




**Rogers Labs, a division of The Compatibility Center LLC**

7915 Nieman Rd.  
Lenexa, KS 66214  
Phone / Fax (913) 660-0666

**47CFR, PART 15C - Intentional Radiators  
47CFR Paragraph 15.255 and  
Industry Canada RSS-210 Issue 10 and RSS-GEN Issue 5  
Application For Grant of Certification**

PMN: Freemile 60  
FCC ID: W9Z-FREEMILE60  
IC: 8855A-FREEMILE60  
57 – 71 GHz

**SAF Tehnika AS**  
24a, Ganibu dambis  
Riga Latvia LV-1005

Test Report Number: 240723

Test Date: July 23, 2024

Authorized Signatory: 

Patrick Powell

Rogers Labs, a division of The Compatibility Center LLC

FCC Designation: US5305

ISED Registration: 3041A

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Rogers Labs, a division of The Compatibility Center LLC

Garmin International, Inc.

7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60

Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039

Phone/Fax: (913) 660-0666 Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 28, 2024

Revision 1

File: SAF Tehnika Freemile 60 240723 r1 Page 1 of 56



|                                                                                                                                    |           |
|------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>TABLE OF CONTENTS.....</b>                                                                                                      | <b>2</b>  |
| <b>REVISIONS.....</b>                                                                                                              | <b>6</b>  |
| <b>EXECUTIVE SUMMARY .....</b>                                                                                                     | <b>7</b>  |
| <b>OPINION / INTERPRETATION OF RESULTS .....</b>                                                                                   | <b>7</b>  |
| <b>EQUIPMENT TESTED.....</b>                                                                                                       | <b>8</b>  |
| Equipment Operational Modes.....                                                                                                   | 9         |
| Channels.....                                                                                                                      | 9         |
| Modulations .....                                                                                                                  | 9         |
| Antenna Description .....                                                                                                          | 10        |
| Equipment Function .....                                                                                                           | 10        |
| Equipment Configuration.....                                                                                                       | 11        |
| <b>APPLICATION FOR CERTIFICATION.....</b>                                                                                          | <b>12</b> |
| <b>APPLICABLE STANDARDS.....</b>                                                                                                   | <b>13</b> |
| <b>TEST PROCEDURES.....</b>                                                                                                        | <b>14</b> |
| AC Line Conducted Emission Test Procedure .....                                                                                    | 14        |
| Radiated Emission Procedure .....                                                                                                  | 14        |
| Antenna Port Conducted Emission Test Procedure.....                                                                                | 14        |
| Diagram 1 Test arrangement for power-line conducted emissions.....                                                                 | 15        |
| Diagram 2 Test arrangement for radiated emissions of tabletop equipment.....                                                       | 16        |
| Diagram 3 Test arrangement for radiated emissions tested in Semi-Anechoic Chamber (SAC) and<br>Outdoor Area Test Site (OATS) ..... | 17        |
| Radiated Emissions Measurement Distance .....                                                                                      | 18        |
| Table 1-1 Far-Field Distance & Measurement Distance per Frequency Range (Out-of-Band Testing).....                                 | 18        |
| Table 1-2 Far-Field Distance & Measurement Distance per Frequency Range (In-Band Testing).....                                     | 18        |

|                                                               |           |
|---------------------------------------------------------------|-----------|
| <b>TEST SITE LOCATIONS .....</b>                              | <b>19</b> |
| <b>UNITS OF MEASUREMENTS .....</b>                            | <b>19</b> |
| <b>ENVIRONMENTAL CONDITIONS.....</b>                          | <b>20</b> |
| <b>STATEMENT OF MODIFICATIONS AND DEVIATIONS .....</b>        | <b>20</b> |
| <b>TEST RESULTS .....</b>                                     | <b>21</b> |
| <b>Summary.....</b>                                           | <b>21</b> |
| <b>6dB Emission Bandwidth.....</b>                            | <b>22</b> |
| Test Overview .....                                           | 22        |
| Test Procedure .....                                          | 22        |
| Test Setup .....                                              | 22        |
| Figure 1 6dB Emissions Bandwidth .....                        | 23        |
| Test Results .....                                            | 23        |
| Summary of Results for 6dB Emission Bandwidth .....           | 23        |
| <b>99% Occupied Bandwidth.....</b>                            | <b>24</b> |
| Test Overview .....                                           | 24        |
| Test Procedure .....                                          | 24        |
| Test Setup .....                                              | 24        |
| Figure 2 99% Occupied Bandwidth .....                         | 25        |
| Test Results .....                                            | 25        |
| Summary of Results for 99% Occupied Bandwidth .....           | 25        |
| <b>Equivalent Isotropic Radiated Power.....</b>               | <b>26</b> |
| Test Overview .....                                           | 26        |
| Test Procedure .....                                          | 26        |
| Test Setup .....                                              | 26        |
| Sample Calculations .....                                     | 26        |
| Figure 3 EIRP Power.....                                      | 27        |
| Test Results .....                                            | 27        |
| Table 1 EIRP Power .....                                      | 27        |
| Summary of Results for Radiated Emissions (Above 40 GHz)..... | 27        |
| <b>Peak Conducted Output Power.....</b>                       | <b>28</b> |

|                                                                |    |
|----------------------------------------------------------------|----|
| Test Overview .....                                            | 28 |
| Test Procedure .....                                           | 28 |
| Test Setup .....                                               | 28 |
| Sample Calculations .....                                      | 28 |
| Summary of Results for Radiated Emissions (Above 40 GHz) ..... | 29 |

## **Radiated Spurious Emissions (Above 40GHz).....30**

|                                                                         |    |
|-------------------------------------------------------------------------|----|
| Test Overview .....                                                     | 30 |
| Test Procedure .....                                                    | 30 |
| Test Setup .....                                                        | 30 |
| Test Notes.....                                                         | 30 |
| Sample Calculations .....                                               | 31 |
| Test Results .....                                                      | 31 |
| Figure 4.1 Radiated Spurious Emissions 40 – 60 GHz (Horizontal) .....   | 31 |
| Figure 4.2 Radiated Spurious Emissions 40 – 60 GHz (Vertical) .....     | 32 |
| Figure 4.3 Radiated Spurious Emissions 60 – 90 GHz (Horizontal) .....   | 32 |
| Figure 4.4 Radiated Spurious Emissions 60 – 90 GHz (Vertical) .....     | 33 |
| Figure 4.5 Radiated Spurious Emissions 90 – 140 GHz (Horizontal) .....  | 33 |
| Figure 4.6 Radiated Spurious Emissions 90 – 140 GHz (Vertical) .....    | 34 |
| Figure 4.7 Radiated Spurious Emissions 140 – 220 GHz (Horizontal) ..... | 34 |
| Figure 4.8 Radiated Spurious Emissions 140 – 220 GHz (Vertical) .....   | 35 |
| Table 2 Radiated Spurious Emissions 18 – 40 GHz .....                   | 35 |
| Summary of Results for Radiated Emissions (Above 40 GHz).....           | 35 |

## **Radiated Spurious Emissions (1 - 40GHz) .....**36

|                                                                       |    |
|-----------------------------------------------------------------------|----|
| Test Overview .....                                                   | 36 |
| Test Procedure .....                                                  | 36 |
| Test Setup .....                                                      | 36 |
| Test Notes.....                                                       | 37 |
| Sample Calculations .....                                             | 37 |
| Test Results .....                                                    | 38 |
| Figure 5.1 Radiated Spurious Emissions 1 – 18 GHz (Horizontal) .....  | 38 |
| Figure 5.2 Radiated Spurious Emissions 1 – 18 GHz (Vertical) .....    | 38 |
| Table 3.1 Radiated Spurious Emissions 1 – 18 GHz.....                 | 39 |
| Figure 5.3 Radiated Spurious Emissions 18 – 40 GHz (Horizontal) ..... | 39 |
| Figure 5.4 Radiated Spurious Emissions 18 – 40 GHz (Vertical) .....   | 40 |
| Table 3.2 Radiated Spurious Emissions 18 – 40 GHz.....                | 40 |

Rogers Labs, a division of The Compatibility Center LLC

Garmin International, Inc.

7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60  
 Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039  
 Phone/Fax: (913) 660-0666 Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 28, 2024  
 Revision 1 File: SAF Tehnika Freemile 60 240723 r1 Page 4 of 56

|                                                                                      |           |
|--------------------------------------------------------------------------------------|-----------|
| Summary of Results for Radiated Emissions (1 – 40 GHz) .....                         | 40        |
| <b>Radiated Spurious Emissions (below 1 GHz) .....</b>                               | <b>41</b> |
| Test Overview .....                                                                  | 41        |
| Test Procedure .....                                                                 | 41        |
| Test Setup .....                                                                     | 41        |
| Test Notes .....                                                                     | 42        |
| Test Results .....                                                                   | 42        |
| Figure 6.1 Radiated Spurious Emissions 30 MHz – 1 GHz (Horizontal / Tx On) .....     | 42        |
| Figure 6.2 Radiated Spurious Emissions 30 MHz – 1 GHz (Vertical / Tx On) .....       | 43        |
| Table 4.1 Radiated Spurious Emissions 30 MHz – 1 GHz (Horizontal Polarization) ..... | 43        |
| Table 4.2 Radiated Spurious Emissions 30 MHz – 1 GHz (Vertical Polarization) .....   | 44        |
| Summary of Results for Radiated Emissions (below 1 GHz) .....                        | 44        |
| <b>AC Line Conducted EMI.....</b>                                                    | <b>45</b> |
| Test Overview .....                                                                  | 45        |
| Test Procedure .....                                                                 | 45        |
| Test Setup .....                                                                     | 45        |
| Test Notes .....                                                                     | 46        |
| Test Results .....                                                                   | 46        |
| Figure 7.1 AC Line Conducted Emissions Data L1 (PoE, Tx On) .....                    | 46        |
| Figure 7.2 AC Line Conducted Emissions Data L2 (PoE, Tx On) .....                    | 47        |
| Table 5.1 AC Line Conducted Emissions Data L1 (PoE, Tx On) .....                     | 48        |
| Table 5.2 AC Line Conducted Emissions Data L2 (PoE, Tx On) .....                     | 48        |
| Summary of Results for AC Line Conducted Emissions .....                             | 48        |
| <b>Frequency Stability .....</b>                                                     | <b>49</b> |
| Test Overview .....                                                                  | 49        |
| Test Procedure .....                                                                 | 49        |
| Test Setup .....                                                                     | 49        |
| Test Notes .....                                                                     | 49        |
| Diagram 4 Frequency Stability Test Setup .....                                       | 50        |
| Test Results .....                                                                   | 50        |
| Table 6 Frequency Stability Measurements.....                                        | 50        |
| Summary of Results for Frequency Stability.....                                      | 50        |

|                                                      |    |
|------------------------------------------------------|----|
| Annex A Measurement Uncertainty Calculations.....    | 52 |
| Annex B Test Equipment.....                          | 53 |
| Annex C Qualifications .....                         | 55 |
| Annex D Laboratory Certificate of Accreditation..... | 56 |

## Revisions

Revision 1 – Issued October 28, 2024

## Executive Summary

The following information is submitted for consideration in obtaining Grant of Certification for License Exempt Digital Transmission System Intentional Radiator operating under Code of Federal Regulations Title 47 (47CFR) Part 15C paragraph 15.255, Industry Canada RSS-210 Issue 10, and RSS-GEN Issue 5, operation in the 57 to 71 GHz band.

Name of Applicant: SAF Tehnika AS  
 24a, Ganibu dambis  
 Riga Latvia LV-1005

PMN: FREEMILE 60

P/N: Z60FEEB1 and Z60FEEU1 (N.A. plugs / B1=30cm cord; U1=1m cord)

FCC ID: W9Z-FREEMILE60      IC: 8855A-FREEMILE60

Operating Frequency Range: 2402-2480 MHz

FREEMILE 60 was chosen for transmitter configuration testing and used for final measurements.

## Opinion / Interpretation of Results

| Tests Performed                           | Pass/Fail |
|-------------------------------------------|-----------|
| 6dB Emission Bandwidth                    | PASS      |
| 99% Occupied Bandwidth                    | PASS      |
| Equivalent Isotropic Radiated Power       | PASS      |
| Radiated Spurious Emissions (above 40GHz) | PASS      |
| Radiated Spurious Emissions (1 - 40GHz)   | PASS      |
| Radiated Spurious Emissions (below 1 GHz) | PASS      |
| AC Line Conducted EMI                     | PASS      |
| Frequency Stability                       | PASS      |

## Equipment Tested

Model: FREEMILE 60

SAF Tehnika AS  
24a, Ganibu dambis  
Riga Latvia LV-1005

| <u>Equipment</u>    | <u>Model / PN</u> | <u>Serial Number</u> |
|---------------------|-------------------|----------------------|
| Freemile 60 EUT #1  | Freemile 60       | 504340100027         |
| Freemile 60 EUT #1  | Freemile 60       | 504340100039         |
| PoE power supply #1 | LZD201-24W-48V-G  | N/A                  |
| PoE power supply #1 | LZD201-24W-48V-G  | N/A                  |

Test results in this report relate only to the items tested. Worst-case configuration data recorded in this report.

Software (FVIN): v1.12.0-rev54424

## Equipment Operational Modes

### Channels

| Channel | Center Frequency (GHz) | Frequency Range (GHz) Full-channel bandwidth | Frequency Range (GHz) Half-channel bandwidth * |
|---------|------------------------|----------------------------------------------|------------------------------------------------|
| 1       | 58.32                  | 57.24 ~ 59.40                                | 57.78 ~ 58.86                                  |
| 2       | 60.48                  | 59.40 ~ 61.56                                | 59.94 ~ 61.02                                  |
| 3       | 62.64                  | 61.56 ~ 63.72                                | 62.1 ~ 63.18                                   |
| 4       | 64.80                  | 63.72 ~ 65.88                                | 64.26 ~ 65.34                                  |
| 5       | 66.96                  | 65.88 ~ 68.04                                | 66.42 ~ 67.50                                  |
| 6       | 69.12                  | 68.04 ~ 70.20                                | 68.58 ~ 69.66                                  |

\* Half-channel bandwidth is not supported in 802.11ad/ay

### Modulations

| MCS index       | Modulation type                              |
|-----------------|----------------------------------------------|
| 0 (Control-PHY) | DSSS with 32 $\pi/2$ -BPSK chips per bit     |
| 1               | $\pi/2$ -BPSK (with each bit repeated twice) |
| 2               |                                              |
| 3               |                                              |
| 4               |                                              |
| 5               | $\pi/2$ -BPSK                                |
| 6               |                                              |
| 7               |                                              |
| 8               |                                              |
| 9               | $\pi/2$ -QPSK                                |
| 10              |                                              |
| 11              |                                              |
| 12              | $\pi/2$ -16-QAM                              |

### Equipment Setup (Calmodes)

Calmode X Y

X = Channel #

Y = Modulation (MCS Index)

Rogers Labs, a division of The Compatibility Center LLC

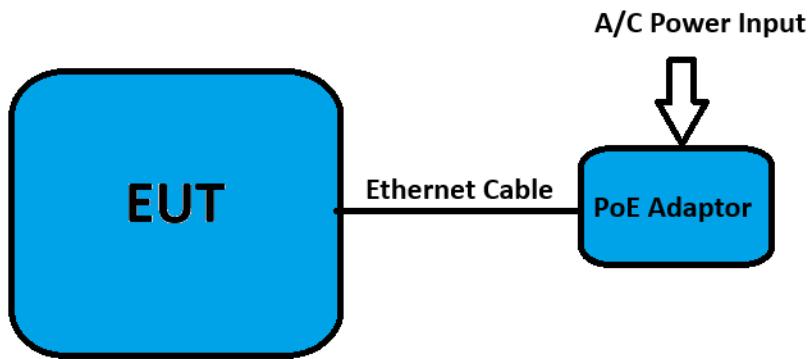
Garmin International, Inc.

