

REGULATORY COMPLIANCE TEST REPORT

FCC CFR 47 Part 15 Subpart E 15.407

ISED RSS-247 Issue 2

REPORT No.: NTCT89-U1 PCA 2.2 Rev A

Company: NetAlly

Test of: BLUE Bean A

REGULATORY COMPLIANCE TEST REPORT

Company: NetAlly

Test of: BLUE Bean A

To: FCC CFR47 Part 15 SubPart E 15.407, ISED RSS-247 Issue 2

Test Report Serial No.: NTCT89-U1 PCA 2.2 Rev A

This report supersedes: NONE

Applicant: NetAlly
2075 Research Parkway
Colorado Springs, Colorado 80920
USA

Issue Date: 24th June 2019

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.
575 Boulder Court
Pleasanton California 94566
USA
Phone: +1 (925) 462-0304
Fax: +1 (925) 462-0306
www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	4
1.1. TESTING ACCREDITATION	4
1.2. RECOGNITION	5
1.3. PRODUCT CERTIFICATION	6
2. DOCUMENT HISTORY	7
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	9
4.1. Normative References	9
4.2. Test and Uncertainty Procedure	10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	11
5.1. Technical Details	11
5.2. Scope Of Test Program	12
5.3. Equipment Model(s) and Serial Number(s)	13
5.4. Antenna Details	13
5.5. Test Configurations	13
5.6. Equipment Modifications	14
5.7. Deviations from the Test Standard	14
6. TEST SUMMARY	15
7. TEST EQUIPMENT CONFIGURATION(S)	16
7.1. Conducted Test Setup	16
7.2. Dynamic Frequency Selection (DFS)	17
7.3. Radiated Emissions	18
8. MEASUREMENT AND PRESENTATION OF TEST DATA	20
9. TEST RESULTS	21
9.1. Peak Transmit Power	21
9.2. 26 dB & 99% Bandwidth	31
9.3. Power Spectral Density	40
9.4. Dynamic Frequency Selection (DFS)	50
9.4.1. Master Devices	51
9.4.2. Client Devices	52
9.4.3. DFS Detection Thresholds	52
9.4.4. Response Requirements	53
9.4.5. Radar Test Waveforms	54
9.4.6. Radar Waveform Calibration	57
9.4.7. Channel Close / Transmission Time	58
9.5. Radiated	60
9.5.1. TX Spurious & Restricted Band Emissions	63
9.5.2. Restricted Edge & Band-Edge Emissions	69
A. APPENDIX - GRAPHICAL IMAGES	78
A.1. 26 dB & 99% Bandwidth	79
A.2. Power Spectral Density	100
A.3. Restricted Edge & Band-Edge Emissions	142

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-01.pdf>

Accredited Laboratory

A2LA has accredited

MiCOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005
General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates
technical competence for a defined scope and the operation of a laboratory quality management system
(refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 14th day of May 2018.

President and CEO
For the Accreditation Council
Certificate Number 2381.01
Valid to November 30, 2019

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	TCB	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI	--	--	A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	US0159
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

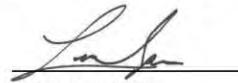
Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-02.pdf>

Accredited Product Certification Body


A2LA has accredited

MiCOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 14th day of May 2018

Linda
President and CEO
For the Accreditation Council
Certificate Number 2381.02
Valid to November 30, 2019

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

United States of America – Telecommunication Certification Body (TCB)
Industry Canada – Certification Body, CAB Identifier – US0159
Europe – Notified Body (NB), NB Identifier - 2280
Japan – Recognized Certification Body (RCB), RCB Identifier - 210

2. DOCUMENT HISTORY

Document History		
Revision	Date	Comments
Draft	20 th June 2019	
Rev A	24 th June 2019	Initial Release
.		
.		
For Radiated Digital Emissions & AC Wire Line measurement results please refer to MiCOM Labs test report: NTCT89-U2 Rev A		
Rev A	7 th May 2019	Initial release
.		

In the above table the latest report revision will replace all earlier versions.

3. TEST RESULT CERTIFICATE

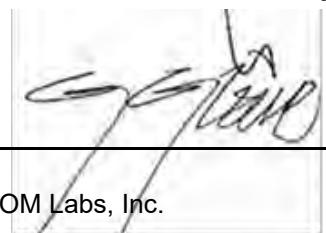
Manufacturer: NetAlly 2075 Research Parkway Colorado Springs Colorado 80920 USA	Tested By: MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA
Model: EXG-200	Telephone: +1 925 462 0304
Type Of Equipment: BLUE Bean A Portable Network Expert – Ethernet and Wi-Fi Tester	Fax: +1 925 462 0306
S/N's: None Provided	
Test Date(s): 11 th – 14 th June 2019	Website: www.micomlabs.com

STANDARD(S)

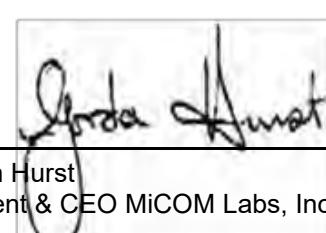
**FCC CFR 47 Part 15 Subpart E 15.407
ISED RSS-247 Issue 2**

TEST RESULTS

EQUIPMENT COMPLIES


MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:


1. This document reports conditions under which testing was conducted and the results of testing performed.
2. Details of test methods used have been recorded and kept on file by the laboratory.
3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve
Quality Manager MiCOM Labs, Inc.

Gordon Hurst
President & CEO MiCOM Labs, Inc.

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911 D01 & D02	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
II	KDB 905462 D07 v02	22nd August 2016	Test guidance to demonstrate compliance for U-NII devices subject to DFS requirements.
III	KDB 926956 D01 v02	22nd August 2016	U-NII Device Transition Plan
IV	A2LA	August 2018	R105 - Requirement's When Making Reference to A2LA Accreditation Status
V	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
VI	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VII	CISPR 32	2015	Electromagnetic compatibility of multimedia equipment - Emission requirements
VIII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
IX	FCC 06-96	Jun 30 2006	Memorandum Opinion and Order
X	FCC 47 CFR Part 15.407	2016	Radio Frequency Devices; Subpart E –Unlicensed National Information Infrastructure Devices
XI	ICES-003	Issue 6 Jan 2016; Updated April 2019	Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
XII	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
XIII	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XIV	RSS-Gen Issue 5	April 2018	General Requirements for Compliance of Radio Apparatus
XV	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.
XVI	KDB 905462 D02 v02	April 8 2016	Compliance Measurement Procedures for Unlicensed National Information Infrastructure devices operating in the 5250 to 5350 MHz and 5470 to 5725 MHz bands incorporating Dynamic Frequency Selection.
XVII	KDB 789033 D02 V02r01	14th December, 2017	Guidelines For Compliance Testing Of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor $k = 2$, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the NetAlly - 1x1 WiFi/BT to FCC CFR 47 Part 15 Subpart E 15.407 and ISED RSS-247 Issue 2 Compliance Measurement Procedures for Unlicensed National Information Infrastructure devices operating in the 5250 to 5350 MHz and 5470 to 5725 MHz bands incorporating Dynamic Frequency Selection.
Applicant:	NetAlly 2075 Research Parkway Colorado Springs Colorado 80920 USA
Manufacturer:	NetAlly, as above
Laboratory performing the tests:	MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA
Test report reference number:	NTCT89-U1 PCA 2.2 Draft
Date EUT received:	3rd June 2019
Standard(s) applied:	FCC CFR 47 Part 15 Subpart E 15.407 ISED RSS-247 Issue 2
Dates of test (from - to):	11 - 14 June 2019
No of Units Tested:	2
Model(s):	BLUE Bean A
Location for use:	Indoors
Declared Frequency Range(s):	5250 - 5350 MHz; 5470 - 5725 MHz;
Type of Modulation:	OFDM
EUT Modes of Operation:	a; ac-80; HT-20; HT-40;
Declared Nominal Output Power (dBm):	+18 dBm all modes
Transmit/Receive Operation:	1x1 transmit and receive antenna chain
Rated Input Voltage and Current:	15Vdc 3A
Operating Temperature Range:	0°C to 45°C
ITU Emission Designator:	802.11 a 18M3D1D 802.11 nHT-20 17M6D1D 802.11 nHT-40 36M6D1D 802.11 ac-80 76M0D1D
Equipment Dimensions:	4.05 IN X 7.67 IN X 2.16 IN (10.3 cm X 19.5 cm X 5.5 cm)
Weight:	1.4 lbs (0.64 kg)
Hardware Rev:	2
Software Rev:	8.1.0.1.0.0.161

5.2. Scope Of Test Program

NetAlly BLUE Bean A

The scope of the test program was to test the NetAlly BLUE Bean A to the configurations in the frequency ranges 5250 - 5350 MHz and 5470 - 5725 MHz; for compliance against the following specification:

FCC CFR 47 Part 15 Subpart E 15.407

Compliance Measurement Procedures for Unlicensed National Information Infrastructure devices operating in the 5250 to 5350 MHz and 5470 to 5725 MHz bands incorporating Dynamic Frequency Selection.

RSS-247 Issue 2

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description	Mfr	Model No.	Serial No.
EUT	Network Test Equipment	8devices	BLUE Bean A	Not Provided
EUT	Power Supply Unit 100 – 240 V _{AC} 1.2A MAX, 50-60 Hz +5Vdc @ 3A +9Vdc @ 3A +12Vdc @ 3A +15Vdc @ 3A +20Vdc @ 2.2A 45W Max.	FSP	045-A1BR	Not Available

5.4. Antenna Details

Type	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	TDK	ANT016008LCD2442MA1	Chip	5.2	-	360	-	5250 - 5350
integral	TDK	ANT016008LCD2442MA1	Chip	5.2	-	360	-	5470 - 5725
BF Gain - Beamforming Gain Dir BW - Directional BeamWidth X-Pol - Cross Polarization								

5.5. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s) (802.11a/n/ac)	Data Rate with Highest Power MBit/s	Channel Frequency (MHz)		
		Low	Mid	High
5250 - 5350 MHz				
a	6	5,260.00	5,300.00	5,320.00
ac-80	29.3	--	--	5,290.00
HT-20	6.5	5,260.00	5,300.00	5,320.00
HT-40	13.5	5,270.00	--	5,310.00
5470 - 5725 MHz				
a	6	5,500.00	5,580.00	5,720.00
ac-80	29.3	5,530.00	5,610.00	5,690.00
HT-20	6.5	5,500.00	5,580.00	5,720.00
HT-40	13.5	5,510.00	5,550.00	5,710.00

5.6. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

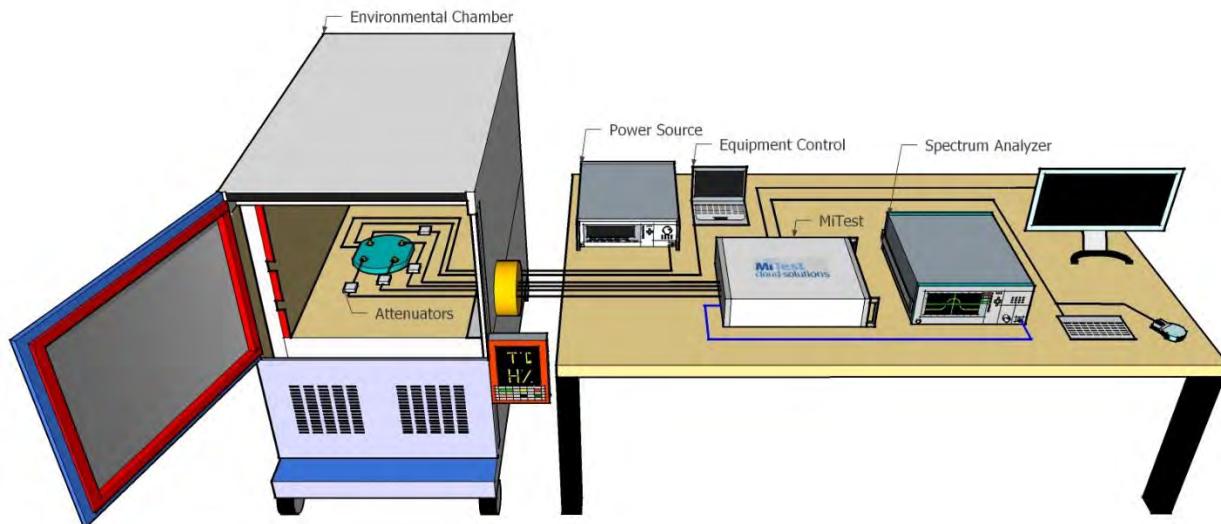
5.7. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

6. TEST SUMMARY

List of Measurements

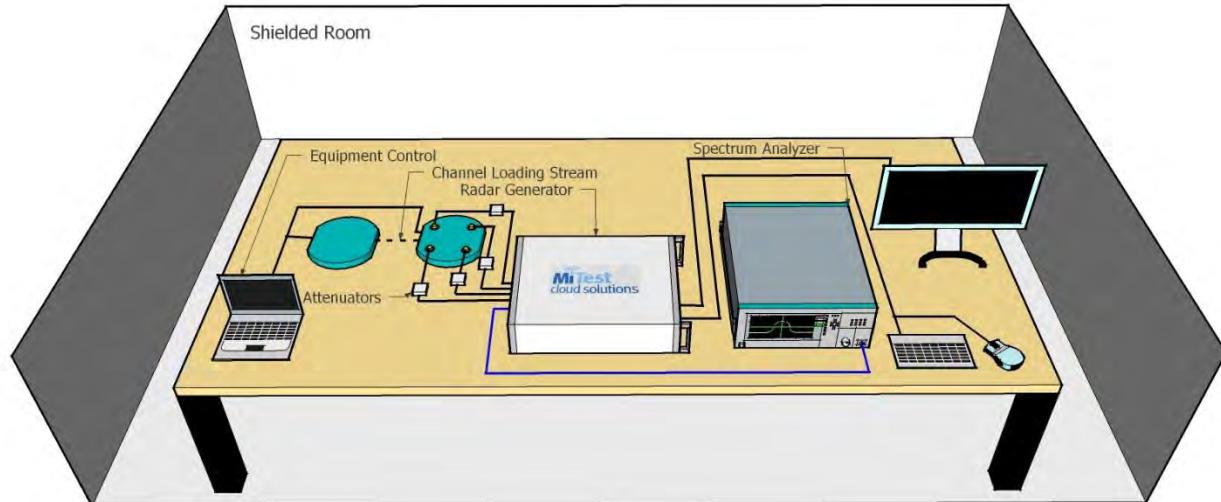

Test Header	Result	Data Link
Peak Transmit Power	Complies	View Data
26 dB & 99% Bandwidth	Complies	View Data
Power Spectral Density	Complies	View Data
Dynamic Frequency Selection (DFS)	Complies	-
Channel Availability Check	Not Tested ¹	-
Initial CAC	Not Tested ¹	-
Beginning CAC	Not Tested ¹	-
End CAC	Not Tested ¹	-
Channel Close / Transmission Time	Complies	View Data
Non-Occupancy Period	Not Tested	-
Probability of Detection	Not Tested ¹	-
Detection Bandwidth	Not Tested ¹	-
Radiated	Complies	-
TX Spurious & Restricted Band Emissions	Complies	View Data
Restricted Edge & Band-Edge Emissions	Complies	View Data

Not Tested¹ – Client Device only

7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted Test Setup

MiTest Automated Test System

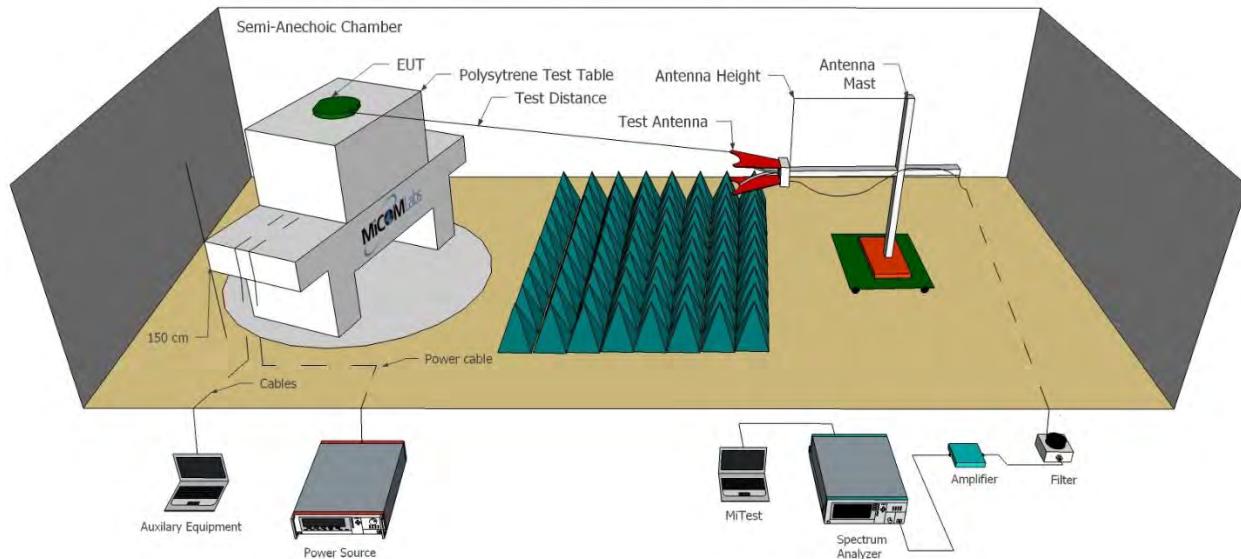


A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2019
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	20 Sep 2019
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	24 Feb 2020

7.2. Dynamic Frequency Selection (DFS)

Dynamic Frequency Selection (DFS) - Conducted


A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
0507	Power Meter EPM Series	Agilent	E4418B	MY40511221	20 Oct 2019
296	DFS Test Room	MiCOM	DFS Test Room	296	28 Mar 2019
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
71	Spectrum Analyser 9KHz-50GHz	HP	8565E	3425A00181	6 Aug 2019
512	MiTest DFS Test System	MiCOM Labs Inc.	MiTest	3C:FD:FE:9F:B4:58	15 Jul 2019
DFS SMA#1	SMA Cable for DFS	Megaphase	SMA Cable	None	Cal when used
DFS SMA#2	SMA Cable for DFS	Megaphase	SMA Cable	None	Cal when used
DFS SMA#3	SMA Cable for DFS	Megaphase	SMA Cable	None	Cal when used
DFS SMA#4	SMA Cable for DFS	Megaphase	SMA Cable	None	Cal when used

7.3. Radiated Emissions

The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions above 1GHz.

Radiated Emissions Above 1GHz Test Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	21 Apr 2019
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	4 Apr 2019
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	12 Apr 2019
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	12 Oct 2019
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	12 Apr 2019
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required

413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	9 Oct 2019
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	9 Oct 2019
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	9 Oct 2019
465	Low Pass Filter DC-1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	9 Oct 2019
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	24 Aug 2019
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	24 Aug 2019
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
518	Cable - Amp to Antenna	SRC Haverhill	157-3051574	518	24 Aug 2019

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by [MiTest](#). [MiTest](#) is an automated test system developed by MiCOM Labs. [MiTest](#) is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "[MiTest](#)" Automated Test System" (Patent Pending)

9. TEST RESULTS

9.1. Peak Transmit Power

Conducted Test Conditions for Maximum Conducted Output Power			
Standard:	FCC CFR 47:15.407 & ISED RSS-247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Maximum Conducted Output Power	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.407 (a); 6.2.1.1 & 6.2.3.1	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Maximum Conducted Output Power Measurement

Method PM (Measurement using an RF average power meter). KDB 789033 defines a methodology using an average wideband power meter. Measurements were made while the EUT was operating in a continuous transmission mode (100% duty cycle) at the appropriate center frequency. All operational modes and frequency bands were measured independently and the resultant calculated. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported separately. A summation (Σ) of each antenna port output power is provided which includes any offset due to Duty Cycle Correction Factor (DCCF). Testing was performed under ambient conditions at nominal voltage.

Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document.
Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x) \text{ dBm}$

A = Total Power $[10^{\text{a}/10} + 10^{\text{b}/10} + 10^{\text{c}/10} + 10^{\text{d}/10}]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits Maximum Conducted Output Power

Operating Frequency Band 5150-5250 MHz

15.407 (a)(1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are

used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5250-5350 and 5470 – 5725 MHz

15. 407 (a)(2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5725 – 5850 MHz

15. 407 (a)(3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Equipment Configuration for Peak Transmit Power

Variant:	802.11a	Duty Cycle (%):	93.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Conducted Output Power (dBm)				Calculated Total Power	Minimum 26 dB Bandwidth	Limit	Margin	EUT Power Setting
	Port(s)								
MHz	a	b	c	d	Σ Port(s) dBm	MHz	dBm	dB	
5260.0	12.29	--	--	--	12.29	33.427	24.00	-11.71	17.00
5300.0	12.61	--	--	--	12.61	28.697	24.00	-11.39	17.00
5320.0	12.07	--	--	--	12.07	36.152	24.00	-11.93	17.00

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Variant:	802.11ac-80	Duty Cycle (%):	71.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test Frequency	Measured Conducted Output Power (dBm)				Calculated Total Power	Minimum 26 dB Bandwidth	Limit	Margin	EUT Power Setting
	Port(s)								
MHz	a	b	c	d	Σ Port(s) dBm	MHz	dBm	dB	
5290.0	11.26	--	--	--	11.26	156.914	24.00	-12.74	17.00

Traceability to Industry Recognized Test Methodologies									
Work Instruction:					WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:									

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-20	Duty Cycle (%):	92.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Conducted Output Power (dBm)				Calculated Total Power	Minimum 26 dB Bandwidth	Limit	Margin	EUT Power Setting
	Port(s)								
MHz	a	b	c	d	Σ Port(s) dBm	MHz	dBm	dB	
5260.0	11.87	--	--	--	11.87	29.579	24.00	-12.13	17.00
5300.0	11.77	--	--	--	11.77	35.431	24.00	-12.23	17.00
5320.0	11.79	--	--	--	11.79	34.629	24.00	-12.21	17.00

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-40	Duty Cycle (%):	83.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Conducted Output Power (dBm)				Calculated Total Power	Minimum 26 dB Bandwidth	Limit	Margin	EUT Power Setting
	Port(s)								
MHz	a	b	c	d	Σ Port(s) dBm	MHz	dBm	dB	
5270.0	11.21	--	--	--	11.21	72.786	24.00	-12.79	17.00
5310.0	11.58	--	--	--	11.58	79.198	24.00	-12.42	17.00

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Equipment Configuration for Peak Transmit Power

Variant:	802.11a	Duty Cycle (%):	93.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Conducted Output Power (dBm)				Calculated Total Power	Minimum 26 dB Bandwidth	Limit	Margin	EUT Power Setting
	Port(s)								
MHz	a	b	c	d	Σ Port(s) dBm	MHz	dBm	dB	
5500.0	12.74	--	--	--	12.74	35.992	24.00	-10.94	17.00
5580.0	12.51	--	--	--	12.51	32.144	24.00	-11.17	17.00
5720.0	11.50	--	--	--	11.50	36.393	24.00	-12.18	17.00

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Equipment Configuration for Peak Transmit Power

Variant:	802.11ac-80	Duty Cycle (%):	71.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Conducted Output Power (dBm)				Calculated Total Power	Minimum 26 dB Bandwidth	Limit	Margin	EUT Power Setting
	Port(s)								
MHz	a	b	c	d	Σ Port(s) dBm	MHz	dBm	dB	
5530.0	11.22	--	--	--	11.22	151.864	24.00	-11.29	17.00
5610.0	10.41	--	--	--	10.41	155.110	24.00	-12.10	17.00
5690.0	11.09	--	--	--	11.09	137.796	24.00	-11.42	17.00

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-20	Duty Cycle (%):	92.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Conducted Output Power (dBm)				Calculated Total Power	Minimum 26 dB Bandwidth	Limit	Margin	EUT Power Setting
	Port(s)	a	b	c	d				
MHz									
5500.0	12.33	--	--	--	12.33	36.954	24.00	-11.31	17.00
5580.0	11.96	--	--	--	11.96	34.790	24.00	-11.72	17.00
5720.0	11.29	--	--	--	11.29	34.549	24.00	-12.39	17.00

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-40	Duty Cycle (%):	82.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Conducted Output Power (dBm)				Calculated Total Power	Minimum 26 dB Bandwidth	Limit	Margin	EUT Power Setting
	Port(s)								
MHz	a	b	c	d	Σ Port(s) dBm	MHz	dBm	dB	
5510.0	11.91	--	--	--	11.91	67.495	24.00	-11.23	17.00
5550.0	11.51	--	--	--	11.51	57.555	24.00	-11.63	17.00
5710.0	11.61	--	--	--	11.61	58.838	24.00	-11.53	17.00

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

9.2. 26 dB & 99% Bandwidth

Conducted Test Conditions for 26 dB and 99% Bandwidth			
Standard:	FCC CFR 47:15.407 & ISED RSS-Gen	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	26 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.407 (a); 6.7	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		
Test Procedure for 26 dB and 99% Bandwidth Measurement The bandwidth at 26 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The Resolution Bandwidth was set to approximately 1% of the emission bandwidth. Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported. Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document.			

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11a	Duty Cycle (%):	93.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 26 dB Bandwidth (MHz)				26 dB Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5260.0	33.427	--	--	--	33.427	33.427		
5300.0	28.697	--	--	--	28.697	28.697		
5320.0	36.152	--	--	--	36.152	36.152		

Test Frequency	Measured 99% Bandwidth (MHz)				99% Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5260.0	17.715	--	--	--	17.715	17.715		
5300.0	16.673	--	--	--	16.673	16.673		
5320.0	20.521	--	--	--	20.521	20.521		

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ac-80	Duty Cycle (%):	71.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 26 dB Bandwidth (MHz)				26 dB Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5290.0	156.914	--	--	--	156.914	156.914		

Test Frequency	Measured 99% Bandwidth (MHz)				99% Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5290.0	85.852	--	--	--	85.852	85.852		

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11n HT-20	Duty Cycle (%):	92.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 26 dB Bandwidth (MHz)				26 dB Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5260.0	29.579	--	--	--	29.579	29.579		
5300.0	35.431	--	--	--	35.431	35.431		
5320.0	34.629	--	--	--	34.629	34.629		

Test Frequency	Measured 99% Bandwidth (MHz)				99% Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5260.0	17.876	--	--	--	17.876	17.876		
5300.0	19.559	--	--	--	19.559	19.559		
5320.0	19.158	--	--	--	19.158	19.158		

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11n HT-40	Duty Cycle (%):	83.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 26 dB Bandwidth (MHz)				26 dB Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5270.0	72.786	--	--	--	72.786	72.786		
5310.0	79.198	--	--	--	79.198	79.198		

Test Frequency	Measured 99% Bandwidth (MHz)				99% Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5270.0	37.836	--	--	--	37.836	37.836		
5310.0	45.050	--	--	--	45.050	45.050		

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11a	Duty Cycle (%):	93.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 26 dB Bandwidth (MHz)				26 dB Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5500.0	35.992	--	--	--	35.992	35.992		
5580.0	32.144	--	--	--	32.144	32.144		
5720.0	36.393	--	--	--	36.393	36.393		

Test Frequency	Measured 99% Bandwidth (MHz)				99% Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5500.0	19.880	--	--	--	19.880	19.880		
5580.0	17.074	--	--	--	17.074	17.074		
5720.0	20.281	--	--	--	20.281	20.281		

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ac-80	Duty Cycle (%):	71.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 26 dB Bandwidth (MHz)				26 dB Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5530.0	151.864	--	--	--	151.864	151.864		
5610.0	155.110	--	--	--	155.110	155.110		
5690.0	137.796	--	--	--	137.796	137.796		

Test Frequency	Measured 99% Bandwidth (MHz)				99% Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5530.0	77.916	--	--	--	77.916	77.916		
5610.0	85.491	--	--	--	85.491	85.491		
5690.0	81.523	--	--	--	81.523	81.523		

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11n HT-20	Duty Cycle (%):	92.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 26 dB Bandwidth (MHz)				26 dB Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5500.0	36.954	--	--	--	36.954	36.954		
5580.0	34.790	--	--	--	34.790	34.790		
5720.0	34.549	--	--	--	34.549	34.549		

Test Frequency	Measured 99% Bandwidth (MHz)				99% Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5500.0	19.800	--	--	--	19.800	19.800		
5580.0	18.277	--	--	--	18.277	18.277		
5720.0	19.800	--	--	--	19.800	19.800		

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11n HT-40	Duty Cycle (%):	82.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 26 dB Bandwidth (MHz)				26 dB Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5510.0	67.495	--	--	--	67.495	67.495		
5550.0	57.555	--	--	--	57.555	57.555		
5710.0	58.838	--	--	--	58.838	58.838		

Test Frequency	Measured 99% Bandwidth (MHz)				99% Bandwidth (MHz)			
	Port(s)							
MHz	a	b	c	d	Highest	Lowest		
5510.0	36.874	--	--	--	36.874	36.874		
5550.0	36.553	--	--	--	36.553	36.553		
5710.0	36.232	--	--	--	36.232	36.232		

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

9.3. Power Spectral Density

Conducted Test Conditions for Power Spectral Density			
Standard:	FCC CFR 47:15.407 & ISED RSS-247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.407 (a); 6.2.2.1,6.2.3.1	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Power Spectral Density

The in-band power spectral density was measured using the test technique specified in KDB 789033. A 1 MHz measurement bandwidth was implemented for the analyzer sweep. Once the sweep is complete the analyzer trace data is downloaded and used for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (â) and a link to this additional graphic is provided.

Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE: It may be observed that spectrum in some plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information

Calculated Power = $A + 10 \log (1/x) \text{ dBm}$

$A = \text{Total Power Spectral Density} [10^{\log_{10}(10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})}]$

$x = \text{Duty Cycle}$

Limits Power Spectral Density

Operating Frequency Band 5150-5250 MHz

15.407 (a)(1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any

corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5250-5350 and 5470 – 5725 MHz

15. 407 (a)(2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5725 – 5850 MHz

15. 407 (a)(3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Equipment Configuration for Power Spectral Density

Variant:	802.11a	Duty Cycle (%):	93.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density				Summation Peak Marker + DCCF (+0.32 dB)	Limit	Margin
	Port(s) (dBm/MHz)						
MHz	a	b	c	d	dBm/MHz	dBm/MHz	dB
5260.0	-2.656	--	--	--	-2.341	11.0	-13.3
5300.0	-2.483	--	--	--	-2.168	11.0	-13.2
5320.0	-3.059	--	--	--	-2.744	11.0	-13.7

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Power Spectral Density

Variant:	802.11ac-80	Duty Cycle (%):	71.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density				Summation Peak Marker + DCCF (+1.49 dB)	Limit	Margin
	Port(s) (dBm/MHz)						
MHz	a	b	c	d	dBm/MHz	dBm/MHz	dB
5290.0	-15.954	--	--	--	-14.467	11.0	-25.5

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Power Spectral Density

Variant:	802.11n HT-20	Duty Cycle (%):	92.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density				Summation Peak Marker + DCCF (+0.36 dB)	Limit	Margin
	Port(s) (dBm/MHz)						
MHz	a	b	c	d	dBm/MHz	dBm/MHz	dB
5260.0	-5.152	--	--	--	-4.790	11.0	-15.8
5300.0	-5.178	--	--	--	-4.816	11.0	-15.8
5320.0	-4.772	--	--	--	-4.410	11.0	-15.4

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Power Spectral Density

Variant:	802.11n HT-40	Duty Cycle (%):	83.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density				Summation Peak Marker + DCCF (+0.81 dB)	Limit	Margin
	Port(s) (dBm/MHz)						
MHz	a	b	c	d	dBm/MHz	dBm/MHz	dB
5270.0	-9.880	--	--	--	-9.071	11.0	-20.1
5310.0	-8.619	--	--	--	-7.810	11.0	-18.8

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Power Spectral Density

Variant:	802.11a	Duty Cycle (%):	93.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density				Summation Peak Marker + DCCF (+0.32 dB)	Limit	Margin
	Port(s) (dBm/MHz)						
MHz	a	b	c	d	dBm/MHz	dBm/MHz	dB
5500.0	-2.502	--	--	--	-2.187	11.0	-13.2
5580.0	-3.379	--	--	--	-3.064	11.0	-14.1
5720.0	-4.451	--	--	--	-4.236	11.0	-15.2

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Power Spectral Density

Variant:	802.11ac-80	Duty Cycle (%):	71.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density				Summation Peak Marker + DCCF (+1.49 dB)	Limit	Margin
	Port(s) (dBm/MHz)						
MHz	a	b	c	d	dBm/MHz	dBm/MHz	dB
5530.0	-16.755	--	--	--	-15.268	11.0	-26.3
5610.0	-18.825	--	--	--	-17.338	11.0	-28.3
5690.0	-16.054	--	--	--	-14.567	11.0	-25.6

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Power Spectral Density

Variant:	802.11n HT-20	Duty Cycle (%):	92.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density				Summation Peak Marker + DCCF (+0.36 dB)	Limit	Margin
	Port(s) (dBm/MHz)						
MHz	a	b	c	d	dBm/MHz	dBm/MHz	dB
5500.0	-4.648	--	--	--	-4.286	11.0	-15.3
5580.0	-4.151	--	--	--	-3.836	11.0	-14.8
5720.0	-5.253	--	--	--	-4.938	11.0	-15.9

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Power Spectral Density

Variant:	802.11n HT-40	Duty Cycle (%):	82.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	5.18
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density				Summation Peak Marker + DCCF (+0.86 dB)	Limit	Margin
	Port(s) (dBm/MHz)						
MHz	a	b	c	d	dBm/MHz	dBm/MHz	dB
5510.0	-9.080	--	--	--	-8.218	11.0	-19.2
5550.0	-9.502	--	--	--	-8.640	11.0	-19.6
5710.0	-10.266	--	--	--	-9.404	11.0	-20.4

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

9.4. Dynamic Frequency Selection (DFS)

Test Conditions for Dynamic Frequency Selection (DFS)			
Standard:	FCC CFR 47:15.407 & ISED RSS-247	Ambient Temp. (°C):	20.0 - 24.5
Test Heading:	Dynamic Frequency Selection (DFS)	Rel. Humidity (%):	32 - 45
Standard Section(s):	KDB 905462 D02	Pressure (mBars):	999 - 1001
EUT Type:	Slave w/o Radar Detection	Frequency Bands:	5,250 – 5,350 MHz 5,470 – 5,725 MHz
Test Environment:	Conducted	Antenna Gain used for Testing:	0 dBi
Detection Threshold:	n/a	Test Radar Level: (Threshold + Gain)	n/a
Number of Antenna Chains:	1	Duty Cycle Target:	≥ 30.00%
802.11a Transmit Power:	+17 dBm	Minimum Data Rate:	6 Mbit/s
802.11ac-80 Transmit Power:	+17 dBm	Minimum Data Rate:	MCS0
Uniform Loading:	For the above frequency band(s) the manufacturer declared that the device provides an aggregate uniform loading of the spectrum across all devices by selecting an operating channel among the available channels using a random algorithm.		
Engineer Notes:			
Reference Document(s):	See Normative References		

A U-NII network will employ a DFS function to detect signals from radar systems and to avoid co-channel operation with these systems. This applies to the 5250-5350 MHz and/or 5470-5725 MHz bands. Within the context of the operation of the DFS function, a U-NII device will operate in either Master Mode or Client Mode. U-NII devices operating in Client Mode can only operate in a network controlled by a U-NII device operating in Master Mode. The following tables summarize the requirements.

Requirement	Master Device or Client with Radar Detection	Client without Radar Detection
	Operational Mode	
DFS Detection Threshold	Yes	Not Required
Channel Closing Transmission Time	Yes	Yes
Channel Move Time	Yes	Yes
U-NII Detection Bandwidth	Yes	Not Required

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

NOTE: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

The operational behavior and individual DFS requirements associated with these modes are as follows:

9.4.1. Master Devices

- a) The Master Device will use DFS in order to detect Radar Waveforms with received signal strength above the DFS Detection Threshold in the 5250 – 5350 MHz and 5470 – 5725 MHz bands. DFS is not required in the 5150 – 5250 MHz or 5725 – 5850 MHz bands.
- b) Before initiating a network on a Channel, the Master Device will perform a Channel Availability Check for a specified time duration (Channel Availability Check Time) to ensure that there is no radar system operating on the Channel, using DFS described under subsection a) above.
- c) The Master Device initiates a U-NII network by transmitting control signals that will enable other U-NII devices to Associate with the Master Device.
- d) During normal operation, the Master Device will monitor the Channel (In-Service Monitoring) to ensure that there is no radar system operating on the Channel, using DFS described under a).
- e) If the Master Device has detected a Radar Waveform during In-Service Monitoring as described under d), the Operating Channel of the U-NII network is no longer an Available Channel. The Master Device will instruct all associated Client Device(s) to stop transmitting on this Channel within the Channel Move Time. The transmissions during the Channel Move Time will be limited to the Channel Closing Transmission Time.
- f) Once the Master Device has detected a Radar Waveform it will not utilize the Channel for the duration of the Non-Occupancy Period.
- g) If the Master Device delegates the In-Service Monitoring to a Client Device, then the combination will be tested to the requirements described under d) through f) above.

9.4.2. Client Devices

- a) A Client Device will not transmit before having received appropriate control signals from a Master Device.
- b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.
- c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.
- d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.
- e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shutdown (rather than moving channels), no beacons should appear.

