Distance factor (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
12.197	10.87	H	20.87	40	-8.26	29.54	37.80
13.315	10.60	H	20.83	40	-8.57	40.50	49.07
13.551	20.35	H	20.86	40	1.21	50.50	49.29
13.567	20.64	H	20.86	40	1.50	50.50	49.00
13.923	10.17	H	20.89	40	-8.64	40.50	49.14
14.114	9.99	H	20.91	40	-9.10	29.54	38.64
12.943	10.57	V	20.81	40	-8.62	29.54	38.16
13.369	10.35	V	20.84	40	-8.81	40.50	49.31
13.551	16.04	V	20.86	40	-3.10	50.50	53.60
13.567	15.68	V	20.86	40	-3.46	50.50	53.96
13.805	9.74	V	20.88	40	-9.38	40.50	49.88
14.155	10.28	V	20.92	40	-8.80	29.54	38.34


Note.

1. All measurements were performed using a loop antenna. The antenna was positioned in three orthogonal positions (X front, Y side, Z top) and the position with the highest emission level was recorded.
2. The EUT was positioned in three orthogonal planes to determine the orientation resulting in the worst case emissions.
3. Measurements were performed at 3m and the data was extrapolated to the specified measurement distance of 30m using the square of an inverse linear distance extrapolation factor (40 dB/decade) as specified in §15.31(f)(2). Extrapolation Factor = $20 \log_{10}(30/3)^2 = 40$ dB.
4. The spectrum was investigated from 9 kHz up to 30 MHz using the loop antenna. Only the emissions shown in the table above were found to be significant.
5. All measurements were recorded using a spectrum analyzer employing a quasi-peak detector.
6. Actual = Reading + Correction factors(Ant. factor + Cable loss) - Distance factor
7. Margin [dB] = Limit [dB μ V//m] - Field Strength Level [dB μ V//m]

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

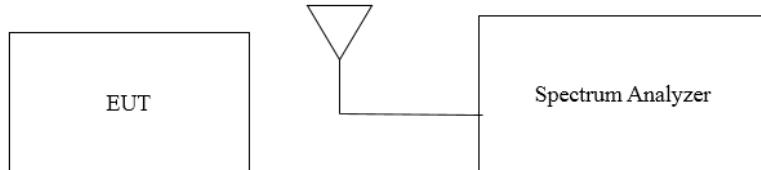
The results shown in this test report refer only to the sample(s) tested unless otherwise stated.


Test results (9 kHz to 30 MHz)

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

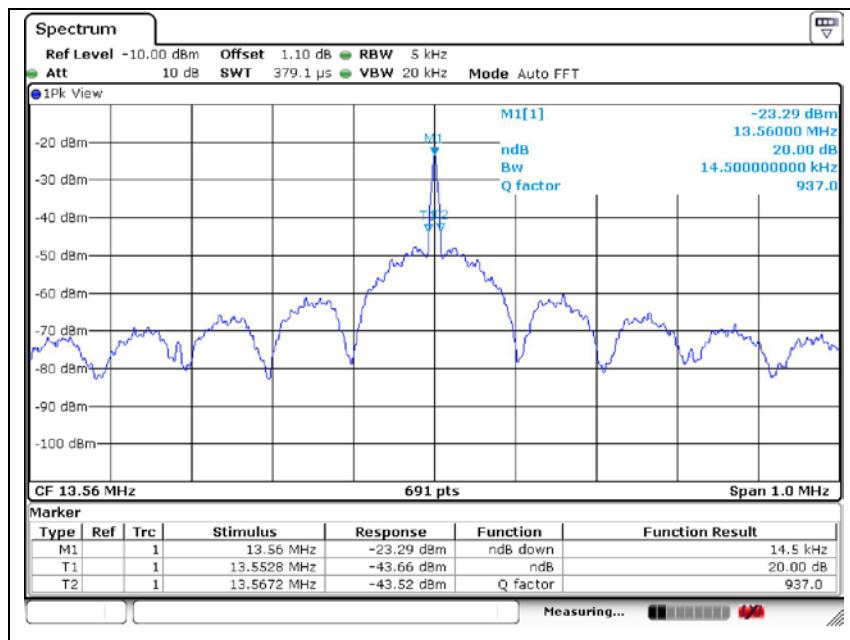
Test results (Below 1 000 MHz)



Note.