7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60  
Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039

Phone/Fax: (913) 660-0666 Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 28, 2024  
Revision 1 File: SAF Tehnika Freemile 60 240723 r1 Page 9 of 56

## Antenna Description

The EUT contains one Tx antenna for 57-71 GHz transmission. It is a 16-element Phased Array Antenna (PAA). See below summary of the antenna gain by channel and modulation type.


| MCS | Antenna Gain (dBi) Boresight |         |         |         |        |        |
|-----|------------------------------|---------|---------|---------|--------|--------|
|     | Ch.1                         | Ch.2    | Ch.3    | Ch.4    | Ch.5   | Ch.6   |
| 0   | 14.6757                      | 14.4047 | 15.4219 | 16.0622 | 16.106 | 16.156 |
| 1   | 14.6757                      | 14.4047 | 15.4219 | 16.0622 | 16.106 | 16.156 |
| 2   | 14.6757                      | 14.4047 | 15.4219 | 16.0622 | 16.106 | 16.156 |
| 3   | 14.6757                      | 14.4047 | 15.4219 | 16.0622 | 16.106 | 16.156 |
| 4   | 14.6757                      | 14.4047 | 15.4219 | 16.0622 | 16.106 | 16.156 |
| 5   | 14.6757                      | 14.4047 | 15.4219 | 16.0622 | 16.106 | 16.156 |
| 6   | 14.6757                      | 14.4047 | 15.4219 | 16.0622 | 16.106 | 16.156 |
| 7   | 14.6757                      | 14.4047 | 15.4219 | 16.0622 | 16.106 | 16.156 |
| 8   | 14.6757                      | 14.4047 | 15.4219 | 16.0622 | 16.106 | 16.156 |
| 9   | 14.6757                      | 14.4047 | 15.4219 | 16.0622 | 16.106 | 16.156 |
| 10  | 14.6757                      | 14.4047 | 15.4219 | 16.0622 | 16.106 | 16.156 |
| 11  | 14.6757                      | 14.4047 | 15.4219 | 16.0622 | 16.106 | 16.156 |
| 12  | 14.6757                      | 14.4047 | 15.4219 | 16.0622 | 16.106 | 16.156 |

## Equipment Function

The EUT is a 60 GHz Point-to-Point and Point-to-Multipoint Digital Transmission System. The design provides operational capabilities in the the frequency band of 57240-70200 MHz. The design provides Modulation and Coding Scheme (MCS) options including MCS1; MCS2; MCS3; MCS4; MCS5; MCS6; MCS7; MCS8; MCS9; MCS10; MCS11; MCS12 to maintain quality communications link. The design may auto-select MCS or highest MCS may be set during installation to allow for longer distance link. The product provides two options for channel width 2160 MHz and 1080 MHz channel providing high data rates and full duplex operation for point-to-point and point-to-multipoint communications. The EUT requires direct current power supplied from an AC/DC Power Over Ethernet (POE) power supply. Software was provided internal to the EUT which provided the ability to set test channel and modulation scheme. The EUT provides two network ports, first for communications and power, second for communications. For testing purposes, the EUT was connected to a laptop computer at the

network port. A laptop computer provided communications and control to the EUT for testing purposes. The EUT provides no other interfacing options than those presented in this report. For testing purposes, the Freemile 60 test samples were configured to transmit in available data modes receiving power from the AC/DC POE adapter. As requested by the manufacturer and required by regulations, the equipment was tested for emissions compliance using the available configurations with the worst-case data presented. Test results in this report relate only to the products described in this report.

### ***Equipment Configuration***



## Application for Certification

(1) Manufacturer: SAF Tehnika AS  
24a, Ganibu dambis  
Riga Latvia LV-1005

(2) Identification: HVIN: FREEMILE 60  
FCC ID: W9Z-FREEMILE60      IC: 8855A-FREEMILE60

(3) Instruction Book:  
Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:  
Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:  
Refer to Exhibit of Operational Description.

(6) Report of Measurements:  
Report of measurements follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:  
Refer to Exhibit for photographs of equipment.

(8) List of Peripheral Equipment Necessary for operation. The equipment operates from external alternating current power input to a PoE adaptor which supplies 48V DC to the EUT. The EUT provides interface ports for power, loads and communications as presented in this filing.

(9) Transition Provisions of 47CFR 15.37 are not requested.

(10) Not Applicable. The unit is not a scanning receiver.

(11) Since this EUT operates in the 57-71 GHz range, this report details compliance with provisions of 47CFR 15.255.

(12) The equipment is not software defined and this section is not applicable.

(13) Not applicable as this unit is not a U-NII device.

(14) Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used. This information is provided in this report and Test Setup Exhibits provided with the application filing.

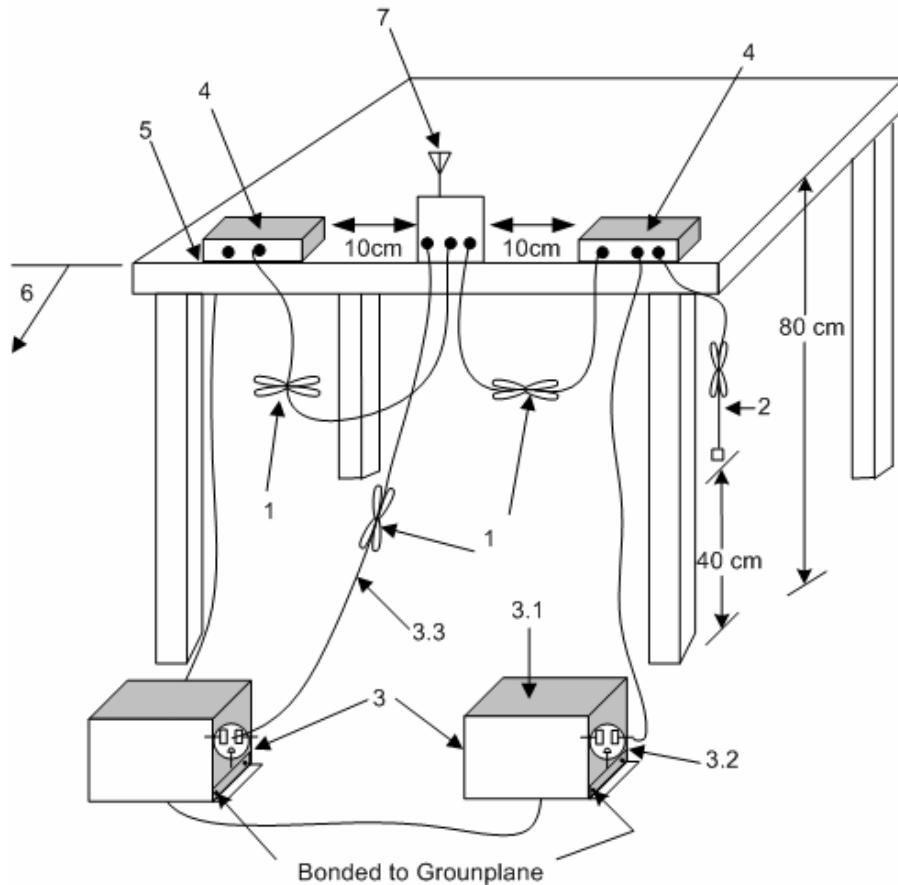
## Applicable Standards

The following information is submitted in accordance with the eCFR (electronic Title 47 Code of Federal Regulations) (47CFR), dated July 1, 2024: Part 2, Subpart J, Part 15C Paragraph 15.255, RSS-210 Issue 10, and RSS-GEN Issue 5. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.10-2013. This report documents compliance for the EUT operations.

## Test Procedures

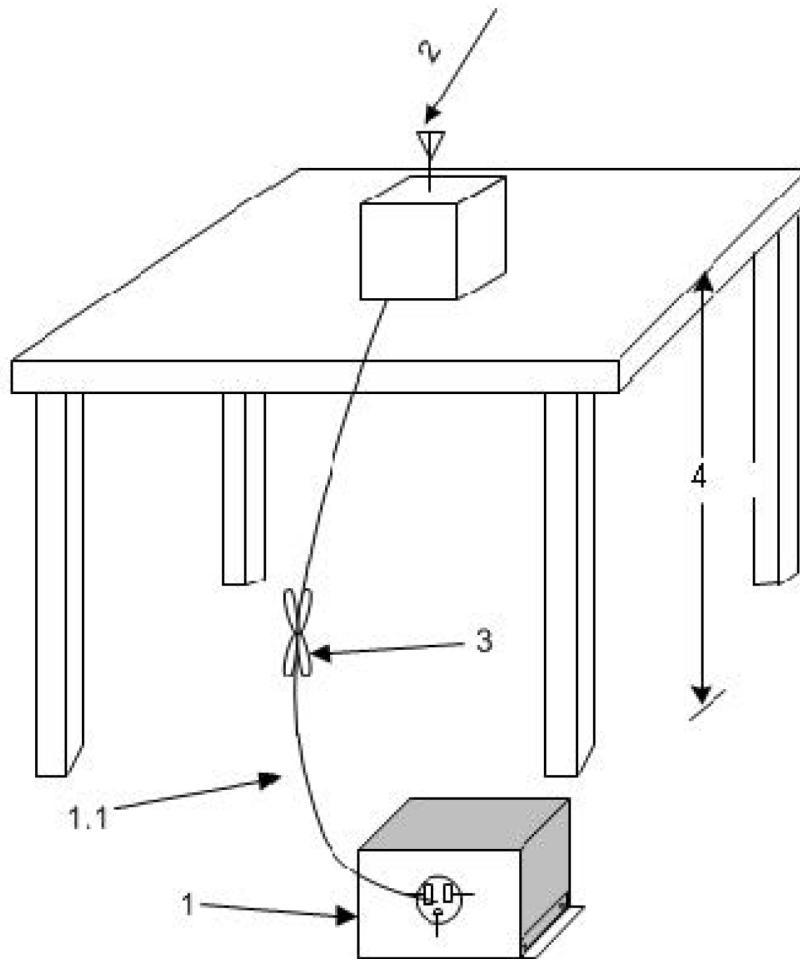
### **AC Line Conducted Emission Test Procedure**

Testing for the AC line-conducted emissions were performed as required in CFR47 15B, RSS-GEN, and directed in ANSI C63.4-2014. The test setup, including the EUT, was arranged in the test configurations as presented during testing. The test configuration was placed on a 1 x 1.5-meter bench, 0.8 meters high located in a screen room. The power lines of the system were isolated from the power source using a standard LISN with a 50- $\mu$ Hy choke. EMI was coupled to the spectrum analyzer through a 0.1  $\mu$ F capacitor internal to the LISN. The LISN was positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables were draped over the back edge of the table. Refer to diagram one showing typical test arrangement and photographs in the test setup exhibit for EUT placement used during testing.


### **Radiated Emission Procedure**

Radiated emissions testing was performed as required in 47CFR 15C, RSS-210 Issue 10, RSS-GEN and specified in ANSI C63.10-2013. The EUT was placed on a rotating 0.9 x 1.2-meter platform, elevated as required above the ground plane at a distance of 3 meters from the FSM antenna. For 57-71GHz radiated testing, adjustments were made for appropriate far field distance. EMI energy was maximized by equipment placement permitting orientation in three orthogonal axes, raising, and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken and recorded. The frequency spectrum from 9 kHz to 25,000 MHz was searched for emissions during preliminary investigation. Refer to diagrams two and three showing typical test setup. Refer to photographs in the test setup exhibits for specific EUT placement during testing.

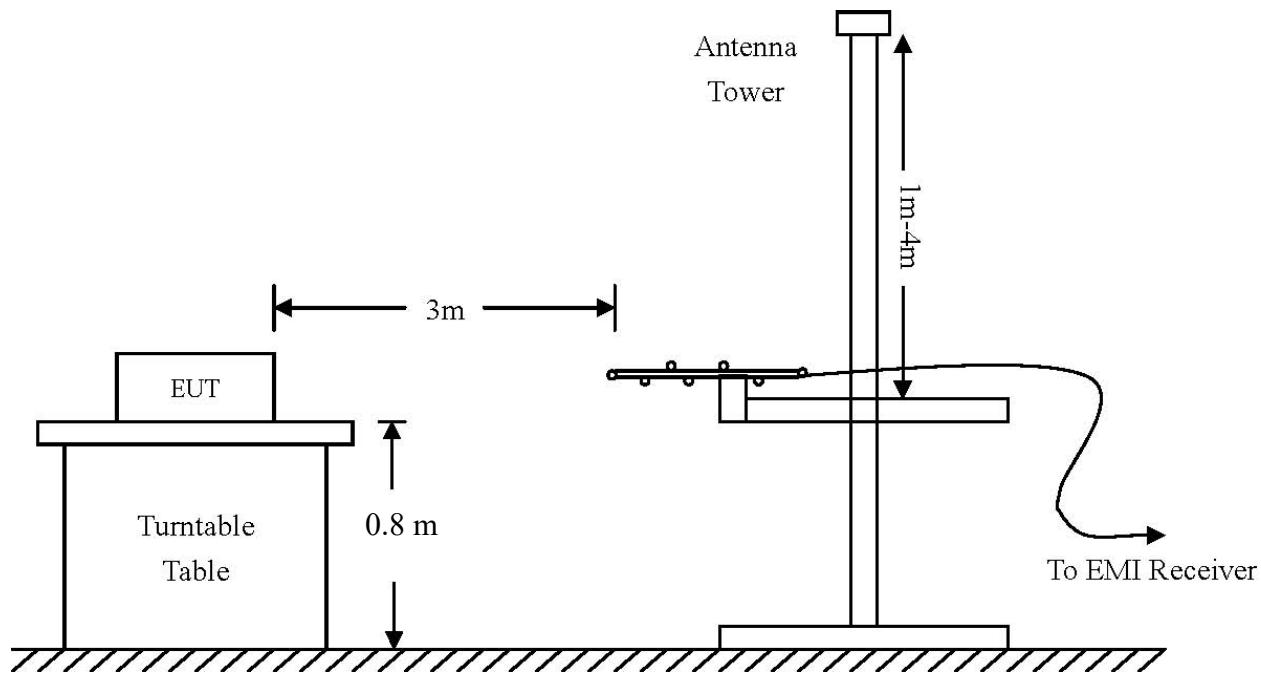
### **Antenna Port Conducted Emission Test Procedure**


The EUT was not equipped with a conducted antenna port connection.

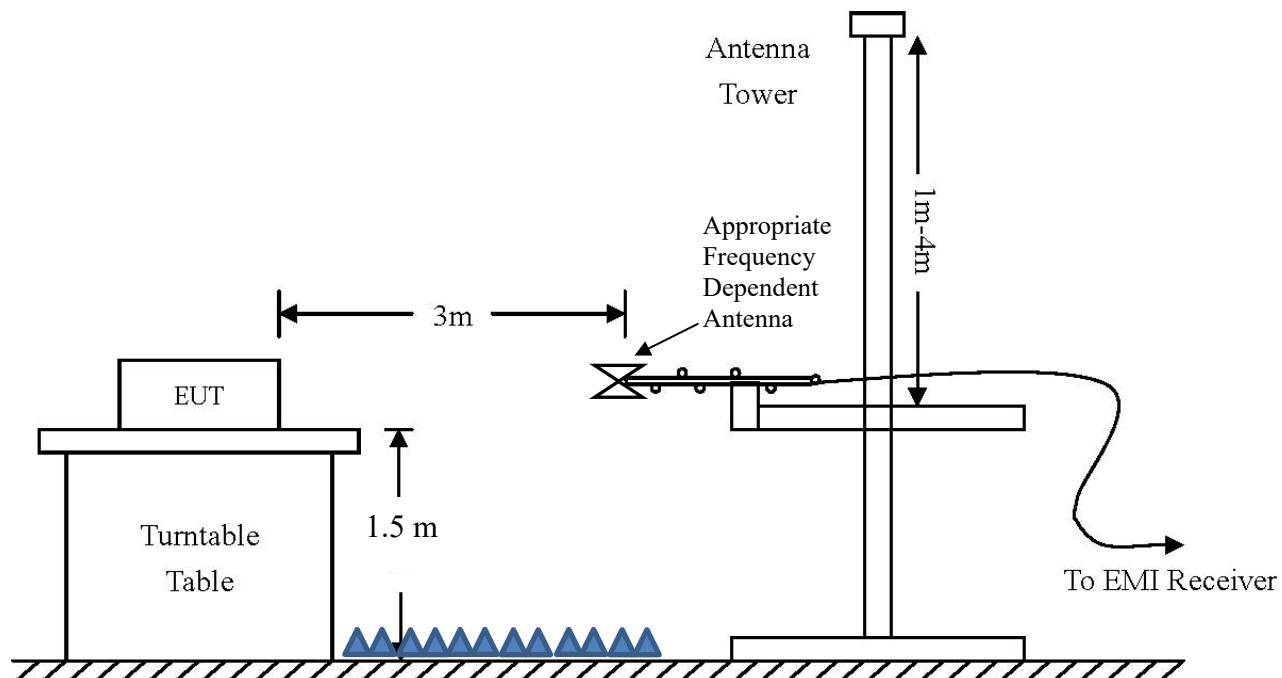
### **Diagram 1 Test arrangement for power-line conducted emissions**



1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long see (see 6.2.3.1).
2. I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m (see 6.2.2).
3. EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50  $\Omega$  loads. LISN can be placed on top of, or immediately beneath, reference ground plane (see 6.2.2 and 6.2.3).
  - 3.1 All other equipment powered from additional LISN(s).
  - 3.2 Multiple-outlet strip can be used for multiple power cords of non-EUT equipment.
  - 3.3 LISN at least 80 cm from nearest part of EUT chassis.
4. Non-EUT components of EUT system being tested.
5. Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop (see 6.2.3.1).
6. Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane (see 6.2.2 for options).
7. Antenna may be integral or detachable. If detachable, the antenna shall be attached for this test


**Diagram 2 Test arrangement for radiated emissions of tabletop equipment**




1. A LISN is optional for radiated measurements between 30 MHz and 1000 MHz but not allowed for measurements below 30 MHz and above 1000 MHz (see 6.3.1). If used, then connect EUT to one LISN. Unused LISN measuring port connectors shall be terminated in  $50\ \Omega$  loads. The LISN may be placed on top of, or immediately beneath, the reference ground plane (see 6.2.2 and 6.2.3.2).
  - 1.1. LISN spaced at least 80 cm from the nearest part of the EUT chassis.
2. Antenna can be integral or detachable, depending on the EUT (see 6.3.1).
3. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long (see 6.3.1).
4. For emission measurements at or below 1 GHz, the table height shall be 80 cm. For emission measurements above 1 GHz, the table height shall be 1.5 m for measurements, except as otherwise specified (see 6.3.1 and 6.6.3.1).