9.4.3. DFS Detection Thresholds

The table below provides the DFS Detection Thresholds for Master Devices as well as Client Devices incorporating In-Service Monitoring.

DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value (see Notes 1, 2 and 3)
EIRP \geq 200 milliwatt	-64 dBm
EIRP $>$ 200 milliwatt and power density $< 10 \text{ dBm/MHz}$	-62 dBm
EIRP $>$ 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

NOTE 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna

NOTE 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

NOTE 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

9.4.4. Response Requirements

The following table provides the response requirements for Master and Client Devices incorporating DFS.

DFS Response Requirement Values

Parameter	Value
Non-Occupancy Period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds, see NOTE 1
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period, see NOTES 1 and 2
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth, see NOTE 3

NOTE 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

NOTE 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

NOTE 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

9.4.5. Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short Pulse Radar Test Waveforms

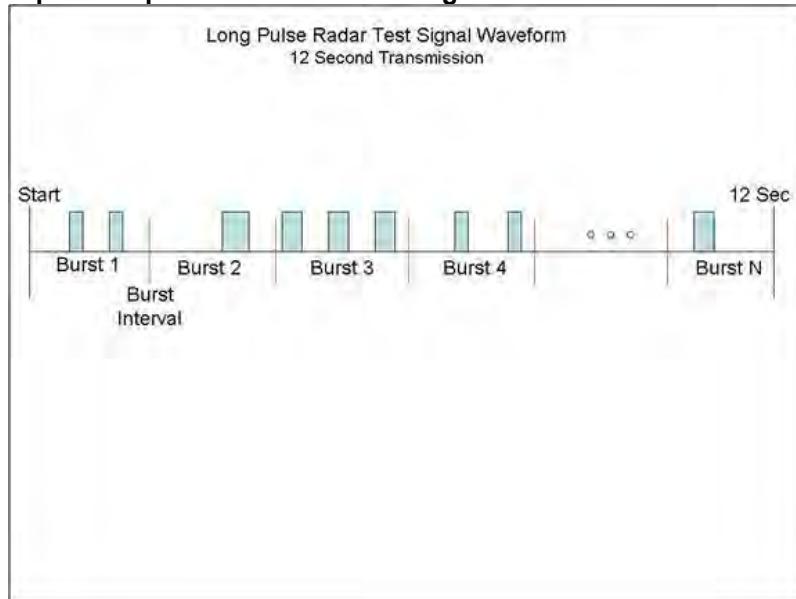
Radar Type	Pulse Width (μS)	PRI (μS)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	Roundup $\left\lceil \left(\frac{1}{360} \cdot \frac{19 \cdot 10^6}{\text{PRI}_{\mu\text{sec}}} \right) \right\rceil$	60%	30
		Test B: 15 unique PRI values randomly selected in the range 518-3066 μS, with a minimum increment of 1 μS, excluding PRI values selected in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-4)				80%	120
Note 1: Short Radar Pulse Type 0 should be used for the Detection Bandwidth test, Channel Move Time and Channel Closing Time tests					

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

Long Pulse Radar Test Waveforms

Radar Type	Pulse Width (μsec)	Chirp Width (MHz)	PRI (μsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse radar test signal. If more than 30 waveforms are used for the Long Pulse radar test signal, then each additional waveform must also be unique and not repeated from the previous waveforms.


Each waveform is defined as follows:

1. The transmission period for the Long Pulse Radar test signal is 12 seconds.
2. There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst Count.
3. Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.
4. The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.
5. Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a Burst will have the same chirp width. Pulses in different Bursts may have different chirp widths. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.
6. If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
7. The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst_Count. Each interval is of length $(12,000,000 / \text{Burst_Count})$ microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and $[(12,000,000 / \text{Burst_Count}) - (\text{Total Burst Length}) + (\text{One Random PRI Interval})]$ microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

A representative example of a Long Pulse radar test waveform:

1. The total test signal length is 12 seconds.
2. 8 Bursts are randomly generated for the Burst_Count
3. Burst 1 has 2 randomly generated pulses.
4. The pulse width (for both pulses) is randomly selected to be 75 microseconds.
5. The PRI is randomly selected to be at 1213 microseconds.
6. Bursts 2 through 8 are generated using steps 3 – 5.
7. Each Burst is contained in even intervals of 1,500,000 microseconds. The starting location for Pulse 1, Burst 1 is randomly generated (1 to 1,500,000 minus the total Burst 1 length + 1 random PRI interval) at the 325,001 microsecond step. Bursts 2 through 8 randomly fall in successive 1,500,000 microsecond intervals (i.e. Burst 2 falls in the 1,500,001 – 3,000,000 microsecond range).

Graphical representation of the Long Pulse Radar Test Waveform.

Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (μsec)	PRI (μsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

9.4.6. Radar Waveform Calibration

The following equipment setup was used to calibrate the Radar Waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) mode at the frequency of the Radar Waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz.

The signal generator amplitude was set so that the power level measured at the spectrum analyzer was equal to the DFS detection threshold +1dB (Ref Section 9.2).

9.4.7. Channel Close / Transmission Time

The steps below define the procedure to determine the above-mentioned parameters when a radar burst with a level of up to 10 dB above the DFS Detection threshold is injected on the Operating Channel of the EUT.

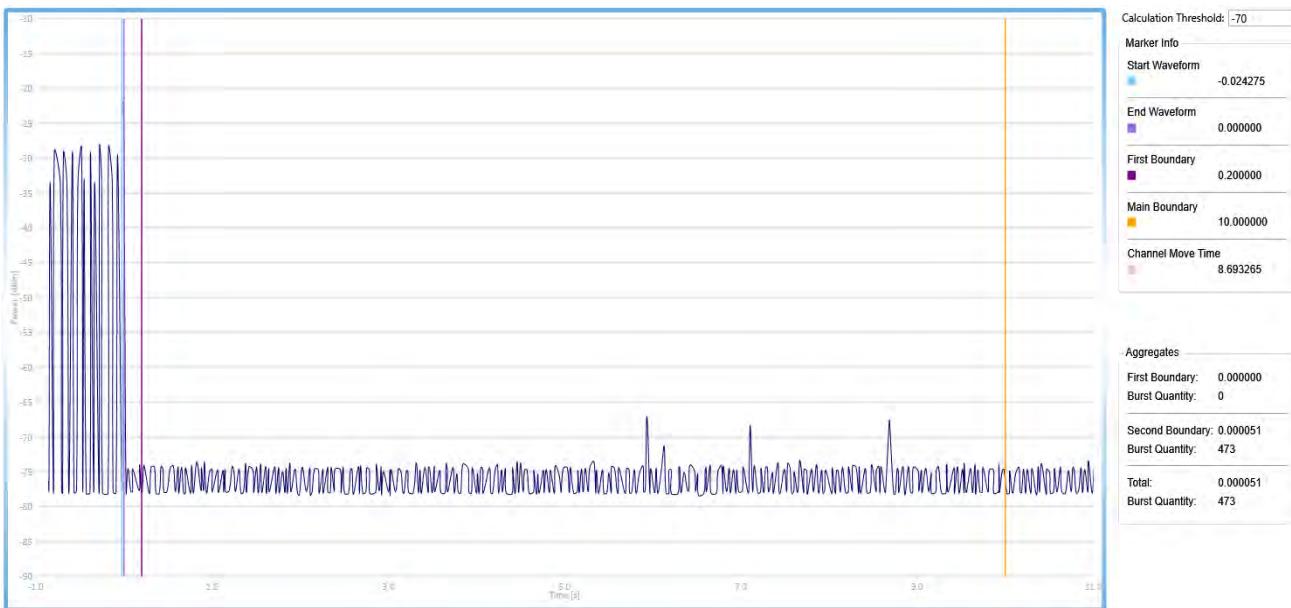
Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time results to the limits defined in the DFS Response requirement values table.

Channel Closing Transmission Time - Measurement

The reference radar signature was introduced to the EUT, from which a 11 second transmission record was captured, as well as 1000ms of pre-trigger data. The Reference radar type was triggered to play at the exact time allowing the end of the pulse to occur at time t=0.

The system was setup to capture data for all transmission events above a given threshold level as determined and adjusted by the test engineer. The system time stamps all captured events with respect to T0 (zero time indicating the start of the measurement sequence) starting at the end of the radar pulse indicated by the purple vertical marker line in the Plot (on the next page).

The system captured data over a 12 second period at 10 points per microsecond. The data is analyzed by counting all "bursts" that occur above the threshold limit and aggregating the time each burst is on. The data is then compressed for presentation in one 12 second segment showing all of the activity recorded over the period.


802.11ac-80 Channel 5530 MHz; Observed Frequency 5500 MHz

The system measures and aggregates the pulses occurring after the end of the radar pulse to determine the following parameters: -

Test Heading	Time (Secs)	Limit (Secs)	Status
Channel Closing Transmission Time	0.000051	0.260	Complies
Channel Move Time	8.693265	10.0	Complies

**Channel Move Time, Channel Closing Transmission Time
0-12 Second Capture**

9.5. Radiated

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions			
Standard:	FCC CFR 47:15.407 & ISED RSS-247	Ambient Temp. (°C):	20.0 - 24.5
Test Heading:	Radiated Spurious and Band-Edge Emissions	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.407 (b), 15.205, 15.209; 6.2.3.2	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Radiated Spurious and Band-Edge Emissions

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Undesirable Measurement were per the Radiated Test Set-up specified in this document.

15.407 (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

(5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Limits for Restricted Bands (15.205, 15.209)

Peak emission: 74 dBuV/m

Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$FS = R + AF + CORR - FO$$

where:

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor
CORR = Correction Factor = $CL - AG + NFL$
CL = Cable Loss
AG = Amplifier Gain
FO = Distance Falloff Factor
NFL = Notch Filter Loss

Example:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength (dB μ V/m);

$$E = \frac{1000000 \times \sqrt{30P}}{3} \mu\text{V/m}$$

where P is the EIRP in Watts

Therefore: -27 dBm/MHz equates to 68.23 dB μ V/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows:

Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m

48 dBmV/m = 250 mV/m

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Frequency Band			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

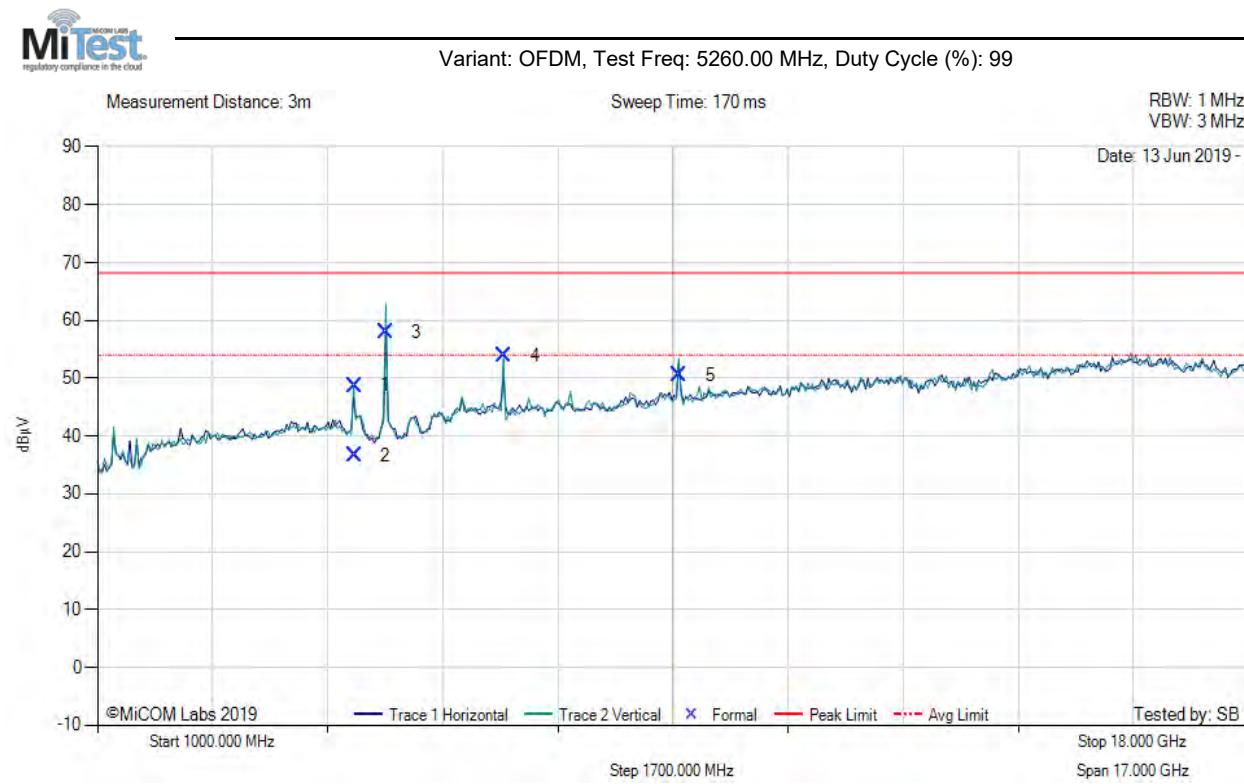
(6) Transmitters operating under the provisions of subparts D or F of this part.

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

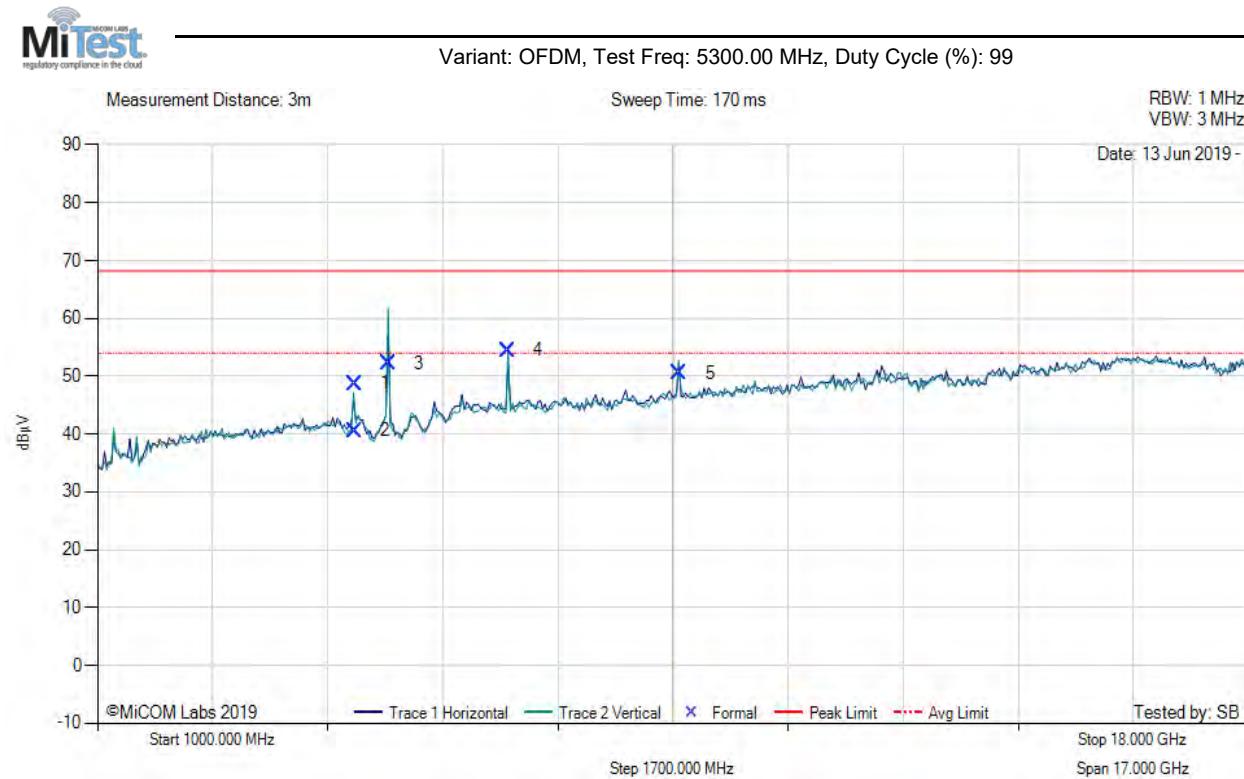

9.5.1. TX Spurious & Restricted Band Emissions

9.5.1.1. TDK ANT016008LCD2442MA1

Equipment Configuration for Restricted Band Spurious Emissions

Antenna:	TDK ANT016008LCD2442MA1	Variant:	802.11a
Antenna Gain (dBi):	5.18	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5260.00	Data Rate:	6.00 MBit/s
Power Setting:	17	Tested By:	SB

Test Measurement Results

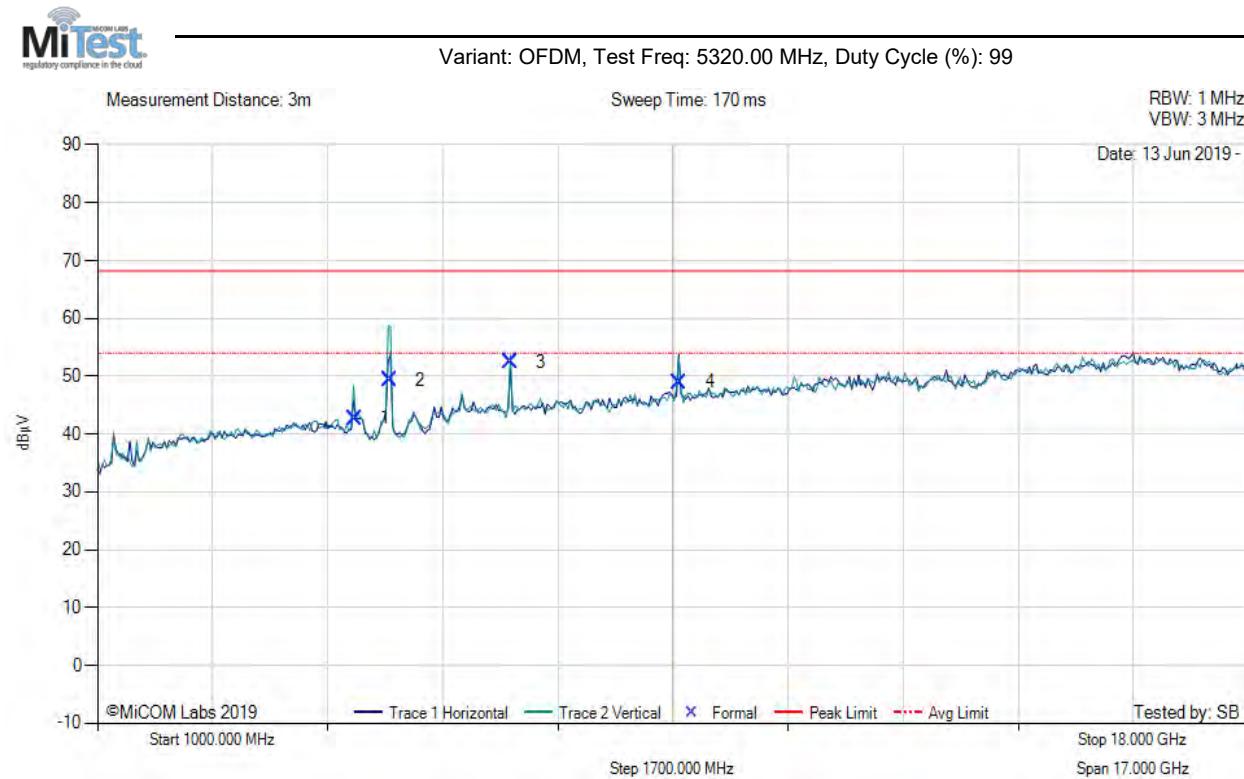


Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	4800.34	63.69	-2.56	-12.44	48.69	Max Peak	Vertical	191	168	68.2	-19.5	Pass
2	4800.34	51.63	-2.56	-12.44	36.63	Max Avg	Vertical	191	168	54.0	-17.4	Pass
3	5261.88	72.66	-2.62	-12.09	57.95	Fundamental	Vertical	100	0	--	--	
4	7013.25	64.67	-3.04	-7.77	53.86	Peak (NRB)	Vertical	166	16	--	--	Pass
5	9599.03	61.24	-3.90	-6.87	50.47	Peak (NRB)	Vertical	166	140	--	--	Pass

Equipment Configuration for Restricted Band Spurious Emissions

Antenna:	TDK ANT016008LCD2442MA1	Variant:	OFDM
Antenna Gain (dBi):	5.18	Modulation:	802.11a
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5300.00	Data Rate:	6 MBit/s
Power Setting:	17	Tested By:	SB

Test Measurement Results

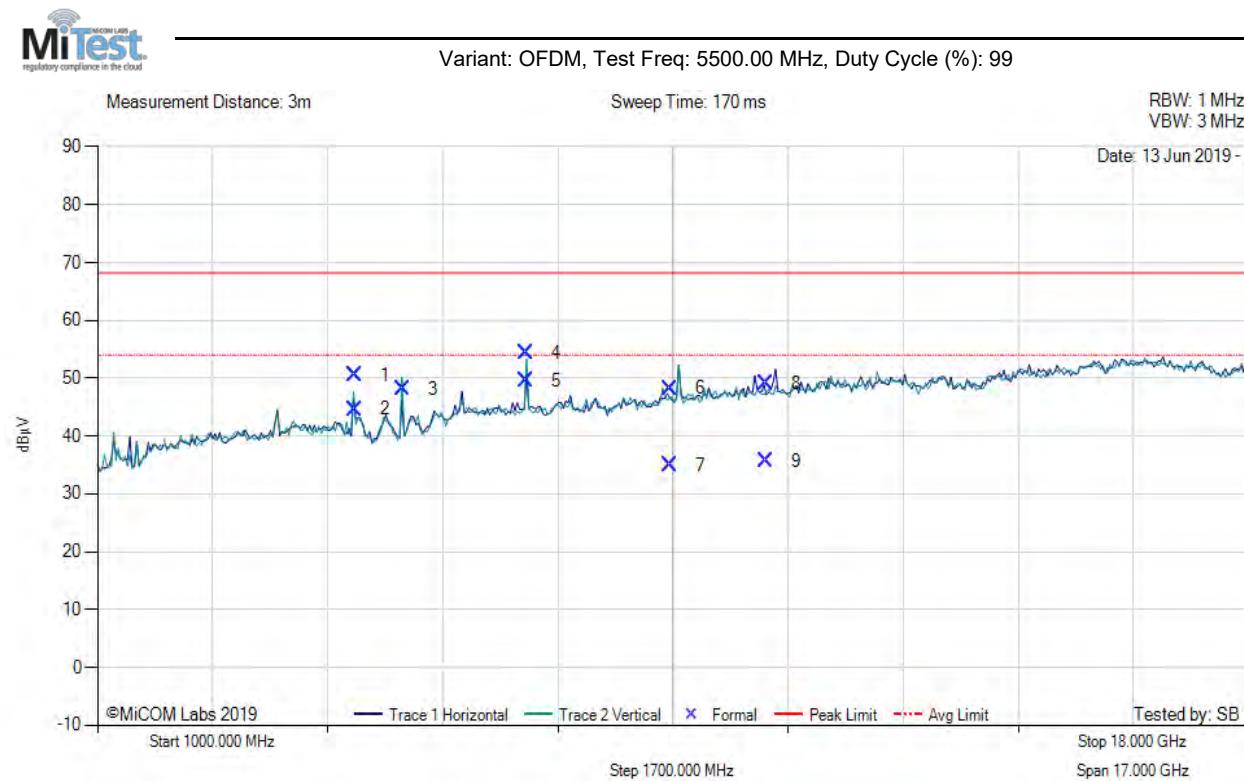


1000.00 - 18000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	4800.05	63.69	-2.56	-12.44	48.69	Max Peak	Vertical	190	162	68.2	-19.5	Pass	
2	4800.05	55.61	-2.56	-12.44	40.61	Max Avg	Vertical	190	162	54.0	-13.4	Pass	
3	5299.42	67.02	-2.66	-12.09	52.27	Peak (NRB)	Vertical	100	0	--	--	Pass	
4	7066.61	64.98	-3.01	-7.52	54.45	Peak (NRB)	Vertical	153	40	--	--	Pass	
5	9599.39	61.27	-3.90	-6.87	50.50	Peak (NRB)	Vertical	153	98	--	--	Pass	

Equipment Configuration for Restricted Band Spurious Emissions

Antenna:	TDK ANT016008LCD2442MA1	Variant:	OFDM
Antenna Gain (dBi):	5.18	Modulation:	802.11a
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5320.00	Data Rate:	6 MBit/s
Power Setting:	17	Tested By:	SB

Test Measurement Results

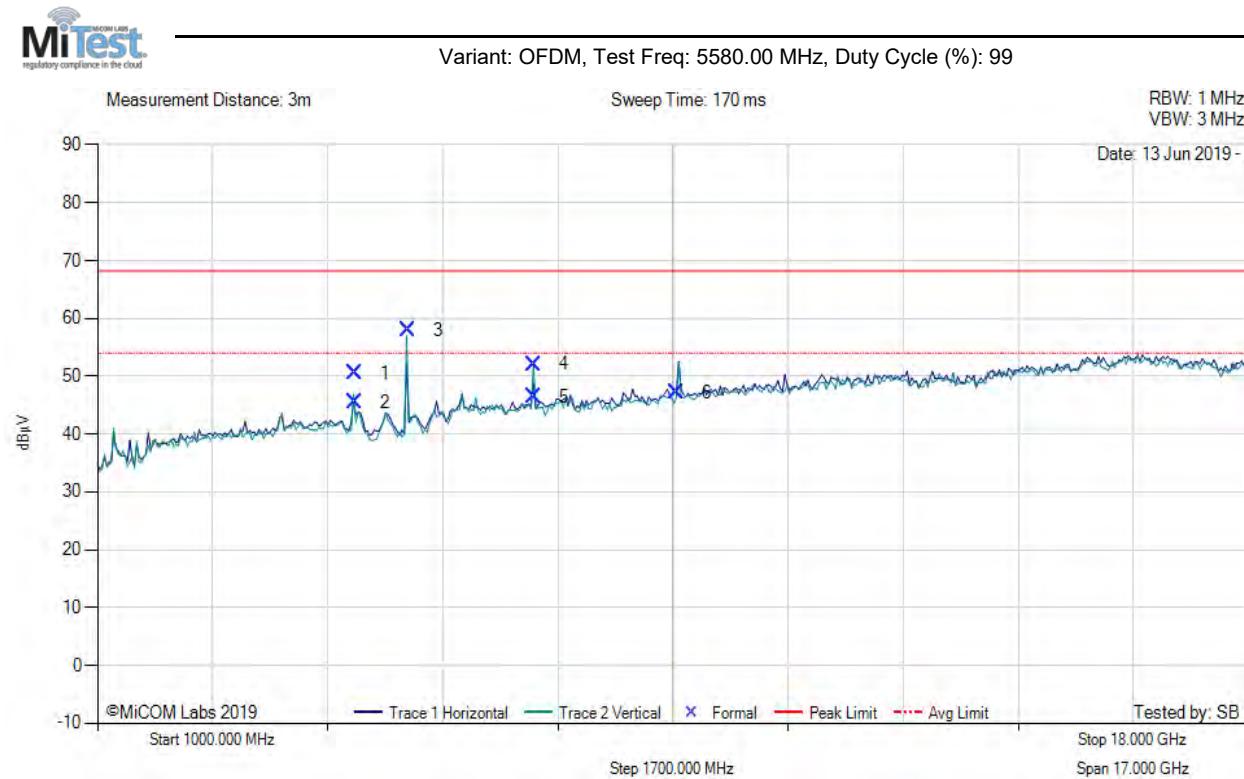


1000.00 - 18000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	4799.82	57.81	-2.57	-12.46	42.78	Peak (Scan)	Horizontal	167	61	68.2	-25.5	Pass
2	5322.64	64.18	-2.67	-12.16	49.35	Peak (NRB)	Horizontal	167	61	--	--	Pass
3	7093.23	63.11	-3.01	-7.62	52.48	Peak (NRB)	Vertical	100	0	--	--	Pass
4	9599.22	59.76	-3.90	-6.87	48.99	Peak (NRB)	Horizontal	167	61	--	--	Pass

Equipment Configuration for Restricted Band Spurious Emissions

Antenna:	TDK ANT016008LCD2442MA1	Variant:	OFDM
Antenna Gain (dBi):	5.18	Modulation:	802.11a
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5500.00	Data Rate:	6 MBit/s
Power Setting:	17	Tested By:	SB

Test Measurement Results

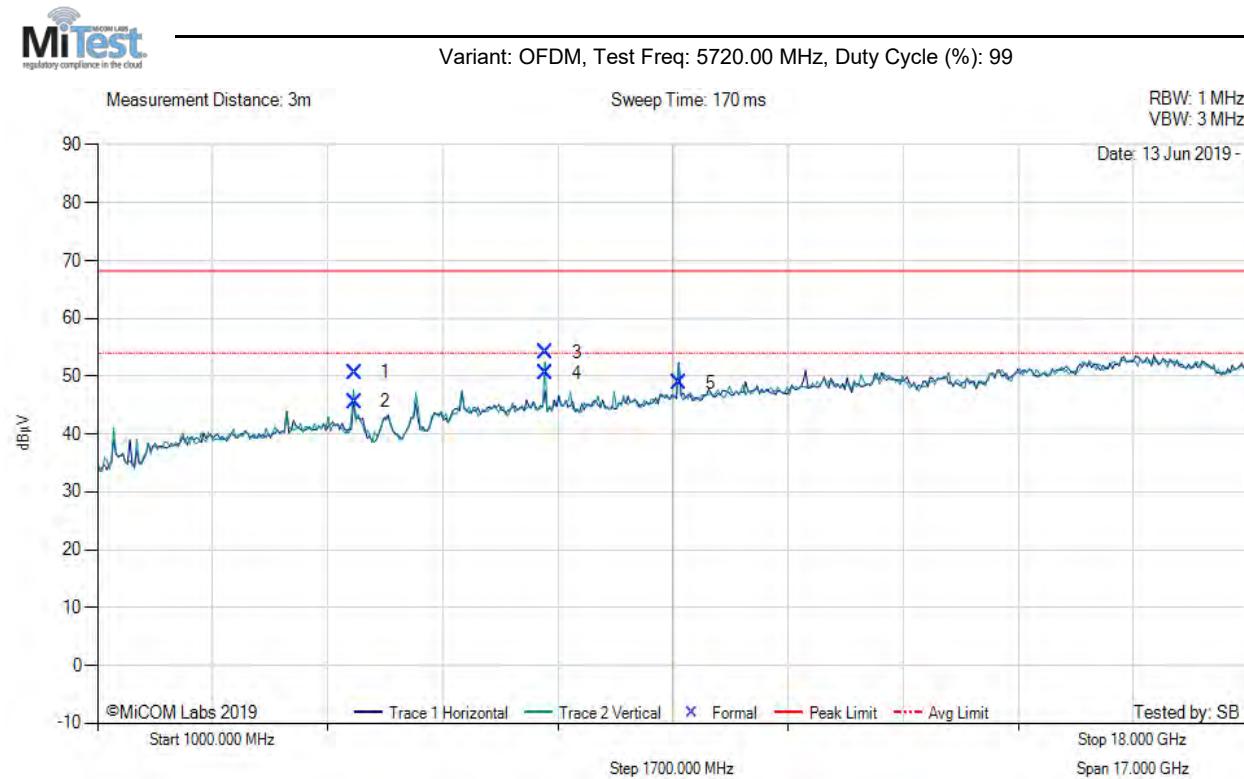


1000.00 - 18000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	4799.82	65.51	-2.57	-12.46	50.48	Max Peak	Vertical	189	175	68.2	-17.8	Pass
2	4799.82	59.65	-2.57	-12.46	44.62	Max Avg	Vertical	189	175	54.0	-9.4	Pass
3	5504.73	62.46	-2.69	-11.60	48.17	Peak (NRB)	Vertical	155	0	--	--	Pass
4	7332.99	65.23	-3.00	-7.89	54.34	Max Peak	Vertical	146	66	68.2	-13.9	Pass
5	7332.99	60.39	-3.00	-7.89	49.50	Max Avg	Vertical	146	66	54.0	-4.5	Pass
6	9457.16	59.85	-3.72	-7.84	48.29	Max Peak	Vertical	174	187	68.2	-19.9	Pass
7	9457.16	46.47	-3.72	-7.84	34.91	Max Avg	Vertical	174	187	54.0	-19.1	Pass
8	10869.15	58.14	-3.91	-5.12	49.11	Max Peak	Horizontal	180	304	68.2	-19.1	Pass
9	10869.15	44.67	-3.91	-5.12	35.64	Max Avg	Horizontal	180	304	54.0	-18.4	Pass

Equipment Configuration for Restricted Band Spurious Emissions

Antenna:	TDK ANT016008LCD2442MA1	Variant:	OFDM
Antenna Gain (dBi):	5.18	Modulation:	802.11a
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5580.00	Data Rate:	6 MBit/s
Power Setting:	17	Tested By:	SB

Test Measurement Results



Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	4799.62	65.51	-2.57	-12.46	50.48	Max Peak	Vertical	189	169	68.2	-17.8	Pass
2	4799.62	60.58	-2.57	-12.46	45.55	Max Avg	Vertical	189	169	54.0	-8.5	Pass
3	5577.53	72.22	-2.75	-11.47	58.00	Peak (NRB)	Vertical	151	0	--	--	Pass
4	7439.64	63.10	-3.00	-8.02	52.08	Max Peak	Vertical	190	76	68.2	-16.2	Pass
5	7439.64	57.40	-3.00	-8.02	46.38	Max Avg	Vertical	190	76	54.0	-7.6	Pass
6	9551.77	58.47	-3.76	-7.48	47.23	Peak (NRB)	Vertical	151	58	--	--	Pass

Equipment Configuration for Restricted Band Spurious Emissions

Antenna:	TDK ANT016008LCD2442MA1	Variant:	OFDM
Antenna Gain (dBi):	5.18	Modulation:	802.11a
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5720.00	Data Rate:	6 MBit/s
Power Setting:	17	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	4799.65	65.64	-2.57	-12.46	50.61	Max Peak	Vertical	188	172	68.2	-17.6	Pass
2	4799.65	60.68	-2.57	-12.46	45.65	Max Avg	Vertical	188	172	54.0	-8.4	Pass
3	7626.66	64.48	-2.94	-7.36	54.18	Max Peak	Vertical	182	75	68.2	-14.1	Pass
4	7626.66	60.78	-2.94	-7.36	50.48	Max Avg	Vertical	182	75	54.0	-3.5	Pass
5	9599.12	59.60	-3.90	-6.87	48.83	Peak (NRB)	Vertical	168	81	--	--	Pass

9.5.2. Restricted Edge & Band-Edge Emissions

9.5.2.2. TDK ANT016008LCD2442MA1

RESULTS SUMMARY FOR RADIATED BAND-EDGE EMISSIONS

5250 - 5350 MHz

TDK ANT016008LCD2442MA1		Band-Edge Freq	Limit 68.2dB μ V/m	Limit 54.0dB μ V/m	Power Setting
Operational Mode	Operating Frequency (MHz)	MHz	dB μ V/m	dB μ V/m	
802.11a	5320.00	5350.00	66.39	52.20	17
802.11ac-80	5290.00	5350.00	67.87	52.10	17
802.11n HT-20	5320.00	5350.00	65.40	51.83	17
802.11n HT-40	5310.00	5350.00	64.78	53.54	17

5470 - 5725 MHz

TDK ANT016008LCD2442MA1		Restricted-Edge Freq	Limit 68.2dB μ V/m	Limit 54.0dB μ V/m	Power Setting
Operational Mode	Operating Frequency (MHz)	MHz	dB μ V/m	dB μ V/m	
802.11a	5500.00	5460.00	65.00	52.11	17
802.11ac-80	5530.00	5460.00	68.03	53.45	17
802.11n HT-20	5500.00	5460.00	65.01	52.11	17
802.11n HT-40	5510.00	5460.00	64.42	51.74	17

TDK ANT016008LCD2442MA1		Band-Edge Freq	Limit 68.23dB μ V/m	Power Setting
Operational Mode	Operating Frequency (MHz)	MHz	dB μ V/m	
802.11a	5500.00	5470.00	53.14	17
802.11ac-80	5530.00	5470.00	54.62	17
802.11n HT-20	5500.00	5470.00	52.47	17
802.11n HT-40	5510.00	5470.00	53.76	17

Click on the links to view the data.

