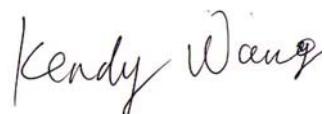
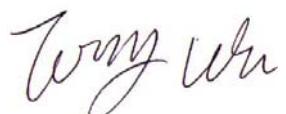


Test Report of FCC Part 15 C for FCC Certificate

On Behalf of


Pro Tv Development Inc.

FCC ID: W66-8553R
Product Description: VIDEO DOORBELL
Model No.: 8553
Supplementary Model No.: N/A


Prepared for: Pro Tv Development Inc.
11F-1, No.15, Sec.4, CHUNG HSIAO E RD., TAIPEI, TAIWAN

Prepared by: Bontek Compliance Testing Laboratory Ltd.
1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East Road,
Nanshan, Shenzhen, China
Tel: 86-755-86337020
Fax: 86-755-86337028
Report No.: BCT11HR-1205E-2
Issue Date: September 7, 2011
Test Date: September 1~6, 2011

Test by: **Reviewed By:**

Kendy Wang

Tony Wu

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 Client Information.....	3
1.2 Related Submittal(s) / Grant (s).....	3
1.3 Test Methodology	3
1.4 Test Facility.....	4
2. SYSTEM TEST CONFIGURATION.....	5
2.1 EUT Configuration	5
2.2 EUT Exercise	5
2.3 General Test Procedures	5
2.4 List of Measuring Equipments	6
3. SUMMARY OF TEST RESULTS.....	8
4. TEST OF CONDUCTED EMISSION	9
4.1 Applicable Standard.....	9
4.2 Test Setup Diagram.....	9
4.3 Test Result.....	9
5. BAND EDGES MEASUREMENT	12
5.1 Limit of Band Edges Measurement.....	12
5.2 EUT Setup	12
5.3 Test Procedure	13
5.4 Test Result.....	13
6. SPURIOUS EMISSIONS.....	16
6.1 Limit of Spurious Emissions	16
6.2 EUT Setup	17
6.3 Test Procedure	18
6.4 Spurious Emissions Test Result.....	18
7. ANTENNA REQUIREMENT	27
7.1 Standard Applicable.....	27
7.2 Antenna Connected Construction	27

1. GENERAL INFORMATION

1.1 Client Information

Applicant: **Pro Tv Development Inc.**
Address of applicant: 11F-1, No.15, Sec.4, CHUNG HSIAO E RD., TAIPEI, TAIWAN
Manufacturer: **Foshan Shunde Alford Electronics Co.,Ltd.**
Address of manufacturer: Xinjiao Industrial Park, Daliang, Shunde, Foshan City, Guangdong Province, China

General Description of E.U.T

Items	Description
EUT Description:	VIDEO DOORBELL
Trade Name:	N/A
Model No.:	8553
Supplementary Model No.:	N/A
Frequency Band:	2406.375 MHz ~ 2467.125 MHz
Number of Channels:	19
Channel Separation:	3.375MHz
Rated Voltage:	6V DC from battery
Adapter Information:	MIDEL:BLJ5W050100P-U INPUT:100~240VAC 50/60Hz 150mA OUTPUT:5VDC 1000mA

* The test data gathered are from the production sample provided by the manufacturer.

1.2 Related Submittal(s) / Grant (s)

This submittal(s) is a test report based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4 - 2009.

The tests were performed in order to determine compliance with Section 15.107 and 15.109 under the FCC Rules Part 15 Subpart B and Section 15.207, 15.209, 15.249 under the FCC Rules Part 15 Subpart C.

1.3 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 - 2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. Radiated testing was performed at an antenna to EUT distance 3 meters.

1.4 Test Facility

All measurement required was performed at laboratory of Bontek Compliance Testing Laboratory Ltd at 1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East Road, Nanshan, Shenzhen, China.

The test facility is recognized, certified, or accredited by the following organizations:

FCC – Registration No.: 338263

Bontek Compliance Testing Laboratory Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 338263, March, 2008.

IC Registration No.: 7631A

The 3m alternate test site of Bontek Compliance Testing Laboratory Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 7631A on August 2009.

The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

CNAS - Registration No.: L3923

Bontek Compliance Testing Laboratory Ltd. to ISO/IEC 17025:25 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing. The acceptance letter from the CNAS is maintained in our files: Registration:L3923,February,2009.

TUV - Registration No.: UA 50203122-001

Bontek Compliance Testing Laboratory Ltd. An assessment of the laboratory was conducted according to the"Procedures and Conditions for EMC Test Laboratories"with reference to EN ISO/IEC 17025 by a TUV Rheinland auditor. Audit Report NO. 17010783-002.