**Diagram 3 Test arrangement for radiated emissions tested in Semi-Anechoic Chamber (SAC) and Outdoor Area Test Site (OATS)**

Below 1 GHz



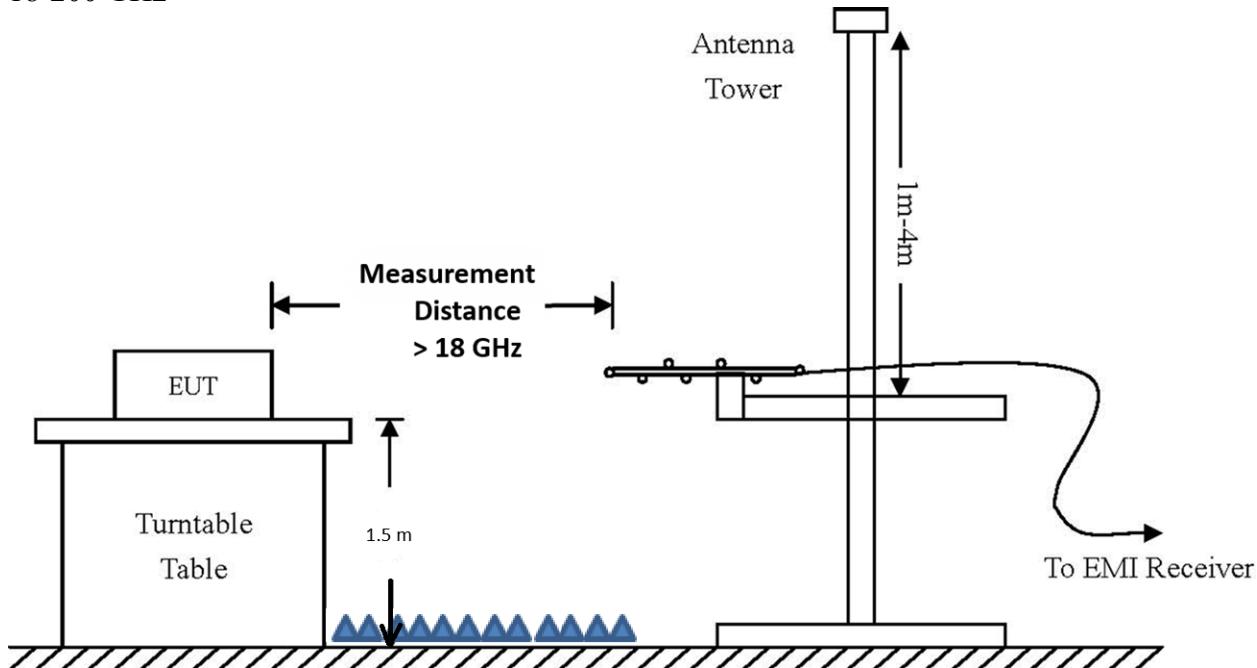
1-18 GHz:



Rogers Labs, a division of The Compatibility Center LLC

Garmin International, Inc.

7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60


Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039

Phone/Fax: (913) 660-0666 Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 28, 2024

Revision 1

File: SAF Tehnika Freemile 60 240723 r1 Page 17 of 56

18-200 GHz



### Radiated Emissions Measurement Distance

The measurement antenna is in the far field of the EUT per formula  $2D^2/\gamma$ , where D is the larger between the dimensions of the measurement antenna and the transmitting antenna of the EUT. In this case, "D" is the largest dimension of the measurement antenna. The EUT is manipulated through all orthogonal planes representative of its typical use and for both polarities of the measurement antenna to achieve the highest signal level. The worst-case position found was used for all radiated testing.

Table 1-1 Far-Field Distance & Measurement Distance per Frequency Range (Out-of-Band Testing)

| Frequency Range [GHz] | Wavelength [centimeters] | Farfield Distance [meters] | Measurement Distance [meters] |
|-----------------------|--------------------------|----------------------------|-------------------------------|
| 18-40                 | 0.750                    | 0.65                       | 1.00                          |
| 40-57                 | 0.526                    | 0.99                       | 1.00                          |
| 71-90                 | 0.333                    | 0.71                       | 1.00                          |
| 90-140                | 0.214                    | 0.54                       | 1.00                          |
| 240-200               | 0.150                    | 0.32                       | 1.00                          |

Table 1-2 Far-Field Distance & Measurement Distance per Frequency Range (In-Band Testing)

| Frequency Range [GHz] | Wavelength [centimeters] | Farfield Distance [meters] | Measurement Distance [meters] |
|-----------------------|--------------------------|----------------------------|-------------------------------|
| 57-71                 | 0.422                    | 0.60                       | 1.00                          |

## Test Site Locations

|               |                                                                                                                                                                                                                                                                     |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conducted EMI | AC line conducted emissions testing performed in a shielded screen room located at Rogers Labs, a division of The Compatibility Center LLC, 7915 Nieman Rd., Lenexa, KS (or satellite location).                                                                    |
| Antenna port  | Antenna port conducted emissions testing was performed in a shielded screen room located at Rogers Labs, a division of The Compatibility Center LLC, 7915 Nieman Rd., Lenexa, KS (or satellite location).                                                           |
| Radiated EMI  | The radiated emissions tests were performed at the 3 meters Semi-Anechoic Chamber (SAC) located at Rogers Labs, a division of The Compatibility Center LLC, 7915 Nieman Rd., Lenexa, KS or at the 3 meters Outdoor Area Test Site (OATS) in the satellite location. |

Registered Site information: FCC Site: US5305, ISED: 3041A, CAB Identifier: US0096

NVLAP Accreditation      Lab code 200087-0

## Units of Measurements

|                        |                                                                          |
|------------------------|--------------------------------------------------------------------------|
| Conducted EMI          | Data presented in dB $\mu$ V; dB referenced to one microvolt             |
| Antenna port Conducted | Data is in dBm; dB referenced to one milliwatt                           |
| Radiated EMI           | Data presented in dB $\mu$ V/m; dB referenced to one microvolt per meter |

Note: The limit is expressed for a measurement in dB $\mu$ V/m when the measurement is taken at a distance of 3 or 10 meters. Data taken for this report was taken at distance of 3 meters. Sample calculation demonstrates corrected field strength reading for Semi-Anechoic Chamber using the measurement reading and correcting for receive antenna factor, cable losses, and amplifier gains.

Sample Calculation:

RFS = Radiated Field Strength, FSM = Field Strength Measured

A.F. = Receive antenna factor, Losses = attenuators/cable losses, Gain = amplification gains

RFS (dB $\mu$ V/m @ 3m) = FSM (dB $\mu$ V) + A.F. (dB/m) + Losses (dB) - Gain (dB)

Rogers Labs, a division of The Compatibility Center LLC      Garmin International, Inc.  
7915 Nieman Road      FCC ID: W9Z-FREEMILE60      IC: 8855A-FREEMILE60      PMN: FREEMILE 60  
Lenexa, KS 66214      Test: 240723      SN's: 504340100027, 504340100039  
Phone/Fax: (913) 660-0666      Test to: 47CFR 15.255, RSS-Gen, RSS-210      Date: October 28, 2024  
Revision 1      File: SAF Tehnika Freemile 60 240723 r1      Page 19 of 56

| Frequency: 9 kHz-30 MHz | Frequency: 30 MHz- 1 GHZ | Frequency: Above 1 GHz |
|-------------------------|--------------------------|------------------------|
| Loop Antenna            | Broadband Biconilog      | Horn                   |
| RBW = 9 kHz             | RBW = 120 kHz            | RBW = 1 MHz            |
| VBW = 30 kHz            | VBW = 500 kHz            | VBW = 3 MHz            |
| Sweep time = Auto       | Sweep time = Auto        | Sweep time = Auto      |
| Detector = PK, QP       | Detector = PK, QP        | Detector = PK, AV      |
| Antenna Height 1m       | Antenna Height 1-4m      | Antenna Height 1-4m    |

## Environmental Conditions

Ambient Temperature      23.3° C

Relative Humidity      48.0 %

Atmospheric Pressure      1021.6 mb

## Statement of Modifications and Deviations

No modifications to the EUT were required for the equipment to demonstrate compliance with the 47CFR Part 15C, Industry Canada RSS-210 Issue 10, and RSS-GEN Issue 5 emission requirements. There were no deviations to the specifications.

## Test Results

The following information is submitted supporting compliance with the requirements of 47CFR, Subpart C, paragraph 15.255, Industry Canada RSS-210 Issue 10, and RSS-GEN Issue 5.

### Summary

| FCC Part Section(s) | RSS Part Section(s)   | Test Description                             | Test Limit                                                                                                  | Test Condition    | Test Results |
|---------------------|-----------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 15.255(e)(1)        | RSS-210 Annex J.4.c   | 6dB Emission Bandwidth                       | N/A                                                                                                         | RADIATED          | PASS         |
| 2.1049              | RSS-Gen [6.7]         | 99% Occupied Bandwidth                       | N/A                                                                                                         |                   | PASS         |
| 15.255(c)(1)(i)     | RSS-210 Annex J.2.2.b | Equivalent Isotropic Radiated Power          | 43dBm (Peak) & 40dBm (Avg)                                                                                  |                   | PASS         |
| 15.255(e)           | RSS-210 Annex J.4.a   | Peak Conducted Output Power                  | (EBW x 500 mW) / 100 MHz if EBW < 100MHz; 500 mW if EBW > 100MHz                                            |                   | PASS         |
| 15.255(d)           | RSS-210 Annex J.3.c   | Radiated Spurious Emissions (Above 40GHz)    | 90 pW/cm <sup>2</sup> at a distance of 3 meters                                                             |                   | PASS         |
| 15.205<br>15.209    | RSS-Gen [8.9]         | Radiated Spurious Emissions (Below 40GHz)    | Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])              |                   | PASS         |
| 15.255(f)           | RSS-210 Annex J.6     | Frequency Stability                          | Fundamental emissions stay within authorized frequency block over the temperature and voltage ranges tested |                   |              |
| 15.207              | RSS-Gen [8.8]         | AC Line Conducted Emissions (150kHz - 30MHz) | < FCC 15.207 limits (RSS-Gen [8.8])                                                                         | AC LINE CONDUCTED | PASS         |

Rogers Labs, a division of The Compatibility Center LLC

Garmin International, Inc.

7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60  
 Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039

Phone/Fax: (913) 660-0666 Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 28, 2024

Revision 1

File: SAF Tehnika Freemile 60 240723 r1 Page 21 of 56

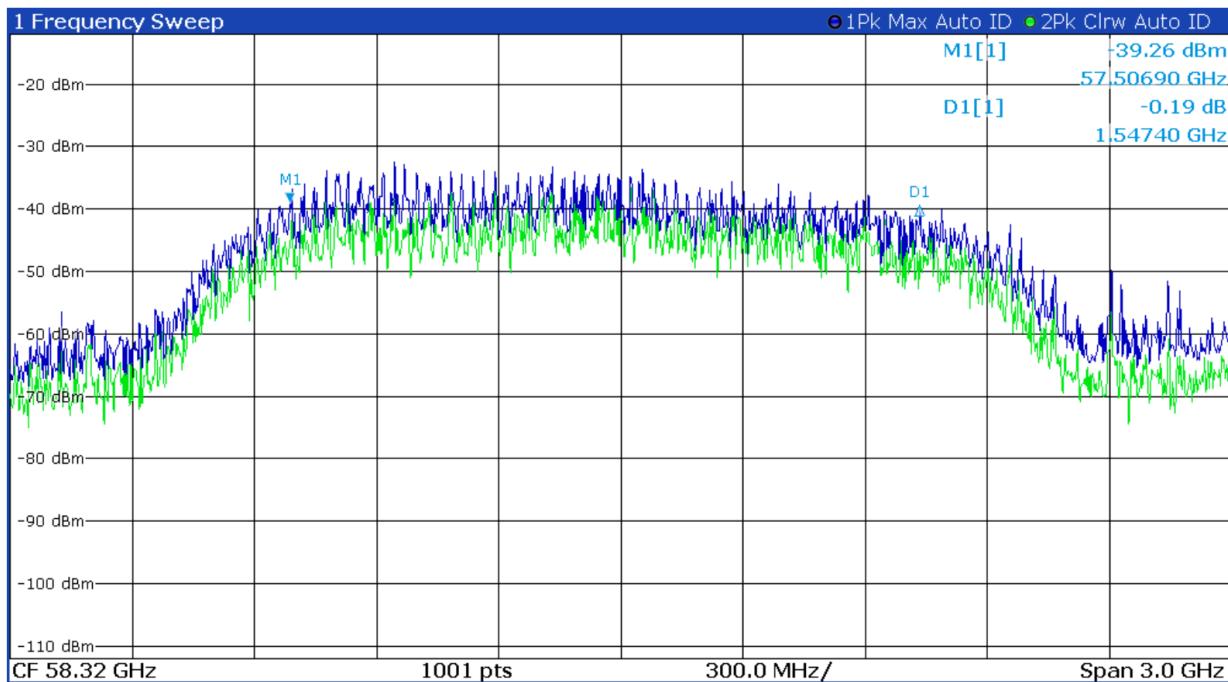


## **6dB Emission Bandwidth**

§15.255(e)(1); RSS-210 Annex J.4.c

### **Test Overview**

The emission bandwidth is defined as the instantaneous frequency range occupied by a steady state radiated signal with modulation, outside which the radiated power spectral density never exceeds 6 dB below the maximum radiated power spectral density in the band, as measured with a 100 kilohertz resolution bandwidth spectrum analyzer.


### **Test Procedure**

ANSI C63.10-2013 Subclause 9.3

### **Test Setup**

1. See Diagram 3 (18-200 GHz) for setup. Radiated measurements were taken in the far field.
2. All modes of operation were tried with the worst case configuration results being reported here.

**Figure 1 6dB Emissions Bandwidth**



Settings:

|                        |                    |                          |                 |
|------------------------|--------------------|--------------------------|-----------------|
| Center Freq: 58.32 GHz | Freq Offset: 0 Hz  | Start: 56.82 GHz         | Stop: 59.82 GHz |
| Span: 3 GHz            | RBW: 100 kHz       | Filter Type: Normal(3dB) | VBW: 300 kHz    |
| SWT: 30 ms             | Ref Level: -12 dBm | Level Offset: 0 dB       | Rf Att: 10 dB   |
| Input: 1 AC            | Preamplifier: OFF  | Preselector: Off         |                 |

## Test Results

Channel 1, Modulation 6

Measured 6 dB Bandwidth = 1.547 GHz

## Summary of Results for 6dB Emission Bandwidth

The EUT demonstrated compliance with the spurious emissions requirements of §15.255(e)(1) and RSS-210 Annex J.4.c.

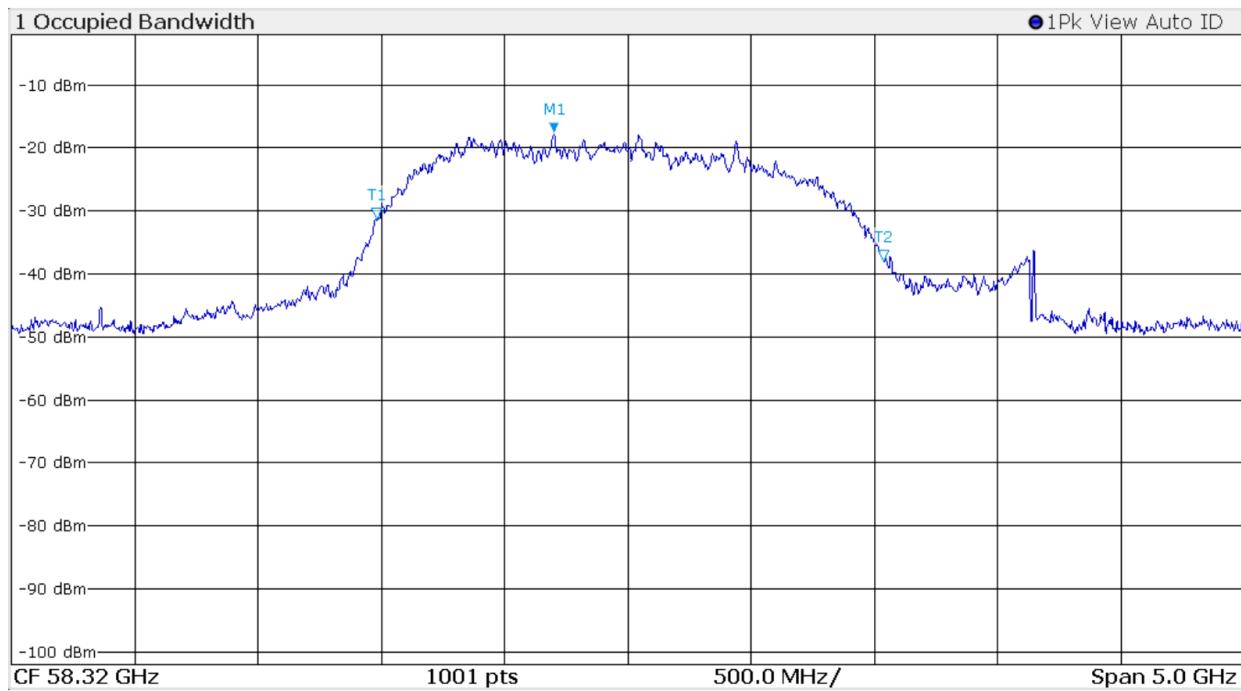


## **99% Occupied Bandwidth**

§2.1049; RSS-GEN 6.7

## Test Overview

The occupied bandwidth (99% emission bandwidth) is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.


## Test Procedure

## ANSI C63.10-2013 Subclause 6.9.3 RSS-Gen [6.7]

## Test Setup

1. See Diagram 3 (18-200 GHz) for setup. Radiated measurements were taken in the far field.
2. All modes of operation were tried with the worst case configuration results being reported here.