Title: BLUE Bean A
To: FCC Subpart E 15.407, ISED RSS-247
Serial #: NTCT89-U1 Rev A

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	TDK ANT016008LCD2442MA1	Variant:	802.11a
Antenna Gain (dBi):	5.18	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5320.00	Data Rate:	6.00 MBit/s
Power Setting:	17	Tested By:	SB

Test Measurement Results

5300.00 - 5460.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	5350.00	20.43	-2.69	34.46	52.20	Max Avg	Vertical	174	93	54.0	-1.8	Pass	
#3	5355.47	34.61	-2.69	34.47	66.39	Max Peak	Vertical	174	93	68.2	-1.8	Pass	
#2	5350.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	TDK ANT016008LCD2442MA1	Variant:	802.11ac-80
Antenna Gain (dBi):	5.18	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5290.00	Data Rate:	29.30 MBit/s
Power Setting:	17	Tested By:	SB

Test Measurement Results

5300.00 - 5460.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	5350.00	20.33	-2.69	34.46	52.10	Max Avg	Horizontal	174	93	54.0	-1.9	Pass	
#3	5358.34	36.10	-2.70	34.47	67.87	Max Peak	Horizontal	174	93	68.2	-0.4	Pass	
#2	5350.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Title: BLUE Bean A
To: FCC Subpart E 15.407, ISED RSS-247
Serial #: NTCT89-U1 Rev A

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	TDK ANT016008LCD2442MA1	Variant:	802.11n HT-20
Antenna Gain (dBi):	Not Applicable	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5320.00	Data Rate:	6.50 MBit/s
Power Setting:	17	Tested By:	SB

Test Measurement Results

5300.00 - 5460.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	5350.00	20.06	-2.69	34.46	51.83	Max Avg	Horizontal	174	93	54.0	-2.2	Pass	
#3	5450.04	33.60	-2.70	34.50	65.40	Max Peak	Horizontal	174	93	68.2	-2.8	Pass	
#2	5350.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	TDK ANT016008LCD2442MA1	Variant:	802.11n HT-40
Antenna Gain (dBi):	5.18	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5310.00	Data Rate:	13.50 MBit/s
Power Setting:	17	Tested By:	SB

Test Measurement Results

5300.00 - 5460.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	5350.00	21.77	-2.69	34.46	53.54	Max Avg	Horizontal	174	93	54.0	-0.5	Pass	
#3	5399.06	32.96	-2.68	34.50	64.78	Max Peak	Horizontal	174	93	68.2	-3.5	Pass	
#2	5350.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Title: BLUE Bean A
To: FCC Subpart E 15.407, ISED RSS-247
Serial #: NTCT89-U1 Rev A

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	TDK ANT016008LCD2442MA1	Variant:	802.11a
Antenna Gain (dBi):	5.18	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5500.00	Data Rate:	6.00 MBit/s
Power Setting:	17	Tested By:	SB

Test Measurement Results

5350.00 - 5500.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	5448.58	67.70	-2.70	0.00	65.00	Max Peak	Horizontal	174	93	68.2	-3.2	Pass	
#2	5460.00	20.27	-2.69	34.53	52.11	Max Avg	Horizontal	174	93	54.0	-1.9	Pass	
#4	5470.00	21.28	-2.69	34.55	53.14	Max Avg	Horizontal	174	93	68.2	-15.1	Pass	
#3	5460.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	
#5	5470.00	--	--	--	--	Band-Edge	--	--	--	--	--	--	

Title: BLUE Bean A
To: FCC Subpart E 15.407, ISED RSS-247
Serial #: NTCT89-U1 Rev A

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	TDK ANT016008LCD2442MA1	Variant:	802.11ac-80
Antenna Gain (dBi):	5.18	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5530.00	Data Rate:	29.30 MBit/s
Power Setting:	17	Tested By:	SB

Test Measurement Results

5350.00 - 5500.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	5460.00	21.61	-2.69	34.53	53.45	Max Avg	Horizontal	174	93	68.2	-14.8	Pass	
#3	5465.71	36.17	-2.68	34.54	68.03	Max Peak	Horizontal	174	93	68.2	-0.2	Pass	
#4	5470.00	22.76	-2.69	34.55	54.62	Max Avg	Horizontal	174	93	68.2	-13.6	Pass	
#2	5460.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	
#5	5470.00	--	--	--	--	Band-Edge	--	--	--	--	--	--	

Title: BLUE Bean A
To: FCC Subpart E 15.407, ISED RSS-247
Serial #: NTCT89-U1 Rev A

Equipment Configuration for Restricted Lower Band-Edge Emissions

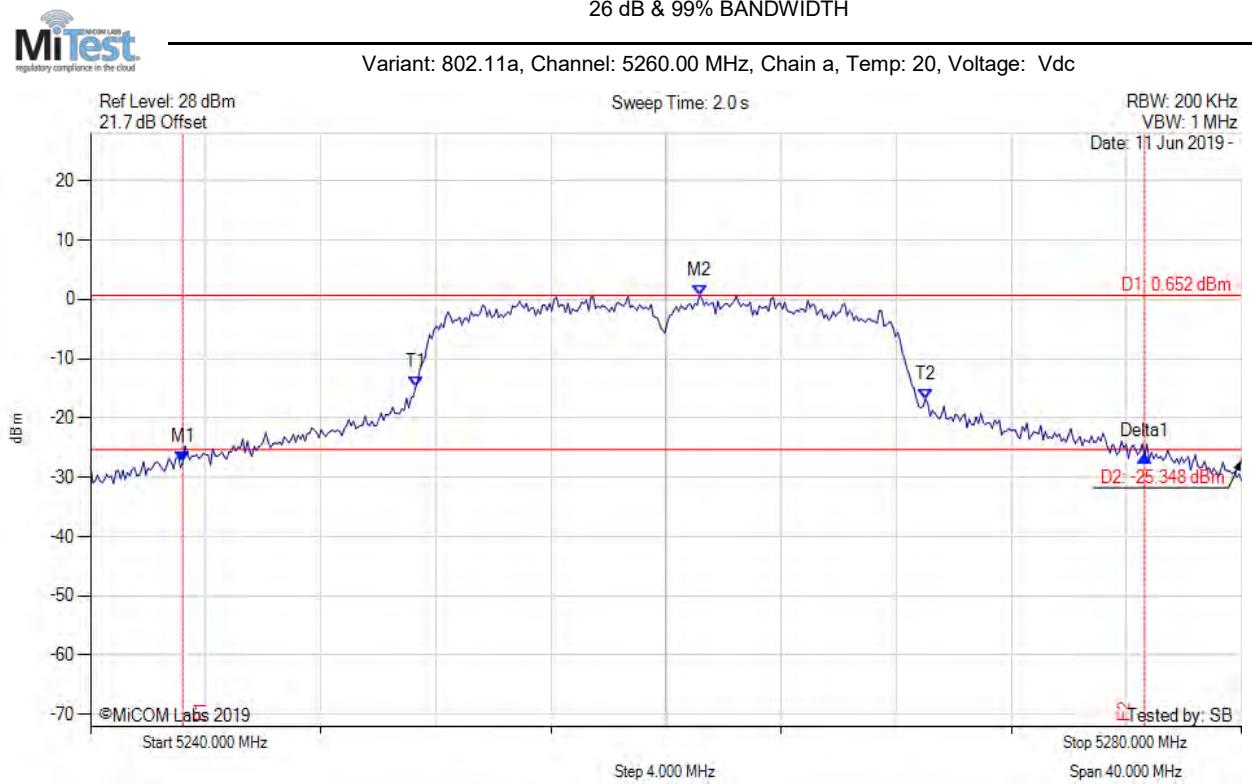
Antenna:	TDK ANT016008LCD2442MA1	Variant:	802.11n HT-20
Antenna Gain (dBi):	5.18	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5500.00	Data Rate:	6.50 MBit/s
Power Setting:	17	Tested By:	SB

Test Measurement Results

5350.00 - 5500.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	5411.00	33.20	-2.71	34.52	65.01	Max Peak	Horizontal	174	93	68.2	-3.2	Pass	
#2	5460.00	20.27	-2.69	34.53	52.11	Max Avg	Horizontal	174	93	54.0	-1.9	Pass	
#4	5470.00	20.61	-2.69	34.55	52.47	Max Avg	Horizontal	174	93	68.2	-15.7	Pass	
#3	5460.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	
#5	5470.00	--	--	--	--	Band-Edge	--	--	--	--	--	--	

Title: BLUE Bean A
To: FCC Subpart E 15.407, ISED RSS-247
Serial #: NTCT89-U1 Rev A

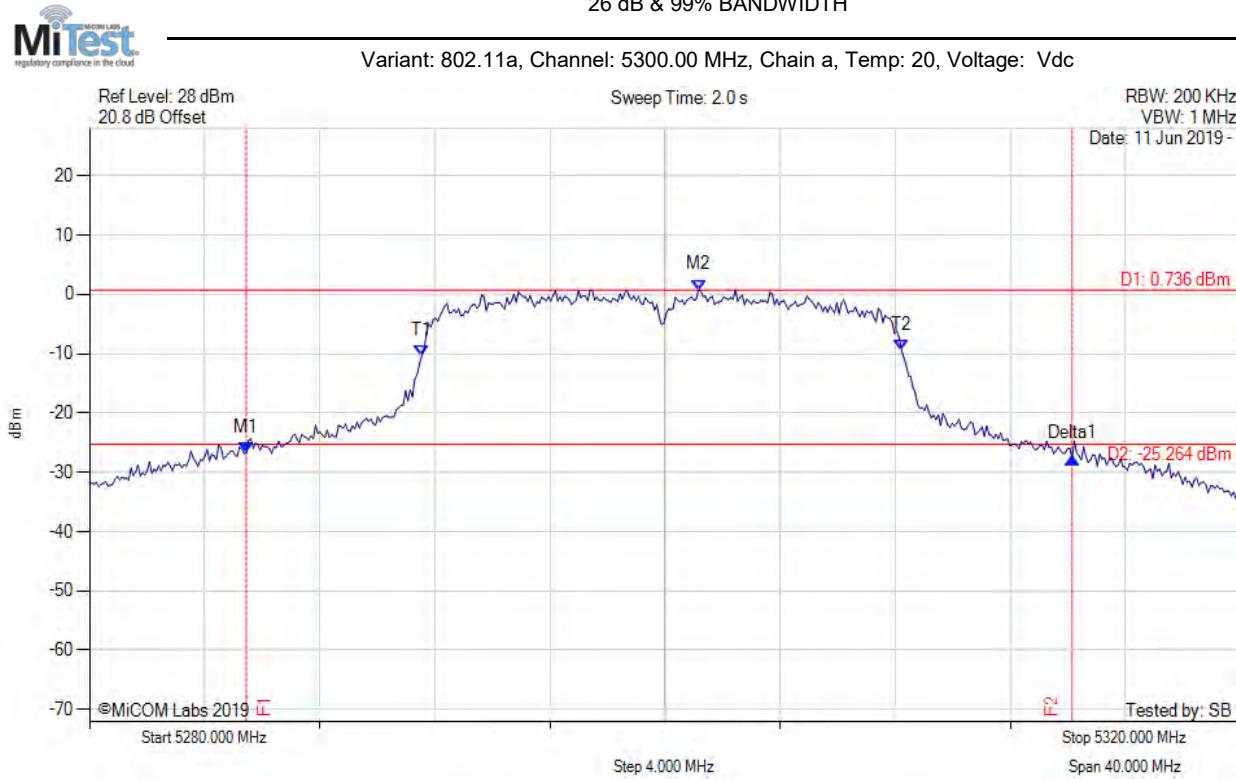
Equipment Configuration for Restricted Lower Band-Edge Emissions


Antenna:	TDK ANT016008LCD2442MA1	Variant:	802.11n HT-40
Antenna Gain (dBi):	5.18	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5510.00	Data Rate:	13.50 MBit/s
Power Setting:	17	Tested By:	SB

Test Measurement Results

5350.00 - 5500.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	5460.00	19.90	-2.69	34.53	51.74	Max Avg	Horizontal	174	93	54.0	-2.3	Pass	
#2	5460.00	32.58	-2.69	34.53	64.42	Max Peak	Horizontal	174	93	68.2	-3.8	Pass	
#4	5470.00	21.90	-2.69	34.55	53.76	Max Avg	Horizontal	174	93	68.2	-14.4	Pass	
#3	5460.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	
#5	5470.00	--	--	--	--	Band-Edge	--	--	--	--	--	--	

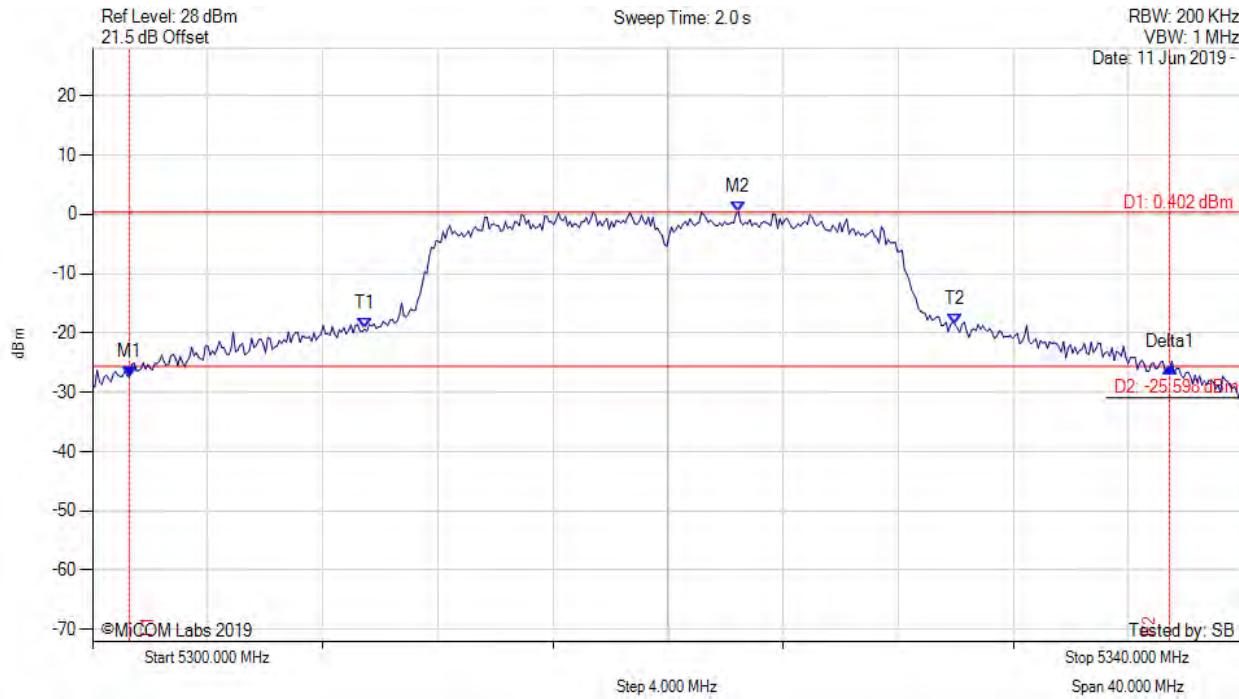
A. APPENDIX - GRAPHICAL IMAGES


A.1. 26 dB & 99% Bandwidth

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5243.206 MHz : -27.409 dBm M2 : 5261.162 MHz : 0.652 dBm Delta1 : 33.427 MHz : 0.948 dB T1 : 5251.303 MHz : -14.790 dBm T2 : 5269.018 MHz : -16.803 dBm OBW : 17.715 MHz	Measured 26 dB Bandwidth: 33.427 MHz Measured 99% Bandwidth: 17.715 MHz

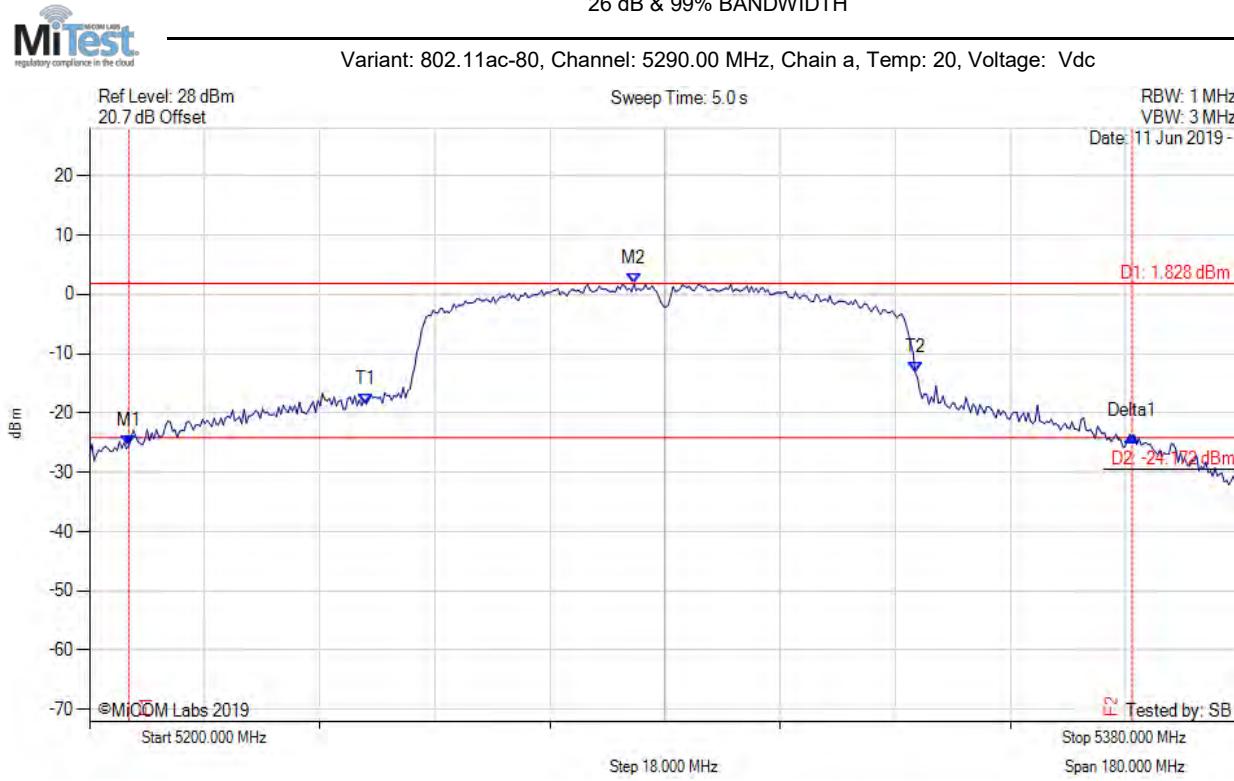
[back to matrix](#)

26 dB & 99% BANDWIDTH


Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5285.451 MHz : -26.653 dBm M2 : 5301.162 MHz : 0.736 dBm Delta1 : 28.697 MHz : -0.988 dB T1 : 5291.543 MHz : -10.310 dBm T2 : 5308.216 MHz : -9.362 dBm OBW : 16.673 MHz	Measured 26 dB Bandwidth: 28.697 MHz Measured 99% Bandwidth: 16.673 MHz

[back to matrix](#)

26 dB & 99% BANDWIDTH


Variant: 802.11a, Channel: 5320.00 MHz, Chain a, Temp: 20, Voltage: Vdc

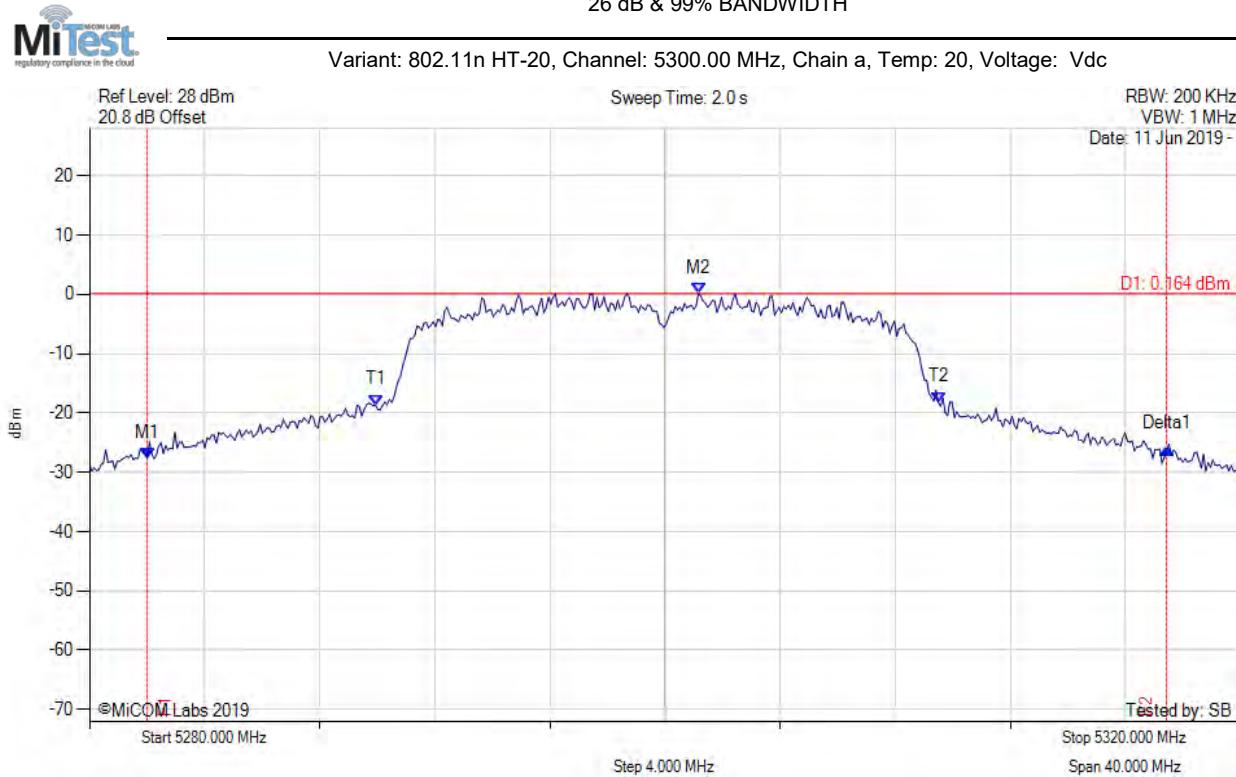
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5301.283 MHz : -27.350 dBm M2 : 5322.445 MHz : 0.402 dBm Delta1 : 36.152 MHz : 1.594 dB T1 : 5309.459 MHz : -19.335 dBm T2 : 5329.980 MHz : -18.620 dBm OBW : 20.521 MHz	Measured 26 dB Bandwidth: 36.152 MHz Measured 99% Bandwidth: 20.521 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

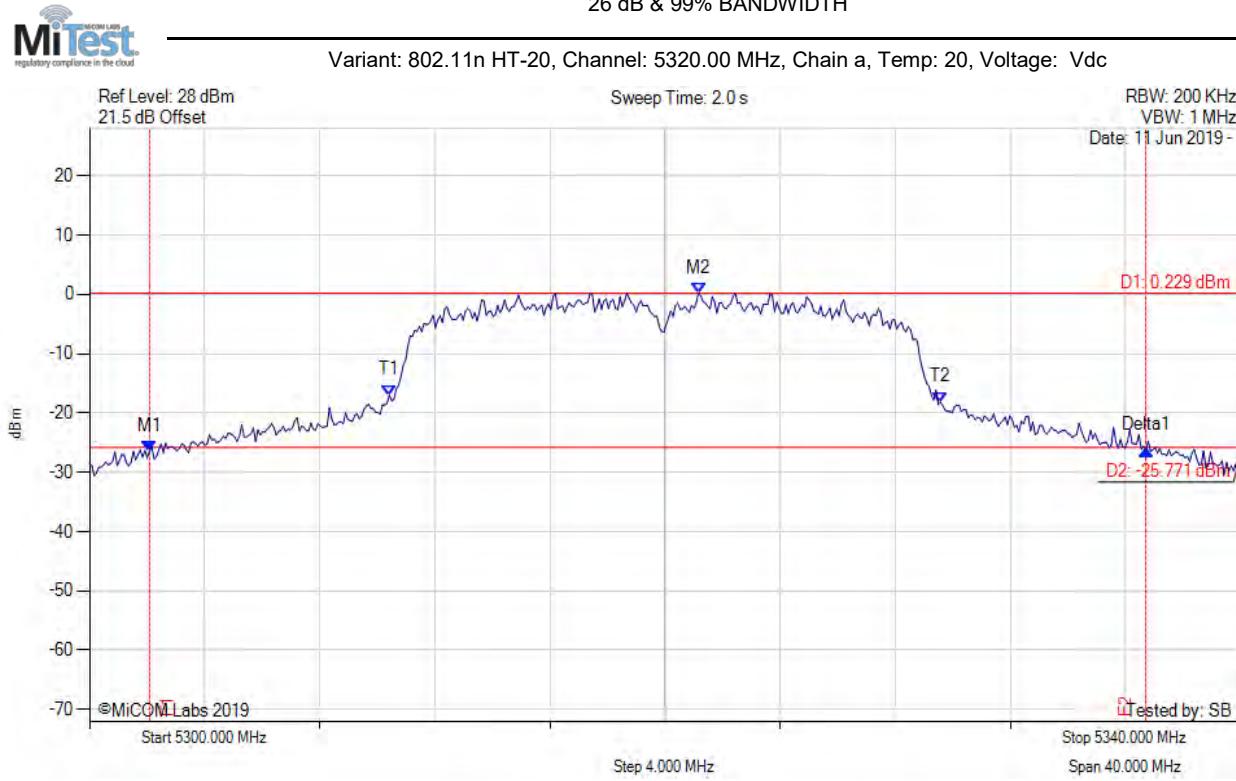
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5206.132 MHz : -25.526 dBm M2 : 5285.130 MHz : 1.828 dBm Delta1 : 156.914 MHz : 1.605 dB T1 : 5243.287 MHz : -18.546 dBm T2 : 5329.138 MHz : -13.120 dBm OBW : 85.852 MHz	Measured 26 dB Bandwidth: 156.914 MHz Measured 99% Bandwidth: 85.852 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

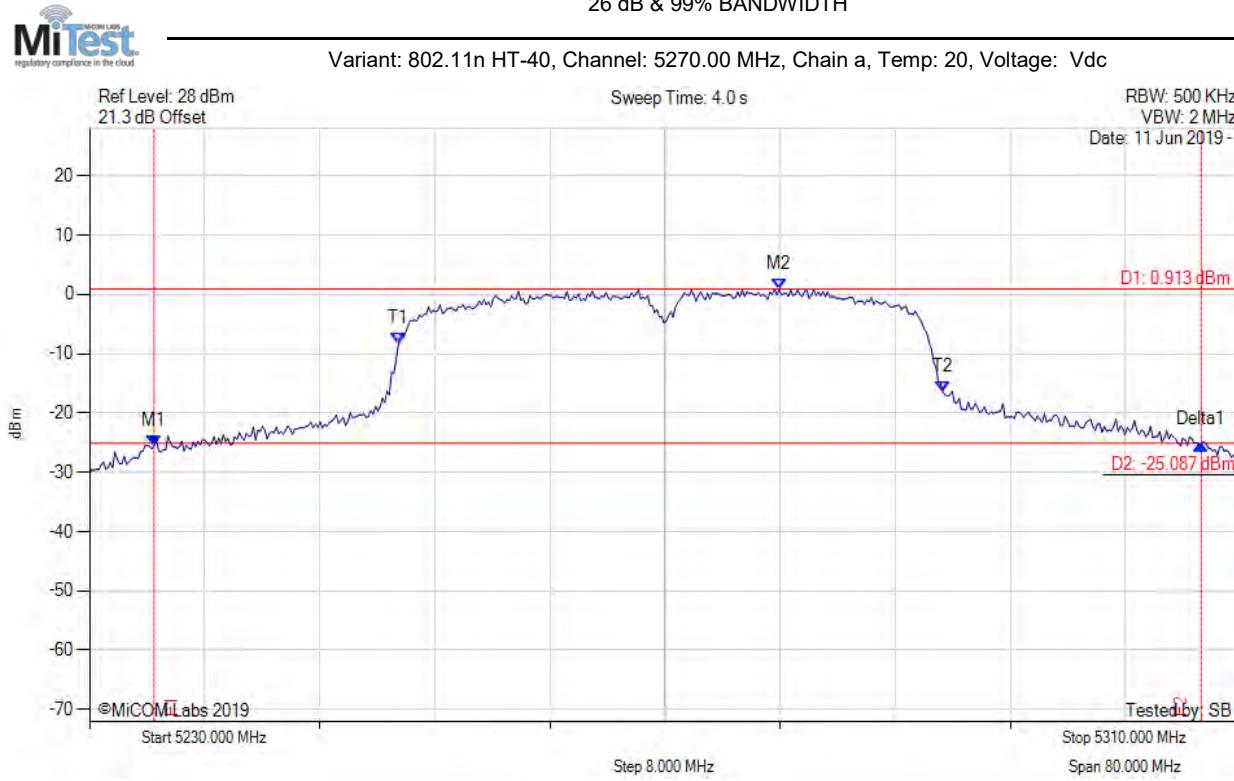
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5246.092 MHz : -26.110 dBm M2 : 5261.162 MHz : 0.160 dBm Delta1 : 29.579 MHz : -1.617 dB T1 : 5251.062 MHz : -9.893 dBm T2 : 5268.938 MHz : -12.663 dBm OBW : 17.876 MHz	Measured 26 dB Bandwidth: 29.579 MHz Measured 99% Bandwidth: 17.876 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

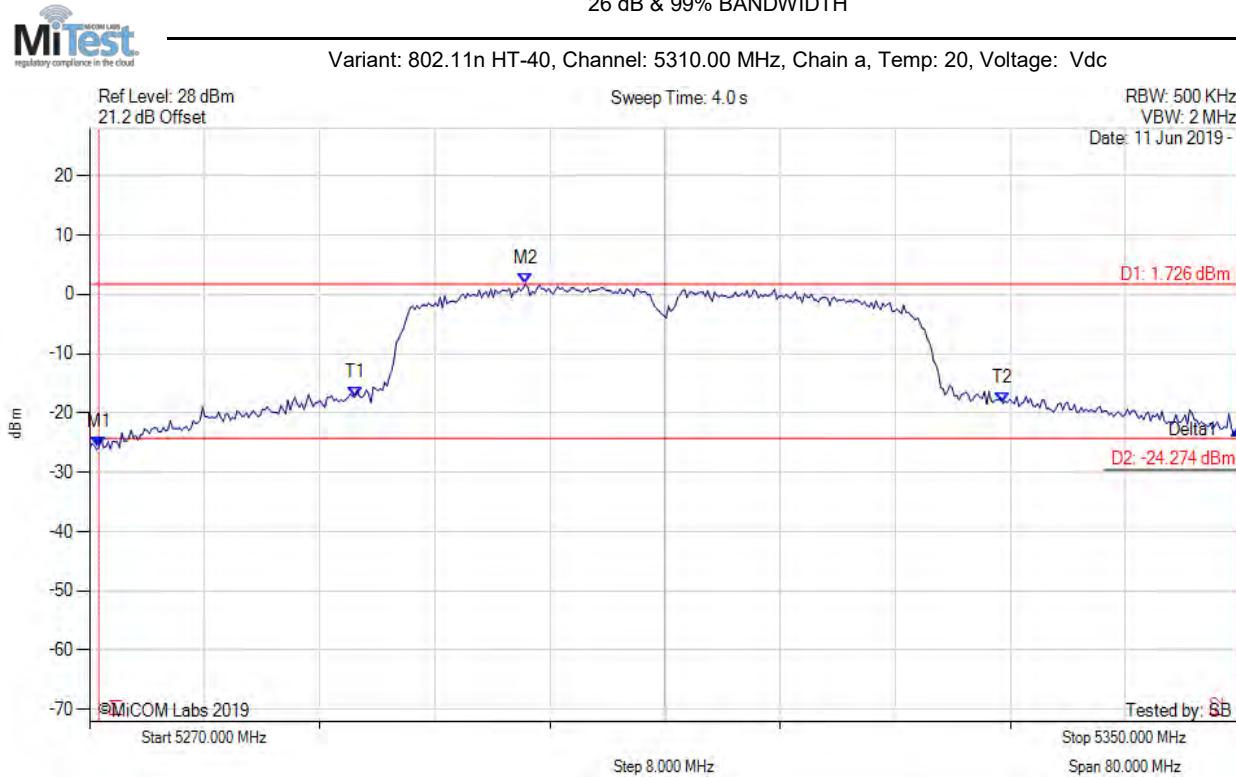
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5282.004 MHz : -27.580 dBm M2 : 5301.162 MHz : 0.164 dBm Delta1 : 35.431 MHz : 1.481 dB T1 : 5289.940 MHz : -18.660 dBm T2 : 5309.499 MHz : -18.172 dBm OBW : 19.559 MHz	Measured 26 dB Bandwidth: 35.431 MHz Measured 99% Bandwidth: 19.559 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

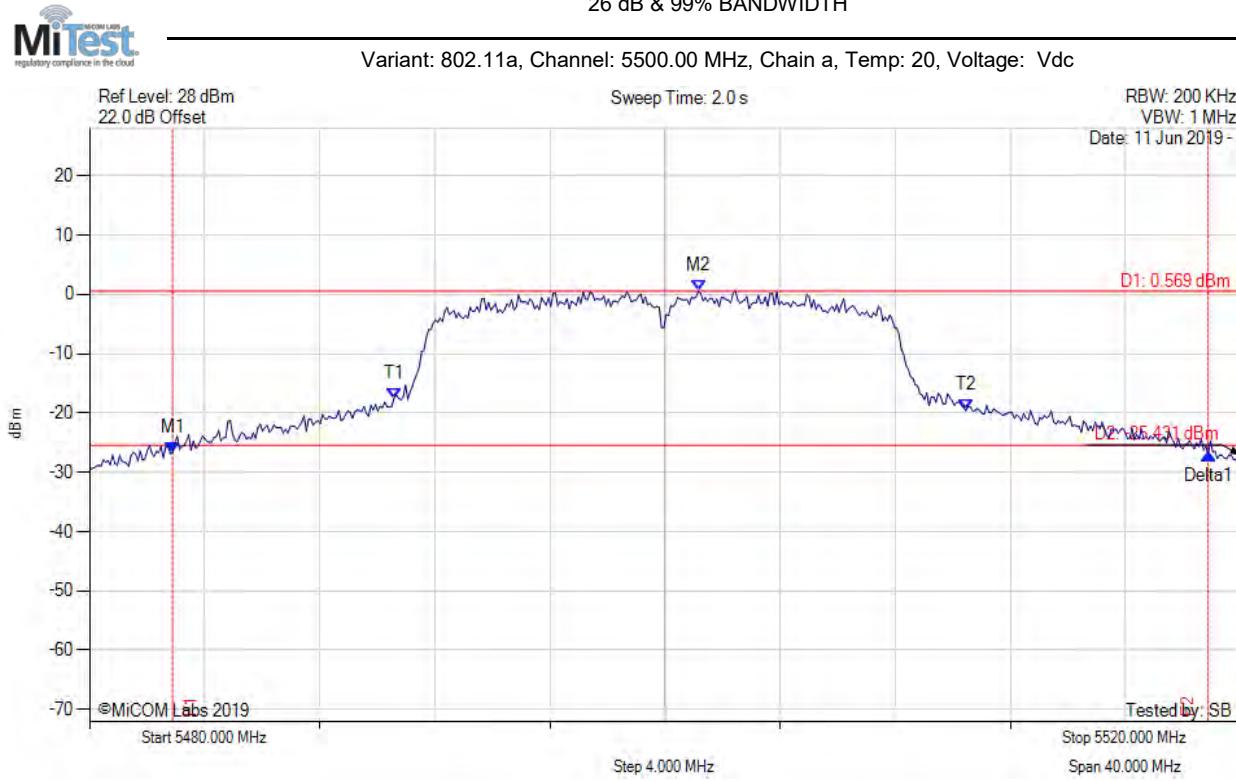
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5302.084 MHz : -26.393 dBm M2 : 5321.162 MHz : 0.229 dBm Delta1 : 34.629 MHz : 0.167 dB T1 : 5310.421 MHz : -17.019 dBm T2 : 5329.579 MHz : -18.190 dBm OBW : 19.158 MHz	Measured 26 dB Bandwidth: 34.629 MHz Measured 99% Bandwidth: 19.158 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

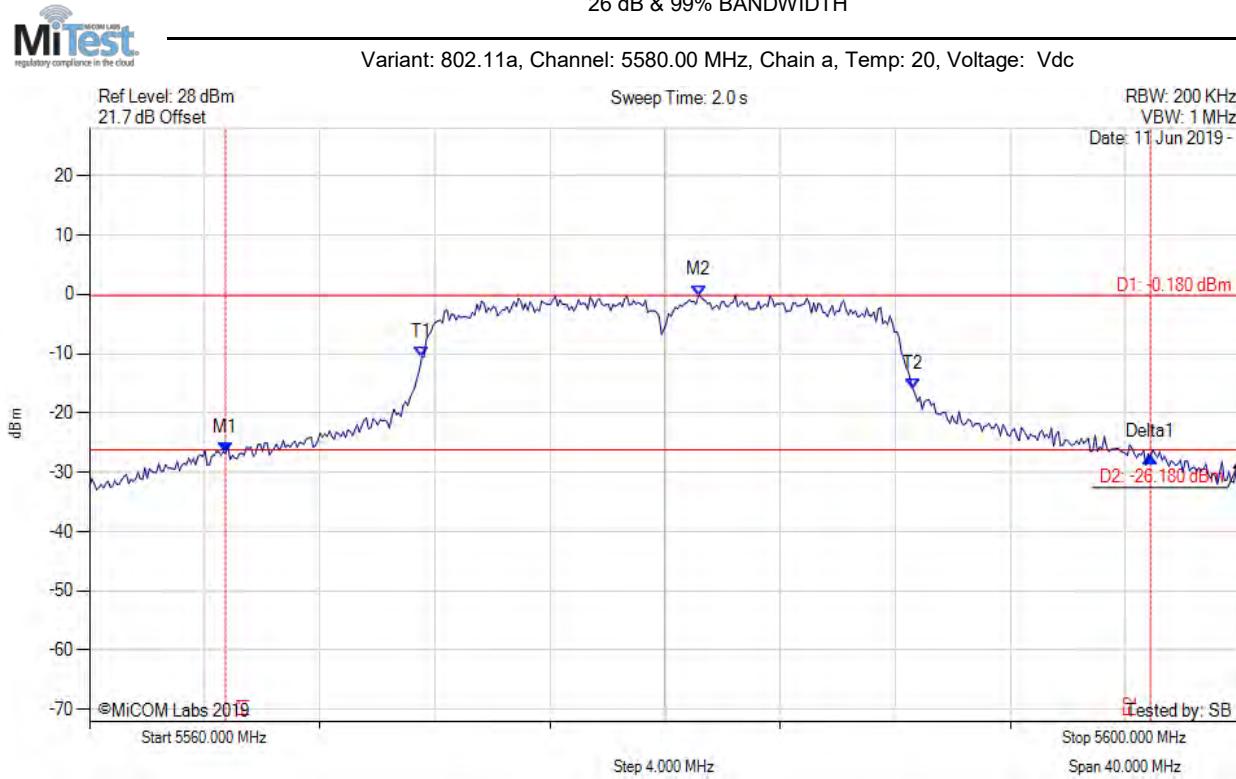
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5234.489 MHz : -25.449 dBm M2 : 5277.936 MHz : 0.913 dBm Delta1 : 72.786 MHz : 0.171 dB T1 : 5251.483 MHz : -8.243 dBm T2 : 5289.319 MHz : -16.525 dBm OBW : 37.836 MHz	Measured 26 dB Bandwidth: 72.786 MHz Measured 99% Bandwidth: 37.836 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