2. SYSTEM TEST CONFIGURATION

The tests documented in this report were performed in accordance with ANSI C63.4-2009 and FCC CFR 47 Part 15 Subpart C.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous transmitting application.

2.2 EUT Exercise

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 3 or 10 meters from the leading edge of the turntable.

2.3 General Test Procedures

Conducted Emissions The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 7.1 of ANSI C63.4-2009. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak detector mode. But the EUT is powered by DC 3V of battery, this test is not applicable.

Radiated Emissions The EUT is placed on as turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4-2009.

2.4 List of Measuring Equipments

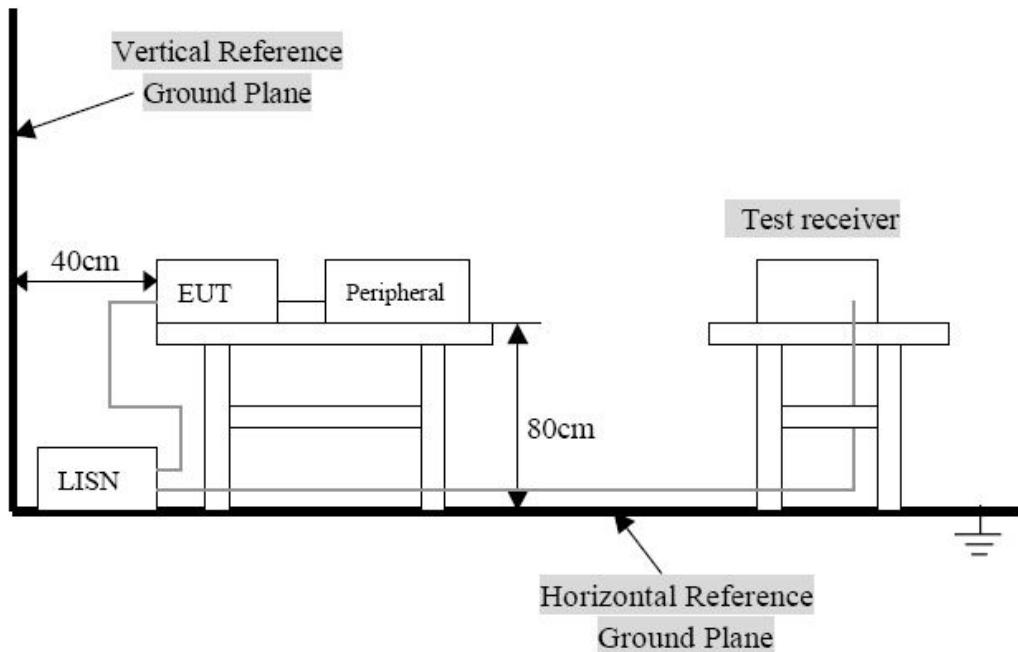
Test equipments list of Shenzhen Bontek Electronic Technology Co.,Ltd.

No.	Equipment	Manufacturer	Model No.	S/N	Calibration Date	Calibration Due Date
1	EMI Test Receiver	R&S	ESCI	100687	2011-4-07	2012-4-06
2	EMI Test Receiver	R&S	ESPI	100097	2011-4-07	2012-4-06
3	Amplifier	HP	8447D	1937A02492	2011-4-07	2012-4-06
4	Single Power Conductor Module	FCC	FCC-LISN-5-50-1-01-CISPR25	7101	2011-4-07	2012-4-06
5	Single Power Conductor Module	FCC	FCC-LISN-5-50-1-01-CISPR25	7102	2011-4-07	2012-4-06
6	Power Clamp	SCHWARZBECK	MDS-21	3812	2011-4-07	2012-4-06
7	Positioning Controller	C&C	CC-C-1F	MF7802113	N/A	N/A
8	Electrostatic Discharge Simulator	TESEQ	NSG437	125	2011-4-07	2012-4-06
9	Fast Transient Burst Generator	SCHAFFNER	MODULA6150	34572	2011-4-07	2012-4-06
10	Fast Transient Noise Simulator	Noiseken	FNS-105AX	31485	2011-4-07	2012-4-06
11	Color TV Pattern Generator	PHILIPS	PM5418	TM209947	N/A	N/A
12	Power Frequency Magnetic Field Generator	EVERFINE	EMS61000-8K	608002	2011-4-07	2012-4-06
14	Capacitive Coupling Clamp	TESEQ	CDN8014	25096	2011-4-07	2012-4-06
15	High Field Biconical Antenna	ELECTRO-METRICS	EM-6913	166	2010-4-14	2012-4-13
16	Log Periodic Antenna	ELECTRO-METRICS	EM-6950	811	2010-4-14	2012-4-13
17	Remote Active Vertical Antenna	ELECTRO-METRICS	EM-6892	304	2010-4-14	2012-4-13
18	TRILOG Broadband Test-Antenna	SCHWARZBECK	VULB9163	9163-324	2010-4-14	2012-4-13
19	Horn Antenna	SCHWARZBECK	BBHA9120A	B08000991-0001	2010-4-14	2012-4-13
20	Teo Line Single Phase Module	SCHWARZBECK	NSLK8128	D-69250	2011-4-07	2012-4-06
21	10dB attenuator	SCHWARZBECK	MTAIMP-136	R65.90.0001#06	2011-4-07	2012-4-06
22	Electric bridge	Zentech	100 LCR METER	803024	N/A	N/A