**Figure 2 99% Occupied Bandwidth**



**Settings:**

|                        |                   |                          |                 |
|------------------------|-------------------|--------------------------|-----------------|
| Center Freq: 58.32 GHz | Freq Offset: 0 Hz | Start: 55.82 GHz         | Stop: 60.82 GHz |
| Span: 5 GHz            | RBW: 10 MHz       | Filter Type: Normal(3dB) | VBW: 10 MHz     |
| SWT: 15 ms             | Ref Level: -2 dBm | Level Offset: 0 dB       | Rf Att: 10 dB   |
| Input: 1 AC            | Preamplifier: OFF | Preselector: Off         |                 |

**Marker Table:**

| Type | Ref | Trace | X-Value   | Y-Value   | Function           | Func Result |
|------|-----|-------|-----------|-----------|--------------------|-------------|
| M1   | 1   |       | 58.02 GHz | -17.8 dBm | Occ Bw             | 2.054 GHz   |
| T1   | 1   |       | 57.3 GHz  | -31.4 dBm | Occ Bw Centroid    | 58.33 GHz   |
| T2   | 1   |       | 59.36 GHz | -38 dBm   | Occ Bw Freq Offset | 10.74 MHz   |

**Test Results**

Channel 1, Modulation 6

Measured 99% Occupied Bandwidth = 2.054 GHz

**Summary of Results for 99% Occupied Bandwidth**

The EUT demonstrated compliance with the spurious emissions requirements of §2.1049 and RSS-GEN 6.7.

## **Equivalent Isotropic Radiated Power**

§15.255(c)(1)(i); RSS-210 Annex J.2.2.b

### **Test Overview**

Within the 57-71 GHz band, the average power of any emission shall not exceed +40 dBm and the peak power of any emission shall not exceed +43 dBm.

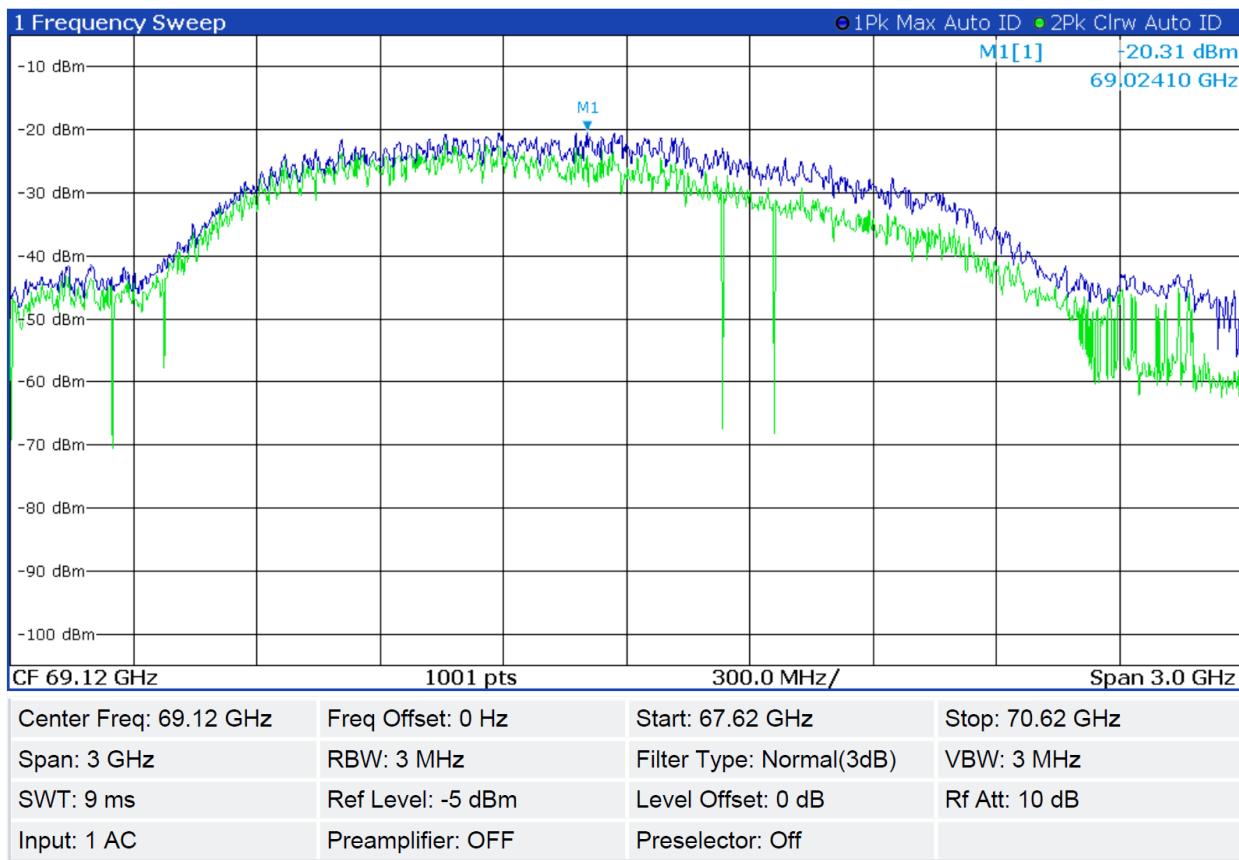
### **Test Procedure**

ANSI C63.10-2013 Subclause 9.11

### **Test Setup**

1. See Diagram 3 (18-200 GHz) for setup. Radiated measurements were taken in the far field.
2. All modes of operation were tried with the worst case configuration results being reported here.
3. The measurement equipment included a horn antenna and mixer to convert the 57-71 GHz fundamentals down to a frequency in the range of our ESW 44 receiver with maximum frequency capability of 44 GHz.

### **Sample Calculations**


Calculating Field Strength:

$$E_{[\text{dBuV/m}]} = 126.8 - 20 \log_{10}(\gamma) + P - G$$

Where:

E field strength of the emission at the measurement distance, in dBuV/m  
P power measured at the output of the test antenna, in dBm (including correction factors)  
 $\gamma$  wavelength of the emission under investigation [300 / fMHz], in m  
G gain of the test antenna, in dBi

Figure 3 EIRP Power



### Test Results

$$\text{Measured Peak} = -20.3 \text{ dBm}$$

$$\gamma = (3 \times 10^8) / (69.12 \times 10^9) = 0.00465$$

$$E_{\text{dBuV/m}} = 126.8 - 20 \log_{10}(\gamma) + P - G = 126.8 - 20 \log_{10}(0.00465) - 20.3 - 16.156 = 137.0 \text{ dBuV/m}$$

$$\text{EIRP} = 137.0 + 20 \log_{10}(\text{distance}) - 104.7 = 137.0 + 20 \log_{10}(1) - 104.7 = \underline{\text{EIRP} = 32.3 \text{ dBm (PASS)}}$$

Table 1 EIRP Power

| Frequency (GHz) | Calmode (Channel / Mod) | Test Distance (m) | EUT Peak (dBm) | Calculated Peak EIRP (dBm) | Peak EIRP Limit (dBm) | Peak EIRP (Watts) | Margin (dB) | Pass/Fail |
|-----------------|-------------------------|-------------------|----------------|----------------------------|-----------------------|-------------------|-------------|-----------|
| 58.32           | 1 / 6                   | 1.0               | -20.68         | 32.4                       | 43.0                  | 1.74              | -10.6       | PASS      |
| 64.80           | 4 / 1                   | 1.0               | -20.44         | 32.3                       | 43.0                  | 1.69              | -10.7       | PASS      |
| 69.12           | 6 / 6                   | 1.0               | -20.30         | 32.3                       | 43.0                  | 1.70              | -10.7       | PASS      |

### Summary of Results for Radiated Emissions (Above 40 GHz)

The EUT demonstrated compliance with the spurious emissions requirements of  
§15.255(c)(1)(i); RSS-210 Annex J.2.2.b

## Peak Conducted Output Power

§15.255(e); RSS-210 Annex J.4.a

### Test Overview

EUT peak conducted power must be calculated to compare to corresponding limits

The peak transmitter output power shall not exceed 500mW for devices with an emission bandwidth greater than or equal to 100 MHz. If the emissions bandwidth is less than 100 MHz, the peak power shall be less than the emission bandwidth times 500mW divided by 100 MHz.

### Test Procedure

ANSI C63.10-2013 Subclause 9.5

### Test Setup

1. EBW (6dB BW) is measured as described above.
2. Peak EIRP is measured as described above.
3. Peak Conducted Output Power is calculated from EIRP.
4. Peak Conducted Output Power is compared to the limit.

Note: See Diagram 3 (18-200 GHz) for setup. Radiated measurements were taken in the far field.

### Sample Calculations

Calculating Field Strength from substitution power:

$$\text{EIRP} = P_{\text{cond}} + G_{\text{EUT}}$$

Where:

EIRP Equivalent Isotropically Radiated Power, in dBm

$P_{\text{cond}}$  Measured power at feedpoint of the EUT antenna, in dBm

$G_{\text{EUT}}$  Gain of the EUT radiating element (antenna), in dBi

$$\text{EIRP} = P_{\text{cond}} + G_{\text{EUT}}$$

$$P_{\text{cond}} = \text{EIRP} - G_{\text{EUT}}$$

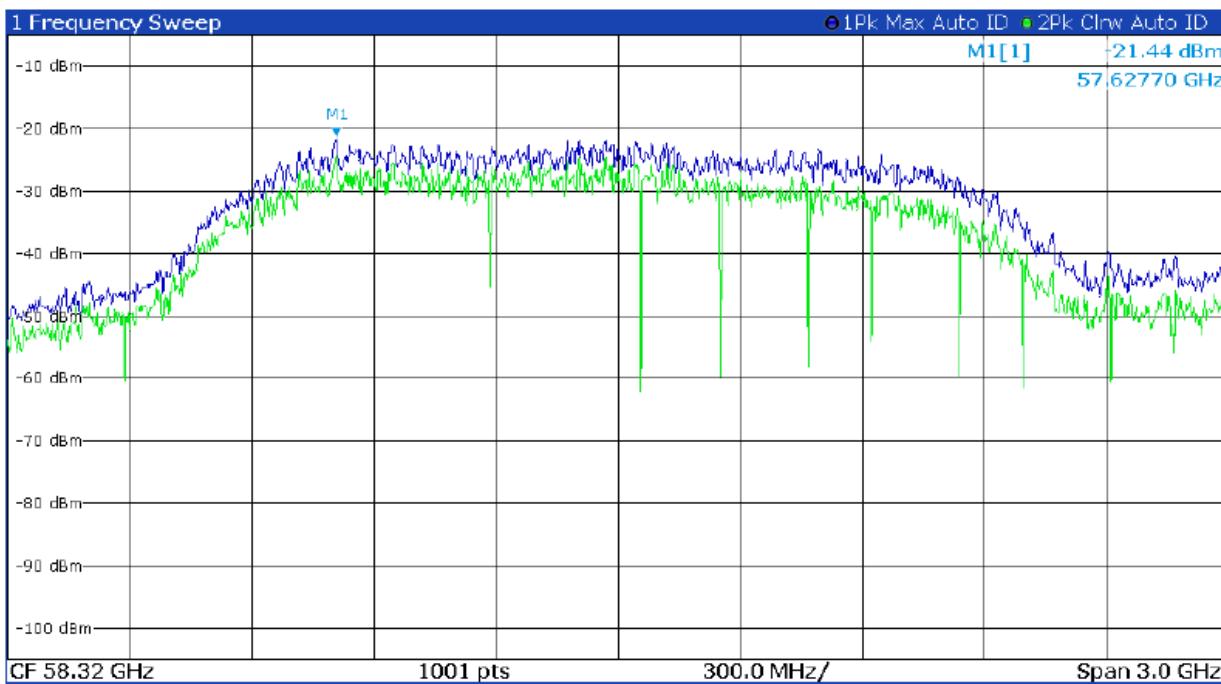
$$P_{\text{cond}} = 31.65 \text{ dBm} - 14.6757 \text{ dBi}$$

$$P_{\text{cond}} = 16.98 \text{ dBm} = 0.499 \text{ Watts} = 499 \text{ mW (PASSES)}$$

Rogers Labs, a division of The Compatibility Center LLC

Garmin International, Inc.

7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60


Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039

Phone/Fax: (913) 660-0666 Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 28, 2024

Revision 1

File: SAF Tehnika Freemile 60 240723 r1 Page 28 of 56

| Calmode     | Frequency (GHz) | Wavelength | Test distance (m) | EUT Peak Measured (dBm) | Antenna Gain (dBi) @ Frequency | E[dBuV/m] | Calculated Pk EIRP (dBm) | Calculated Pd EIRP (Watts) | Peak Conducted Output Power (dBm) | Peak Conducted Output Power (Watts) |
|-------------|-----------------|------------|-------------------|-------------------------|--------------------------------|-----------|--------------------------|----------------------------|-----------------------------------|-------------------------------------|
| Calmode 11  | 57762600000.0   | 0.0051937  | 1.0               | -22.69                  | 14.6757                        | 135.12    | 30.42                    | 1.10                       | 15.75                             | 0.0376                              |
| Calmode 16  | 57627700000.0   | 0.0052058  | 1.0               | -21.44                  | 14.6757                        | 136.35    | 31.65                    | 1.46                       | 16.98                             | 0.0499                              |
| Calmode 1 a | 58290000000.0   | 0.0051467  | 1.0               | -24.54                  | 14.6757                        | 133.35    | 28.65                    | 0.73                       | 13.98                             | 0.0250                              |
| Calmode 4 1 | 64800000000.0   | 0.0046296  | 1.0               | -20.44                  | 16.0622                        | 136.99    | 32.29                    | 1.69                       | 16.22                             | 0.0419                              |
| Calmode 4 6 | 64800000000.0   | 0.0046296  | 1.0               | -20.68                  | 16.0622                        | 136.75    | 32.05                    | 1.60                       | 15.98                             | 0.0397                              |
| Calmode 4 a | 64800000000.0   | 0.0046296  | 1.0               | -23.27                  | 16.0622                        | 134.16    | 29.46                    | 0.88                       | 13.39                             | 0.0219                              |
| Calmode 6 1 | 68796300000.0   | 0.0043607  | 1.0               | -20.37                  | 16.1560                        | 137.48    | 32.78                    | 1.90                       | 16.63                             | 0.0460                              |
| Calmode 6 6 | 69024100000.0   | 0.0043463  | 1.0               | -20.31                  | 16.1560                        | 137.57    | 32.87                    | 1.94                       | 16.72                             | 0.0469                              |
| Calmode 6 a | 69024100000.0   | 0.0043463  | 1.0               | -27.39                  | 16.1560                        | 130.49    | 25.79                    | 0.38                       | 9.64                              | 0.0092                              |



|                        |                   |                          |                 |
|------------------------|-------------------|--------------------------|-----------------|
| Center Freq: 58.32 GHz | Freq Offset: 0 Hz | Start: 56.82 GHz         | Stop: 59.82 GHz |
| Span: 3 GHz            | RBW: 3 MHz        | Filter Type: Normal(3dB) | VBW: 3 MHz      |
| SWT: 9 ms              | Ref Level: -5 dBm | Level Offset: 0 dB       | Rf Att: 10 dB   |
| Input: 1 AC            | Preamplifier: OFF | Preselector: Off         |                 |

### Summary of Results for Radiated Emissions (Above 40 GHz)

The EUT demonstrated compliance with the spurious emissions requirements of §15.255(e) and RSS-210 Annex J.4.a.

## **Radiated Spurious Emissions (Above 40GHz)**

§15.255(d); RSS-210 Annex J.3.c

### **Test Overview**

The power density of any emissions outside the 57-71 GHz band shall consist solely of spurious emissions. Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm<sup>2</sup> at a distance of 3 meters. The levels of the spurious emissions shall not exceed the level of the fundamental emission.

### **Test Procedure**

ANSI C63.10-2013 Subclauses 9.8 & 9.9.

### **Test Setup**

1. The emissions are measured in a radiated test setup while the EUT is operating at its maximum duty cycle, at maximum power and at the appropriate frequencies.
2. Scan the spectrum from 40 GHz to 200 GHz
3. Receiver setup:
  - a. RBW = 1 MHz
  - b. VBW = 3 MHz
  - c. Detector = Peak
  - d. Trace Mode = Max Hold
  - e. Sweep Time = auto couple
  - f. Number of Sweep points =/> 2 x Span/RBW
4. Compare results to the limit.

Note: See Diagram 3 (18-200 GHz) for setup. Radiated measurements were taken in the far field at 3m, per regulation.

### **Test Notes**

1. Once again, all modes of operation were evaluated and the worst case configurations were used for this report.
2. Emissions above 40 GHz were made using horn antennas, harmonic mixers and our ESW 44 spectrum analyzer receiver supporting these configurations.
3. Measurements were made in the far field and in our 3m semi-anechoic chamber. Refer to table 1-1 for distance vs frequency calculations.