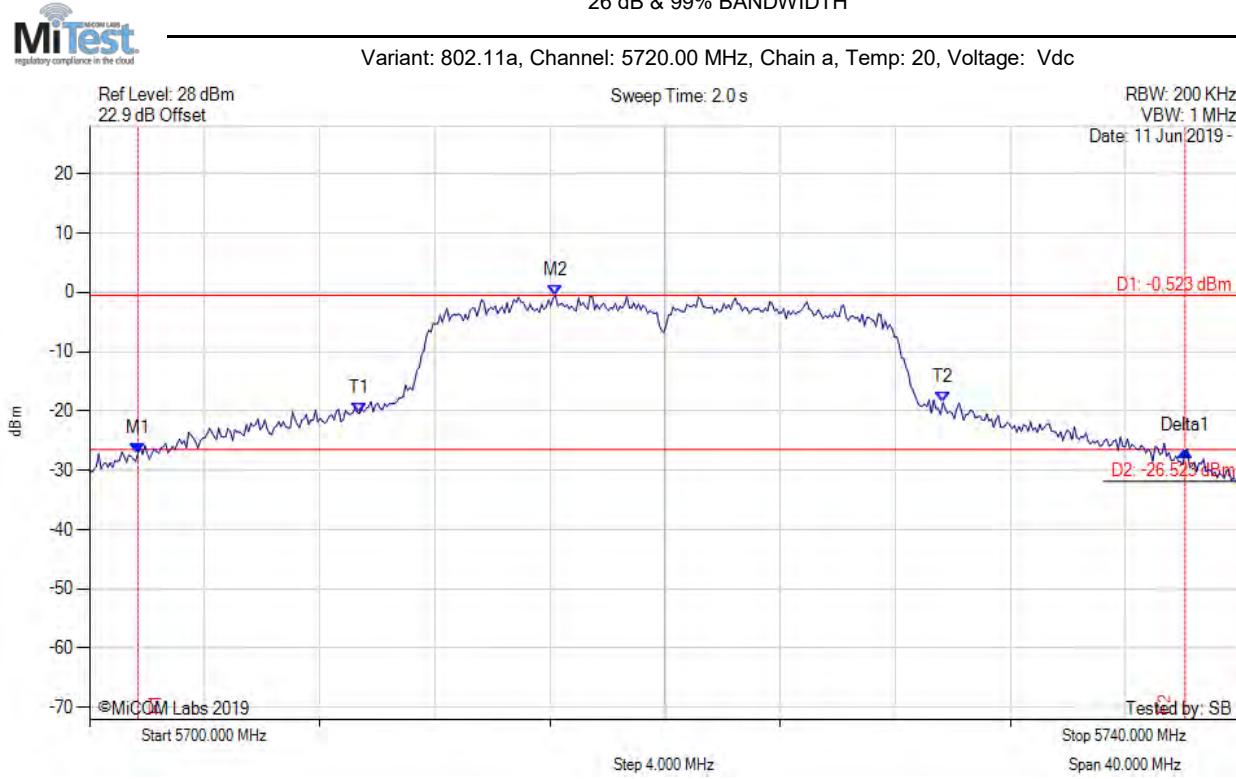
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5270.641 MHz : -25.864 dBm M2 : 5300.301 MHz : 1.726 dBm Delta1 : 79.198 MHz : 3.047 dB T1 : 5288.437 MHz : -17.304 dBm T2 : 5333.487 MHz : -18.363 dBm OBW : 45.050 MHz	Measured 26 dB Bandwidth: 79.198 MHz Measured 99% Bandwidth: 45.050 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

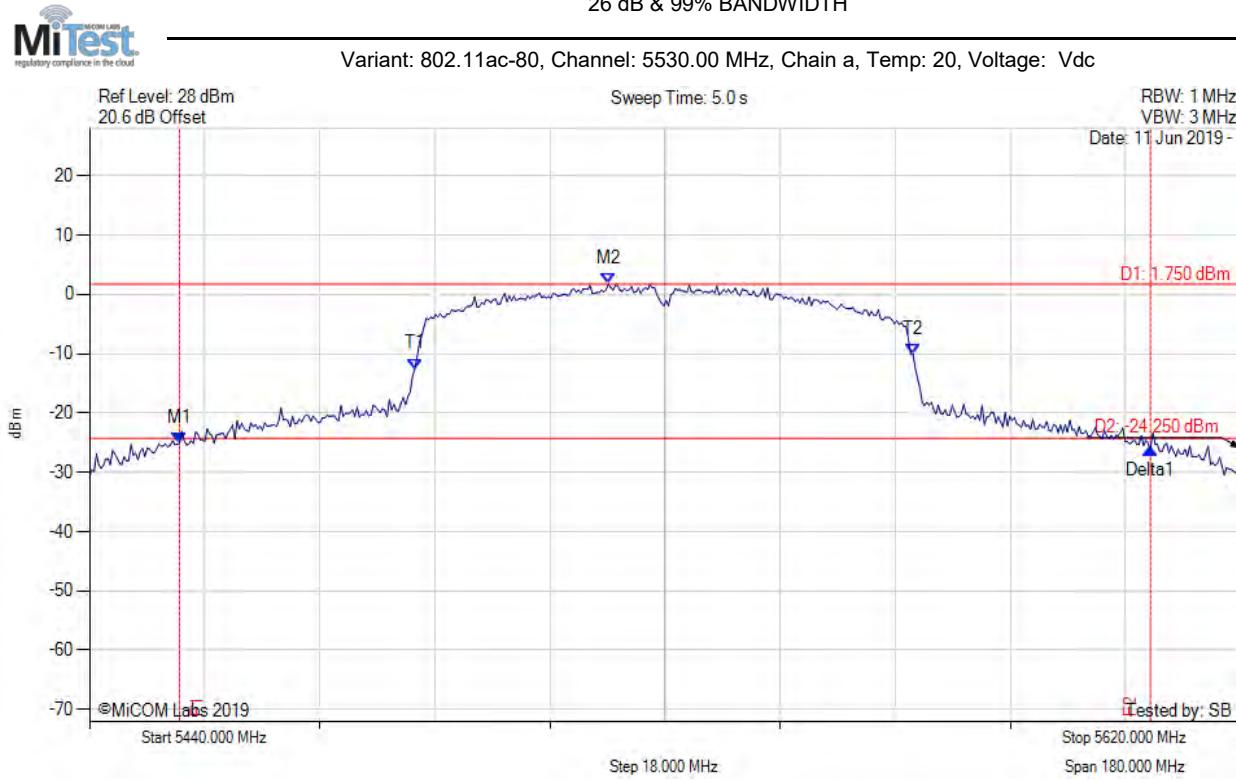
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5482.886 MHz : -26.700 dBm M2 : 5501.162 MHz : 0.569 dBm Delta1 : 35.992 MHz : -0.258 dB T1 : 5490.581 MHz : -17.552 dBm T2 : 5510.461 MHz : -19.573 dBm OBW : 19.880 MHz	Measured 26 dB Bandwidth: 35.992 MHz Measured 99% Bandwidth: 19.880 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

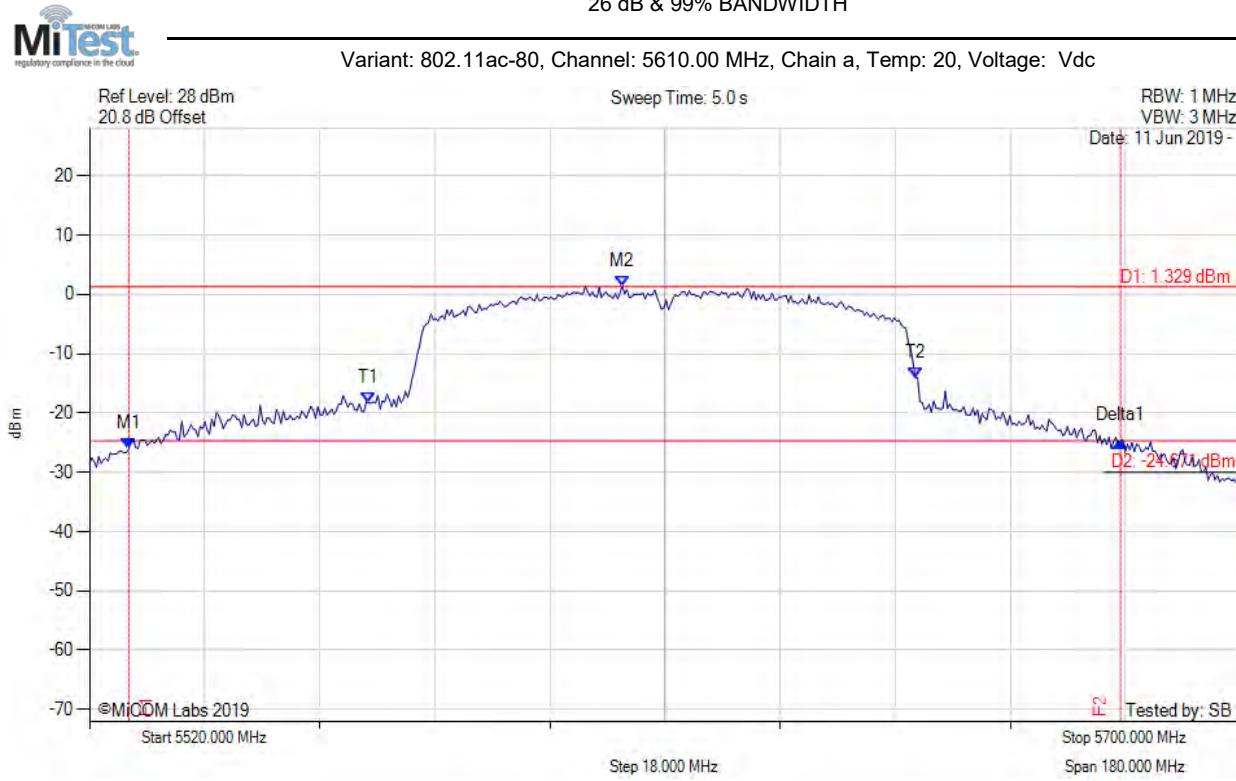
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5564.729 MHz : -26.787 dBm M2 : 5581.162 MHz : -0.180 dBm Delta1 : 32.144 MHz : -0.565 dB T1 : 5571.543 MHz : -10.574 dBm T2 : 5588.617 MHz : -15.909 dBm OBW : 17.074 MHz	Measured 26 dB Bandwidth: 32.144 MHz Measured 99% Bandwidth: 17.074 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

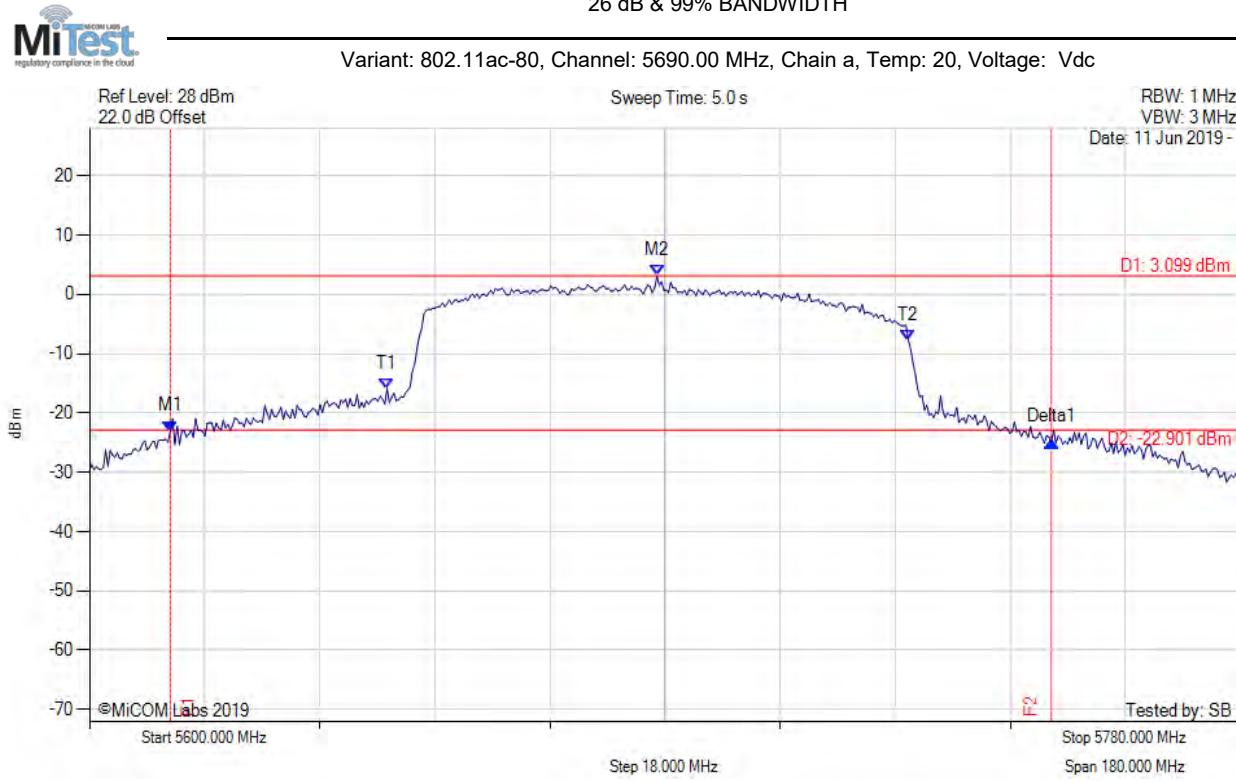
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5701.683 MHz : -27.127 dBm M2 : 5716.192 MHz : -0.523 dBm Delta1 : 36.393 MHz : 0.331 dB T1 : 5709.379 MHz : -20.444 dBm T2 : 5729.659 MHz : -18.613 dBm OBW : 20.281 MHz	Measured 26 dB Bandwidth: 36.393 MHz Measured 99% Bandwidth: 20.281 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5454.068 MHz : -25.156 dBm M2 : 5521.162 MHz : 1.750 dBm Delta1 : 151.864 MHz : -0.875 dB T1 : 5490.862 MHz : -12.585 dBm T2 : 5568.778 MHz : -10.041 dBm OBW : 77.916 MHz	Measured 26 dB Bandwidth: 151.864 MHz Measured 99% Bandwidth: 77.916 MHz

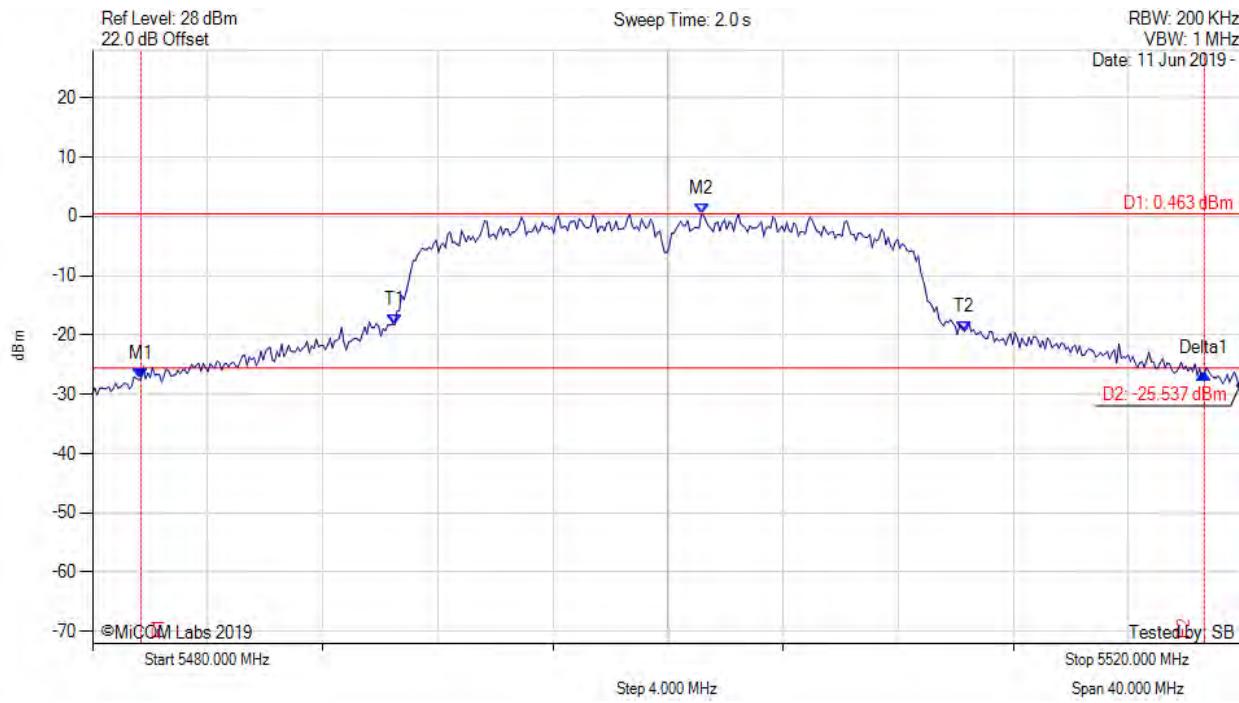
[back to matrix](#)


26 dB & 99% BANDWIDTH

Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5526.132 MHz : -26.071 dBm M2 : 5603.327 MHz : 1.329 dBm Delta1 : 155.110 MHz : 1.348 dB T1 : 5563.647 MHz : -18.290 dBm T2 : 5649.138 MHz : -14.009 dBm OBW : 85.491 MHz	Measured 26 dB Bandwidth: 155.110 MHz Measured 99% Bandwidth: 85.491 MHz

[back to matrix](#)

26 dB & 99% BANDWIDTH


Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5612.625 MHz : -23.098 dBm M2 : 5688.737 MHz : 3.099 dBm Delta1 : 137.796 MHz : -1.806 dB T1 : 5646.533 MHz : -15.947 dBm T2 : 5728.056 MHz : -7.725 dBm OBW : 81.523 MHz	Measured 26 dB Bandwidth: 137.796 MHz Measured 99% Bandwidth: 81.523 MHz

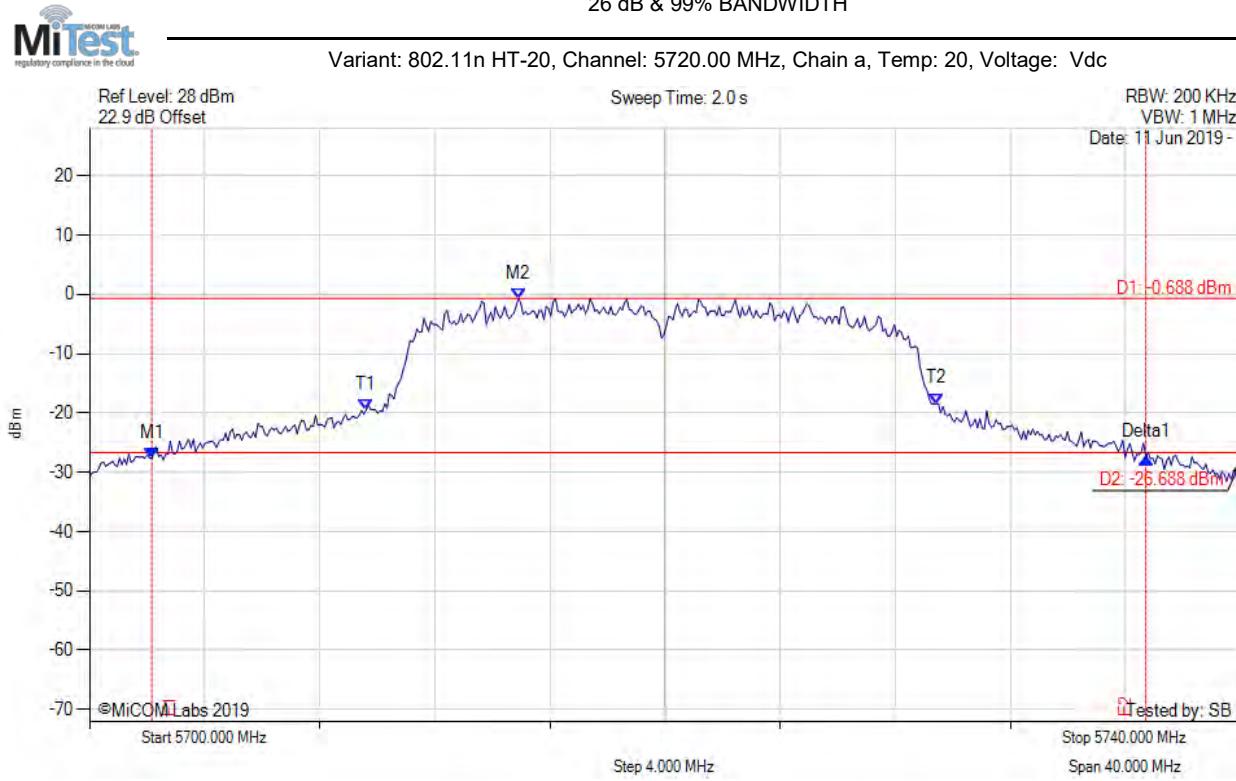
[back to matrix](#)

26 dB & 99% BANDWIDTH

Variant: 802.11n HT-20, Channel: 5500.00 MHz, Chain a, Temp: 20, Voltage: Vdc

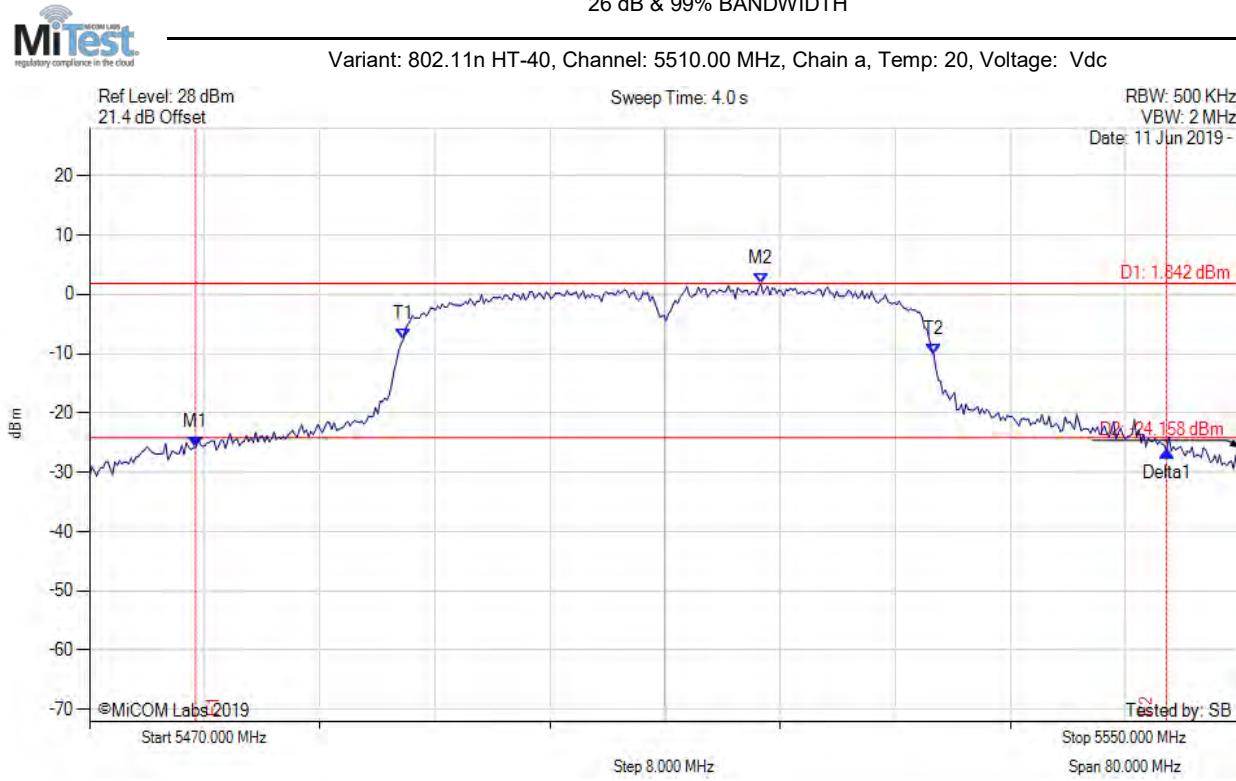
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5481.683 MHz : -27.468 dBm M2 : 5501.162 MHz : 0.463 dBm Delta1 : 36.954 MHz : 0.960 dB T1 : 5490.501 MHz : -18.233 dBm T2 : 5510.301 MHz : -19.378 dBm OBW : 19.800 MHz	Measured 26 dB Bandwidth: 36.954 MHz Measured 99% Bandwidth: 19.800 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

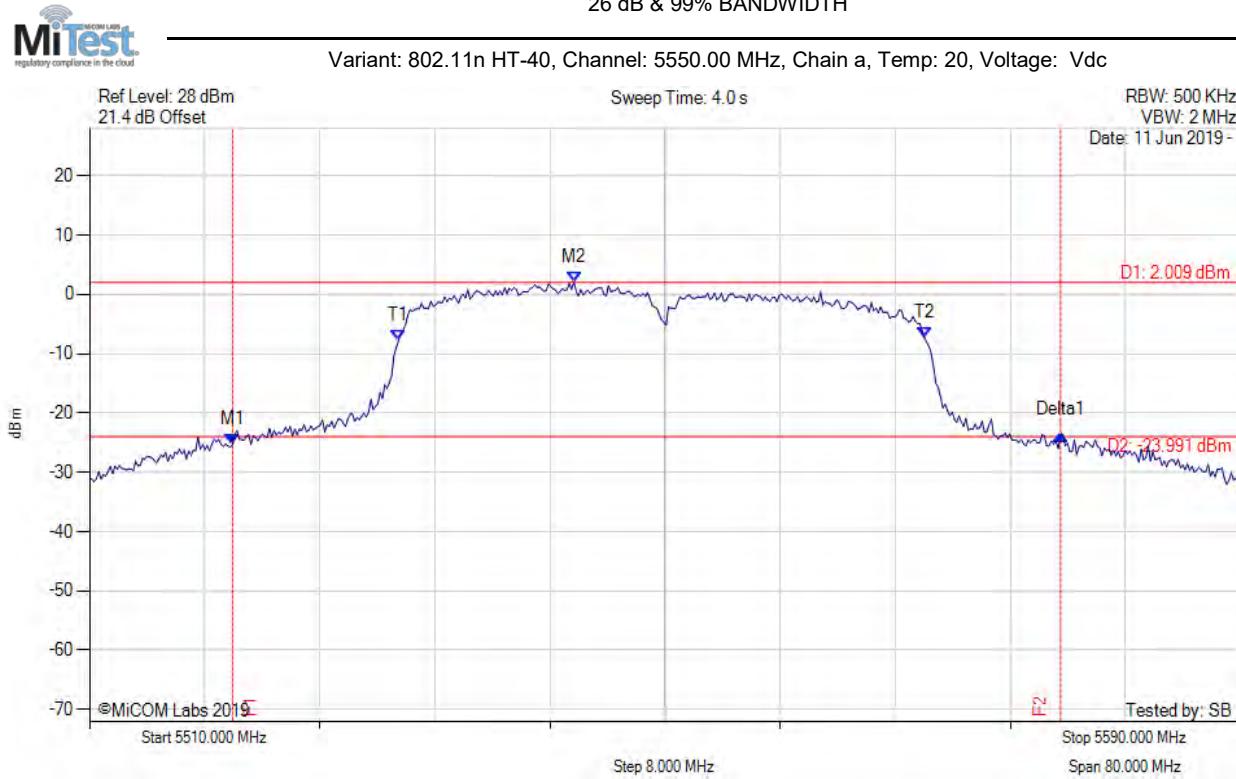
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5562.645 MHz : -28.683 dBm M2 : 5581.162 MHz : -0.295 dBm Delta1 : 34.790 MHz : -0.144 dB T1 : 5570.902 MHz : -12.685 dBm T2 : 5589.178 MHz : -14.975 dBm OBW : 18.277 MHz	Measured 26 dB Bandwidth: 34.790 MHz Measured 99% Bandwidth: 18.277 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

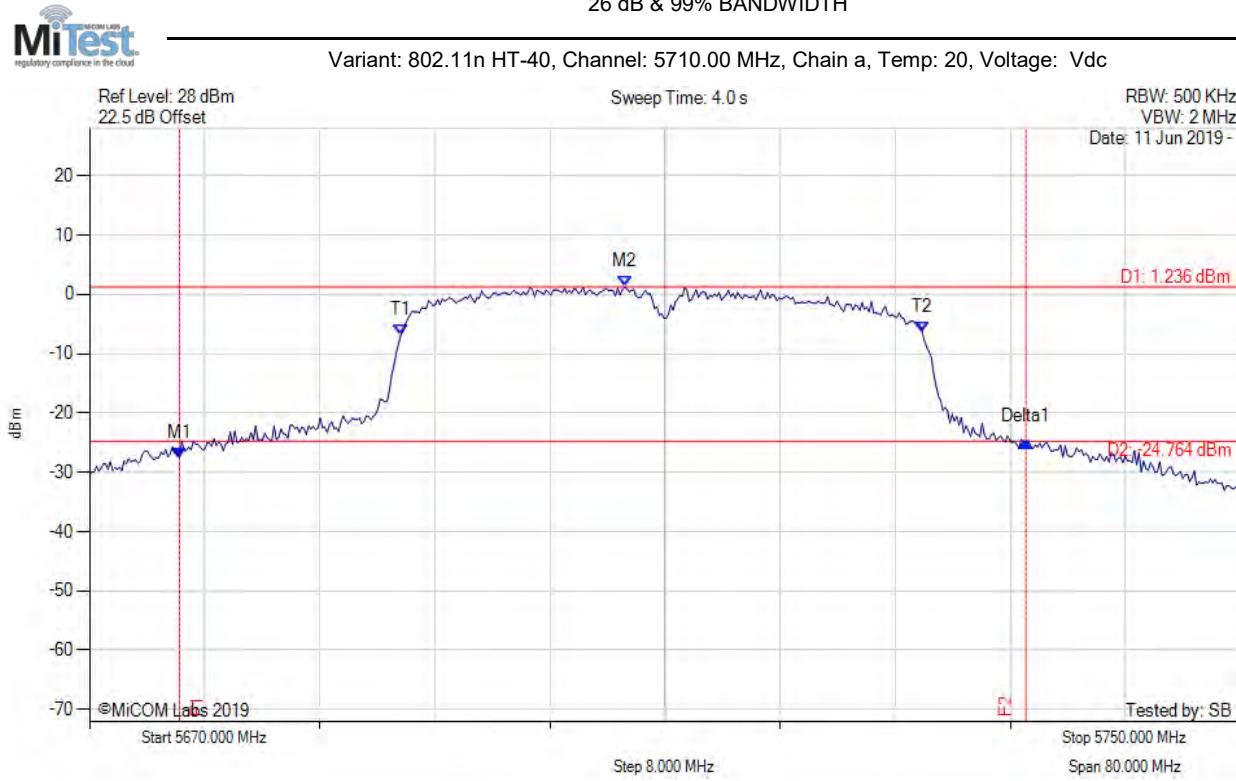
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5702.164 MHz : -27.647 dBm M2 : 5714.910 MHz : -0.688 dBm Delta1 : 34.549 MHz : 0.126 dB T1 : 5709.619 MHz : -19.398 dBm T2 : 5729.419 MHz : -18.418 dBm OBW : 19.800 MHz	Measured 26 dB Bandwidth: 34.549 MHz Measured 99% Bandwidth: 19.800 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

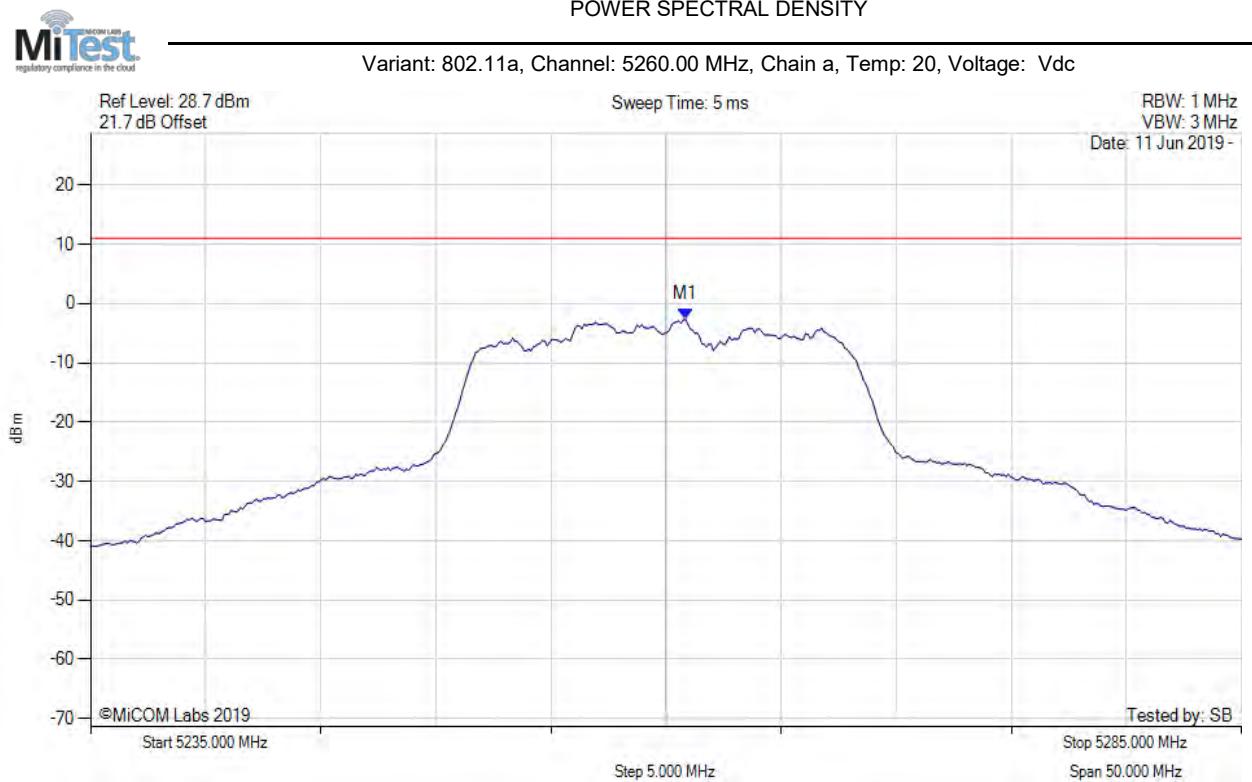
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5477.375 MHz : -25.776 dBm M2 : 5516.653 MHz : 1.842 dBm Delta1 : 67.495 MHz : -0.683 dB T1 : 5491.804 MHz : -7.615 dBm T2 : 5528.677 MHz : -10.125 dBm OBW : 36.874 MHz	Measured 26 dB Bandwidth: 67.495 MHz Measured 99% Bandwidth: 36.874 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