23	RF Current Probe	FCC	F-33-4	80	2011-4-07	2012-4-06
24	Triple-Loop Antenna	EVERFINE	LLA-2	607004	2011-4-07	2012-4-06
25	CDN	FRANKONIA	M2+M3	A3027019	2011-4-07	2012-4-06
26	6dB Attenuator	FRANKONIA	75-A-FFN-06	1001698	2011-4-07	2012-4-06
27	EMV-Mess-Systeme GMBH	FRANKONIA	FLL-75	1020A1109	2011-4-07	2012-4-06
28	EM Injection Clamp	FCC	F-203I-13mm	91536	2011-4-07	2012-4-06
29	9KHz-2.4GHz Signal generator	MARCONI INSTRUMENTS	2024	112260/042	2011-4-07	2012-4-06
30	Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-182	2011-4-07	2012-4-06
31	Harmonics& Flicker Analyser	Voltech	PM6000	AFC-150	2011-4-07	2012-4-06
32	Spectrum Analyzer	R&S	FSP30	1093.4495.30	2011-4-07	2012-4-06
33	Temperature & Humidity Chamber	TOPSTAT	TOS-831A	3438A05208	2011-4-07	2012-4-06

3. SUMMARY OF TEST RESULTS

EUT Fundamental Frequency	FCC Rules	Description of Test	Result
2.406375~ 2.467.125 GHz	15.207	Disturbance Voltage at The Mains Terminals	N/A , without AC main
	15.249	Band Edges Measurement	Pass
	15.249	Spurious Emission	Pass
	15.203	Antenna Requirement	Pass


4. TEST OF CONDUCTED EMISSION

4.1 Applicable Standard

Section 15.207: For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

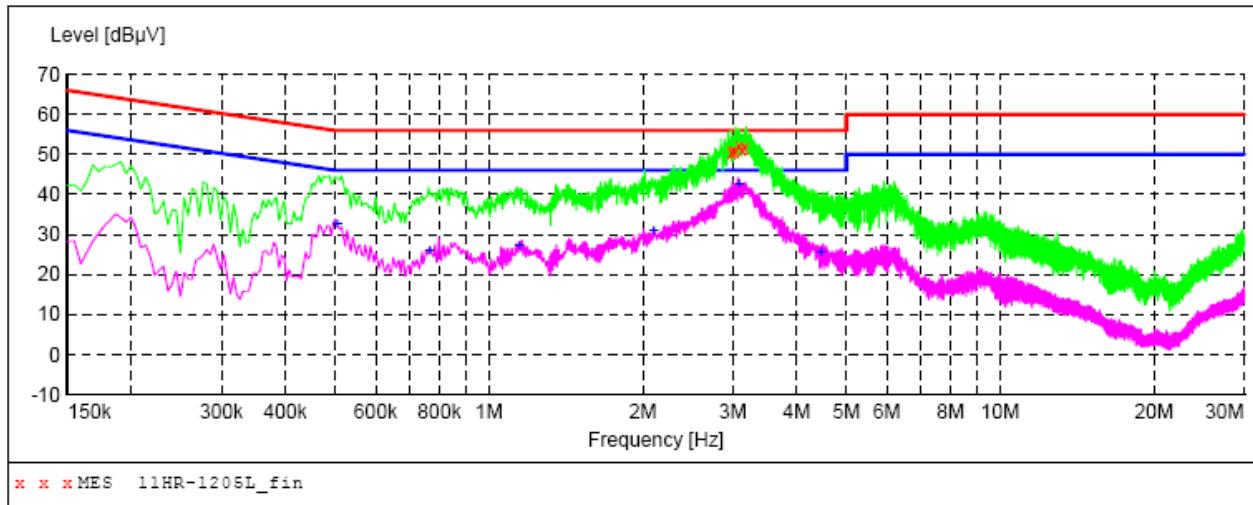
Frequency Range (MHz)	Limits (dBuV)	
	Quasi-Peak	Average
0.150~0.500	66~56	56~46
0.500~5.000	56	46
5.000~30.00	60	50

4.2 Test Setup Diagram

Remark: 1. The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC 15.207 limits.