## Sample Calculations

- Field Strength Level [dBuV/m] = Analyzer Level [dBm] + 107 + AFCL [dBm]
- AFCL [dBm] = Antenna Factor [dBm] + Cable Loss [dB] – Preamplifier Gain [dB]
- Margin [dB] = Field Strength Level [dBuV/m] – Limit [dBuV/m]
- RSE EIRP [dBm] =  $E_{\text{measured}} [\text{dBuV/m}] + 20 \log_{10} (\text{distance measured}) - 104.7$
- PD (Power Density in pW/cm<sup>2</sup>) = EIRP [pW] / (4πD<sup>2</sup>)

## Test Results


**Figure 4.1 Radiated Spurious Emissions 40 – 60 GHz (Horizontal)**



**Figure 4.2 Radiated Spurious Emissions 40 – 60 GHz (Vertical)**



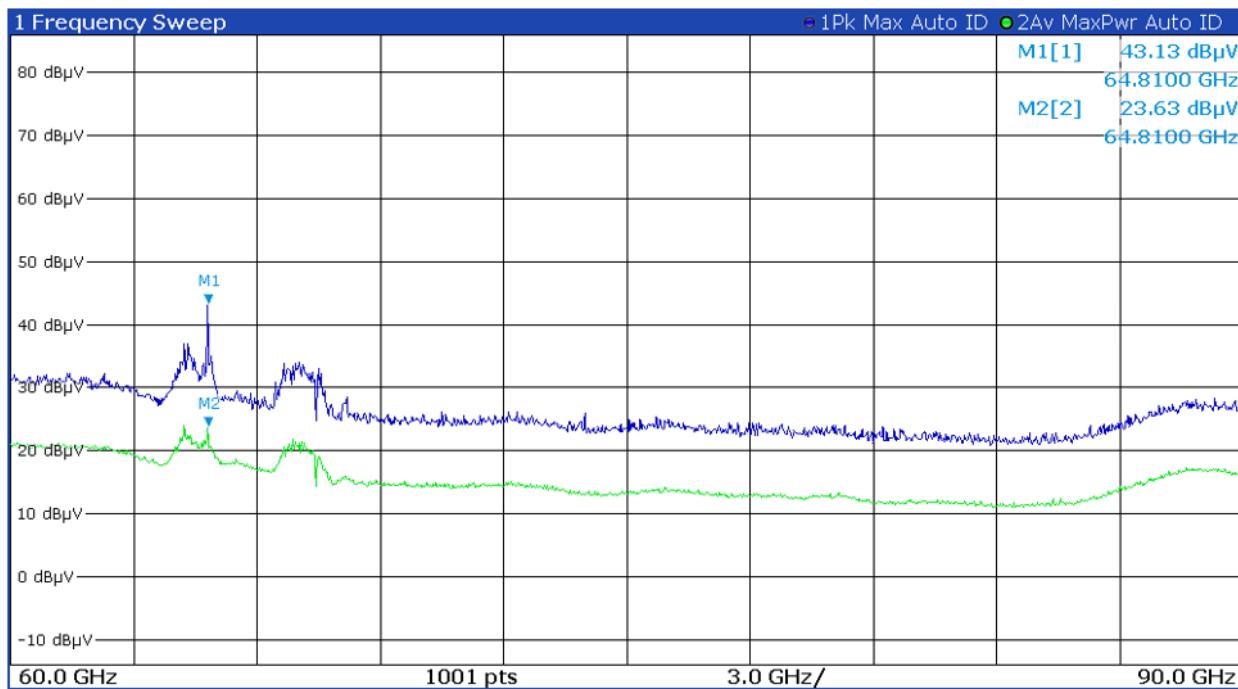
**Figure 4.3 Radiated Spurious Emissions 60 – 90 GHz (Horizontal)**



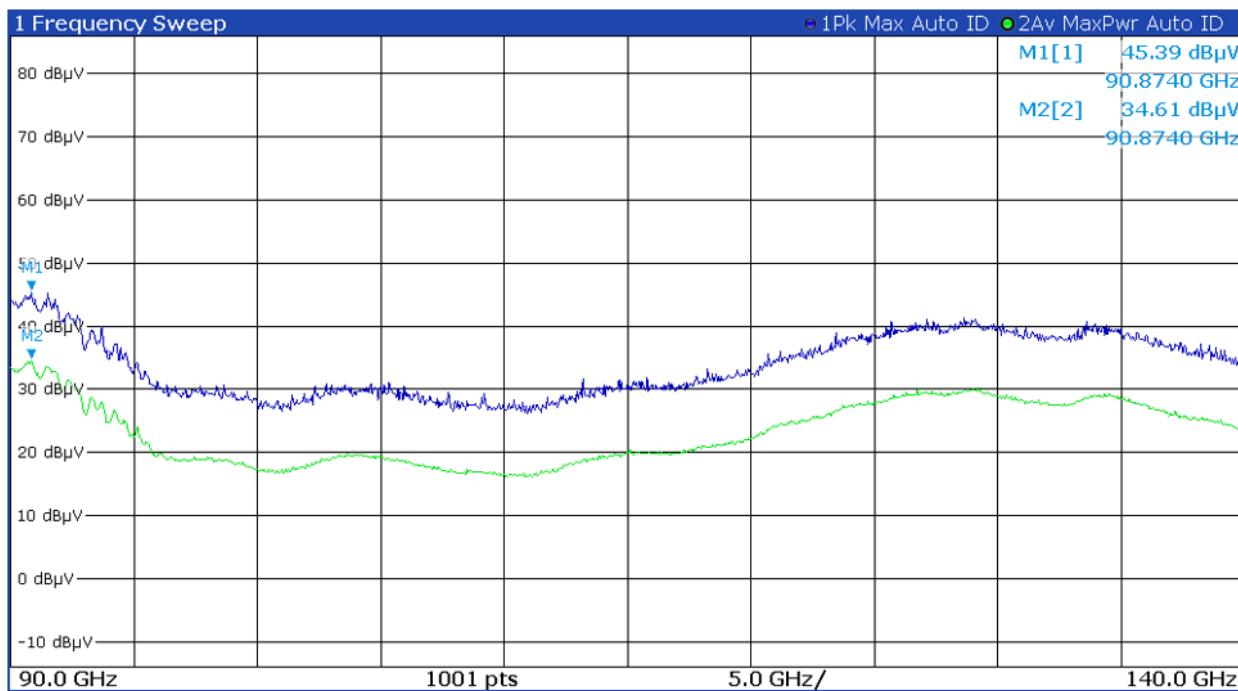
Rogers Labs, a division of The Compatibility Center LLC

Garmin International, Inc.

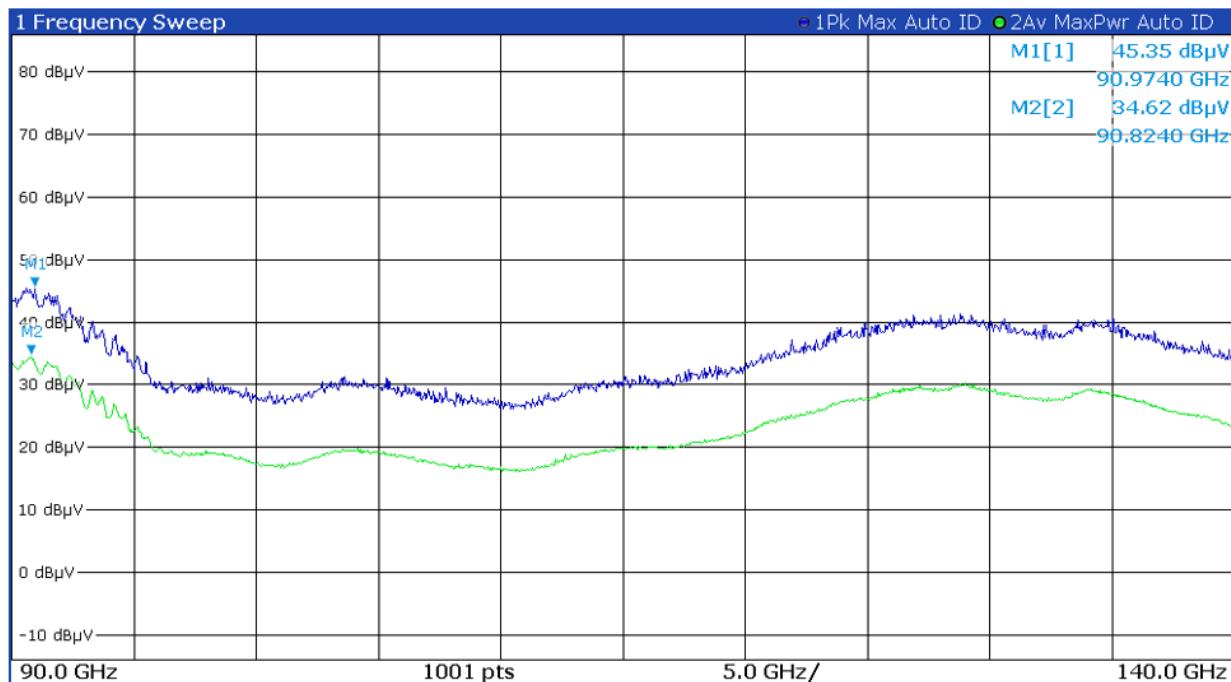
7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60


Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039

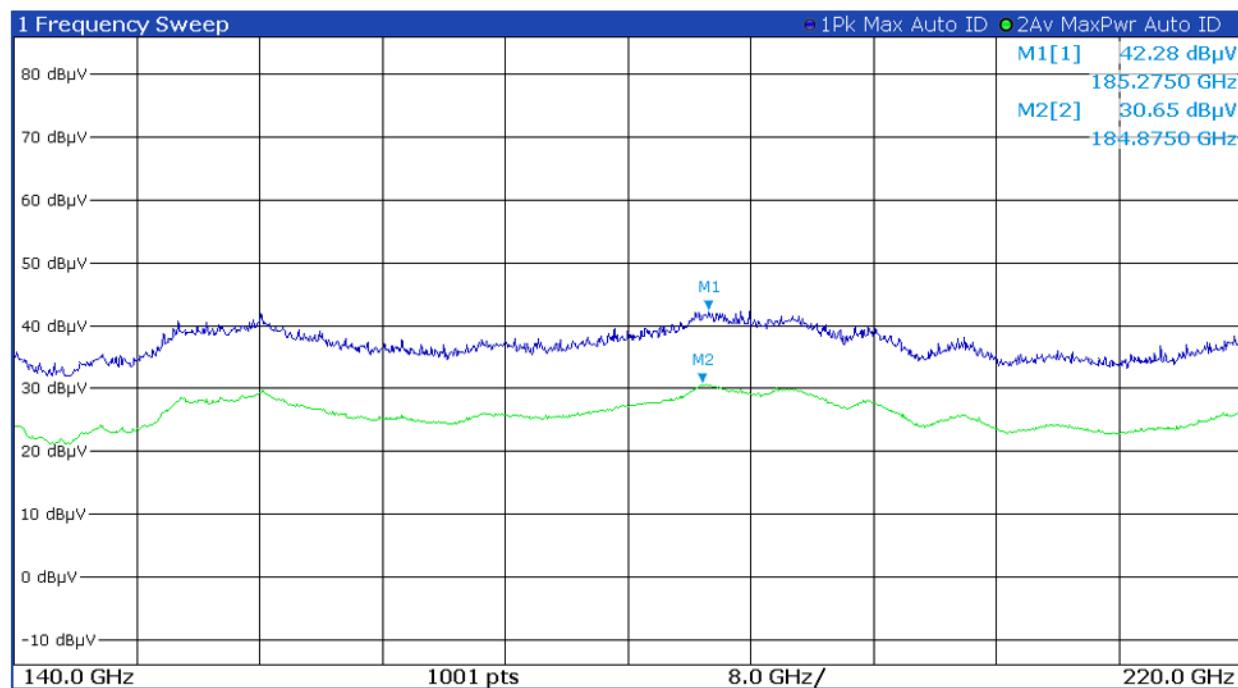
Phone/Fax: (913) 660-0666 Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 28, 2024


Revision 1

File: SAF Tehnika Freemile 60 240723 r1 Page 32 of 56


**Figure 4.4 Radiated Spurious Emissions 60 – 90 GHz (Vertical)**




**Figure 4.5 Radiated Spurious Emissions 90 – 140 GHz (Horizontal)**



**Figure 4.6 Radiated Spurious Emissions 90 – 140 GHz (Vertical)**



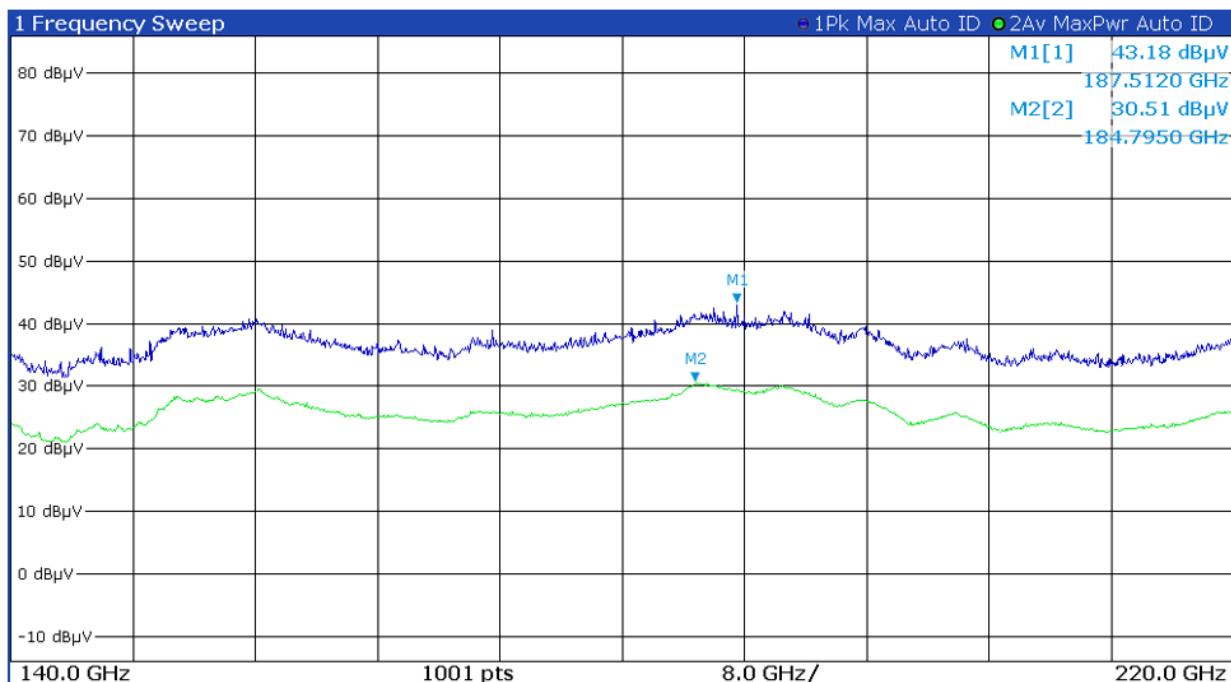
**Figure 4.7 Radiated Spurious Emissions 140 – 220 GHz (Horizontal)**



Rogers Labs, a division of The Compatibility Center LLC

Garmin International, Inc.

7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60


Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039

Phone/Fax: (913) 660-0666 Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 28, 2024

Revision 1

File: SAF Tehnika Freemile 60 240723 r1 Page 34 of 56

**Figure 4.8 Radiated Spurious Emissions 140 – 220 GHz (Vertical)**



**Table 2 Radiated Spurious Emissions 18 – 40 GHz**

| Modulation | Frequency (GHz) | Antenna Polarization | Field Strength @ 1 meters (dBuV/m) | RSE EIRP (dBm) | Power Density @ 3 meters (pW/cm²) | Power Density @ 3 meters (pW/cm²) | Pass/Fail |
|------------|-----------------|----------------------|------------------------------------|----------------|-----------------------------------|-----------------------------------|-----------|
| 4 / 1      | 43.307          | H                    | 53.13                              | -51.57         | 0.0554                            | 90                                | PASS      |
| 4 / 1      | 90.970          | V                    | 45.35                              | -59.35         | 0.0092                            | 90                                | PASS      |
| 4 / 1      | 185.275         | H                    | 42.28                              | -62.42         | 0.0046                            | 90                                | PASS      |
| 4 / 1      | 187.512         | V                    | 43.18                              | -61.52         | 0.0056                            | 90                                | PASS      |

### Summary of Results for Radiated Emissions (Above 40 GHz)

The EUT demonstrated compliance with the spurious emissions requirements of §15.255(d) and RSS-210 Annex J.3.c.

## Radiated Spurious Emissions (1 - 40GHz)

§15.255(d); §15.205; §15.209; RSS-Gen [8.9]

### Test Overview

The power density of any emissions outside the 57-71 GHz band shall consist solely of spurious emissions. Radiated emissions below 40 GHz shall not exceed the general limits in § 15.209. The levels of the spurious emissions shall not exceed the level of the fundamental emission.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 7 of RSS-Gen (8.10) must not exceed the limits shown in Table below per Section 15.209 and RSS-Gen (8.9).

| Frequency (MHz) | Field Strength (uV/m) | Measured Distance (meters) |
|-----------------|-----------------------|----------------------------|
| 960 - 40,000    | 500.000               | 3                          |

### Test Procedure

ANSI C63.10-2013 Subclauses 9.13.