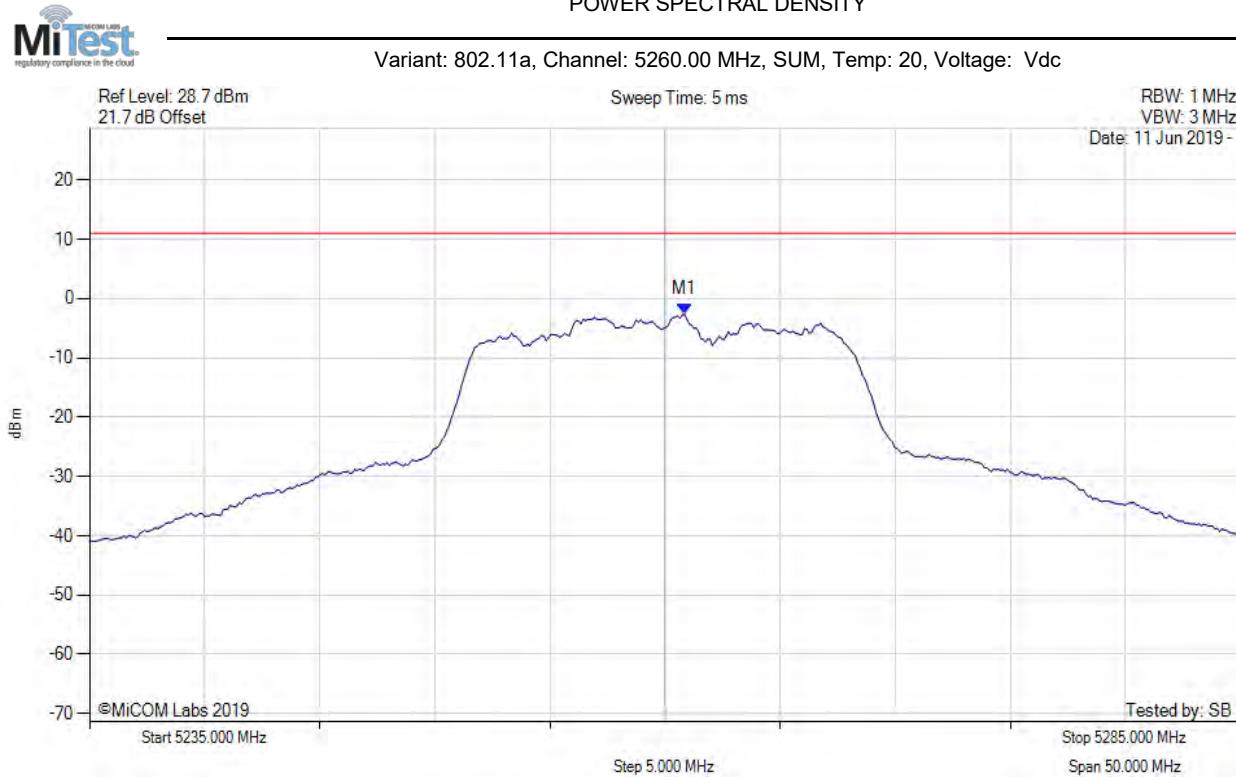
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5519.940 MHz : -25.357 dBm M2 : 5543.667 MHz : 2.009 dBm Delta1 : 57.555 MHz : 1.631 dB T1 : 5531.483 MHz : -7.706 dBm T2 : 5568.036 MHz : -7.347 dBm OBW : 36.553 MHz	Measured 26 dB Bandwidth: 57.555 MHz Measured 99% Bandwidth: 36.553 MHz

[back to matrix](#)


26 dB & 99% BANDWIDTH

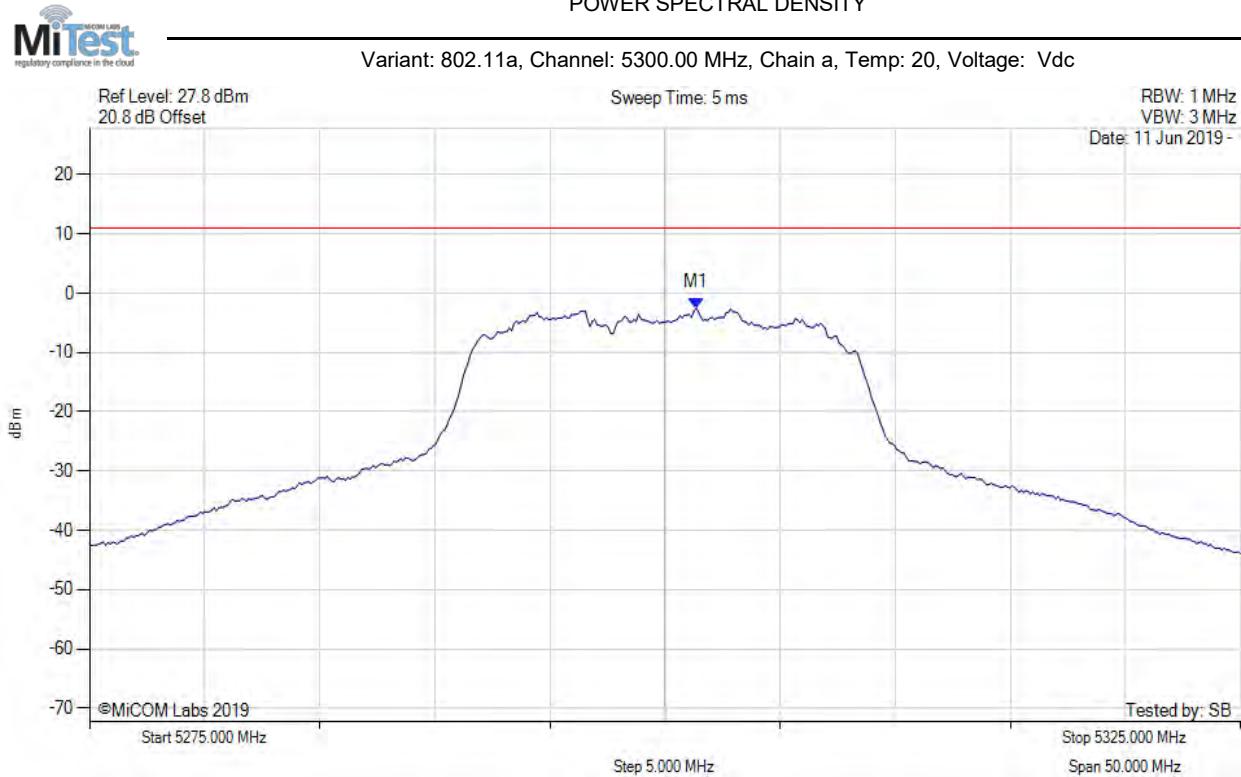
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5676.253 MHz : -27.580 dBm M2 : 5707.194 MHz : 1.236 dBm Delta1 : 58.838 MHz : 2.770 dB T1 : 5691.643 MHz : -6.769 dBm T2 : 5727.876 MHz : -6.285 dBm OBW : 36.232 MHz	Measured 26 dB Bandwidth: 58.838 MHz Measured 99% Bandwidth: 36.232 MHz

[back to matrix](#)


A.2. Power Spectral Density

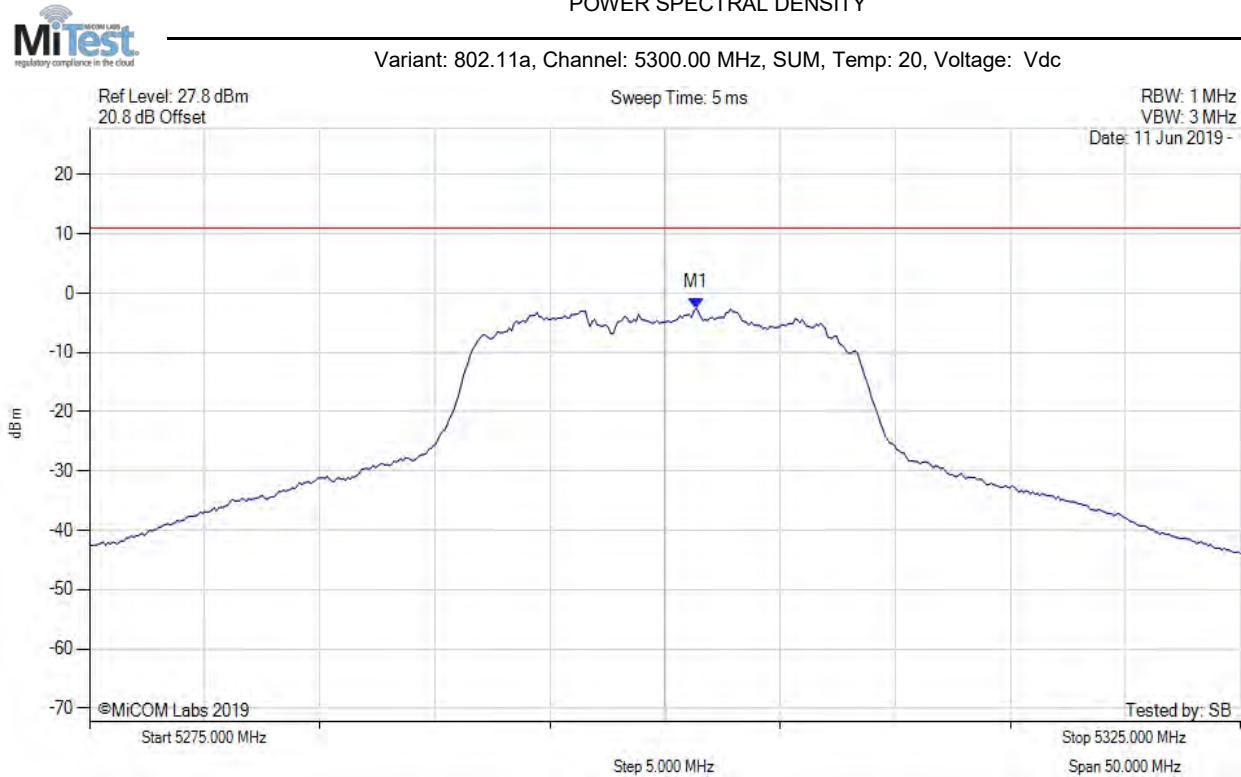
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5260.852 MHz : -2.656 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

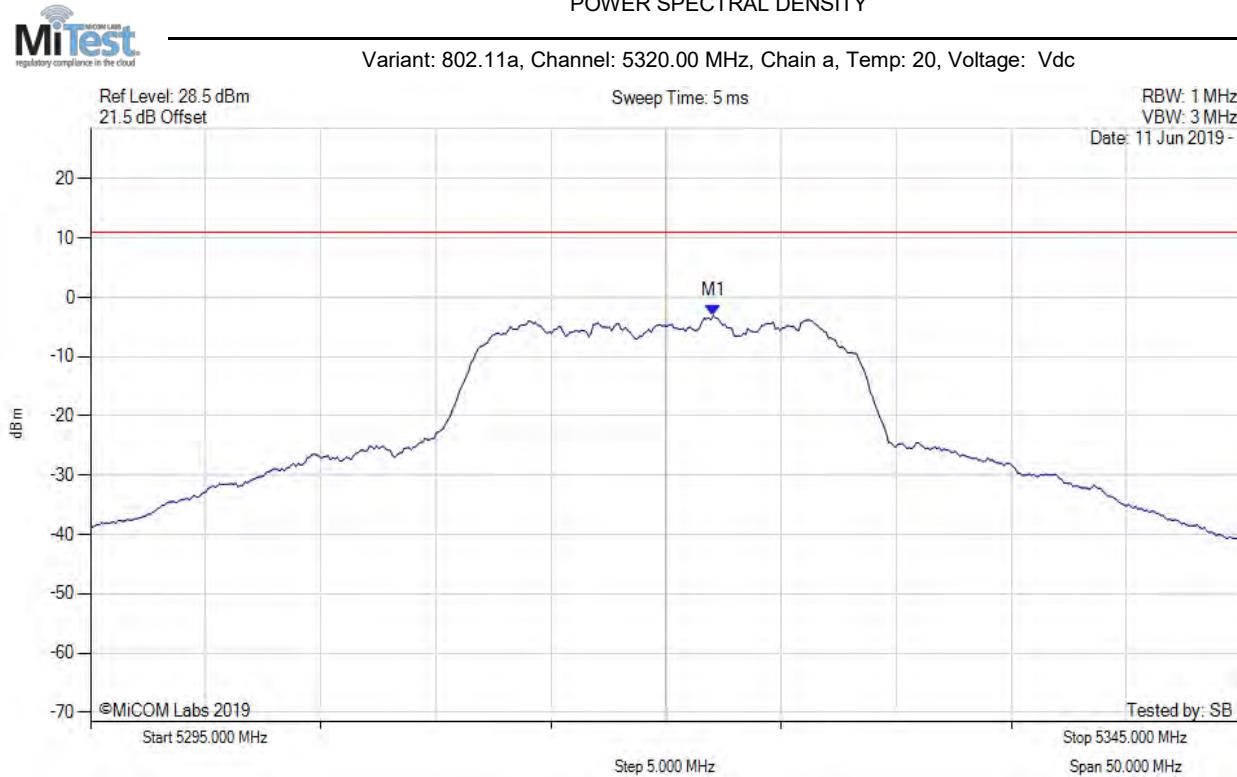
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5260.900 MHz : -2.656 dBm M1 + DCCF : 5260.900 MHz : -2.341 dBm Duty Cycle Correction Factor : +0.32 dB	Limit: ≤ 11.0 dBm Margin: -13.3 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

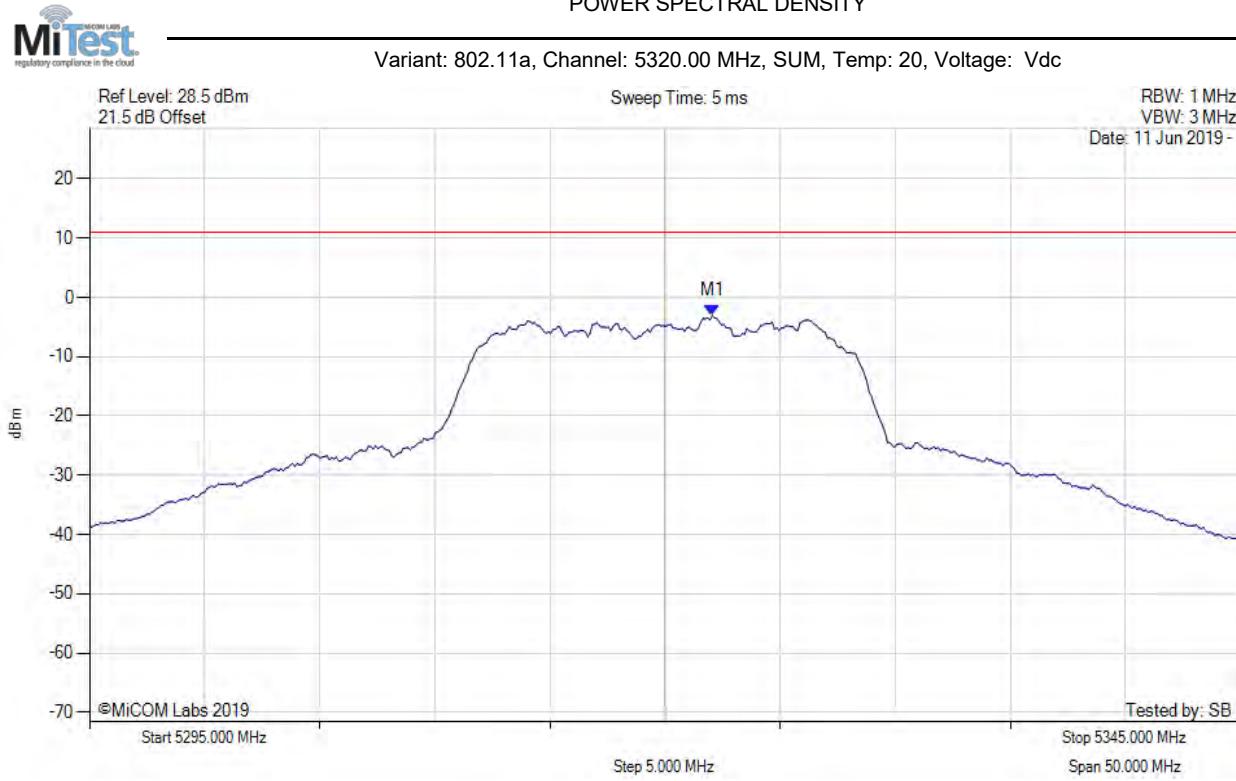
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5301.353 MHz : -2.483 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

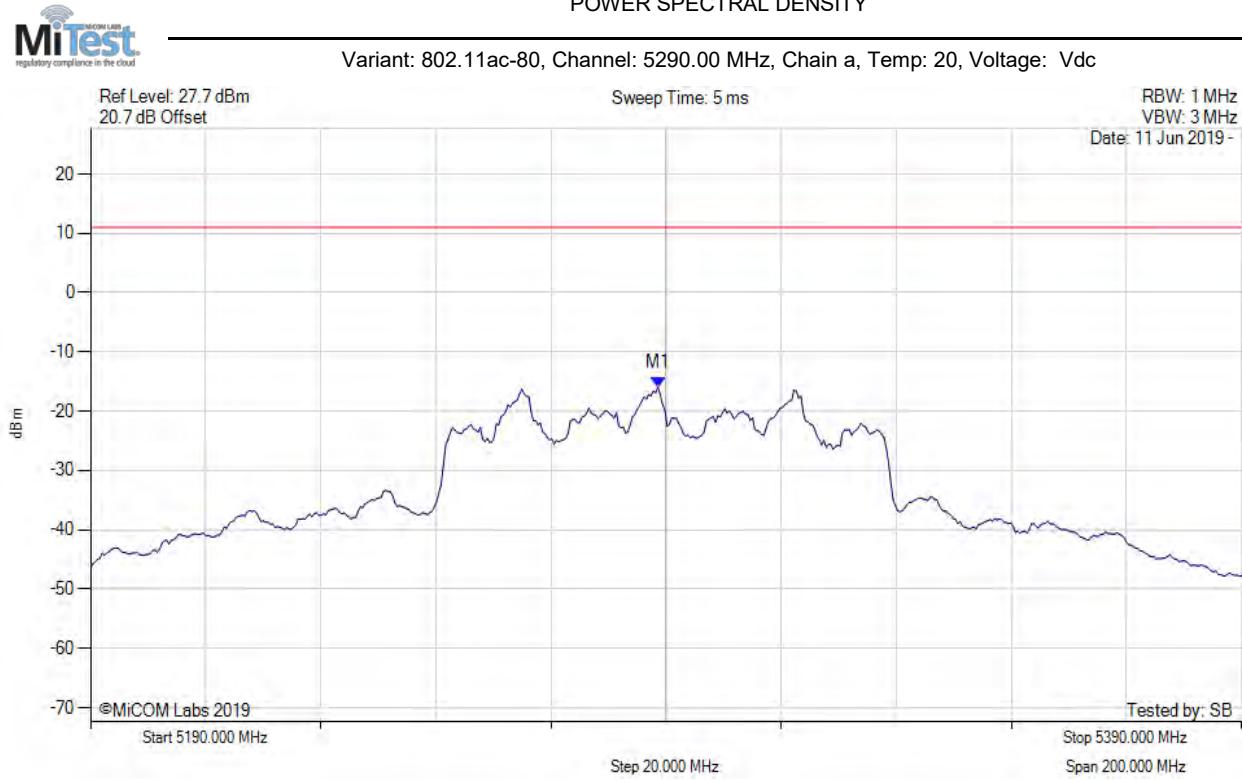
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5301.400 MHz : -2.483 dBm M1 + DCCF : 5301.400 MHz : -2.168 dBm Duty Cycle Correction Factor : +0.32 dB	Limit: ≤ 11.0 dBm Margin: -13.2 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

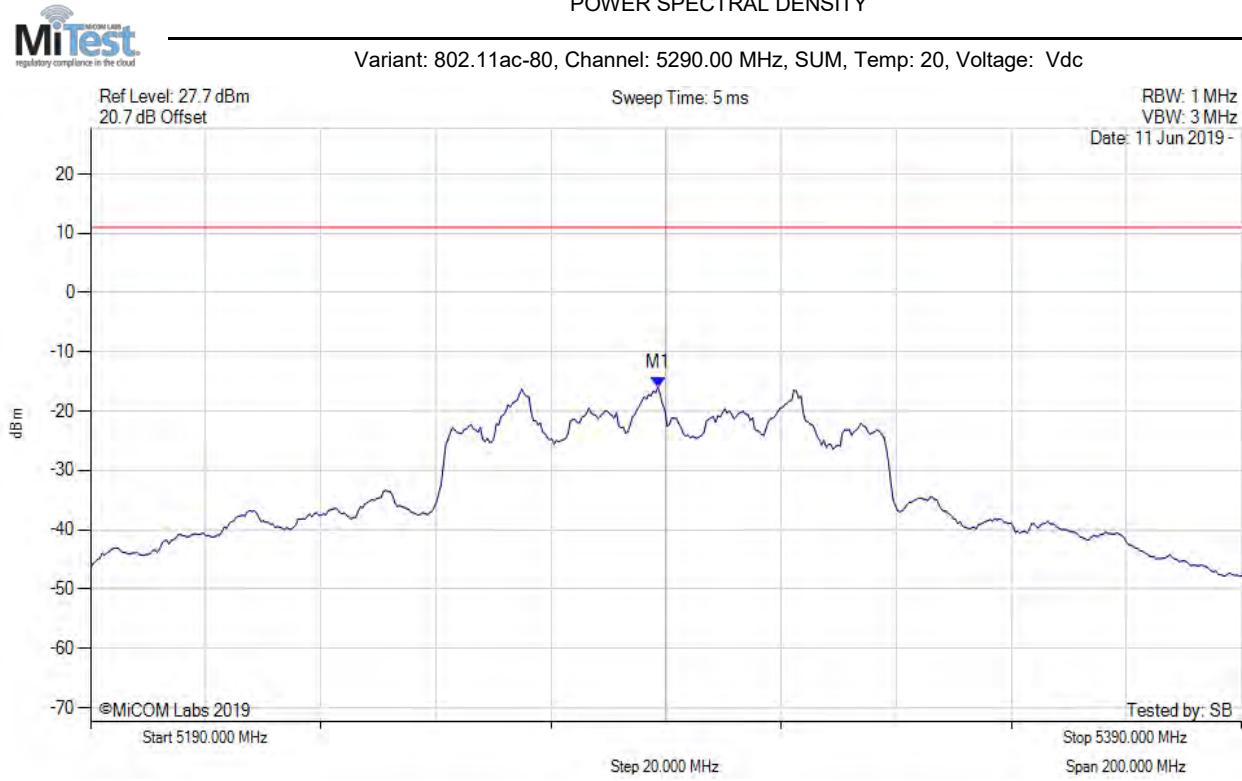
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5322.054 MHz : -3.059 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

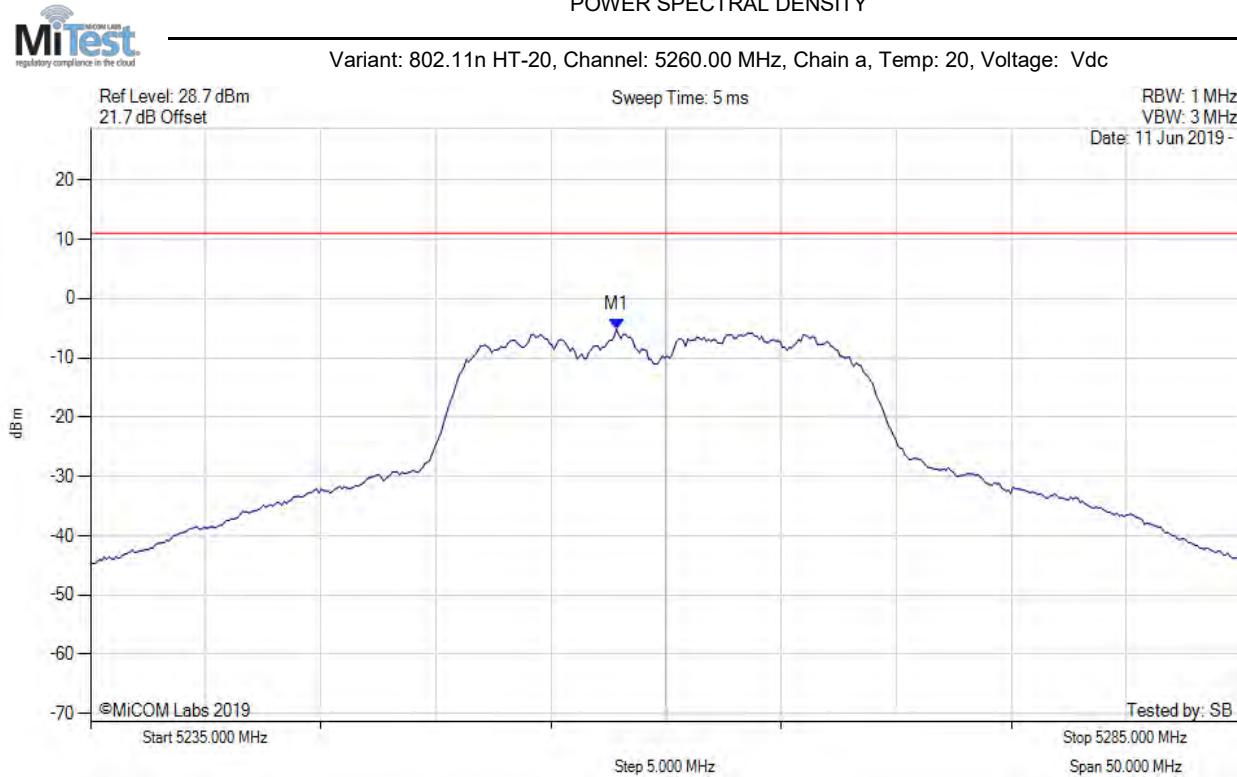
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5322.100 MHz : -3.059 dBm M1 + DCCF : 5322.100 MHz : -2.744 dBm Duty Cycle Correction Factor : +0.32 dB	Limit: ≤ 11.0 dBm Margin: -13.7 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

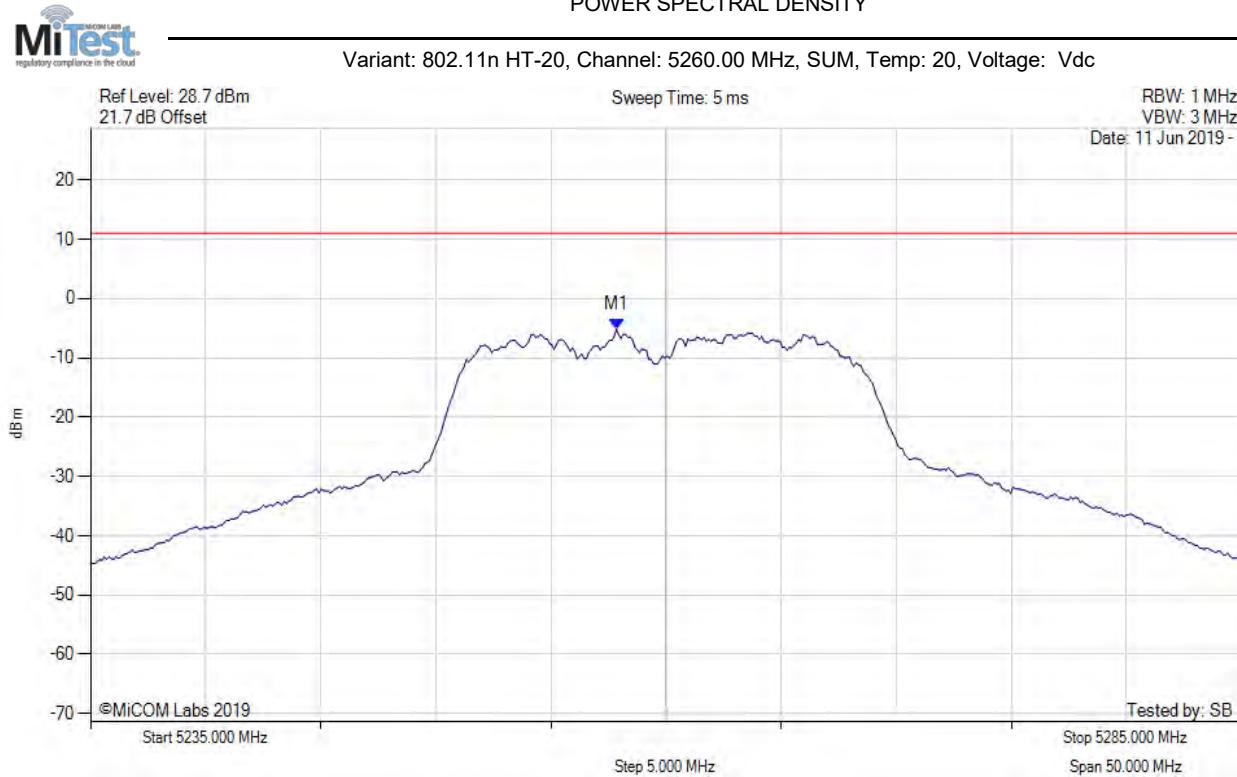
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5288.597 MHz : -15.954 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5288.600 MHz : -15.954 dBm M1 + DCCF : 5288.600 MHz : -14.467 dBm Duty Cycle Correction Factor : +1.49 dB	Limit: ≤ 11.0 dBm Margin: -25.5 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

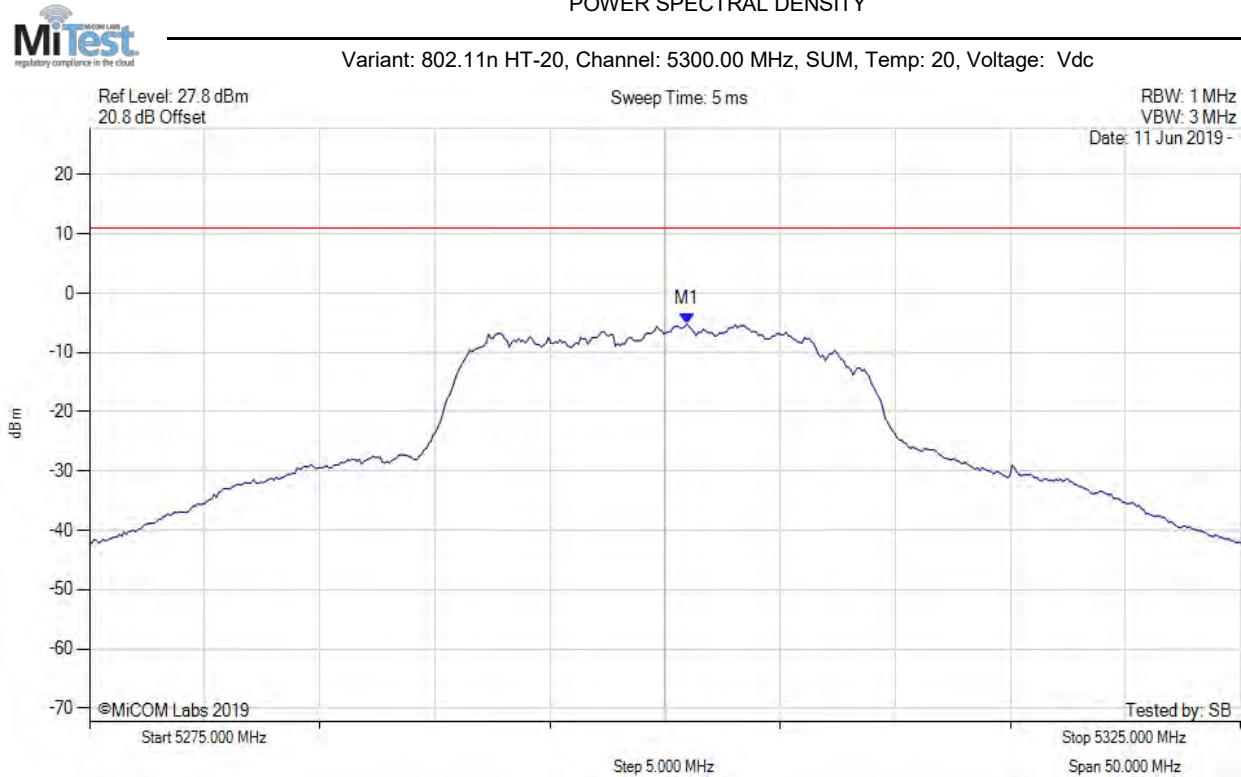
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5257.846 MHz : -5.152 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)

POWER SPECTRAL DENSITY

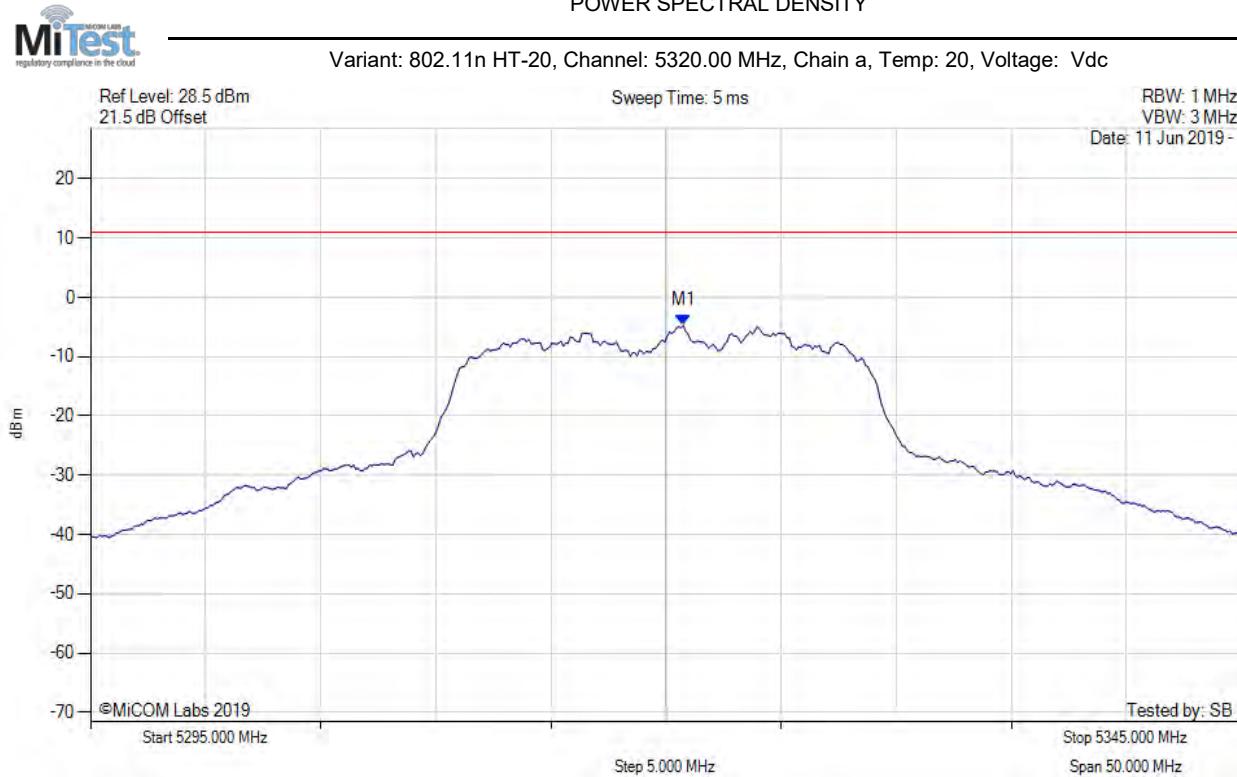
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5257.800 MHz : -5.152 dBm M1 + DCCF : 5257.800 MHz : -4.790 dBm Duty Cycle Correction Factor : +0.36 dB	Limit: ≤ 11.0 dBm Margin: -15.8 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

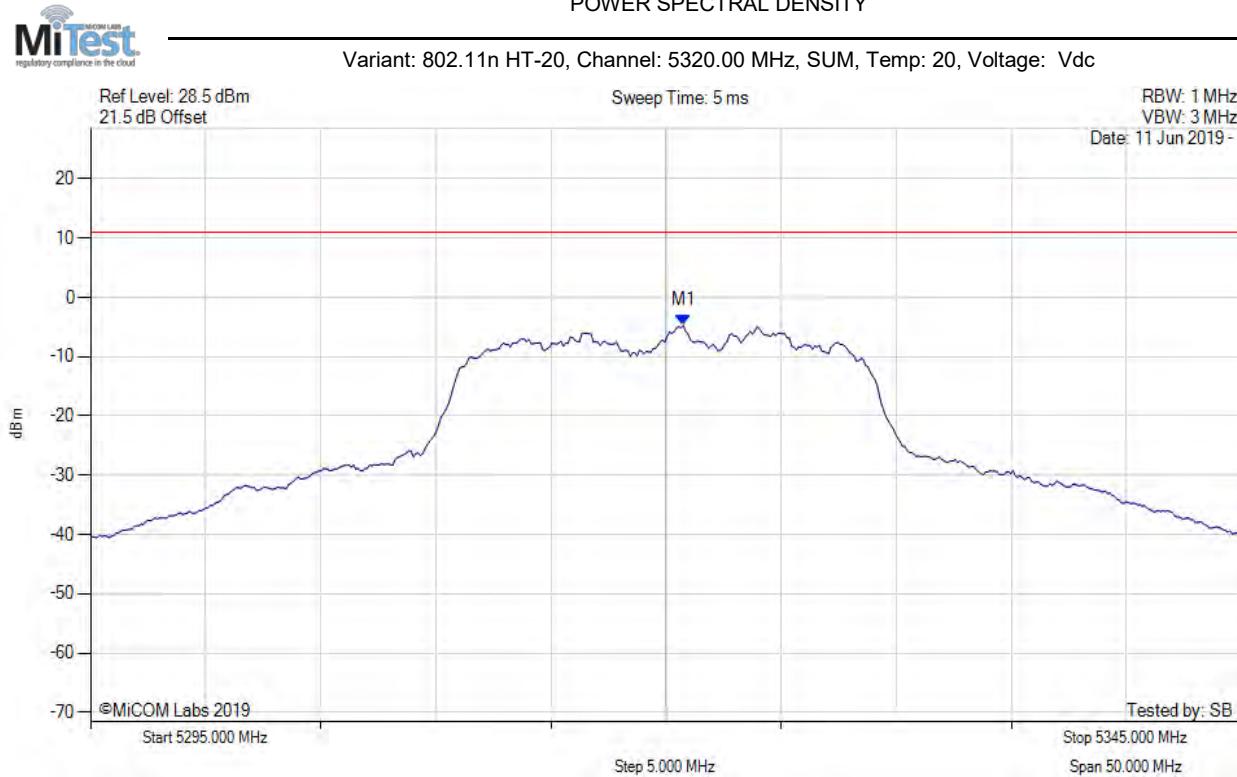
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5300.952 MHz : -5.178 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