1. All measurements were recorded using a spectrum analyzer employing a quasi-peak detector for emissions below 960 MHz.
2. Both Vertical and Horizontal polarities of the receive antenna were evaluated with the worst case emissions being reported. Below 30 MHz the loop antenna was positioned in 3 orthogonal planes (X front, Y side, Z top) to determine the orientation resulting in the worst case emissions.
3. The EUT was positioned in three orthogonal planes to determine the orientation resulting in the worst case emissions.
4. The spectrum is measured from 9 kHz to the 10th harmonic and the worst-case emissions are reported.
5. No spurious emissions levels were found to be greater than the level of the fundamental.

3.2 20 dB bandwidth

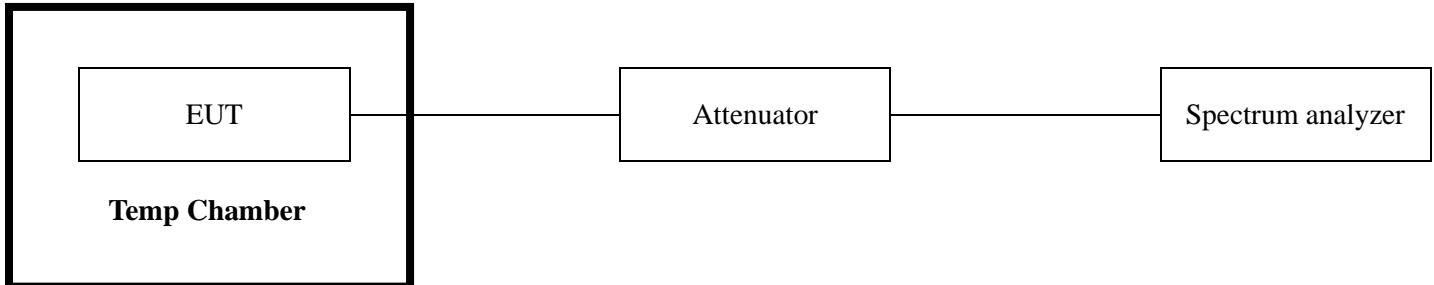

Test setup

Test procedure

ANSI C63.10-2013 – Section 6.9.2

1. Spectrum analyzer frequency is set to the nominal EUT channel center frequency.
2. RBW = 1~5% OBW
3. VBW $\geq 3 \times$ RBW
4. Reference level set to keep signal from exceeding maximum input mixer for linear operation.
5. Detector = Peak
6. Trace mode = Max hold
7. Sweep = Auto couple
8. The trace was allowed to stabilize
9. Using the marker-delta function, determine the “-20 dB down amplitude” using [(highest in band spectral density) – 20 dB]
10. Set a marker at the lowest frequency of the envelope of the spectral density, such that the marker is at or slightly below the “-20 dB down amplitude” determined in Step 9.
11. Reset Marker-delta function and move the marker to other side of the emission until the delta marker amplitude is the same level as reference amplitude. The marker delta frequency reading at this point is the specified emission bandwidth.

Note.


Because the measured signal is CW/CW-like, adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

3.3. Frequency Stability

Test procedure

ANSI C63.10-2013, clause 6.8.1

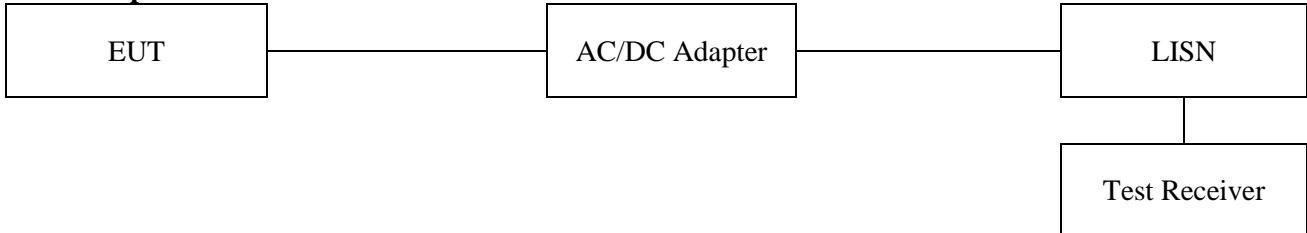
Test setup

1. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
2. Turn the EUT on and couple its output to a spectrum analyzer.
3. Turn the EUT off and set the chamber to the highest temperature specified.
4. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency.
5. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
6. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
7. While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made.