### Test Setup

1. The emissions are measured in a radiated test setup while the EUT is operating at its maximum duty cycle, at maximum power and at the appropriate frequencies.
2. Scan the spectrum from 1 GHz to 40 GHz
3. Receiver setup (Average Field Strength):
  - a. Analyzer center frequency set to that of radiated emission of interest
  - b. RBW = 1 MHz
  - c. VBW = 3 MHz
  - d. Detector = power average (RMS)
  - e. Trace (RMS) averaging performed over at least 100 traces
  - f. Sweep Time = auto
  - g. Number of Sweep points =/> 2 x Span/RBW
4. Receiver setup (Peak Field Strength):
  - a. Analyzer center frequency set to that of radiated emission of interest
  - b. RBW = 1 MHz
  - c. VBW = 3 MHz
  - d. Detector = Peak
  - e. Trace mode = max hold
  - f. Trace was stabilized over at least 100 traces
  - g. Sweep Time = auto
  - h. Number of Sweep points =/> 2 x Span/RBW

Rogers Labs, a division of The Compatibility Center LLC

Garmin International, Inc.

7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60

Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039

Phone/Fax: (913) 660-0666 Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 28, 2024

Revision 1

File: SAF Tehnika Freemile 60 240723 r1 Page 36 of 56

Note: See Diagram 3 (1 - 40 GHz) for setup. Radiated measurements were taken in the far field at 3m, per regulation.

## Test Notes

1. Once again, all modes of operation were evaluated and the worst case configurations were used for this report.
2. Emissions 1 – 18 GHz were measured at 3m test distance while emissions from 18 – 40 GHz were measured at 1m with the application of a distance correction factor.
3. The plots that follow were used for the purpose of emission identification. Any emissions within 20dB of the limit are fully investigated and the results are shown in this section.

## Sample Calculations

- Field Strength Level [dBuV/m] = Analyzer Level [dBm] + 107 + AFCL [dBm]
- AFCL [dBm] = Antenna Factor [dBm] + Cable Loss [dB] – Preamplifier Gain [dB]
- Margin [dB] = Field Strength Level [dBuV/m] – Limit [dBuV/m]
- RSE EIRP [dBm] = E<sub>measured</sub> [dBuV/m] + 20 log<sub>10</sub> (distance measured) – 104.7
- PD (Power Density in pW/cm<sup>2</sup>) = EIRP [pW] / (4πD<sup>2</sup>)

## Test Results

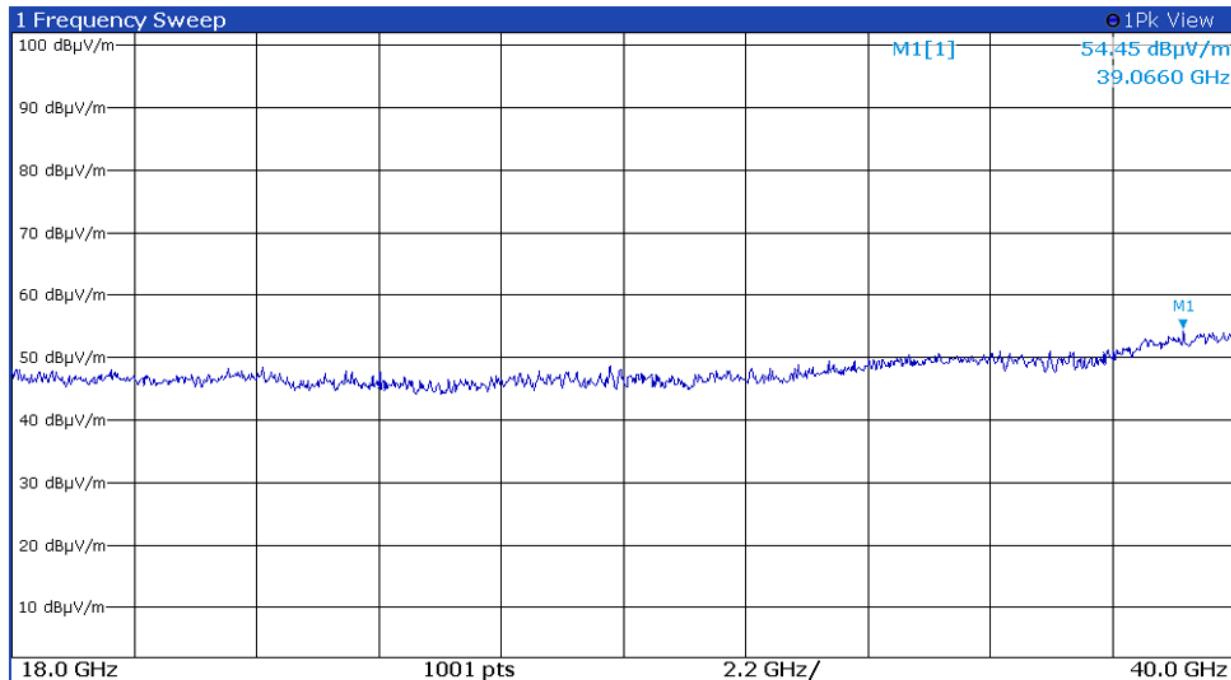
**Figure 5.1 Radiated Spurious Emissions 1 – 18 GHz (Horizontal)**



**Figure 5.2 Radiated Spurious Emissions 1 – 18 GHz (Vertical)**



**Table 3.1 Radiated Spurious Emissions 1 – 18 GHz**


| Modulation | Frequency (GHz) | Detector | Antenna Polarization | Antenna Height (cm) | Turntable Azimuth (Degrees) | Field Strength @ 3 meters (dB <sub>u</sub> V/m) | Field Strength Limit @ 3 meters (dB <sub>u</sub> V/m) | Margin (dB) | Pass/Fail |
|------------|-----------------|----------|----------------------|---------------------|-----------------------------|-------------------------------------------------|-------------------------------------------------------|-------------|-----------|
| 4 / 1      | 2.587           | Peak     | V                    | 276                 | 299                         | 40.1                                            | 73.98                                                 | -33.88      | PASS      |
| 4 / 1      | 2.587           | Avg      | V                    | 276                 | 299                         | 27.3                                            | 53.98                                                 | -26.68      | PASS      |
| 4 / 1      | 7.040           | Peak     | H                    | 276                 | 299                         | 47.2                                            | 73.98                                                 | -26.78      | PASS      |
| 4 / 1      | 7.040           | Avg      | H                    | 276                 | 299                         | 34.6                                            | 53.98                                                 | -19.38      | PASS      |
| 4 / 1      | 10.560          | Peak     | H                    | 276                 | 299                         | 48.8                                            | 73.98                                                 | -25.18      | PASS      |
| 4 / 1      | 10.560          | Avg      | H                    | 276                 | 299                         | 36.6                                            | 53.98                                                 | -17.38      | PASS      |
| 4 / 1      | 16.665          | Peak     | V                    | 276                 | 299                         | 56.7                                            | 73.98                                                 | -17.28      | PASS      |
| 4 / 1      | 16.665          | Avg      | V                    | 276                 | 299                         | 42.5                                            | 53.98                                                 | -11.48      | PASS      |

Modulation 4 / 1:

Channel 4 (64.80 GHz center)

Modulation 1 (MCS1 =  $\pi/2$ -BPSK)

**Figure 5.3 Radiated Spurious Emissions 18 – 40 GHz (Horizontal)**



Rogers Labs, a division of The Compatibility Center LLC

Garmin International, Inc.

7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60  
Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039  
Phone/Fax: (913) 660-0666 Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 28, 2024

Revision 1

File: SAF Tehnika Freemile 60 240723 r1 Page 39 of 56

**Figure 5.4 Radiated Spurious Emissions 18 – 40 GHz (Vertical)**



**Table 3.2 Radiated Spurious Emissions 18 – 40 GHz**

| Modulation | Frequency (GHz) | Antenna Polarization | Field Strength @ 1 meters (dBuV/m) | RSE EIRP (dBm) | Power Density @ 3 meters (pW/cm <sup>2</sup> ) | Power Density @ 3 meters (pW/cm <sup>2</sup> ) | Pass/Fail |
|------------|-----------------|----------------------|------------------------------------|----------------|------------------------------------------------|------------------------------------------------|-----------|
| 4 / 1      | 39.066          | H                    | 54.45                              | -50.25         | 0.075                                          | 90                                             | PASS      |
| 4 / 1      | 39.769          | V                    | 53.37                              | -51.33         | 0.059                                          | 90                                             | PASS      |

Modulation 4 / 1:

Channel 4 (64.80 GHz center)

Modulation 1 (MCS1 =  $\pi/2$ -BPSK)

### Summary of Results for Radiated Emissions (1 – 40 GHz)

The EUT demonstrated compliance with the spurious emissions requirements of §15.255(d), §15.205, §15.209 and RSS-Gen [8.9]

## Radiated Spurious Emissions (below 1 GHz)

§15.209; RSS-Gen [8.9]

### Test Overview

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emission are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 7 of RSS-Gen (8.10) must not exceed the limits shown in Table below per Section 15.209 and RSS-Gen (8.9).

| Frequency (MHz) | Field Strength (uV/m) | Measured Distance (meters) |
|-----------------|-----------------------|----------------------------|
| 0.009 - 0.490   | 2400/F (kHz)          | 300                        |
| 0.490 - 1.705   | 24000/F (kHz)         | 30                         |
| 1.705 - 30.00   | 30                    | 30                         |
| 30.00 - 88.00   | 100                   | 3                          |
| 88.00 - 216.00  | 150                   | 3                          |
| 216.00 - 960.00 | 200                   | 3                          |
| 960 - 40,000    | 500                   | 3                          |

### Test Procedure

ANSI C63.10-2013 Subclauses 6.4 & 6.5.

### Test Setup

1. Receiver setup (Quasi-Peak Field Strength):
  - a. Analyzer center frequency set to that of radiated emission of interest
  - b. RBW = 120 kHz (from 30MHz – 1GHz)
  - c. VBW = 300 kHz
  - d. Detector = Quasi-Peak
  - e. Sweep Time = auto
  - f. Trace mode = max hold
  - g. Trace was stabilized over at least 100 traces
2. Receiver setup (Peak Field Strength):
  - a. Analyzer center frequency set to that of radiated emission of interest
  - b. RBW = 120 kHz
  - c. VBW = 300 kHz
  - d. Detector = Peak
  - e. Sweep Time = auto
  - f. Trace mode = max hold

Rogers Labs, a division of The Compatibility Center LLC

Garmin International, Inc.

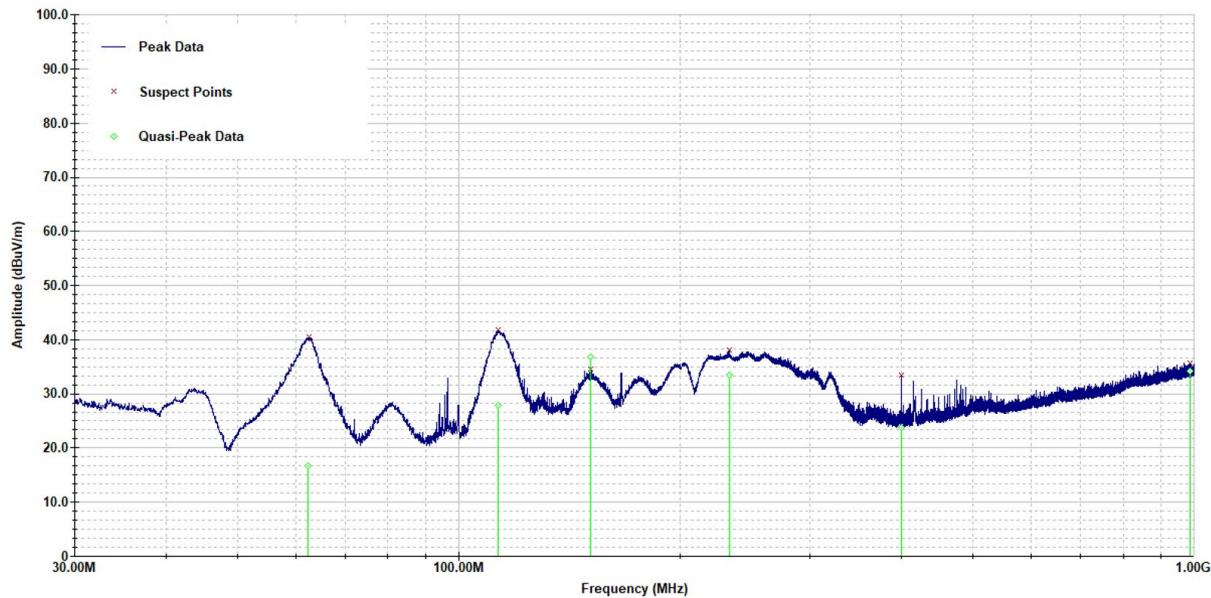
7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60

Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039

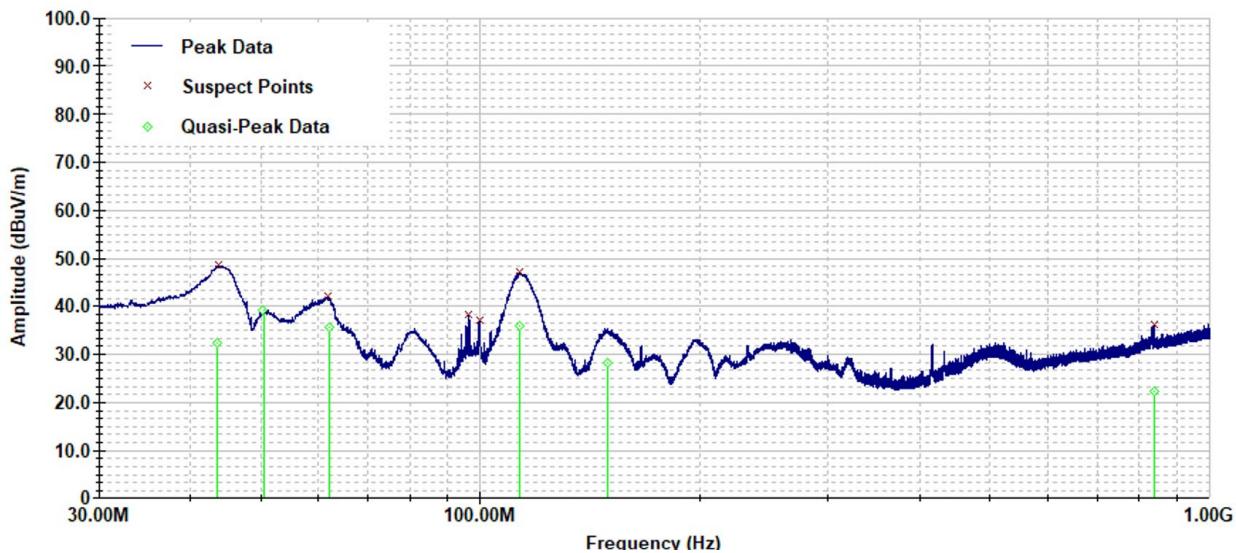
Phone/Fax: (913) 660-0666 Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 28, 2024

Revision 1

File: SAF Tehnika Freemile 60 240723 r1 Page 41 of 56


Note: See Diagram 3 (< 1 GHz) for setup. Radiated measurements were taken in the far field at 3m, per regulation.

## Test Notes


1. Once again, all modes of operation were evaluated and the worst case configurations were used for this report.
2. All emissions lying in the restricted bands specified in §15.205 and RSS-Gen [8.10] are below the limit shown in above table at beginning of this section.
3. Emissions were measured at 3 meter distance.
4. No spurious emissions were detected within 20dB of the limit below 30MHz.
5. The plots that follow were used for the purpose of emission identification. Any emissions within 20dB of the limit are fully investigated and the results are shown in this section.

## Test Results

**Figure 6.1 Radiated Spurious Emissions 30 MHz – 1 GHz (Horizontal / Tx On)**



**Figure 6.2 Radiated Spurious Emissions 30 MHz – 1 GHz (Vertical / Tx On)**



**Table 4.1 Radiated Spurious Emissions 30 MHz – 1 GHz (Horizontal Polarization)**

| Frequency (GHz) | Antenna Orientation | Turntable Azimuth (Degrees) | Antenna Height (cm) | Peak (dBuV/m) | Quasi-Peak (dBuV/m) | Limit @ 3m (dBuV/m) | Margin (dB) | Pass/Fail |
|-----------------|---------------------|-----------------------------|---------------------|---------------|---------------------|---------------------|-------------|-----------|
| 62.2            | H                   | 202                         | 374                 | 23.14         | 16.74               | 40.00               | -23.26      | PASS      |
| 113.0           | H                   | 117                         | 154                 | 32.44         | 27.87               | 43.52               | -15.65      | PASS      |
| 150.9           | H                   | 33                          | 191                 | 39.95         | 36.69               | 43.52               | -6.83       | PASS      |
| 233.3           | H                   | 205                         | 137                 | 37.77         | 33.53               | 46.02               | -12.49      | PASS      |
| 400.0           | H                   | 44                          | 295                 | 32.25         | 23.82               | 46.02               | -22.20      | PASS      |
| 986.6           | H                   | 0.0                         | 378                 | 42.27         | 34.2                | 46.02               | -11.82      | PASS      |

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz.

**Table 4.2 Radiated Spurious Emissions 30 MHz – 1 GHz (Vertical Polarization)**

| Frequency (GHz) | Antenna Orientation | Turntable Azimuth (Degrees) | Antenna Height (cm) | Peak (dBuV/m) | Quasi-Peak (dBuV/m) | Limit @ 3m (dBuV/m) | Margin (dB) | Pass/Fail |
|-----------------|---------------------|-----------------------------|---------------------|---------------|---------------------|---------------------|-------------|-----------|
| 43.5            | V                   | 155                         | 118                 | 34.98         | 32.49               | 40.00               | -7.51       | PASS      |
| 50.4            | V                   | 157                         | 100                 | 42.36         | 39.16               | 40.00               | -0.84       | PASS      |
| 62.0            | V                   | 281                         | 100                 | 38.78         | 35.72               | 40.00               | -4.28       | PASS      |
| 113.1           | V                   | 266                         | 100                 | 38.56         | 35.94               | 43.52               | -7.58       | PASS      |
| 149.3           | V                   | 160                         | 100                 | 31.31         | 28.35               | 43.52               | -15.17      | PASS      |
| 839.8           | V                   | 9.0                         | 100                 | 30.05         | 22.21               | 46.02               | -23.81      | PASS      |

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz.