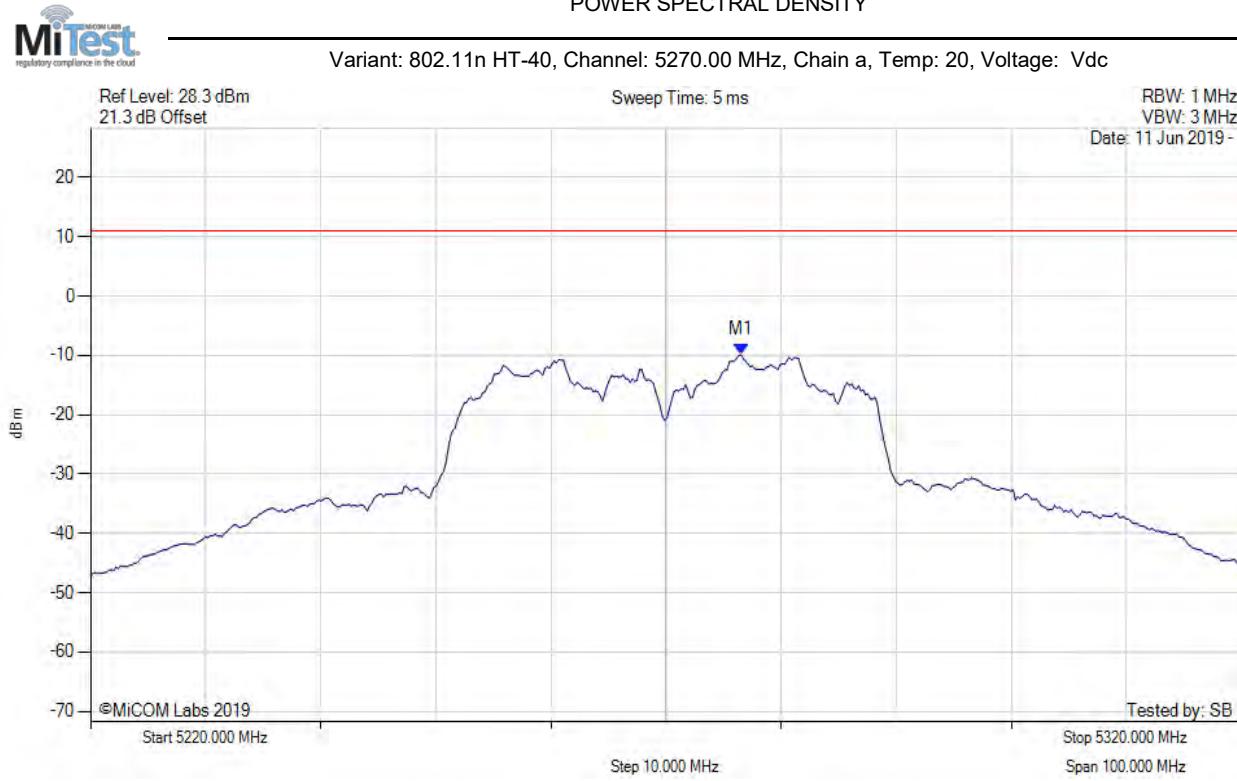
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5301.000 MHz : -5.178 dBm M1 + DCCF : 5301.000 MHz : -4.816 dBm Duty Cycle Correction Factor : +0.36 dB	Limit: ≤ 11.0 dBm Margin: -15.8 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

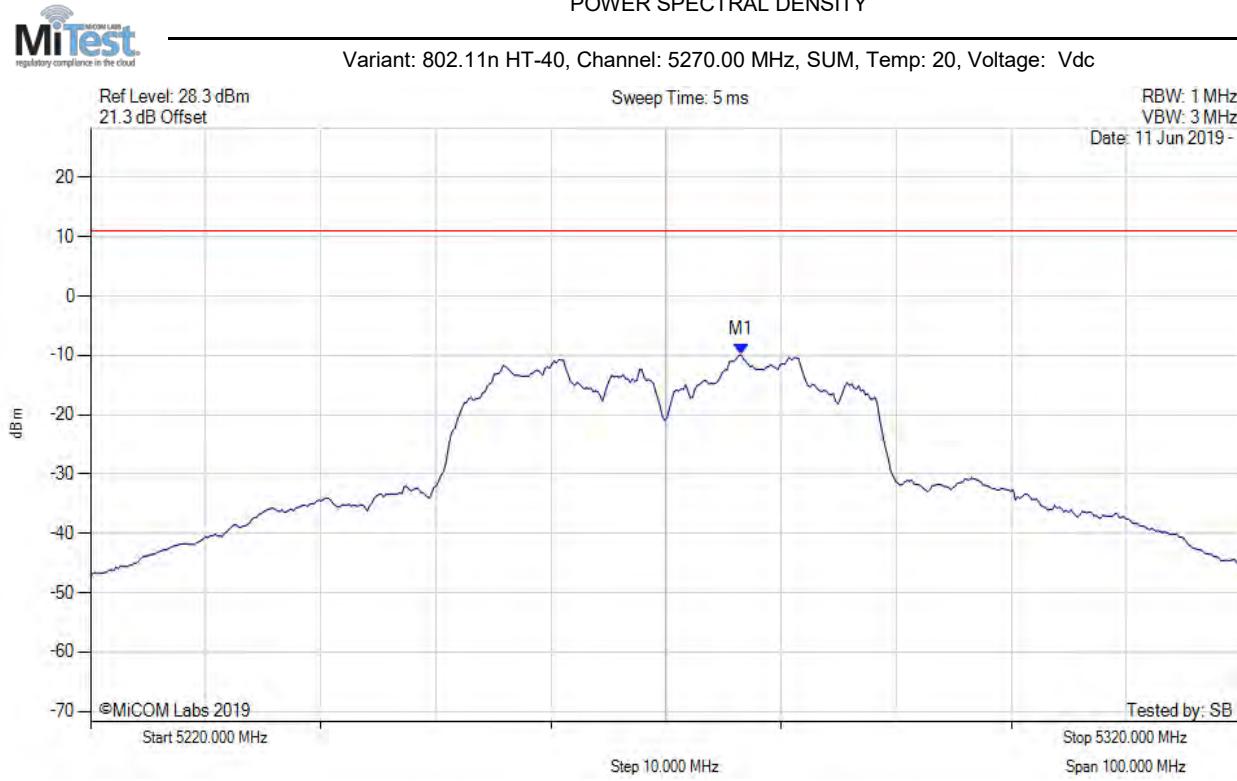
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5320.752 MHz : -4.772 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

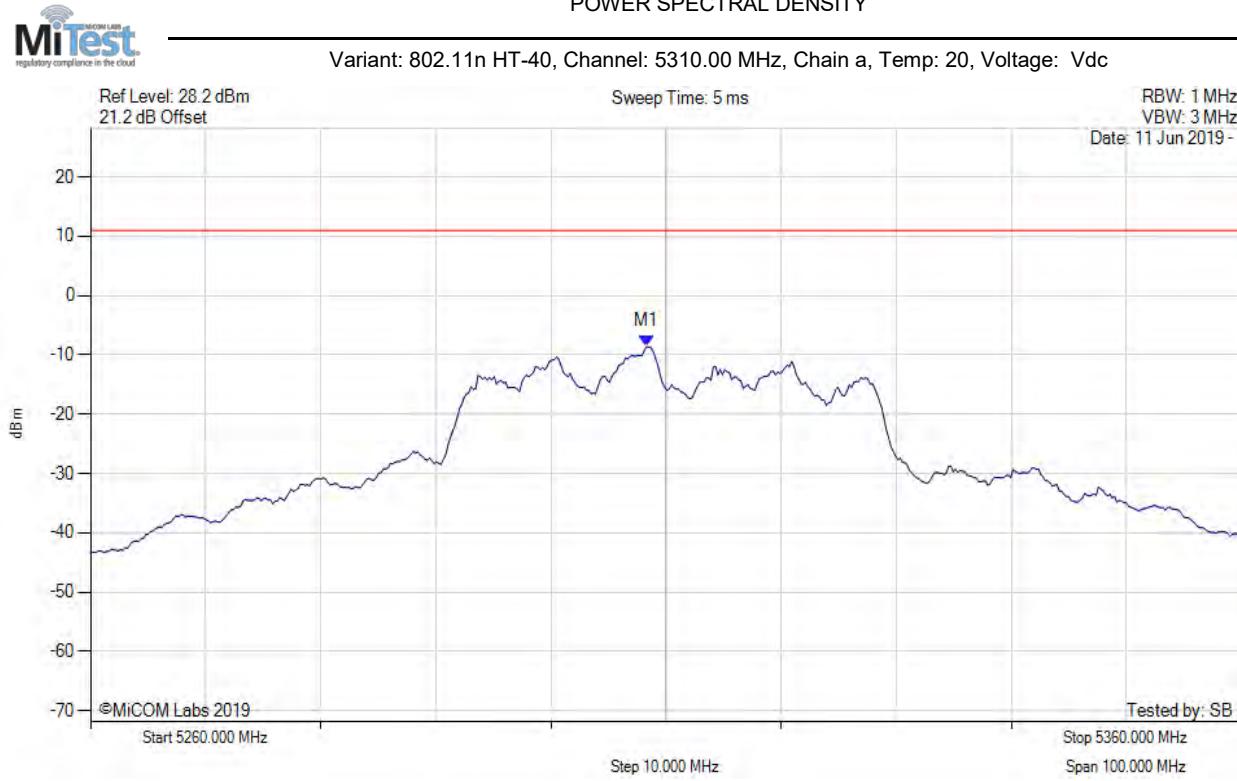
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5320.800 MHz : -4.772 dBm M1 + DCCF : 5320.800 MHz : -4.410 dBm Duty Cycle Correction Factor : +0.36 dB	Limit: ≤ 11.0 dBm Margin: -15.4 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

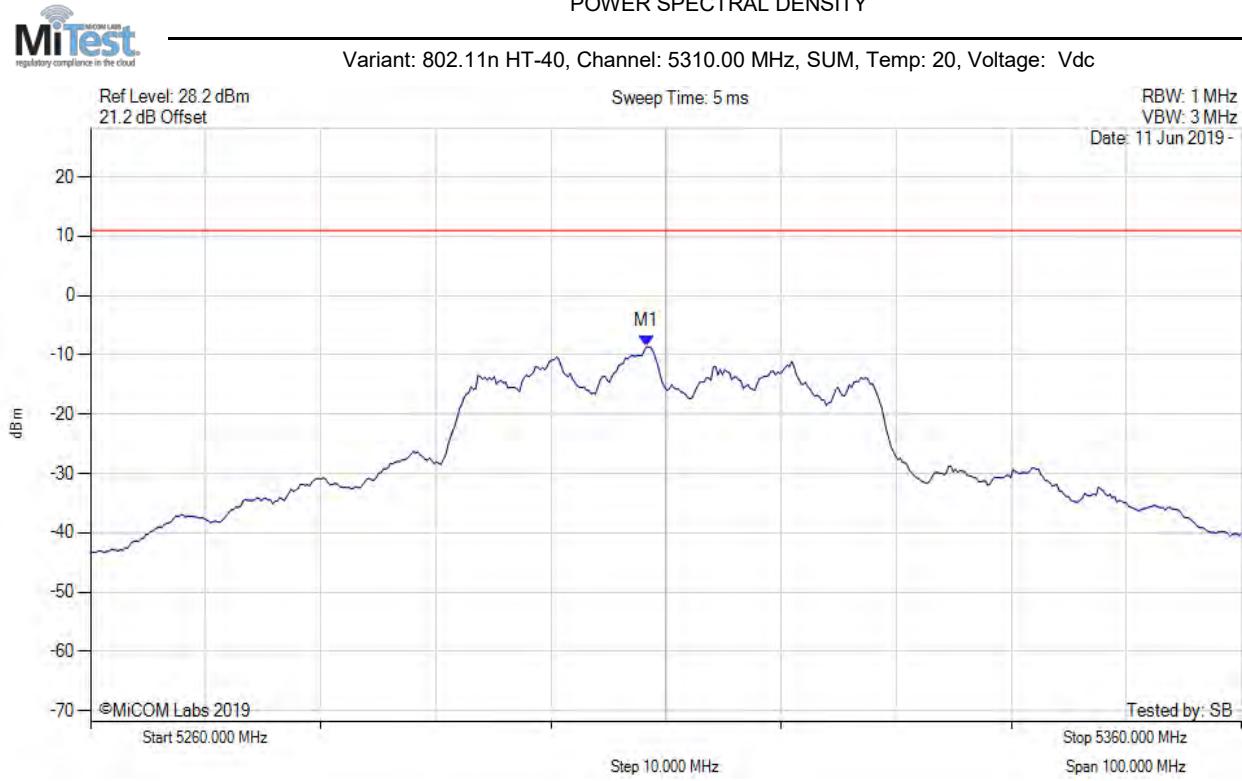
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5276.513 MHz : -9.880 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

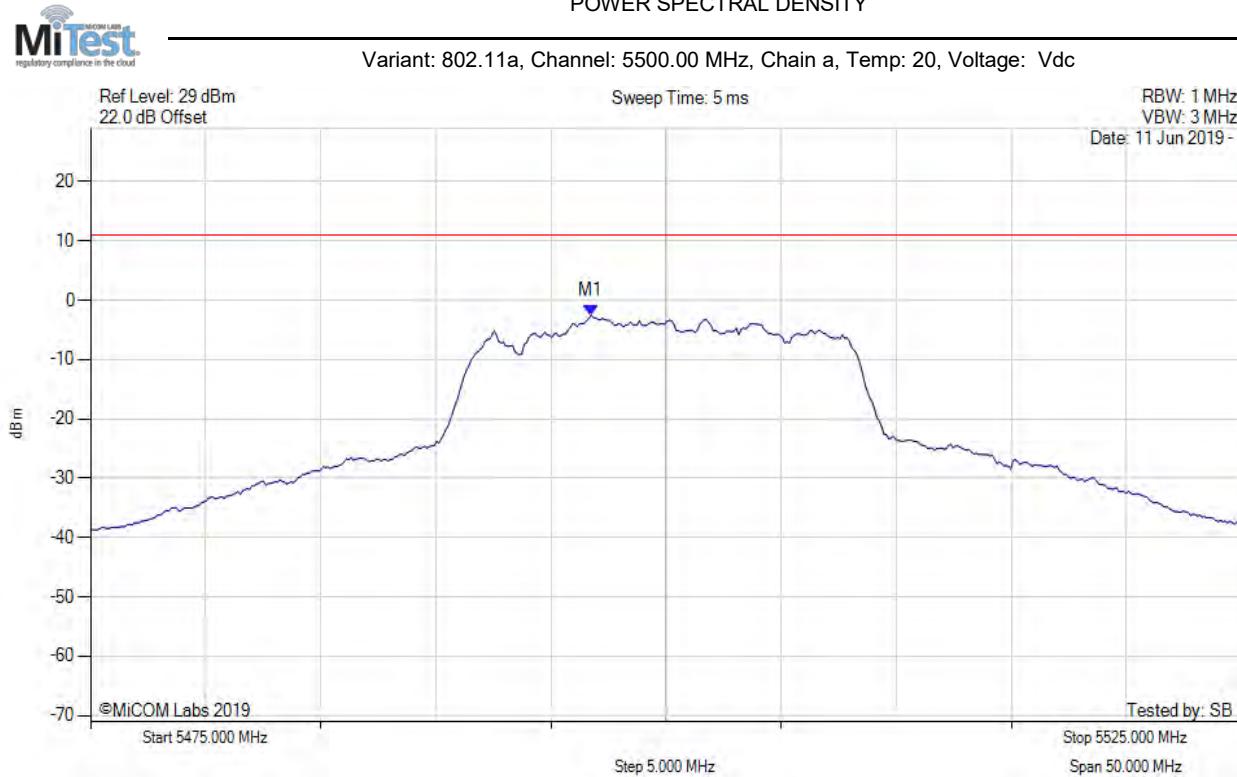
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5276.500 MHz : -9.880 dBm M1 + DCCF : 5276.500 MHz : -9.071 dBm Duty Cycle Correction Factor : +0.81 dB	Limit: ≤ 11.0 dBm Margin: -20.1 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

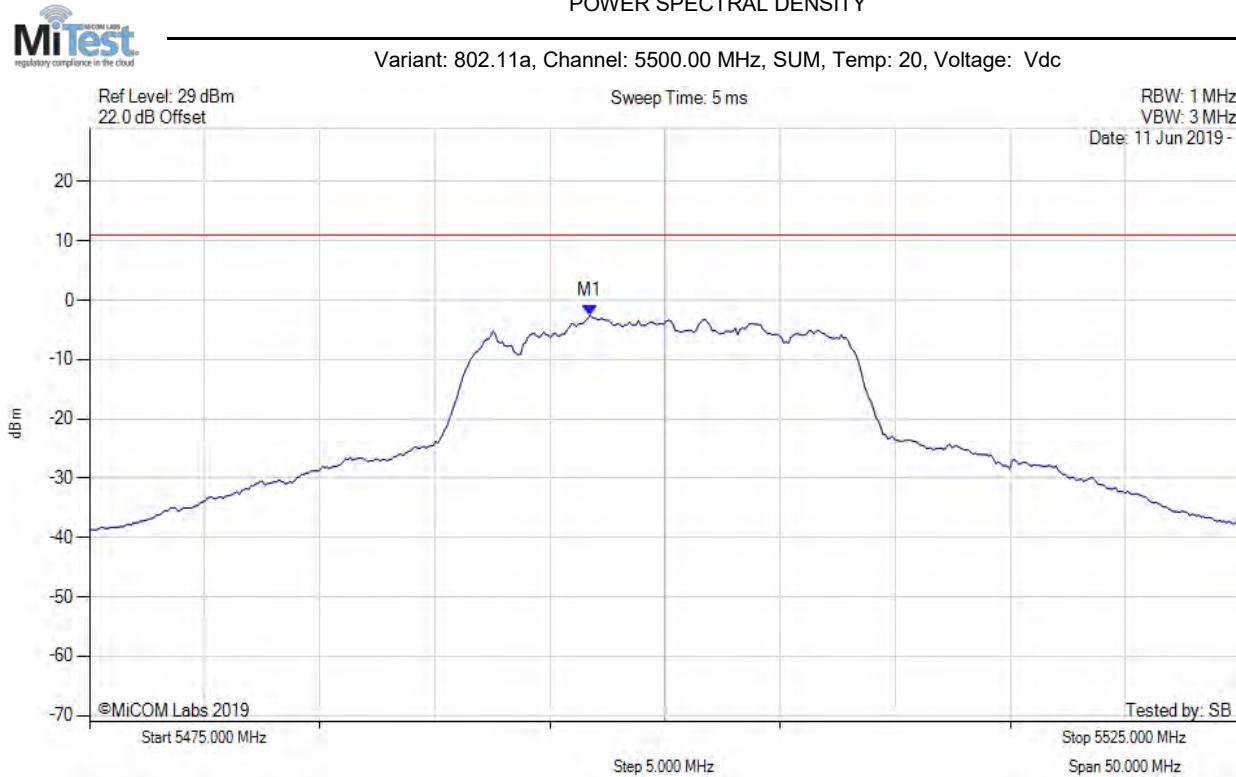
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5308.297 MHz : -8.619 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

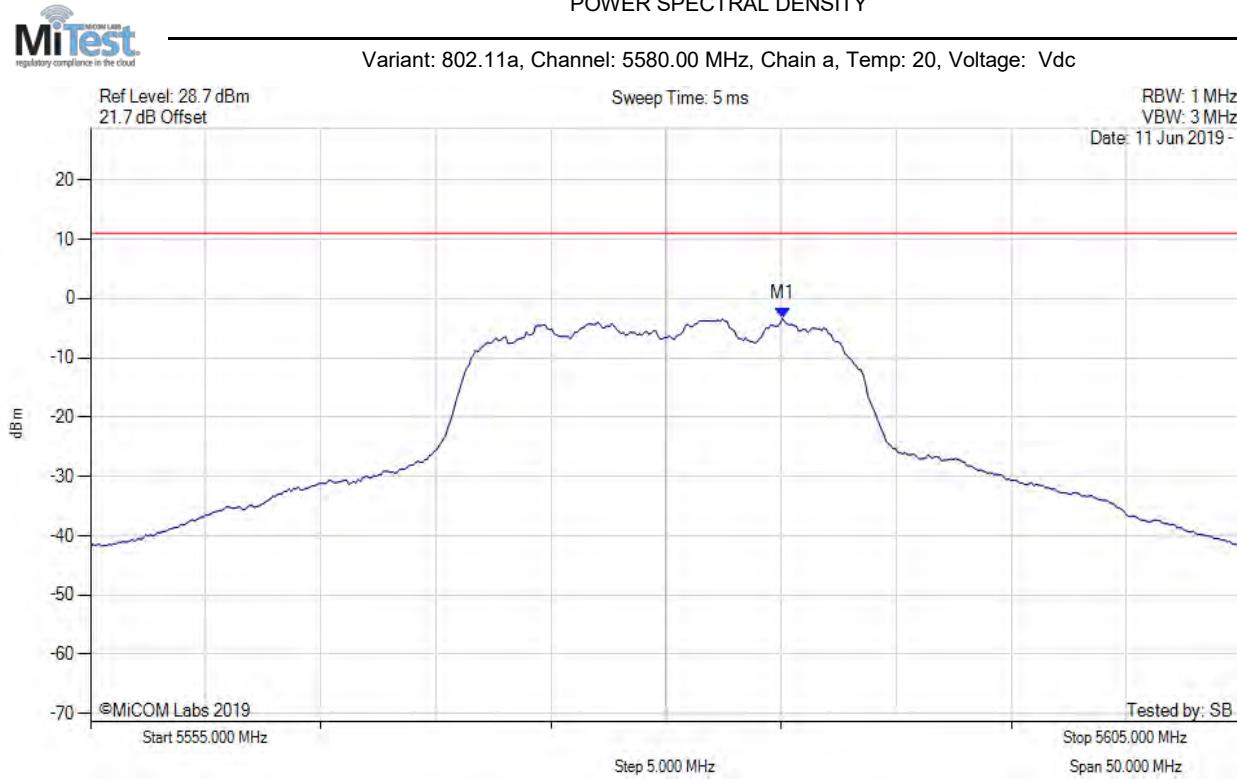
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5308.300 MHz : -8.619 dBm M1 + DCCF : 5308.300 MHz : -7.810 dBm Duty Cycle Correction Factor : +0.81 dB	Limit: ≤ 11.0 dBm Margin: -18.8 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

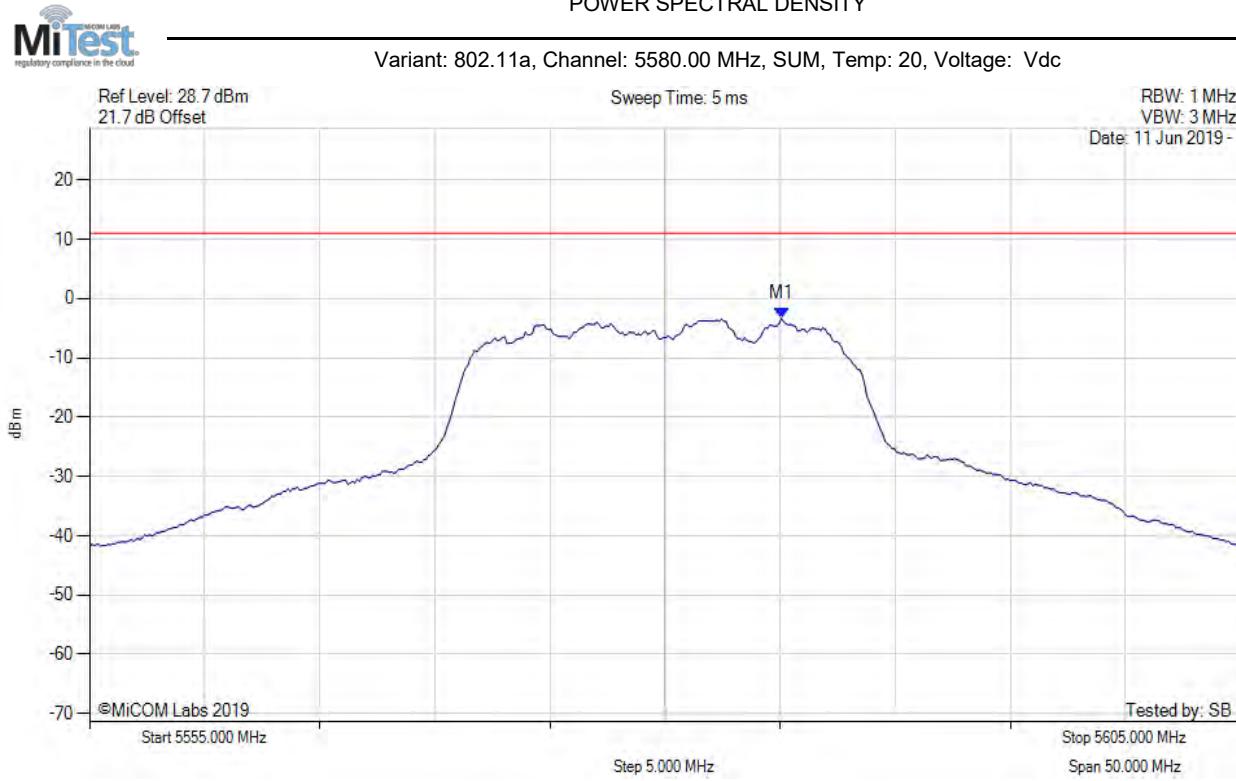
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5496.743 MHz : -2.502 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

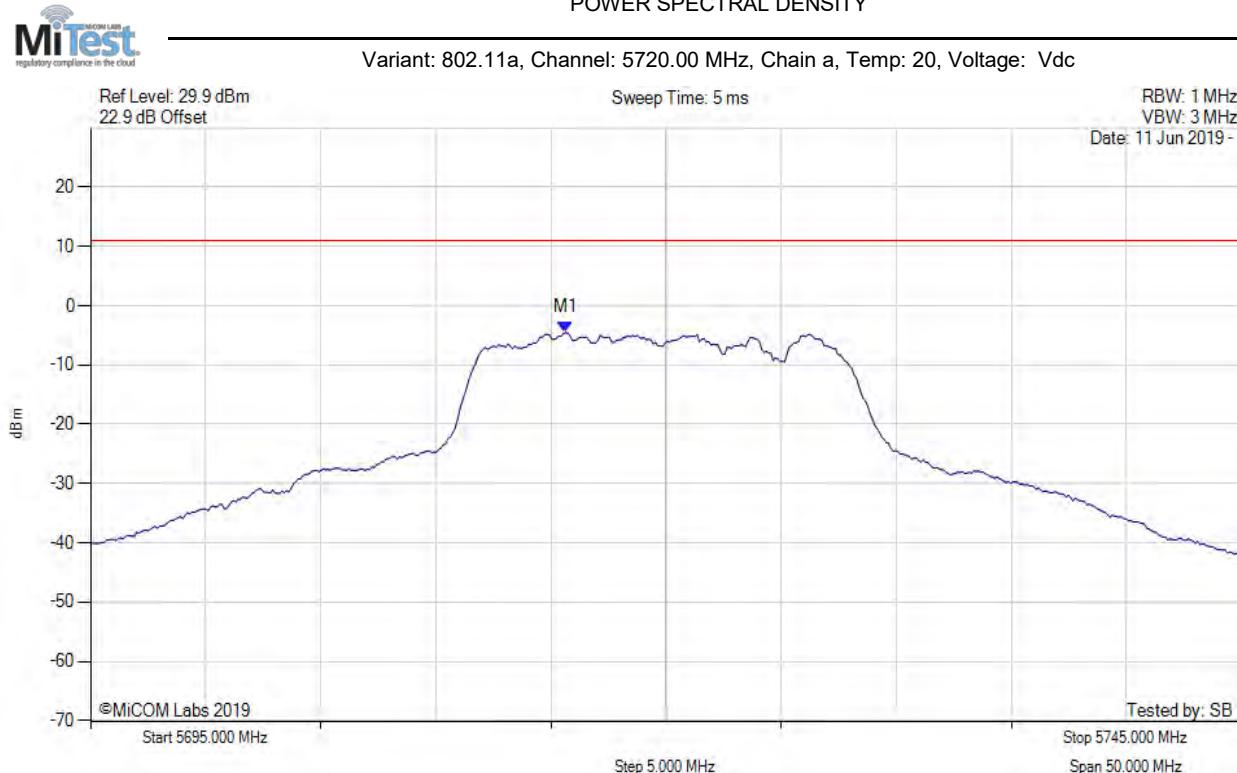
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5496.700 MHz : -2.502 dBm M1 + DCCF : 5496.700 MHz : -2.187 dBm Duty Cycle Correction Factor : +0.32 dB	Limit: ≤ 11.0 dBm Margin: -13.2 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

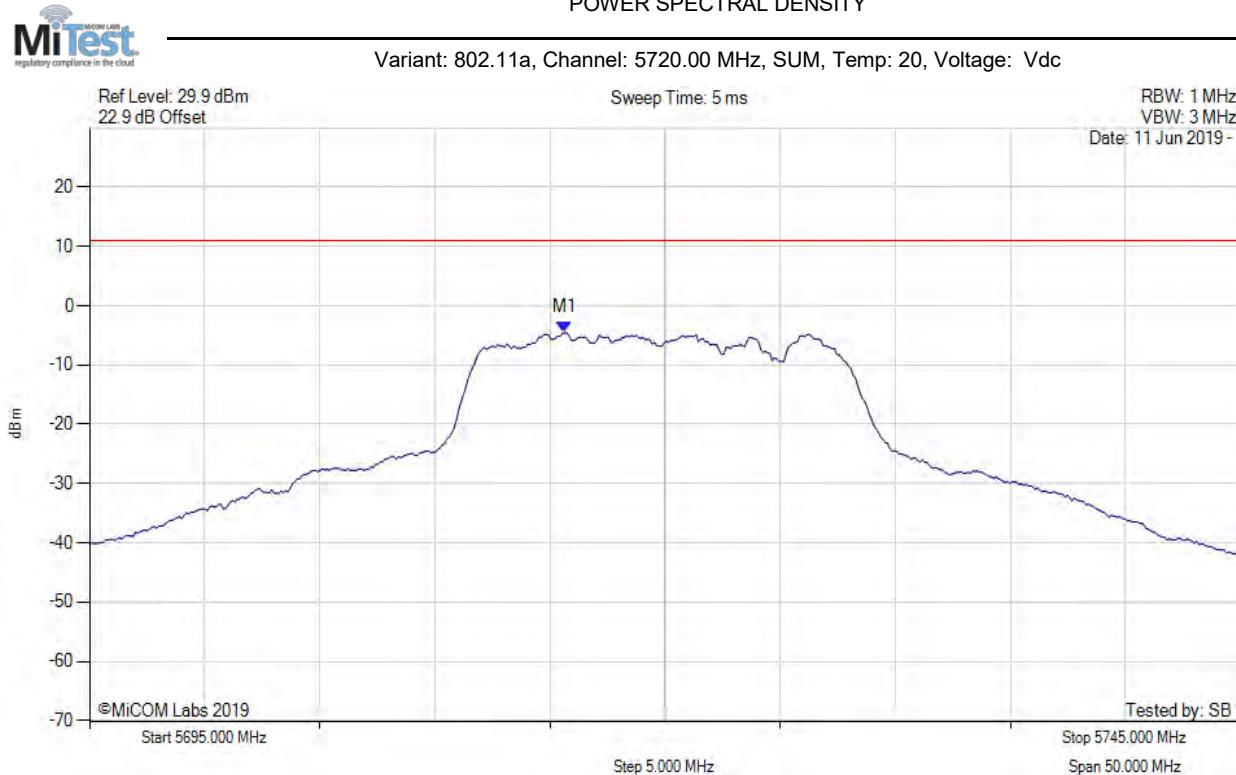
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5585.060 MHz : -3.379 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

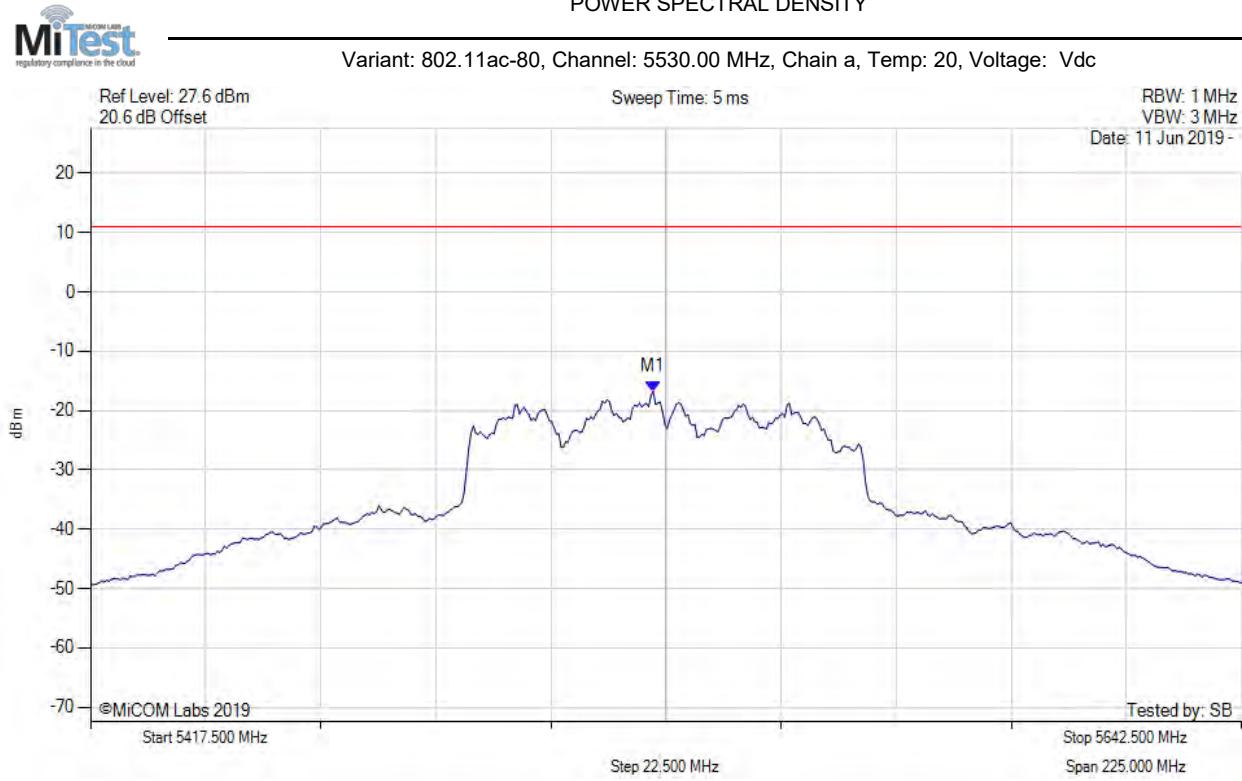
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5585.100 MHz : -3.379 dBm M1 + DCCF : 5585.100 MHz : -3.064 dBm Duty Cycle Correction Factor : +0.32 dB	Limit: ≤ 11.0 dBm Margin: -14.1 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

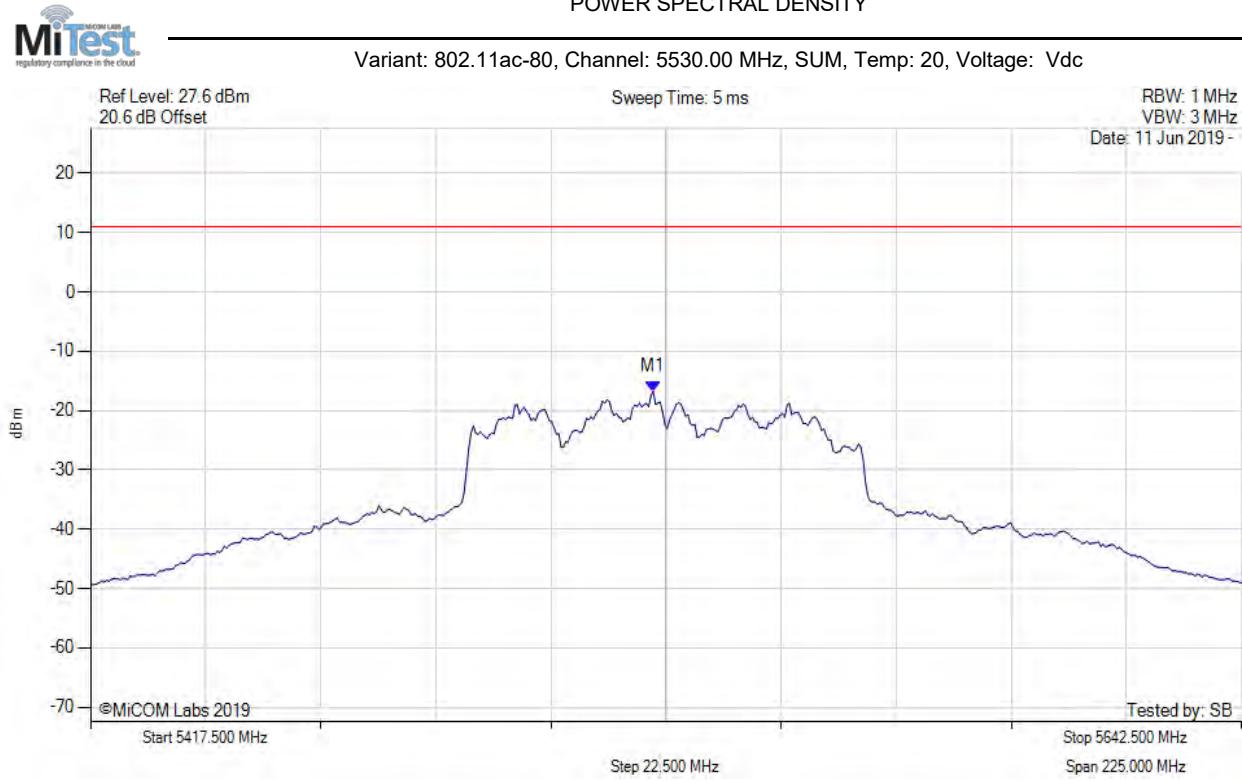
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5715.641 MHz : -4.551 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5715.600 MHz : -4.551 dBm M1 + DCCF : 5715.600 MHz : -4.236 dBm Duty Cycle Correction Factor : +0.32 dB	Limit: ≤ 11.0 dBm Margin: -15.2 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