Limit

According to §15.225 (e), the frequency tolerance of the carrier signal shall be maintained within +/-0.01 % of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test results


Test voltage (%)	Test voltage (V)	Temperature (°C)	Maintaining time	Measure frequency (MHz)	Frequency deviation (Hz)	Deviation (%)	
100 %	DC 3.7	-20	Startup	13.559 894	-106	-0.000 782	
			2 minutes	13.559 895	-105	-0.000 774	
			5 minutes	13.559 900	-100	-0.000 737	
			10 minutes	13.559 911	-89	-0.000 656	
100 %		-10	Startup	13.559 904	-96	-0.000 708	
			2 minutes	13.559 910	-90	-0.000 664	
			5 minutes	13.559 931	-69	-0.000 509	
			10 minutes	13.559 937	-63	-0.000 465	
100 %		0	Startup	13.559 966	-34	-0.000 251	
			2 minutes	13.559 970	-30	-0.000 221	
			5 minutes	13.559 988	-12	-0.000 088	
			10 minutes	13.559 991	-9	-0.000 066	
100 %		10	Startup	13.560 010	10	0.000 074	
			2 minutes	13.560 015	15	0.000 111	
			5 minutes	13.560 020	20	0.000 147	
			10 minutes	13.560 022	22	0.000 162	
100 %		20	Startup	13.560 024	24	0.000 177	
			2 minutes	13.560 028	28	0.000 206	
			5 minutes	13.560 028	28	0.000 206	
			10 minutes	13.560 031	31	0.000 229	
100 %		22.1	Startup	13.560 029	29	0.000 214	
			2 minutes	13.560 038	38	0.000 280	
			5 minutes	13.560 040	40	0.000 295	
			10 minutes	13.560 049	49	0.000 361	
100 %		30	Startup	13.560 042	42	0.000 310	
			2 minutes	13.560 044	44	0.000 324	
			5 minutes	13.560 050	50	0.000 369	
			10 minutes	13.560 052	52	0.000 383	
100 %		40	Startup	13.560 046	46	0.000 339	
			2 minutes	13.560 051	51	0.000 376	
			5 minutes	13.560 060	60	0.000 442	
			10 minutes	13.560 063	63	0.000 465	
100 %		50	Startup	13.560 083	83	0.000 612	
			2 minutes	13.560 098	98	0.000 723	
			5 minutes	13.560 103	103	0.000 760	
			10 minutes	13.560 121	121	0.000 892	
85 %	DC 3.15	22.1	Startup	13.560 029	29	0.000 214	
			2 minutes	13.560 035	35	0.000 258	
			5 minutes	13.560 039	39	0.000 288	
			10 minutes	13.560 049	49	0.000 361	
115 %	DC 4.26	22.1	Startup	13.560 029	29	0.000 214	
			2 minutes	13.560 036	36	0.000 265	
			5 minutes	13.560 040	40	0.000 295	
			10 minutes	13.560 048	48	0.000 354	