#### Summary of Results for Radiated Emissions (below 1 GHz)

The EUT demonstrated compliance with the spurious emissions requirements of §15.209 and RSS-Gen [8.9]. The EUT demonstrated a minimum margin of -0.84 dB below the requirement. Other emissions were present with amplitudes at least 20 dB below the limit and worst-case amplitudes recorded.

## ***AC Line Conducted EMI***

## Test Overview

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for AC Line conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are being reported.

**All conducted emissions must not exceed the limits shown in the table below (refer to CFR section 15.207 and RSS-Gen section 8.8).**

| Class B<br>15.107<br>AC Mains | dBuV<br>Quasi-<br>Peak | dBuV<br>Average |
|-------------------------------|------------------------|-----------------|
| 0.15 - 0.5                    | 66 to 56*              | 56 to 46*       |
| 0.5 - 5                       | 56.00                  | 46.00           |
| 5 to 30                       | 60.00                  | 50.00           |

\* Decreases with the logarithm of the frequency.

## Test Procedure

ANSI C63.10-2013 Subclause 6.2.

## Test Setup

1. Receiver setup (Quasi-Peak Field Strength):
  - a. Analyzer center frequency set to that of radiated emission of interest
  - b. RBW = 9 kHz (from 150kHz - 30MHz)
  - c. Detector = Quasi-Peak
  - d. Sweep Time = auto
  - e. Trace mode = max hold
  - f. Trace was allowed to stabilize
2. Receiver setup (Average Field Strength):
  - a. Analyzer center frequency set to that of radiated emission of interest
  - b. RBW = 9 kHz (from 150kHz - 30MHz)
  - c. Detector = RMS
  - d. Sweep Time = auto
  - e. Trace mode = max hold
  - f. Trace was allowed to stabilize

Note: See Diagram 1 for setup.

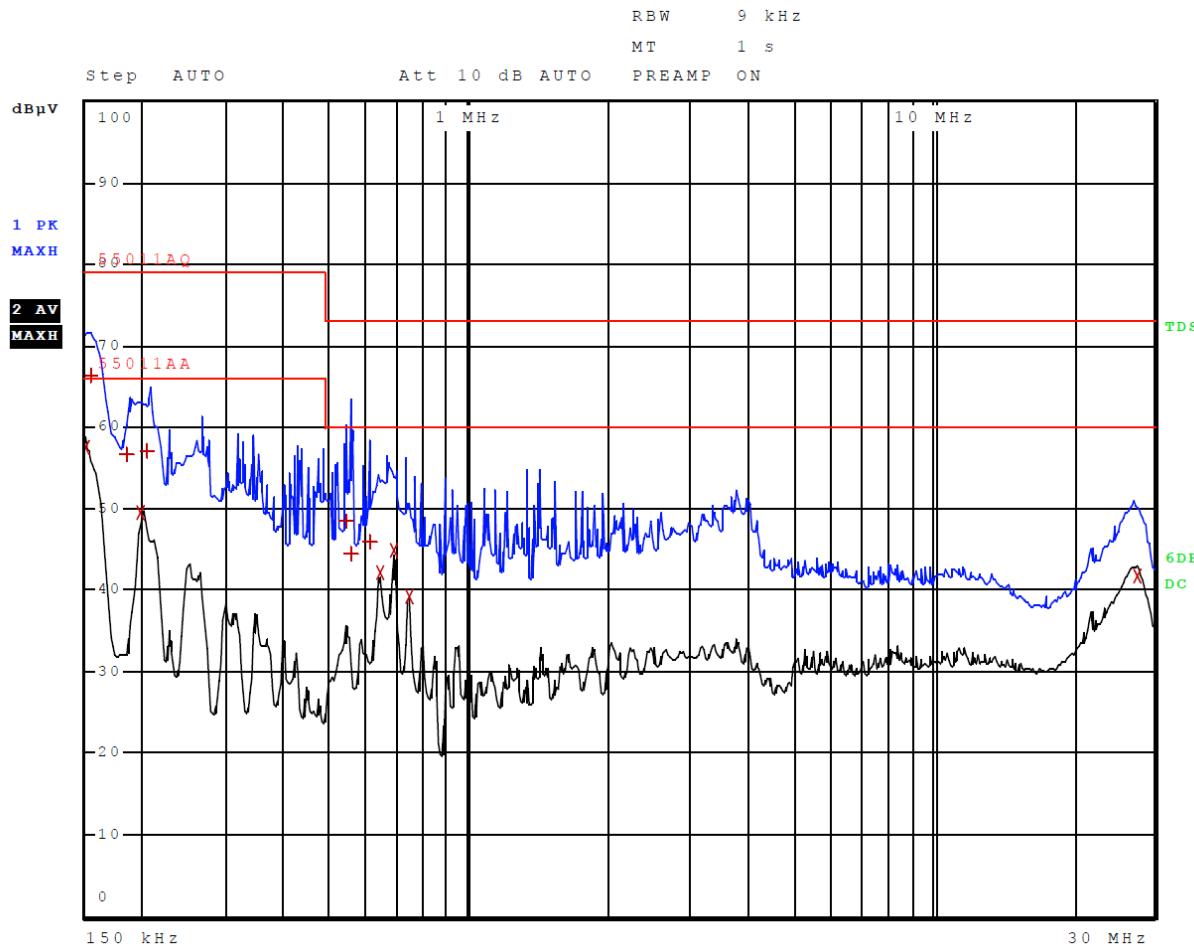
Rogers Labs, a division of The Compatibility Center LLC

Garmin International, Inc.

7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60

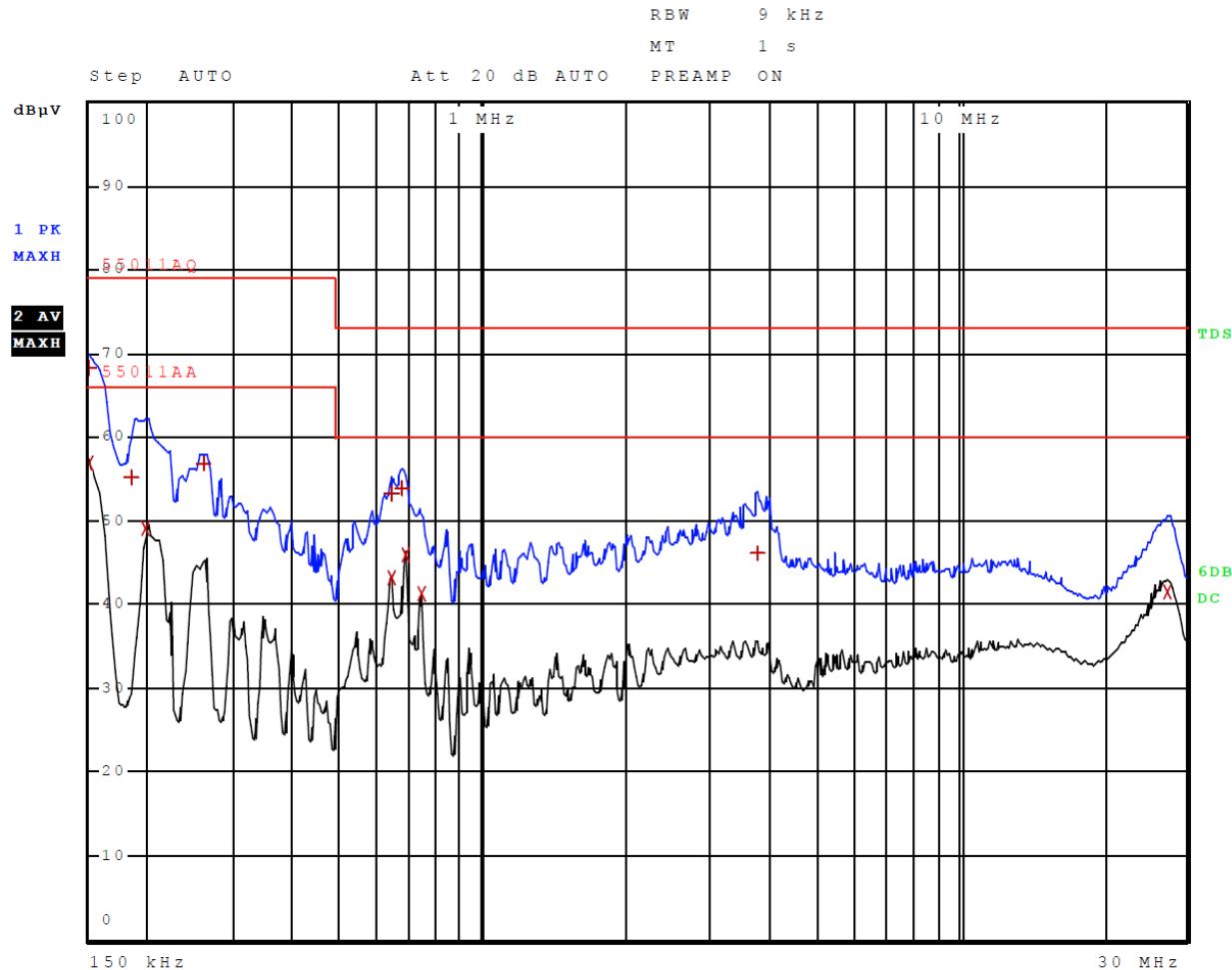
Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039

**Phone/Fax**


Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 2019

## Test Notes

- Once again, all modes of operation were evaluated and the worst case configurations were used for this report.
  - Calmode 4 1 is worst case:
    - Channel 4 (64.80 GHz center)
    - Modulation 1 (MCS1 =  $\pi/2$ -BPSK)
- The limits from 150kHz to 30MHz are specified in CFR Part 15.207 and RSS-Gen (8.8).
- Emissions were measured at 3 meter distance.
- No spurious emissions were detected within 20dB of the limit below 150kHz.
- Traces shown in plots below were made using quasi-peak and average detectors.
- The following configuration was used for testing: EUT powered by PoE adapter via AC power from public utility.


## Test Results

**Figure 7.1 AC Line Conducted Emissions Data L1 (PoE, Tx On)**



Other emissions present had amplitudes at least 20 dB below the limit.

Figure 7.2 AC Line Conducted Emissions Data L2 (PoE, Tx On)



Other emissions present had amplitudes at least 20 dB below the limit.

**Table 5.1 AC Line Conducted Emissions Data L1 (PoE, Tx On)**

| Trace | Frequency         | Level (dB $\mu$ V) | Detector   | Delta Limit/dB |
|-------|-------------------|--------------------|------------|----------------|
| 2     | 150.000000000 kHz | 57.45              | Average    | -8.55          |
| 1     | 154.000000000 kHz | 66.25              | Quasi Peak | -12.75         |
| 1     | 186.000000000 kHz | 56.70              | Quasi Peak | -22.30         |
| 2     | 198.000000000 kHz | 49.42              | Average    | -16.58         |
| 1     | 206.000000000 kHz | 57.01              | Quasi Peak | -21.99         |
| 1     | 542.000000000 kHz | 48.43              | Quasi Peak | -24.57         |
| 1     | 554.000000000 kHz | 44.49              | Quasi Peak | -28.51         |
| 1     | 610.000000000 kHz | 45.96              | Quasi Peak | -27.04         |
| 2     | 642.000000000 kHz | 42.12              | Average    | -17.88         |
| 2     | 690.000000000 kHz | 44.95              | Average    | -15.05         |
| 2     | 742.000000000 kHz | 39.27              | Average    | -20.73         |
| 2     | 27.448000000 MHz  | 41.64              | Average    | -18.36         |

Other emissions present had amplitudes at least 20 dB below the limit.

**Table 5.2 AC Line Conducted Emissions Data L2 (PoE, Tx On)**

| Trace | Frequency         | Level (dB $\mu$ V) | Detector   | Delta Limit/dB |
|-------|-------------------|--------------------|------------|----------------|
| 2     | 150.000000000 kHz | 56.79              | Average    | -9.21          |
| 1     | 150.000000000 kHz | 68.09              | Quasi Peak | -10.91         |
| 1     | 186.000000000 kHz | 55.22              | Quasi Peak | -23.78         |
| 2     | 198.000000000 kHz | 49.14              | Average    | -16.86         |
| 1     | 262.000000000 kHz | 56.78              | Quasi Peak | -22.22         |
| 2     | 642.000000000 kHz | 43.13              | Average    | -16.87         |
| 1     | 642.000000000 kHz | 53.35              | Quasi Peak | -19.65         |
| 1     | 674.000000000 kHz | 53.97              | Quasi Peak | -19.03         |
| 2     | 690.000000000 kHz | 45.87              | Average    | -14.13         |
| 2     | 742.000000000 kHz | 41.19              | Average    | -18.81         |
| 1     | 3.778000000 MHz   | 46.20              | Quasi Peak | -26.80         |
| 2     | 27.312000000 MHz  | 41.57              | Average    | -18.43         |

Other emissions present had amplitudes at least 20 dB below the limit.

### Summary of Results for AC Line Conducted Emissions

The EUT demonstrated compliance with the AC Line Conducted Emissions requirements of 47CFR Part 15C, RSS-210 and RSS-Gen. The EUT demonstrated a minimum margin of -8.55 dB below the requirement. Other emissions were present with amplitudes at least 20 dB below the limit and worst-case amplitudes recorded.

## **Frequency Stability**

§15.255(f); RSS-210 Annex J.6

### **Test Overview**

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.10-2013 Subclause 9.14. The frequency stability of the transmitter is measured while varying the following operating conditions:

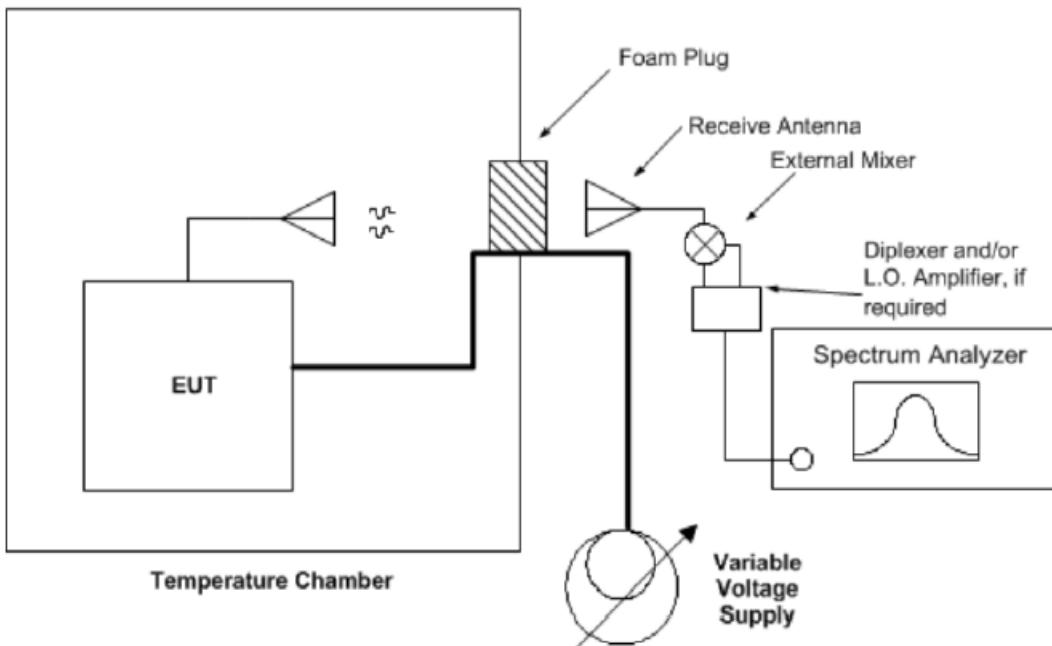
1. Temperature: varied from -20C to +50C in 10C increments.
2. Primary supply voltage: The primary supply voltage is varied from 85% to 115% of rated input.

**Fundamental emissions must be contained within the frequency bands specified in the according rule pars (57 – 71 GHz) during all conditions of operation.**

### **Test Procedure**

ANSI C63.10-2013 Subclause 9.14.

### **Test Setup**


1. The spectral mask of the EUT emissions is measured at ambient room temp and nominal operating voltage for reference.
2. EUT primary supply voltage is varied between 85% and 115% of nominal (at room temp) and frequency variation is recorded.
3. With primary supply voltage set to nominal, the EUT operating temperature is varied from -20C to +50C. Frequency variation is then recorded.

Note: see diagram 4 for the test setup.

### **Test Notes**

1. The spectrum mask of the EUT emission (notably  $F_{low}$  and  $F_{high}$ ) is measured at ambient room temperature and nominal operating voltage to provide a reference.
2. EUT primary supply voltage is varied between 85% and 115% of the nominal supply voltage (at room temperature). Frequency excursion of the EUT emission mask is recorded at each of these conditions.
3. With EUT primary supply voltage at nominal level, frequency excursion of the EUT emission mask is recorded while varying the temperature between -20 and +50C.