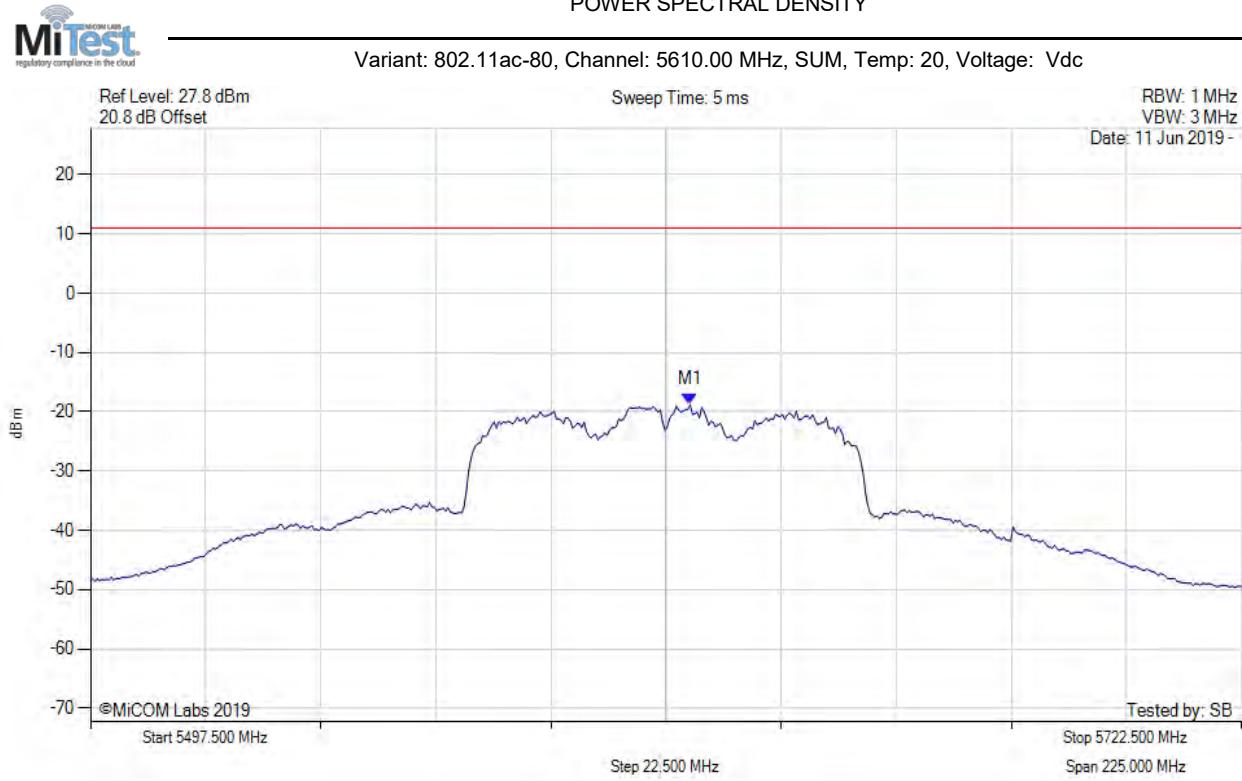
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5527.520 MHz : -16.755 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

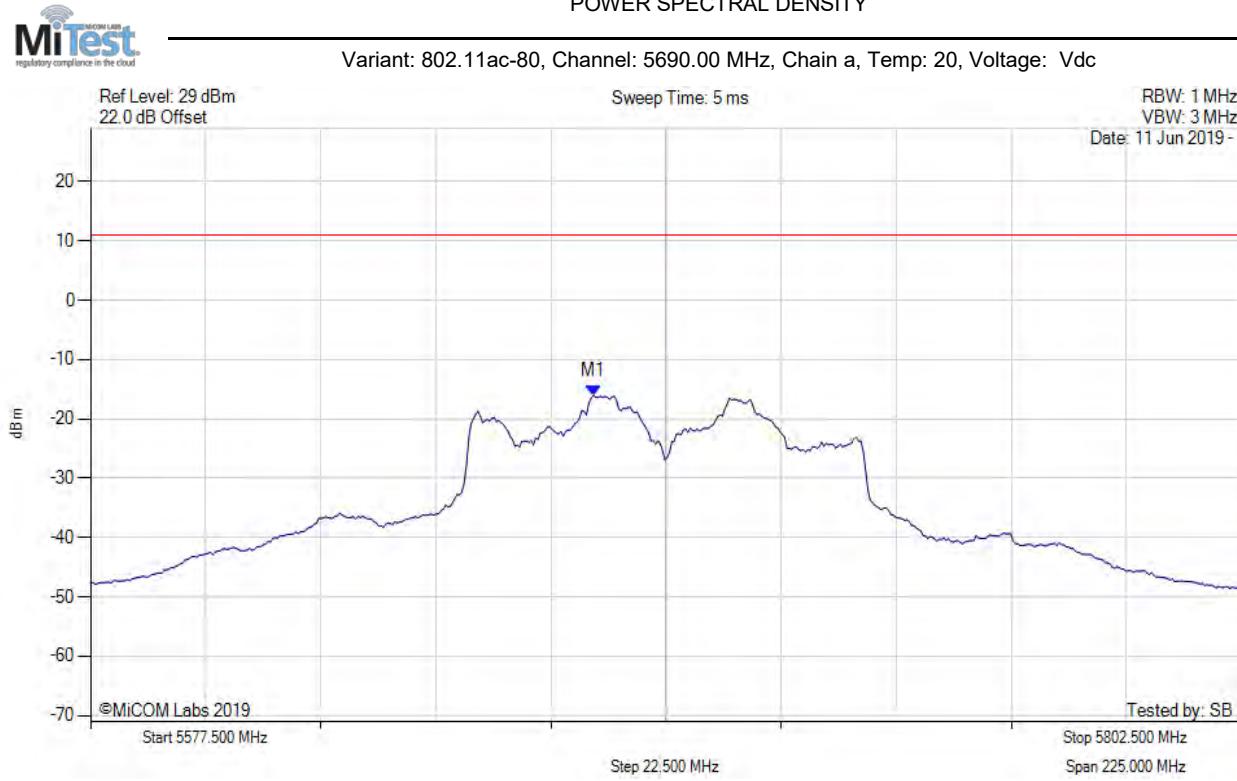
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5527.500 MHz : -16.755 dBm M1 + DCCF : 5527.500 MHz : -15.268 dBm Duty Cycle Correction Factor : +1.49 dB	Limit: ≤ 11.0 dBm Margin: -26.3 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

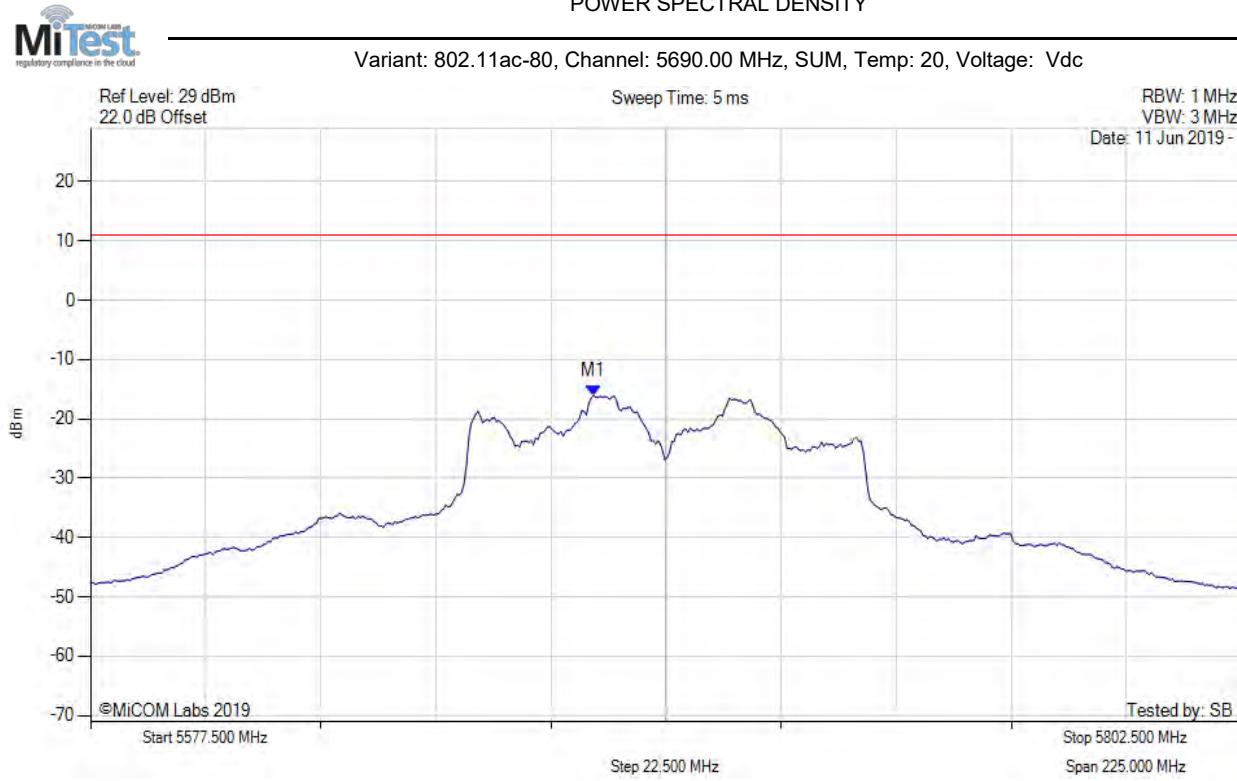
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5614.734 MHz : -18.825 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

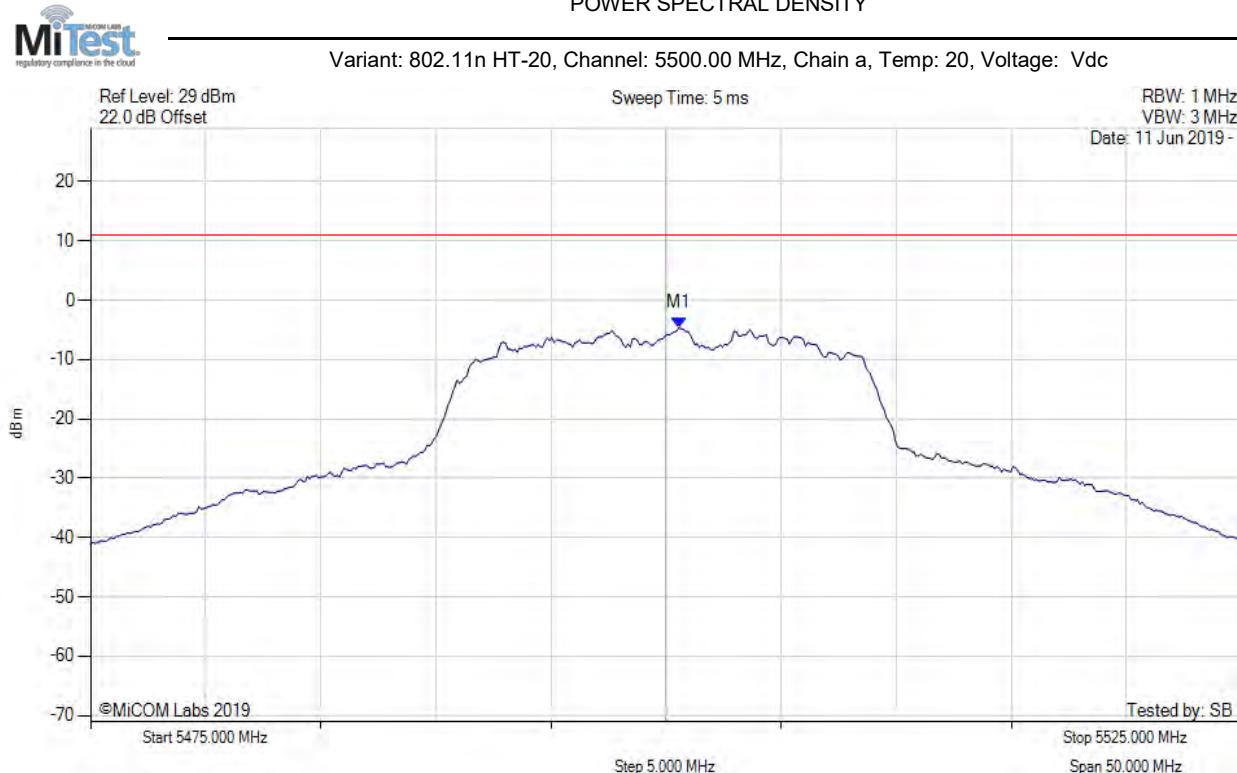
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5614.700 MHz : -18.825 dBm M1 + DCCF : 5614.700 MHz : -17.338 dBm Duty Cycle Correction Factor : +1.49 dB	Limit: ≤ 11.0 dBm Margin: -28.3 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

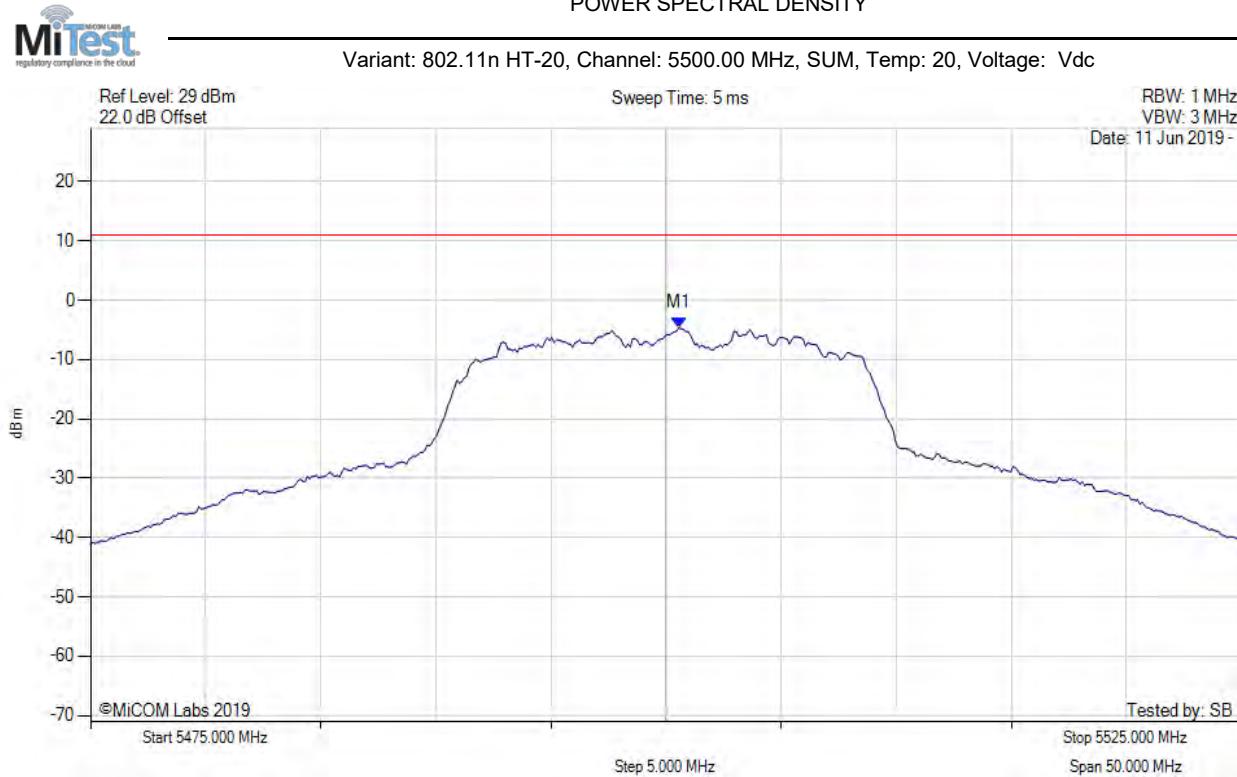
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5675.797 MHz : -16.054 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

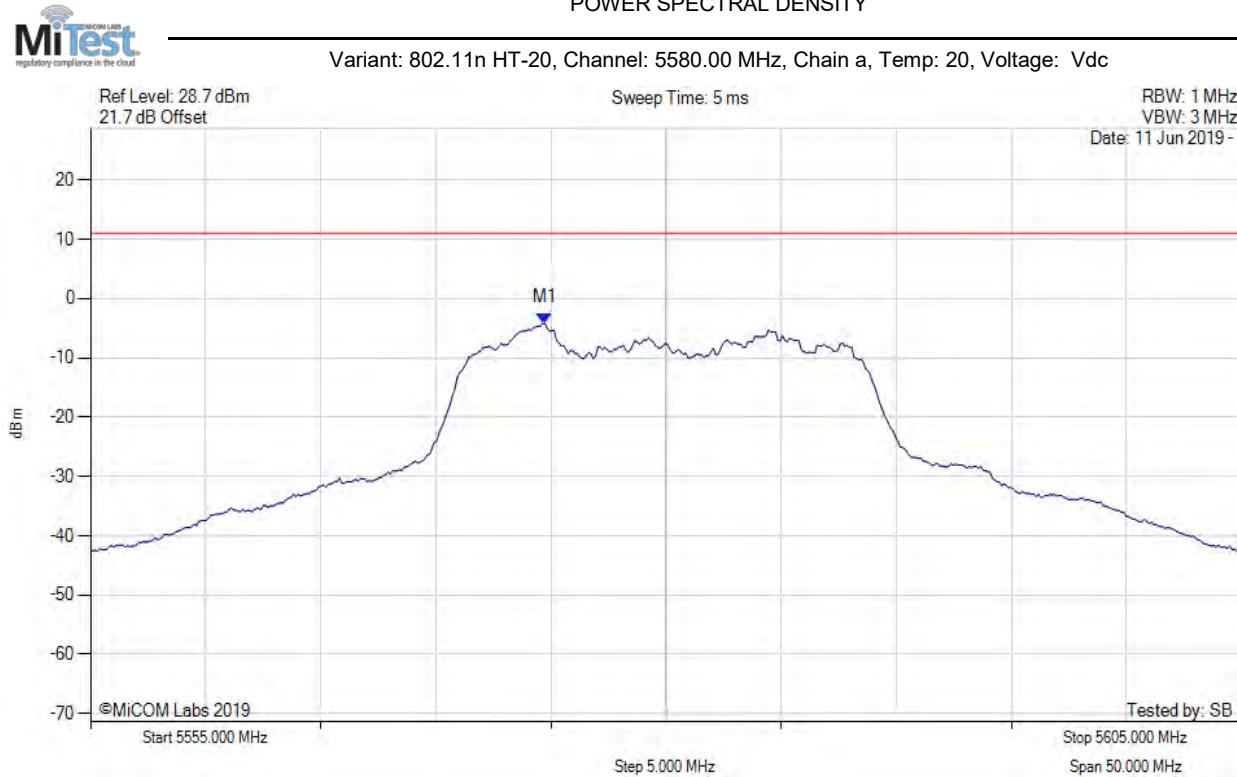
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5675.800 MHz : -16.054 dBm M1 + DCCF : 5675.800 MHz : -14.567 dBm Duty Cycle Correction Factor : +1.49 dB	Limit: ≤ 11.0 dBm Margin: -25.6 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

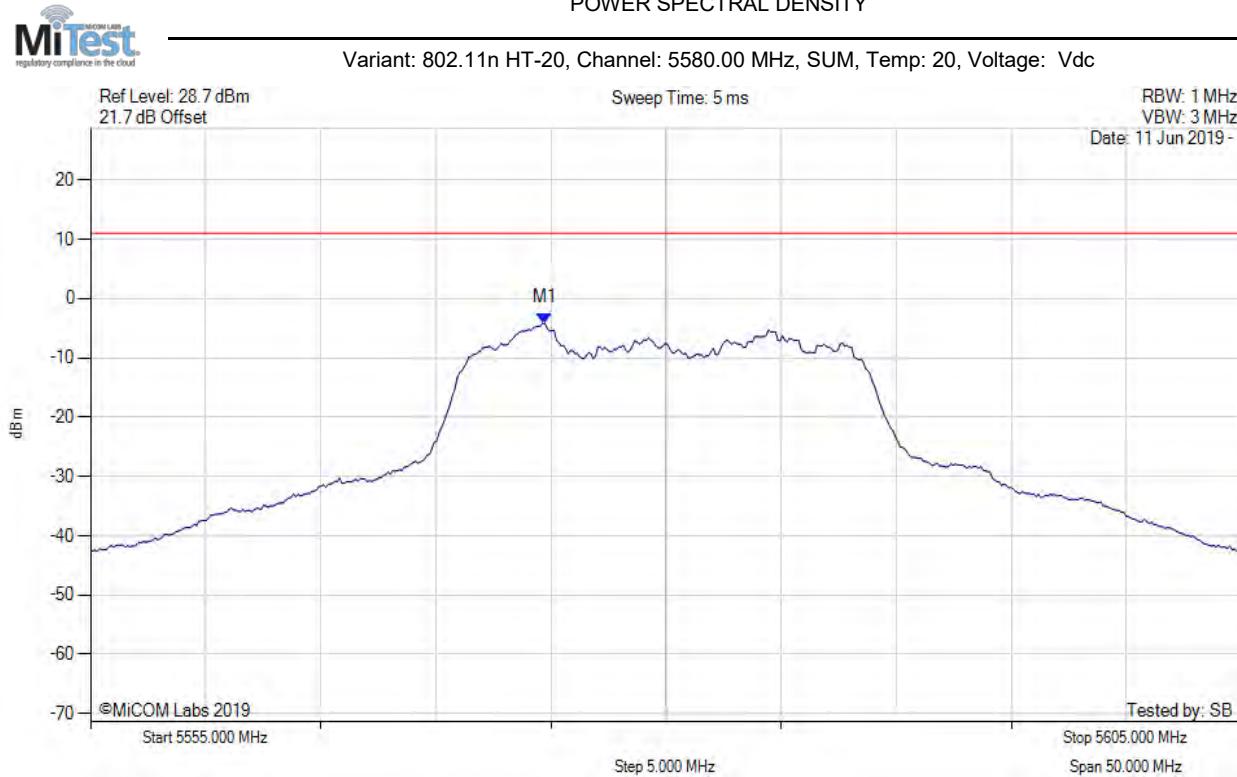
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5500.551 MHz : -4.648 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

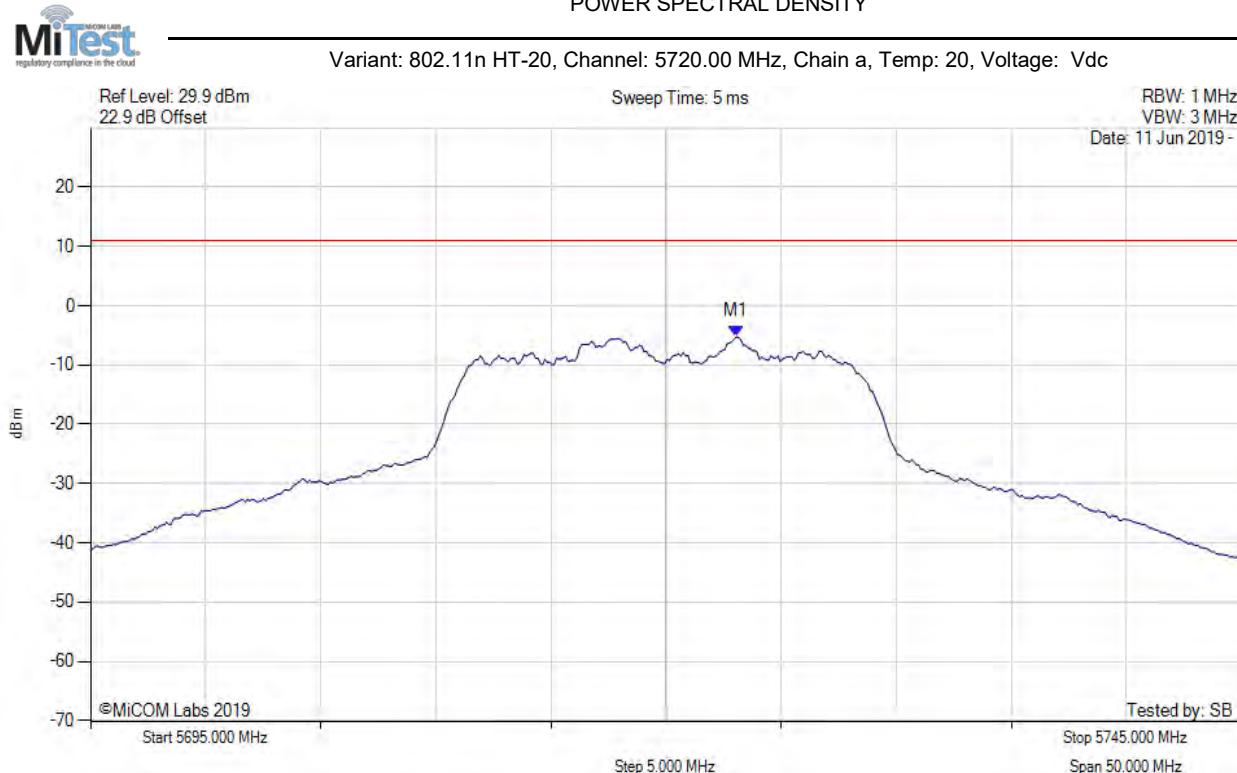
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5500.600 MHz : -4.648 dBm M1 + DCCF : 5500.600 MHz : -4.286 dBm Duty Cycle Correction Factor : +0.36 dB	Limit: ≤ 11.0 dBm Margin: -15.3 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

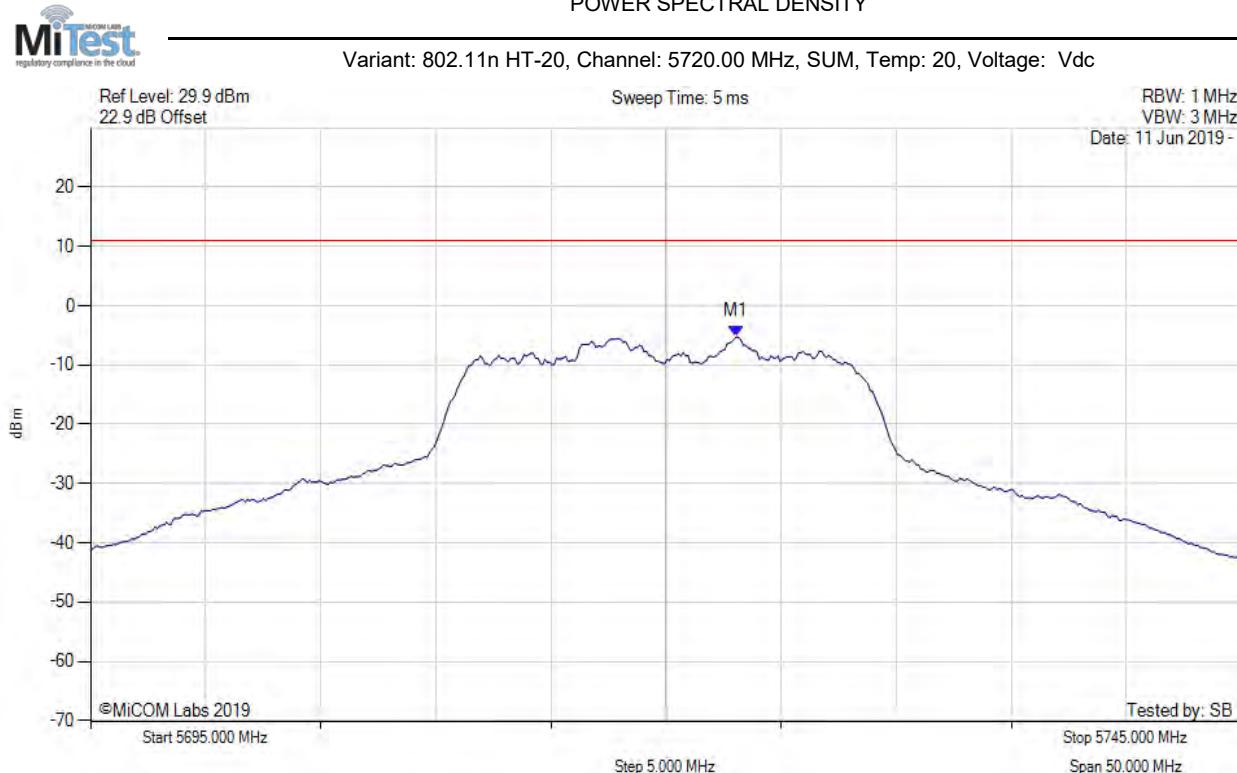
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5574.739 MHz : -4.151 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

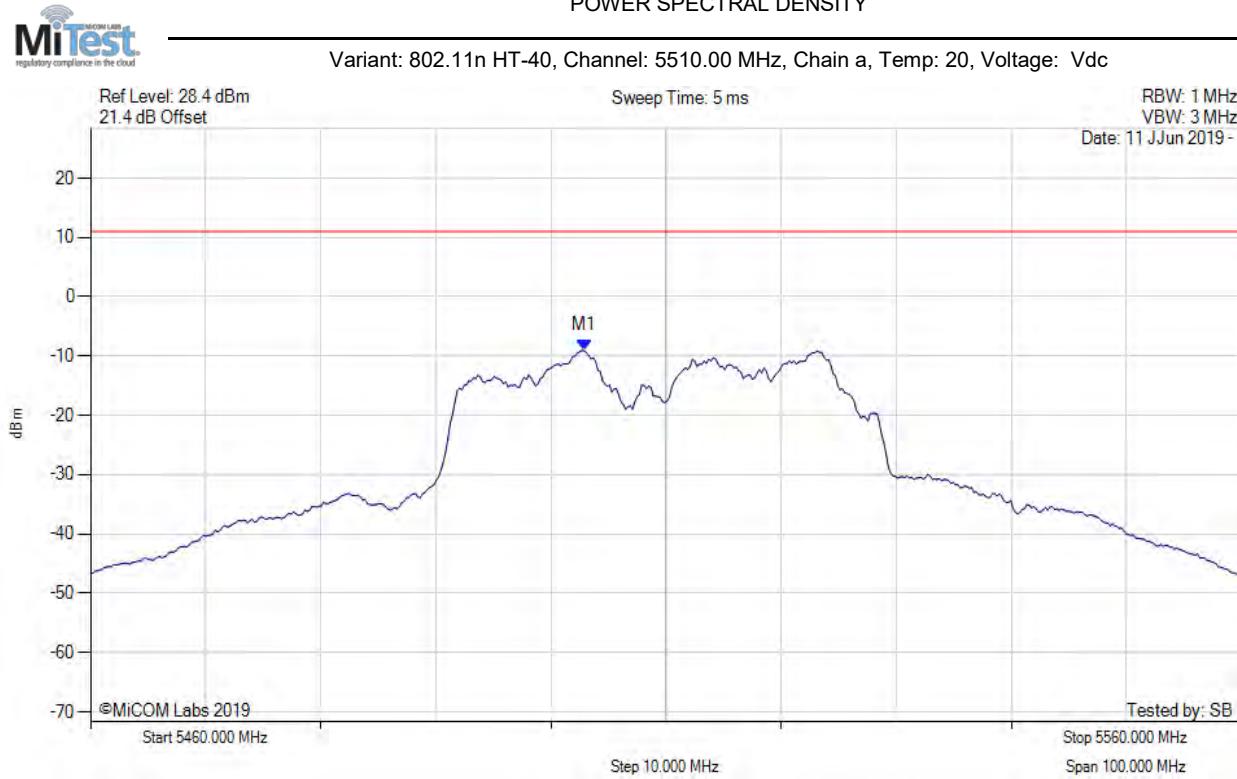
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5574.700 MHz : -4.151 dBm M1 + DCCF : 5574.700 MHz : -3.836 dBm Duty Cycle Correction Factor : +0.36 dB	Limit: ≤ 11.0 dBm Margin: -14.8 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

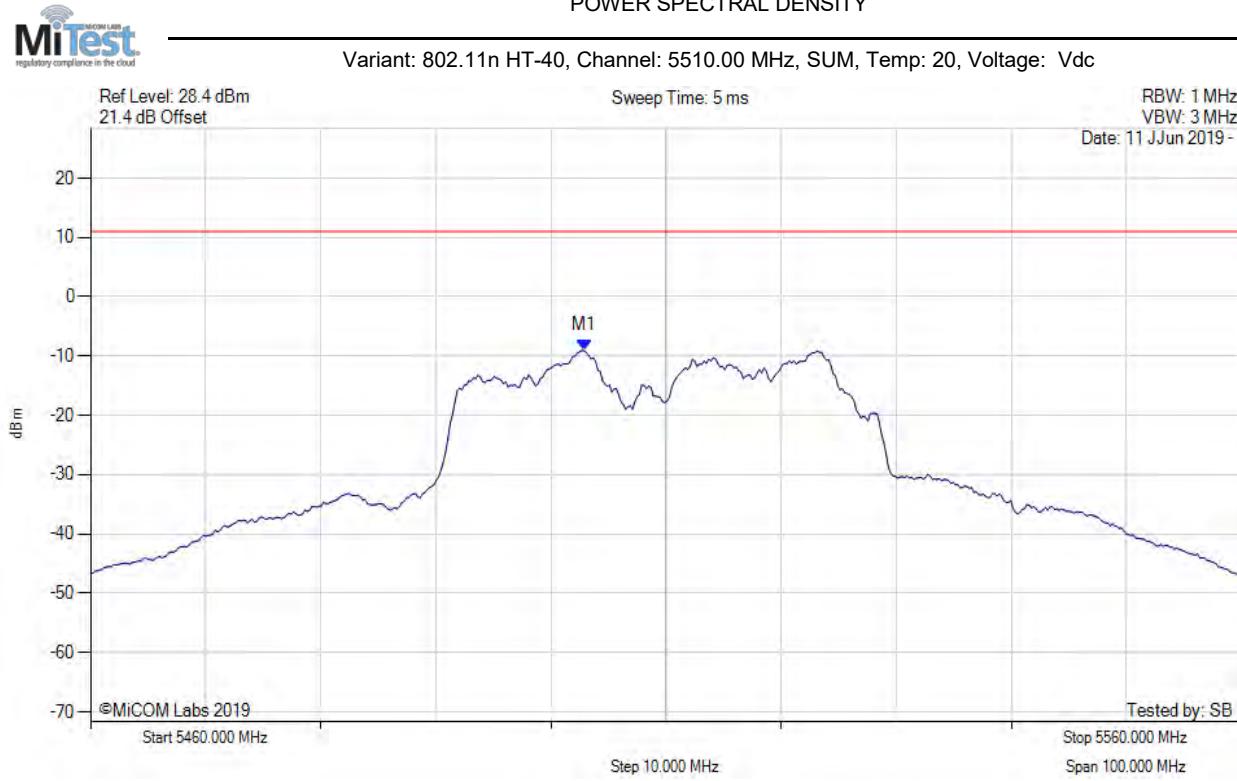
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5723.056 MHz : -5.253 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