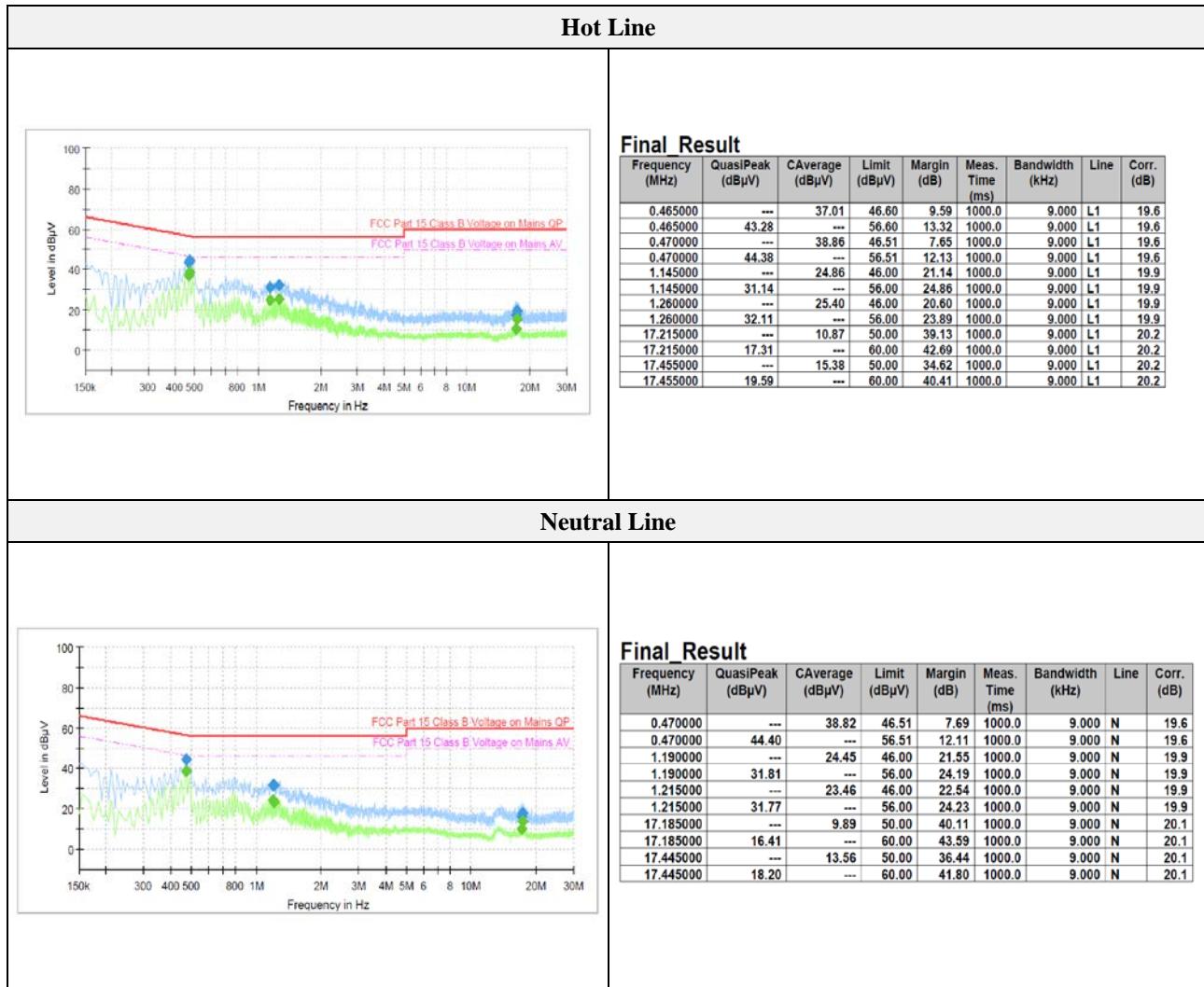
This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

3.4. AC conducted emissions

Test setup

Limit


According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Frequency of Emission (MHz)	Conducted limit (dB μ W/m)	
	Quasi-peak	Average
0.15 – 0.50	66 - 56*	56 - 46*
0.50 – 5.00	56	46
5.00 – 30.0	60	50

Note:

1. All AC line conducted spurious emission are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and the appropriate frequencies. All data rates and modes were investigated for conducted spurious emission. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.
2. Both Cable loss and LISN factor are included in measurement level (QP Level or AV Level).

Test results

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV30	101389	1 year	2019.01.19
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2019.01.22
Attenuator	Agilent	8493C	82506	1 year	2019.01.22
Loop Antenna	Schwarzbeck	FMZB1513	225	2 years	2019.05.10
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2019.01.22
EMI Test Receiver	R&S	ESR3	101781	1 year	2018.04.27
EMI Test Receiver	R&S	ESU26	100552	1 year	2018.04.19
Temperature & Humidity Chamber	Daehan Engineering	DH-1000	DH1000060628	1 year	2019.01.19
Pulse Limiter	R&S	ESH3-Z2	101915	1 year	2018.11.27
LISN	R&S	ENV216	101787	1 year	2019.01.15
DC Power Supply	HP	6632B	MY43004130	1 year	2018.07.03

Peripheral device

Device	Manufacturer	Model No.	Serial No.
-	-	-	-