#### Diagram 4 Frequency Stability Test Setup



#### Test Results

Table 6 Frequency Stability Measurements

| Test Conditions              | Transmitter Frequency Range (GHz) |            | Pass/Fail |
|------------------------------|-----------------------------------|------------|-----------|
|                              | $f_{low}$                         | $f_{high}$ |           |
| -20 deg C / V <sub>nom</sub> | 57.2230                           | 70.2002    | PASS      |
| -10 deg C / V <sub>nom</sub> | 57.2137                           | 70.2048    | PASS      |
| 0 deg C / V <sub>nom</sub>   | 57.2305                           | 70.1993    | PASS      |
| +10 deg C / V <sub>nom</sub> | 57.2359                           | 70.1707    | PASS      |
| +20 deg C / V <sub>nom</sub> | 57.2198                           | 70.1760    | PASS      |
| +30 deg C / V <sub>nom</sub> | 57.2216                           | 70.2011    | PASS      |
| +40 deg C / V <sub>nom</sub> | 57.2770                           | 70.1977    | PASS      |
| +50 deg C / V <sub>nom</sub> | 57.2228                           | 70.1632    | PASS      |
| +20 deg C / 85% Voltage      | 57.2295                           | 70.1985    | PASS      |
| +20 deg C / 115% Voltage     | 57.2305                           | 70.2000    | PASS      |

#### Summary of Results for Frequency Stability

The EUT demonstrated compliance with the spurious emissions requirements of §15.255(f) and RSS-210 Annex J.6.

Rogers Labs, a division of The Compatibility Center LLC

Garmin International, Inc.

7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60  
Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039  
Phone/Fax: (913) 660-0666 Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 28, 2024

Revision 1

File: SAF Tehnika Freemile 60 240723 r1 Page 50 of 56

## Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Test Equipment
- Annex C Laboratory Certificate of Accreditation

## Annex A Measurement Uncertainty Calculations

The measurement uncertainty was calculated for all measurements listed in this test report according To CISPR 16-4. Result of measurement uncertainty calculations are recorded below. Component and process variability of production devices similar to those tested may result in additional deviations. The manufacturer has the sole responsibility of continued compliance.

| Measurement                                     | Expanded Measurement Uncertainty<br>$U_{(lab)}$ |
|-------------------------------------------------|-------------------------------------------------|
| 3 Meter Horizontal 0.009-1000 MHz Measurements  | 4.16                                            |
| 3 Meter Vertical 0.009-1000 MHz Measurements    | 4.33                                            |
| 3 Meter Measurements 1-18 GHz                   | 5.46                                            |
| 3 Meter Measurements 18-40 GHz                  | 5.16                                            |
| 10 Meter Horizontal Measurements 0.009-1000 MHz | 4.15                                            |
| 10 Meter Vertical Measurements 0.009-1000 MHz   | 4.32                                            |
| AC Line Conducted                               | 1.75                                            |
| Antenna Port Conducted power                    | 1.17                                            |
| Frequency Stability                             | 1.00E-11                                        |
| Temperature                                     | 1.6°C                                           |
| Humidity                                        | 3%                                              |

## Annex B Test Equipment

| <u>Equipment</u>                                                                        | <u>Manufacturer</u> | <u>Model (SN)</u>                      | <u>Band</u>  | <u>Cal Date(m/d/y)</u> | <u>Due</u> |
|-----------------------------------------------------------------------------------------|---------------------|----------------------------------------|--------------|------------------------|------------|
| <input checked="" type="checkbox"/> LISN                                                | FCC                 | FCC-LISN-50-25-10(1PA) (160611)        | .15-30MHz    | 3/25/2024              | 3/25/2025  |
| <input type="checkbox"/> LISN: Fischer Custom Communications Model: FCC-LISN-50-16-2-08 |                     |                                        |              | 3/25/2024              | 3/25/2025  |
| <input checked="" type="checkbox"/> Cable                                               | Huber & Suhner Inc. | Sucoflex102ea(L10M)(303073)9kHz-40 GHz | 9/16/2024    | 9/16/2025              |            |
| <input checked="" type="checkbox"/> Cable                                               | Huber & Suhner Inc. | Sucoflex102ea(1.5M)(303069)9kHz-40 GHz | 9/16/2024    | 9/16/2025              |            |
| <input checked="" type="checkbox"/> Cable                                               | Huber & Suhner Inc. | Sucoflex102ea(1.5M)(303070)9kHz-40 GHz | 9/16/2024    | 9/16/2025              |            |
| <input checked="" type="checkbox"/> Cable                                               | Belden              | RG-58 (L1-CAT3-11509)                  | 9kHz-30 MHz  | 9/16/2024              | 9/16/2025  |
| <input type="checkbox"/> Cable                                                          | Belden              | RG-58 (L2-CAT3-11509)                  | 9kHz-30 MHz  | 9/16/2024              | 9/16/2025  |
| <input checked="" type="checkbox"/> Antenna                                             | Com Power           | AL-130 (121055)                        | .001-30 MHz  | 9/16/2024              | 9/16/2025  |
| <input type="checkbox"/> Antenna:                                                       | EMCO                | 6509                                   | .001-30 MHz  | 9/16/2024              | 9/16/2026  |
| <input checked="" type="checkbox"/> Antenna                                             | ARA                 | BCD-235-B (169)                        | 20-350MHz    | 9/16/2024              | 9/16/2025  |
| <input checked="" type="checkbox"/> Antenna                                             | Sunol               | JB-6 (A100709)                         | 30-1000 MHz  | 9/16/2024              | 9/16/2025  |
| <input type="checkbox"/> Antenna                                                        | ETS-Lindgren        | 3147 (40582)                           | 200-1000MHz  | 9/16/2024              | 9/16/2026  |
| <input checked="" type="checkbox"/> Antenna                                             | ETS-Lindgren        | 3117 (200389)                          | 1-18 GHz     | 3/25/2024              | 3/25/2026  |
| <input checked="" type="checkbox"/> Antenna                                             | Com Power           | AH-118 (10110)                         | 1-18 GHz     | 9/16/2024              | 9/16/2026  |
| <input checked="" type="checkbox"/> Antenna                                             | Com Power           | AH-1840 (101046)                       | 18-40 GHz    | 3/27/2023              | 3/27/2025  |
| <input checked="" type="checkbox"/> Analyzer                                            | Rohde & Schwarz     | ESU40 (100108)                         | 20Hz-40GHz   | 7/8/2024               | 7/8/2025   |
| <input checked="" type="checkbox"/> Analyzer                                            | Rohde & Schwarz     | ESW44 (101534)                         | 20Hz-44GHz   | 1/26/2024              | 1/26/2025  |
| <input type="checkbox"/> Analyzer                                                       | Rohde & Schwarz     | FS-Z60, 90, 140, and 220               | 40GHz-220GHz | 12/22/2017             | 12/22/2027 |
| <input type="checkbox"/> Amplifier                                                      | Com-Power           | PA-010 (171003)                        | 100Hz-30MHz  | 9/16/2024              | 9/16/2025  |
| <input type="checkbox"/> Amplifier                                                      | Com-Power           | CPPA-102 (01254)                       | 1-1000 MHz   | 9/16/2024              | 9/16/2025  |
| <input checked="" type="checkbox"/> Amplifier                                           | Com-Power           | PAM-118A (551014)                      | 0.5-18 GHz   | 9/16/2024              | 9/16/2025  |
| <input checked="" type="checkbox"/> Amplifier                                           | Com-Power           | PAM-840A (461328)                      | 18-40 GHz    | 9/16/2024              | 9/16/2025  |
| <input checked="" type="checkbox"/> Pwr Sensor                                          | Rohde & Schwarz     | NRP33T                                 | 0.05-33 GHz  | 9/26/2023              | 9/26/2025  |
| <input checked="" type="checkbox"/> Power meter                                         | Agilent             | N1911A with N1921A                     | 0.05-40 GHz  | 3/25/2024              | 3/25/2025  |
| <input checked="" type="checkbox"/> Generator                                           | Rohde & Schwarz     | SMB100A6 (100150)                      | 20Hz-6 GHz   | 3/25/2024              | 3/25/2025  |
| <input checked="" type="checkbox"/> Generator                                           | Rohde & Schwarz     | SMBV100A6 (260771)                     | 20Hz-6 GHz   | 3/25/2024              | 3/25/2025  |
| <input type="checkbox"/> RF Filter                                                      | Micro-Tronics       | BRC50722 (009).9G notch                | 30-18000 MHz | 3/25/2024              | 3/25/2025  |
| <input type="checkbox"/> RF Filter                                                      | Micro-Tronics       | HPM50114 (017)1.5G HPF                 | 30-18000 MHz | 3/25/2024              | 3/25/2025  |
| <input type="checkbox"/> RF Filter                                                      | Micro-Tronics       | HPM50117 (063) 3G HPF                  | 30-18000 MHz | 3/25/2024              | 3/25/2025  |
| <input type="checkbox"/> RF Filter                                                      | Micro-Tronics       | HPM50105 (059) 6G HPF                  | 30-18000 MHz | 3/25/2024              | 3/25/2025  |
| <input checked="" type="checkbox"/> RF Filter                                           | Micro-Tronics       | BRM50702 (172) 2G notch                | 30-18000 MHz | 3/25/2024              | 3/25/2025  |
| <input checked="" type="checkbox"/> RF Filter                                           | Micro-Tronics       | BRC50703 (G102) 5G notch               | 30-18000 MHz | 3/25/2024              | 3/25/2025  |
| <input checked="" type="checkbox"/> RF Filter                                           | Micro-Tronics       | BRC50705 (024) 5G notch                | 30-18000 MHz | 3/25/2024              | 3/25/2025  |
| <input type="checkbox"/> Attenuator                                                     | Fairview            | SA6NFNF100W-40 (1625)                  | 30-18000 MHz | 3/25/2024              | 3/25/2025  |
| <input checked="" type="checkbox"/> Attenuator                                          | Mini-Circuits       | VAT-3W2+ (1436)                        | 30-6000 MHz  | 3/25/2024              | 3/25/2025  |
| <input checked="" type="checkbox"/> Attenuator                                          | Mini-Circuits       | VAT-3W2+ (1445)                        | 30-6000 MHz  | 3/25/2024              | 3/25/2025  |
| <input checked="" type="checkbox"/> Attenuator                                          | Mini-Circuits       | VAT-3W2+ (1735)                        | 30-6000 MHz  | 3/25/2024              | 3/25/2025  |
| <input checked="" type="checkbox"/> Attenuator                                          | Mini-Circuits       | VAT-6W2+ (1438)                        | 30-6000 MHz  | 3/25/2024              | 3/25/2025  |
| <input type="checkbox"/> Attenuator                                                     | Mini-Circuits       | VAT-6W2+ (1736)                        | 30-6000 MHz  | 3/25/2024              | 3/25/2025  |

Rogers Labs, a division of The Compatibility Center LLC

Garmin International, Inc.

7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60

Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039

Phone/Fax: (913) 660-0666 Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 28, 2024

Revision 1

File: SAF Tehnika Freemile 60 240723 r1 Page 53 of 56

| <u>Equipment</u>                                                           | <u>Manufacturer</u> | <u>Model (SN)</u>           | <u>Band</u>               | <u>Cal Date(m/d/y)</u> | <u>Due</u> |
|----------------------------------------------------------------------------|---------------------|-----------------------------|---------------------------|------------------------|------------|
| <input type="checkbox"/> Frequency Counter: Leader                         |                     | LDC-825 (8060153)           |                           | 3/28/2023              | 3/28/2025  |
| <input type="checkbox"/> ISN                                               | Com-Power           | Model ISN T-8 (600111)      |                           | 3/25/2024              | 3/25/2025  |
| <input type="checkbox"/> LISN                                              | Compliance Design   | FCC-LISN-2.Mod.cd,(126)     | .15-30MHz                 | 9/16/2024              | 9/16/2025  |
| <input type="checkbox"/> LISN:                                             | Com-Power           | Model LI-220A               |                           | 9/16/2024              | 9/16/2026  |
| <input checked="" type="checkbox"/> LISN:                                  | Com-Power           | Model LI-550C               |                           | 9/16/2024              | 9/16/2025  |
| <input checked="" type="checkbox"/> Cable                                  | Huber & Suhner Inc. | Sucoflex102ea(1.5M)(303072) | 9kHz-40 GHz               | 9/16/2024              | 9/16/2025  |
| <input checked="" type="checkbox"/> Cable                                  | Huber & Suhner Inc. | Sucoflex102ea(L1M)(281183)  | 9kHz-40 GHz               | 9/16/2024              | 9/16/2025  |
| <input checked="" type="checkbox"/> Cable                                  | Huber & Suhner Inc. | Sucoflex102ea(L4M)(281184)  | 9kHz-40 GHz               | 9/16/2024              | 9/16/2025  |
| <input checked="" type="checkbox"/> Cable                                  | Huber & Suhner Inc. | Sucoflex102ea(L10M)(317546) | 9kHz-40 GHz               | 9/16/2024              | 9/16/2025  |
| <input checked="" type="checkbox"/> Cable                                  | Time Microwave      | 4M-750HF290-750 (L4M)       | 9kHz-24 GHz               | 9/16/2024              | 9/16/2025  |
| <input checked="" type="checkbox"/> Cable                                  | Mini-Circuits       | KBL-2M-LOW+ (23090329)      | 9kHz-40 GHz               | 3/25/2024              | 3/25/2025  |
| <input type="checkbox"/> RF Filter                                         | Micro-Tronics       | BRC17663 (001)              | 9.3-9.5 notch 30-1800 MHz | 3/28/2023              | 3/28/2025  |
| <input type="checkbox"/> RF Filter                                         | Micro-Tronics       | BRC19565 (001)              | 9.2-9.6 notch 30-1800 MHz | 3/28/2023              | 3/28/2025  |
| <input checked="" type="checkbox"/> Analyzer                               | HP                  | 8562A (3051A05950)          | 9kHz-125GHz               | 3/25/2024              | 3/25/2025  |
| <input type="checkbox"/> Wave Form Generator Keysight                      |                     | 33500B (MY57400128)         |                           | 3/25/2024              | 3/25/2025  |
| <input type="checkbox"/> Antenna:                                          | Solar               | 9229-1 & 9230-1             |                           | 2/10/2024              | 2/10/2025  |
| <input type="checkbox"/> CDN:                                              | Com-Power           | Model CDN325E               |                           | 10/11/2022             | 10/11/2024 |
| <input type="checkbox"/> Oscilloscope Scope: Tektronix                     |                     | MDO 4104                    |                           | 2/10/2024              | 2/10/2025  |
| <input type="checkbox"/> EMC Transient Generator HVT                       |                     | TR 3000                     |                           | 2/10/2024              | 2/10/2025  |
| <input type="checkbox"/> AC Power Source (Ametech, California Instruments) |                     |                             |                           | 2/10/2024              | 2/10/2025  |
| <input checked="" type="checkbox"/> Field Intensity Meter: EFM-018         |                     |                             |                           | 2/10/2024              | 2/10/2025  |
| <input checked="" type="checkbox"/> ESD Simulator: MZ-15                   |                     |                             |                           | 2/10/2024              | 2/10/2025  |
| <input checked="" type="checkbox"/> Weather station Davis                  |                     | 6152 (A70927D44N)           |                           | 7/11/2024              | 7/11/2025  |
| <input type="checkbox"/> Injection Clamp Luthi Model EM101                 |                     |                             |                           | not required           |            |
| <input type="checkbox"/> R.F. Power Amp ACS 230-50W                        |                     |                             |                           | not required           |            |
| <input type="checkbox"/> R.F. Power Amp EIN Model: A301                    |                     |                             |                           | not required           |            |
| <input type="checkbox"/> R.F. Power Amp A.R. Model: 10W 1010M7             |                     |                             |                           | not required           |            |
| <input type="checkbox"/> R.F. Power Amp A.R. Model: 50U1000                |                     |                             |                           | not required           |            |
| <input checked="" type="checkbox"/> Temperature Chamber                    |                     |                             |                           | not required           |            |
| <input checked="" type="checkbox"/> Shielded Room                          |                     |                             |                           | not required           |            |



## **Annex C Qualifications**

*Patrick Powell, Engineer*

Rogers Labs, a division of The Compatibility Center LLC

Mr. Powell has approximately 40 years' experience in the field of electronics. Working experience includes automated test engineering in Military electronics; design & development in medical electronics; and application engineering / small business ownership in the semiconductor and display technology spaces.

### Positions Held:

Test Engineer: McDonnell Douglas (now Boeing)

Allied Signal Aerospace (now Honeywell)

Electrical Engineer: PPG Biomedical Systems

Nellcor, Inc.

Applications Engineer / small business owner:

Sharp Electronics

## Lattice Semiconductor

EMC Test Engineering: The Compatibility Center LLC (current)

### Educational Background:

Bachelor of Science Degree in Electrical Engineering from Kansas State University

## Annex D Laboratory Certificate of Accreditation

3/18/24 through 3/31/25:



3/16/23 through 3/31/24:



Rogers Labs, a division of The Compatibility Center LLC  
7915 Nieman Road FCC ID: W9Z-FREEMILE60 IC: 8855A-FREEMILE60 PMN: FREEMILE 60  
Lenexa, KS 66214 Test: 240723 SN's: 504340100027, 504340100039  
Phone/Fax: (913) 660-0666 Test to: 47CFR 15.255, RSS-Gen, RSS-210 Date: October 28, 2024  
Revision 1 File: SAF Tehnika Freemile 60 240723 r1 Page 56 of 56

Garmin International, Inc.