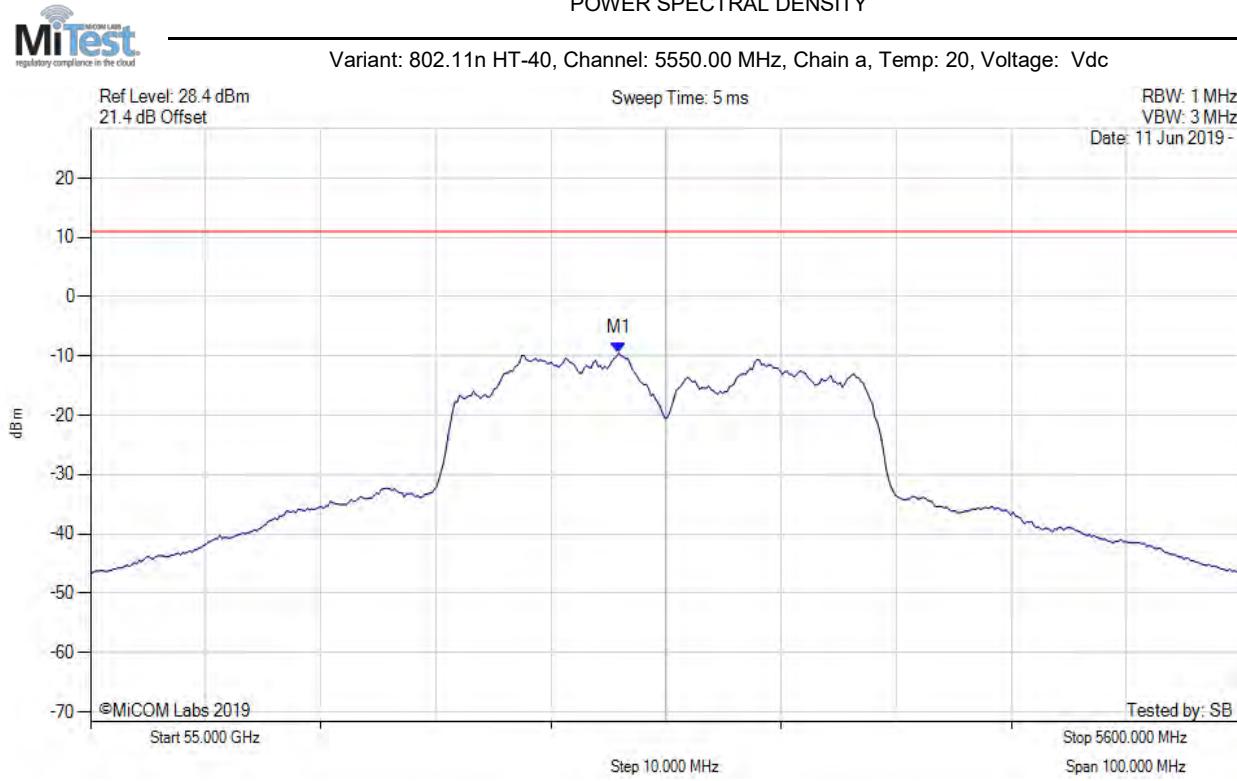
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5723.100 MHz : -5.253 dBm M1 + DCCF : 5723.100 MHz : -4.938 dBm Duty Cycle Correction Factor : +0.36 dB	Limit: ≤ 11.0 dBm Margin: -15.9 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

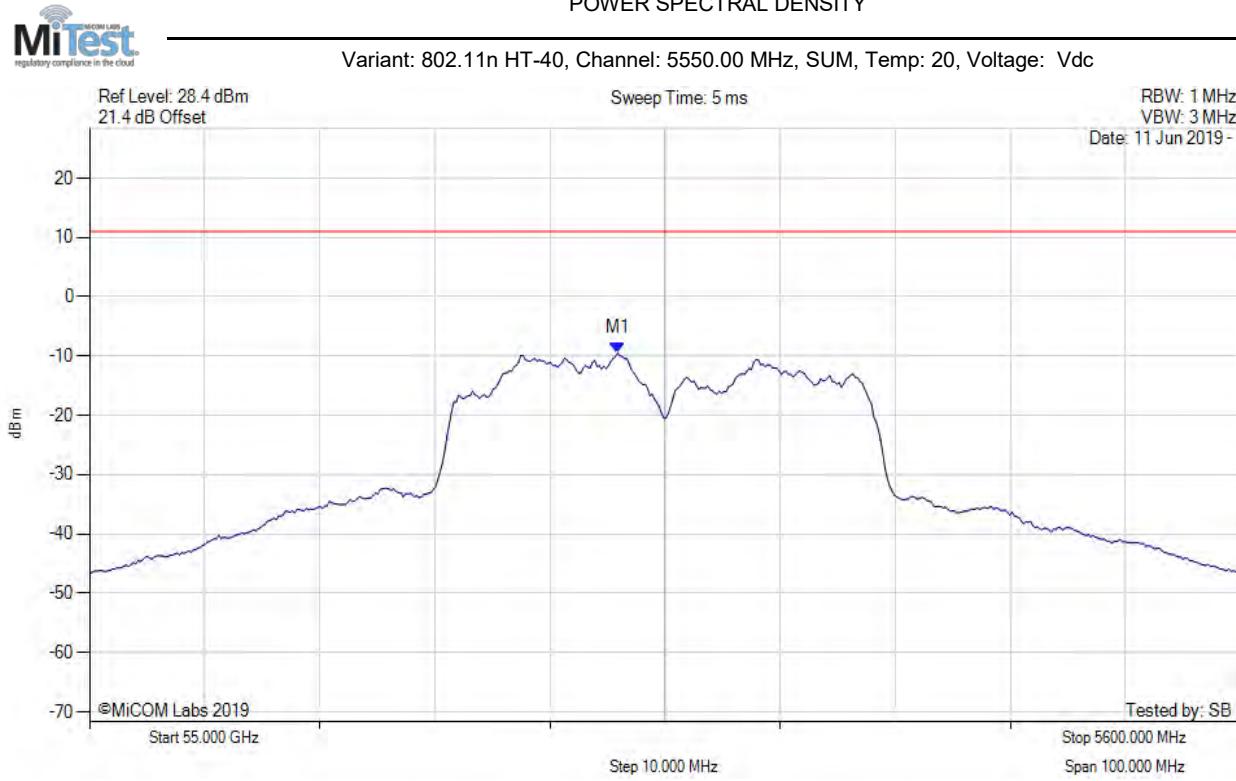
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5502.886 MHz : -9.080 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

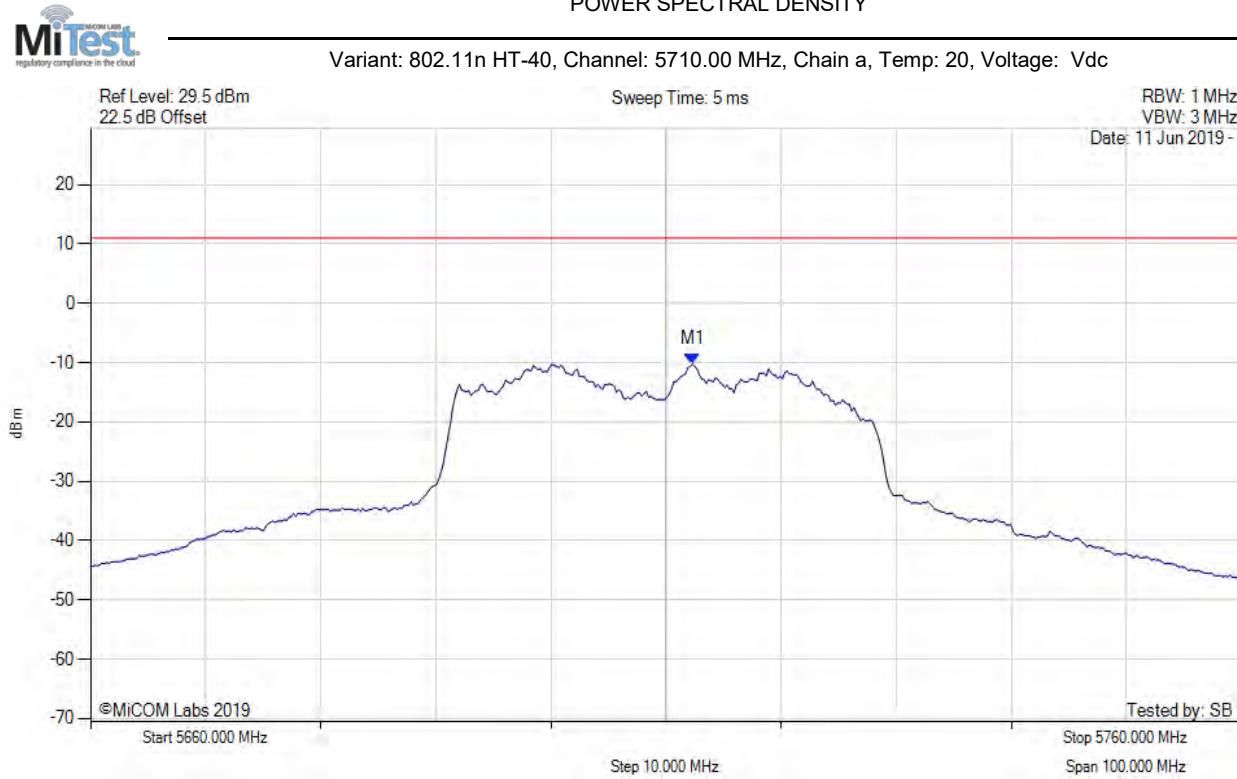
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5502.900 MHz : -9.080 dBm M1 + DCCF : 5502.900 MHz : -8.218 dBm Duty Cycle Correction Factor : +0.86 dB	Limit: ≤ 11.0 dBm Margin: -19.2 dB

[back to matrix](#)


POWER SPECTRAL DENSITY

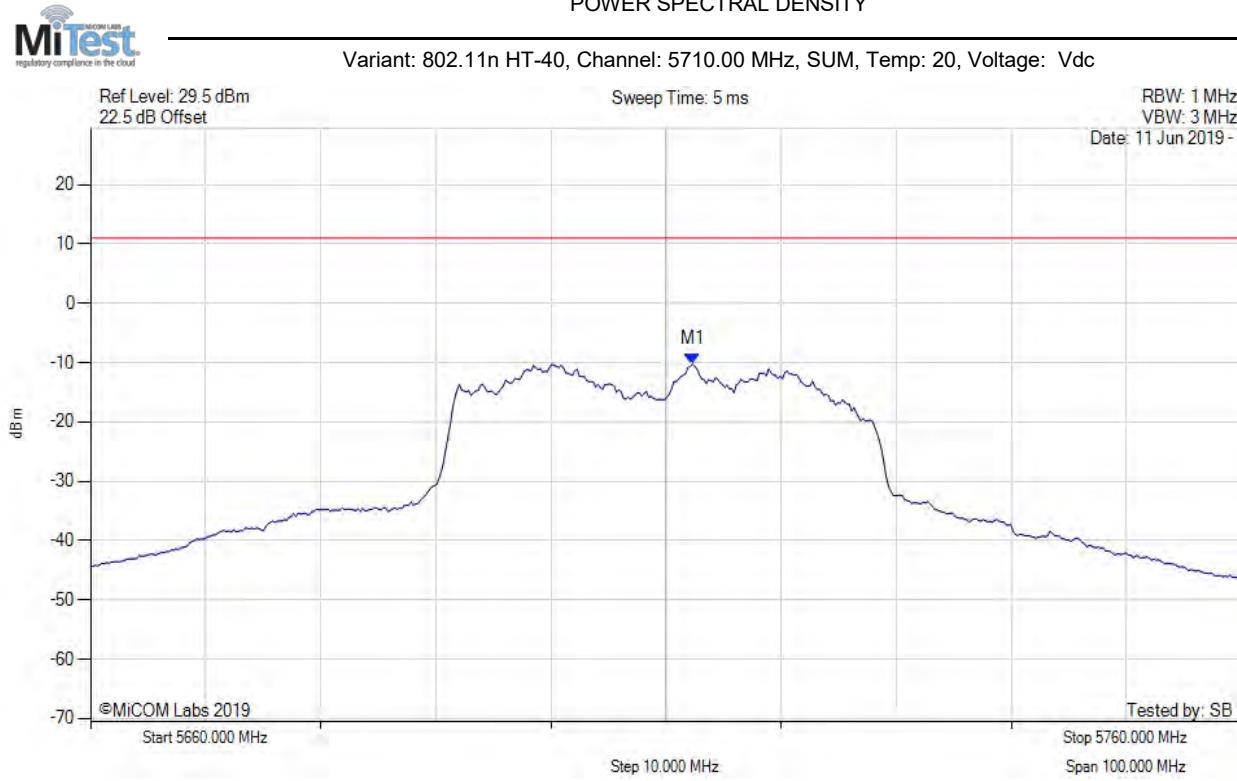
Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5545.892 MHz : -9.502 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)


POWER SPECTRAL DENSITY

Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5545.900 MHz : -9.502 dBm M1 + DCCF : 5545.900 MHz : -8.640 dBm Duty Cycle Correction Factor : +0.86 dB	Limit: ≤ 11.0 dBm Margin: -19.6 dB

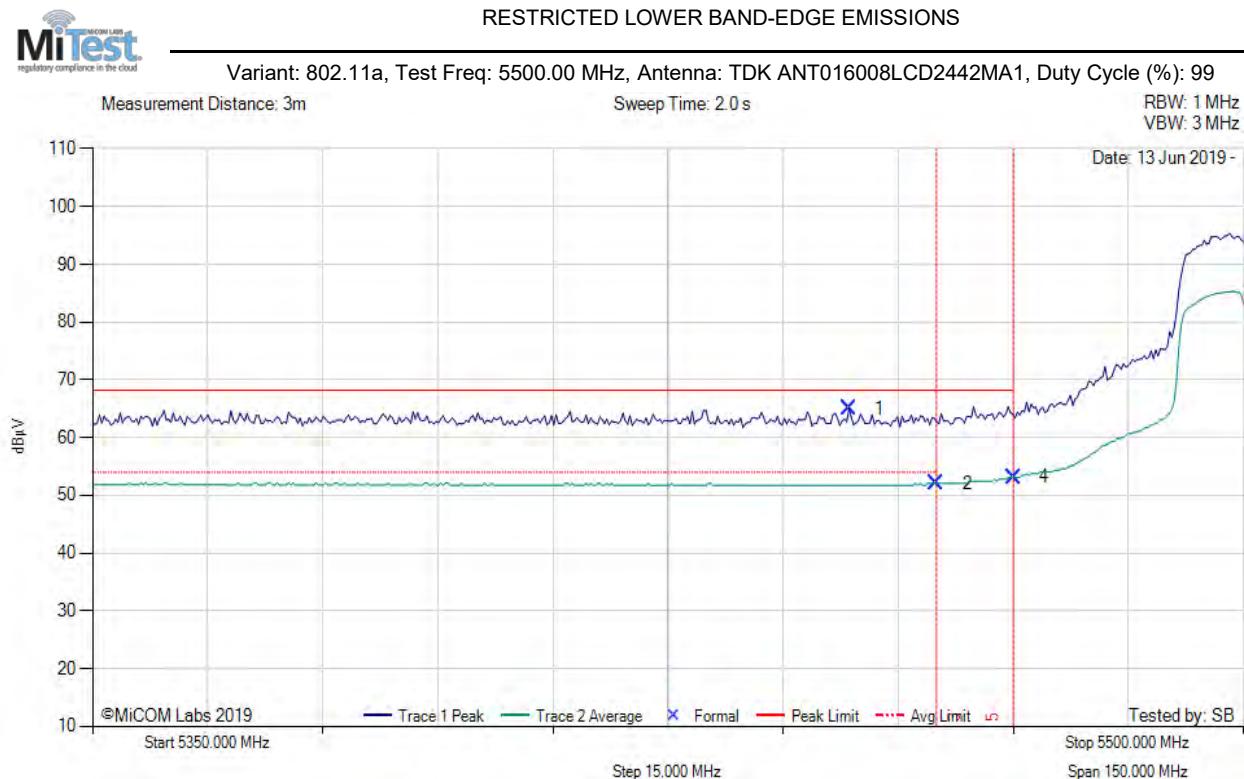
[back to matrix](#)


POWER SPECTRAL DENSITY

Analyzer Setup	Marker: Frequency: Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5712.305 MHz : -10.266 dBm	Limit: ≤ 11.000 dBm

[back to matrix](#)

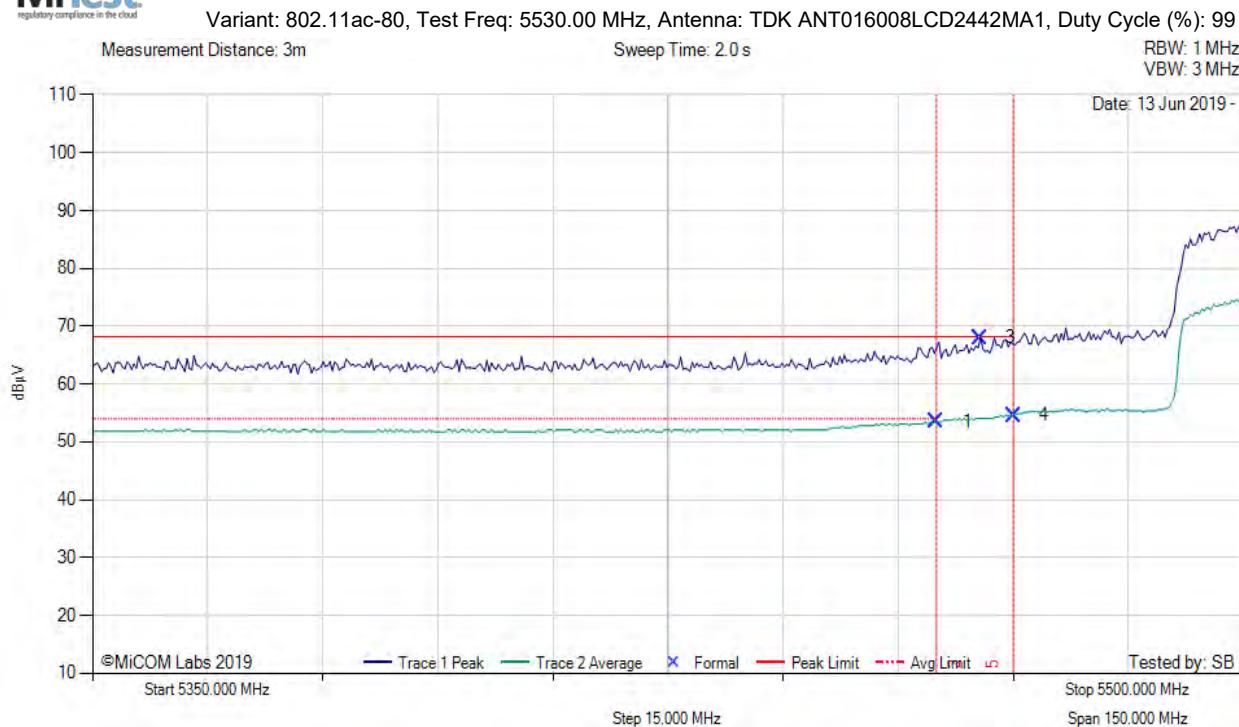
POWER SPECTRAL DENSITY



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5712.300 MHz : -10.266 dBm M1 + DCCF : 5712.300 MHz : -9.404 dBm Duty Cycle Correction Factor : +0.86 dB	Limit: ≤ 11.0 dBm Margin: -20.4 dB

[back to matrix](#)

A.3. Restricted Edge & Band-Edge Emissions


Antenna TDK ANT016008LCD2442MA1

5350.00 - 5500.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
1	5448.58	67.70	-2.70	0.00	65.00	Max Peak	Horizontal	174	93	68.2	-3.2	Pass	
2	5460.00	20.27	-2.69	34.53	52.11	Max Avg	Horizontal	174	93	54.0	-1.9	Pass	
4	5470.00	21.28	-2.69	34.55	53.14	Max Avg	Horizontal	174	93	68.2	-15.1	Pass	
3	5460.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	
5	5470.00	--	--	--	--	Band-Edge	--	--	--	--	--	--	

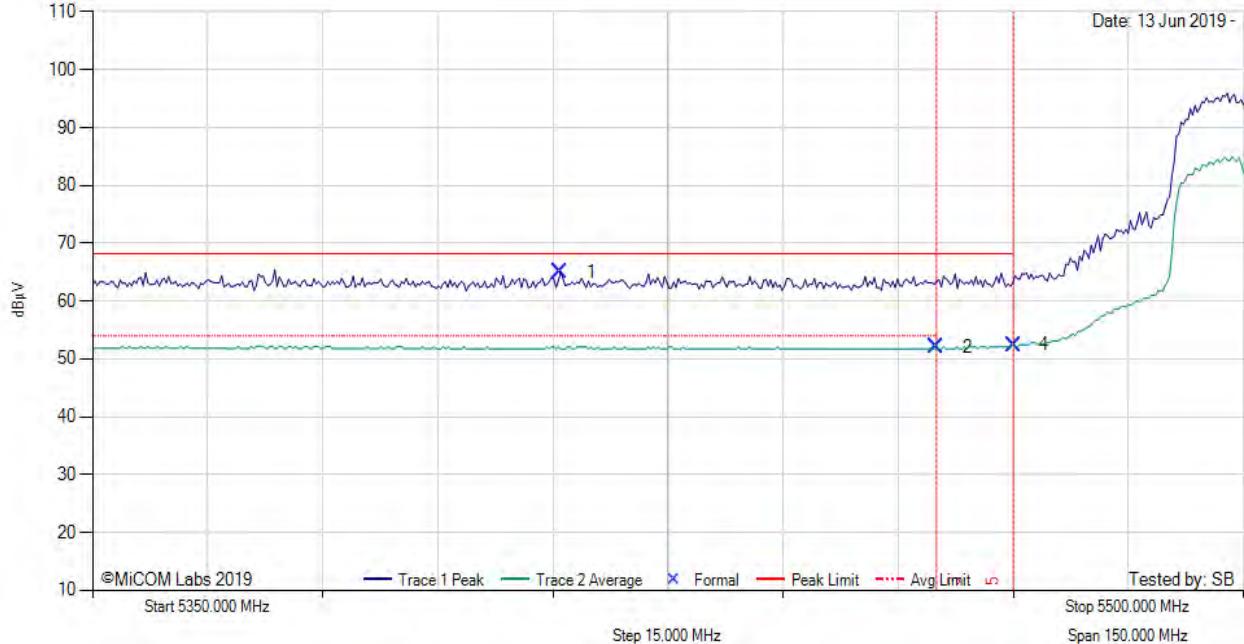
[back to matrix](#)

RESTRICTED LOWER BAND-EDGE EMISSIONS

5350.00 - 5500.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	5460.00	21.61	-2.69	34.53	53.45	Max Avg	Horizontal	174	93	68.2	-14.8	Pass	
3	5465.71	36.17	-2.68	34.54	68.03	Max Peak	Horizontal	174	93	68.2	-0.2	Pass	
4	5470.00	22.76	-2.69	34.55	54.62	Max Avg	Horizontal	174	93	68.2	-13.6	Pass	
2	5460.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	
5	5470.00	--	--	--	--	Band-Edge	--	--	--	--	--	--	

[back to matrix](#)

RESTRICTED LOWER BAND-EDGE EMISSIONS



Variant: 802.11n HT-20, Test Freq: 5500.00 MHz, Antenna: TDK ANT016008LCD2442MA1, Duty Cycle (%): 99

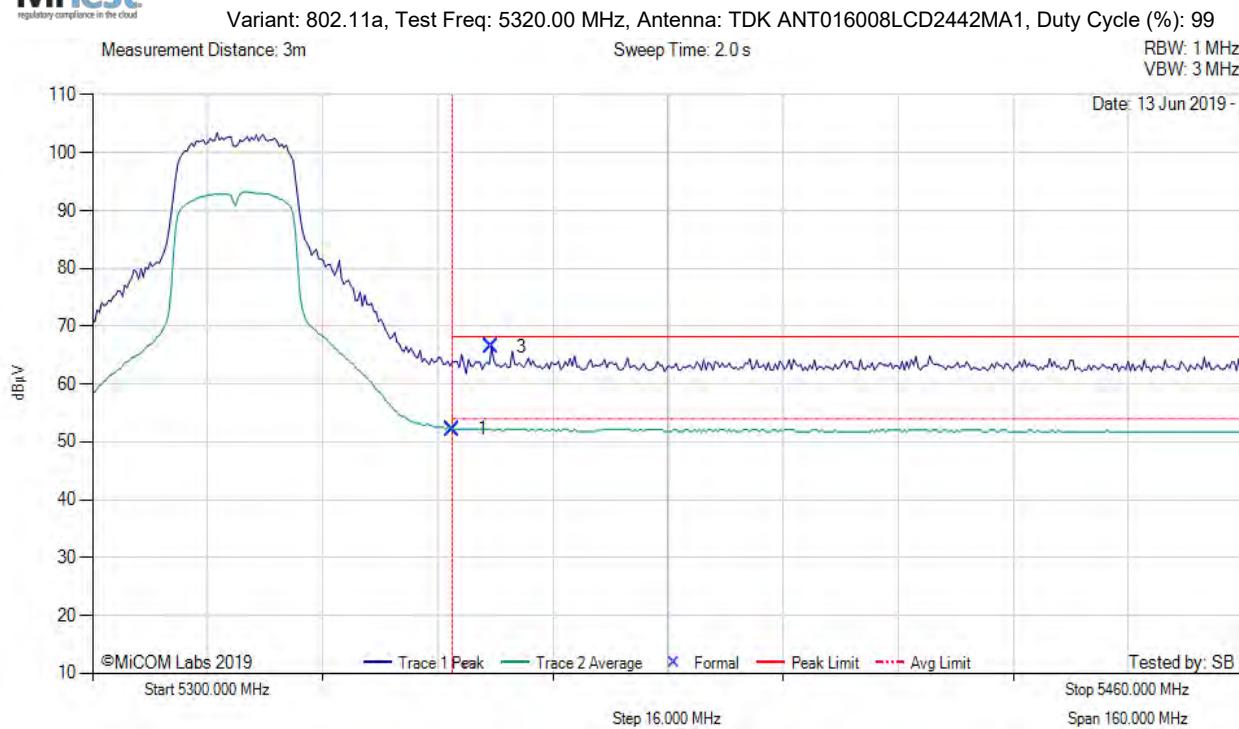
Measurement Distance: 3m

Sweep Time: 2.0 s


RBW: 1 MHz
VBW: 3 MHz

5350.00 - 5500.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
1	5411.00	33.20	-2.71	34.52	65.01	Max Peak	Horizontal	174	93	68.2	-3.2	Pass	
2	5460.00	20.27	-2.69	34.53	52.11	Max Avg	Horizontal	174	93	54.0	-1.9	Pass	
4	5470.00	20.61	-2.69	34.55	52.47	Max Avg	Horizontal	174	93	68.2	-15.7	Pass	
3	5460.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	
5	5470.00	--	--	--	--	Band-Edge	--	--	--	--	--	--	

[back to matrix](#)


RESTRICTED LOWER BAND-EDGE EMISSIONS

5350.00 - 5500.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	5460.00	19.90	-2.69	34.53	51.74	Max Avg	Horizontal	174	93	54.0	-2.3	Pass	
2	5460.00	32.58	-2.69	34.53	64.42	Max Peak	Horizontal	174	93	68.2	-3.8	Pass	
4	5470.00	21.90	-2.69	34.55	53.76	Max Avg	Horizontal	174	93	68.2	-14.4	Pass	
3	5460.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	
5	5470.00	--	--	--	--	Band-Edge	--	--	--	--	--	--	

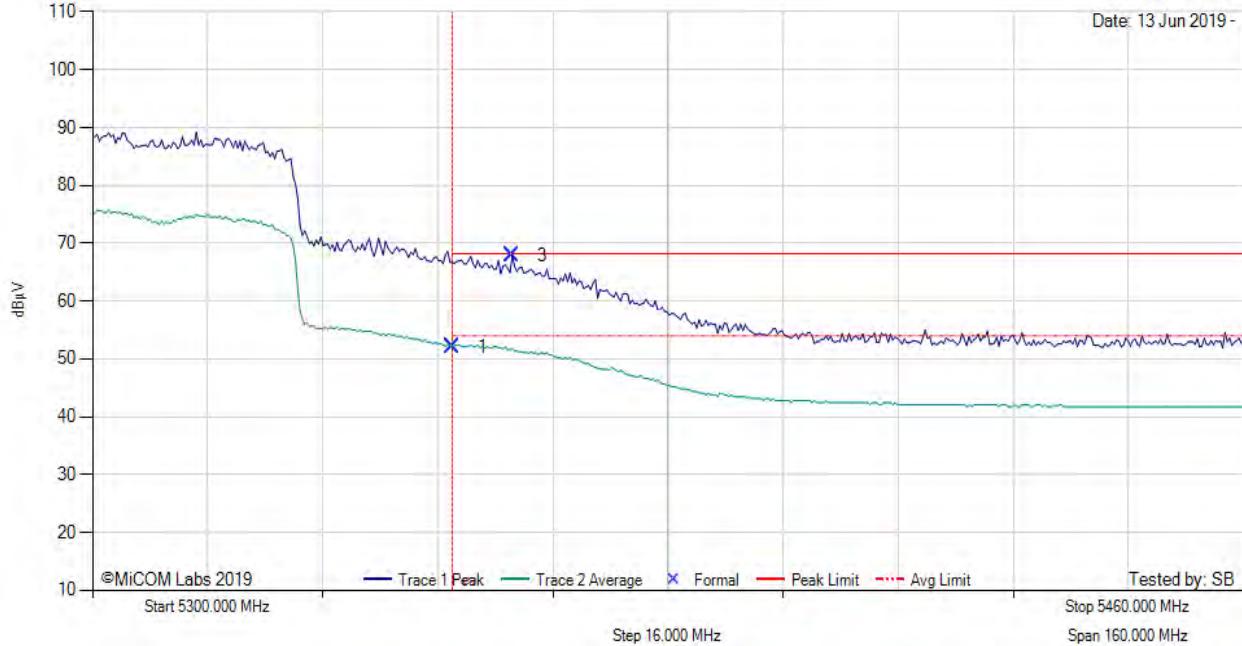
[back to matrix](#)

RESTRICTED UPPER BAND-EDGE EMISSIONS

5300.00 - 5460.00 MHz														
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail		
1	5350.00	20.43	-2.69	34.46	52.20	Max Avg	Vertical	174	93	54.0	-1.8	Pass		
3	5355.47	34.61	-2.69	34.47	66.39	Max Peak	Vertical	174	93	68.2	-1.8	Pass		
2	5350.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--		

[back to matrix](#)

RESTRICTED UPPER BAND-EDGE EMISSIONS


Variant: 802.11ac-80, Test Freq: 5290.00 MHz, Antenna: TDK ANT016008LCD2442MA1, Duty Cycle (%): 99

Measurement Distance: 3m

Sweep Time: 2.0 s

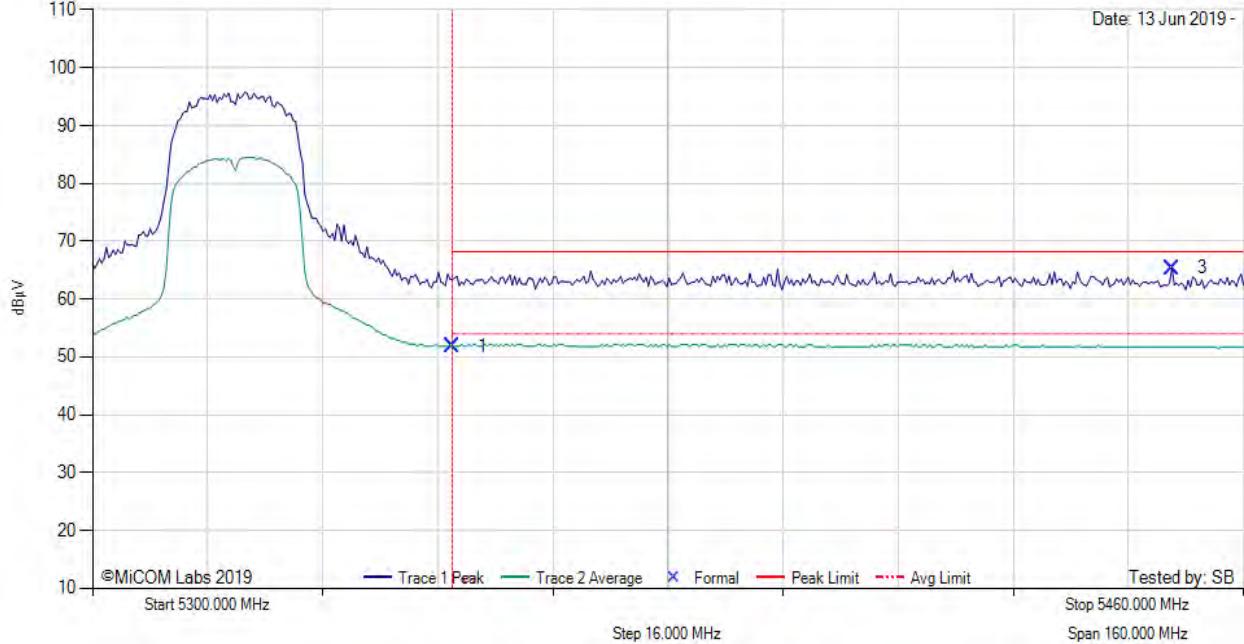
RBW: 1 MHz
VBW: 3 MHz

Date: 13 Jun 2019 -

5300.00 - 5460.00 MHz													
Num	Frequency MHz	Raw dBμV	Cable Loss dB	AF dB/m	Level dBμV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBμV/m	Margin dB	Pass /Fail	
1	5350.00	20.33	-2.69	34.46	52.10	Max Avg	Horizontal	174	93	54.0	-1.9	Pass	
3	5358.34	36.10	-2.70	34.47	67.87	Max Peak	Horizontal	174	93	68.2	-0.4	Pass	
2	5350.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

[back to matrix](#)

RESTRICTED UPPER BAND-EDGE EMISSIONS


Variant: 802.11n HT-20, Test Freq: 5320.00 MHz, Antenna: TDK ANT016008LCD2442MA1, Duty Cycle (%): 99

Measurement Distance: 3m

Sweep Time: 2.0 s

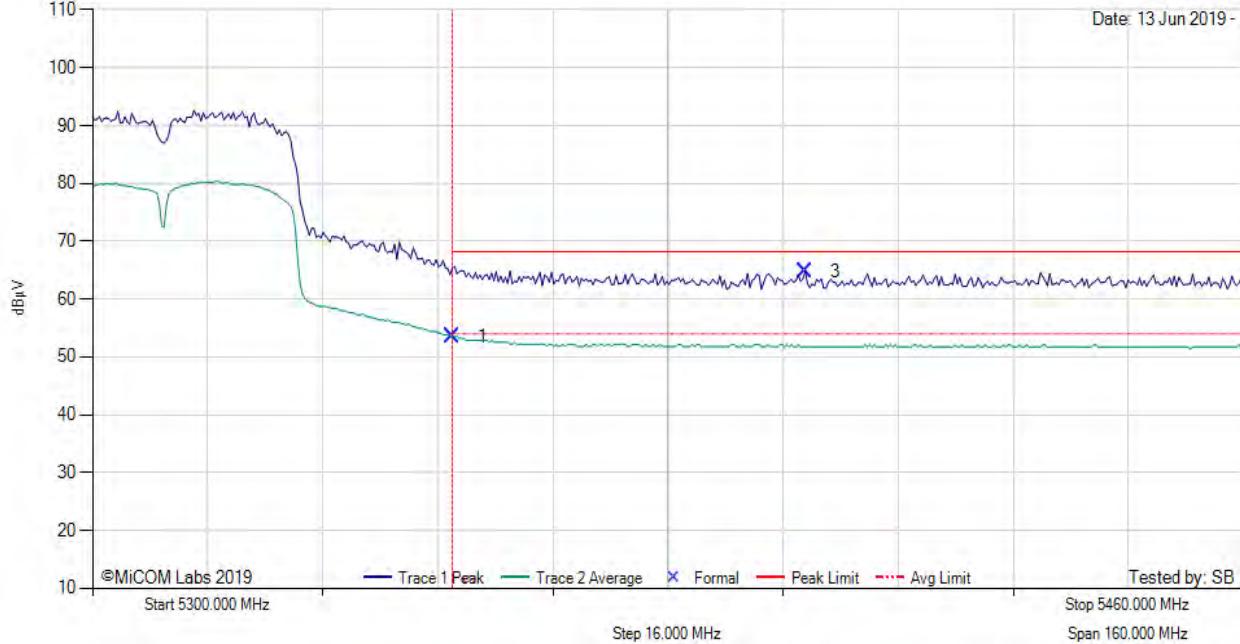
RBW: 1 MHz
VBW: 3 MHz

Date: 13 Jun 2019 -

5300.00 - 5460.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	5350.00	20.06	-2.69	34.46	51.83	Max Avg	Horizontal	174	93	54.0	-2.2	Pass	
3	5450.04	33.60	-2.70	34.50	65.40	Max Peak	Horizontal	174	93	68.2	-2.8	Pass	
2	5350.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

[back to matrix](#)

RESTRICTED UPPER BAND-EDGE EMISSIONS


Variant: 802.11n HT-40, Test Freq: 5310.00 MHz, Antenna: TDK ANT016008LCD2442MA1, Duty Cycle (%): 99

Measurement Distance: 3m

Sweep Time: 2.0 s

RBW: 1 MHz
VBW: 3 MHz

Date: 13 Jun 2019 -

5300.00 - 5460.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	5350.00	21.77	-2.69	34.46	53.54	Max Avg	Horizontal	174	93	54.0	-0.5	Pass	
3	5399.06	32.96	-2.68	34.50	64.78	Max Peak	Horizontal	174	93	68.2	-3.5	Pass	
2	5350.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

[back to matrix](#)

575 Boulder Court
Pleasanton, California 94566, USA
Tel: +1 (925) 462 0304
Fax: +1 (925) 462 0306
www.micomlabs.com