2. The EUT was charged on the base, and the base was connected to a 120 VAC/ 60Hz power source.

4.3 Test Result


Temperature (°C) : 23~25	EUT: VIDEO DOORBELL
Humidity (%RH): 45~58	M/N: 8553
Barometric Pressure (mbar): 950~1000	Operation Condition: continue transmitting

Conducted Emission:

EUT: VIDEO DOORBELL
 M/N: 8553
 Operating Condition: Continuous transmitting
 Test Site: Shielded Room
 Operator: Chen
 Test Specification: AC120V/60Hz for adapter
 Comment: Live Line

SCAN TABLE: "Voltage (150K-30M) FIN"

Short Description: 150K-30M Voltage

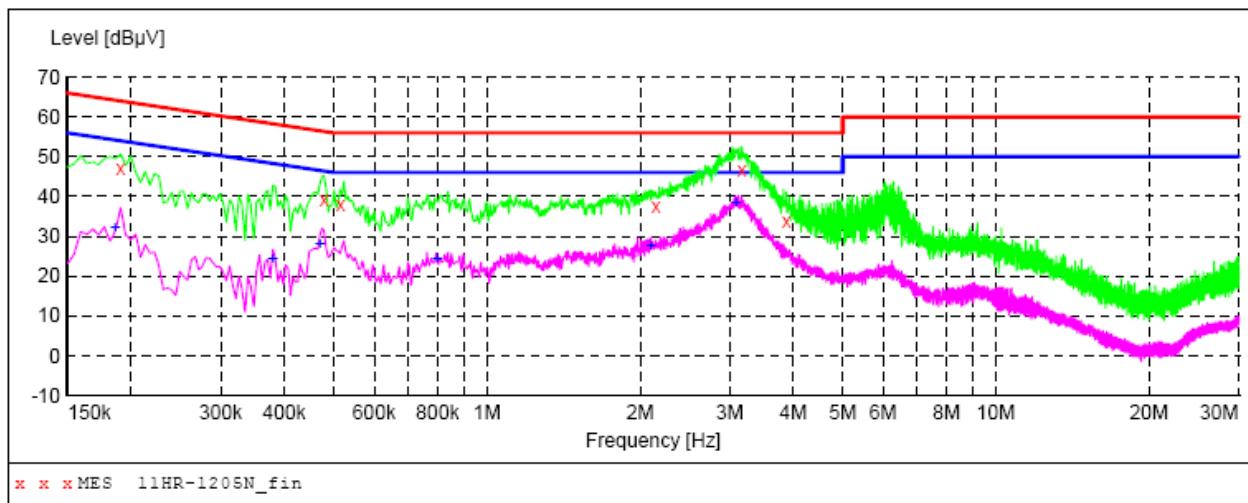
MEASUREMENT RESULT: "11HR-1205L_fin"

8/18/2011 19:37

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
2.976000	50.50	10.3	56	5.5	QP	L1	GND
2.994000	50.90	10.3	56	5.1	QP	L1	GND
3.025500	50.80	10.3	56	5.2	QP	L1	GND
3.084000	52.00	10.3	56	4.0	QP	L1	GND
3.120000	51.30	10.3	56	4.7	QP	L1	GND
3.165000	51.50	10.3	56	4.5	QP	L1	GND

MEASUREMENT RESULT: "11HR-1205L_fin2"

8/18/2011 19:37


Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.505500	32.70	10.3	46	13.3	AV	L1	GND
0.766500	26.10	10.3	46	19.9	AV	L1	GND
1.144500	27.10	10.3	46	18.9	AV	L1	GND
2.098500	31.00	10.2	46	15.0	AV	L1	GND
3.088500	42.70	10.3	46	3.3	AV	L1	GND
4.470000	25.40	10.4	46	20.6	AV	L1	GND

Conducted Emission:

EUT: VIDEO DOORBELL
 M/N: 8553
 Operating Condition: Continuous transmitting
 Test Site: Shielded Room
 Operator: Chen
 Test Specification: AC120V/60Hz for adapter
 Comment: Neutral Line

SCAN TABLE: "Voltage (150K-30M) FIN"

Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "11HR-1205N_fin"

8/18/2011 19:34

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.190500	47.30	11.0	64	16.7	QP	N	GND
0.478500	39.30	10.4	56	17.1	QP	N	GND
0.514500	38.00	10.3	56	18.0	QP	N	GND
2.143500	37.70	10.2	56	18.3	QP	N	GND
3.160500	46.90	10.3	56	9.1	QP	N	GND
3.871500	33.90	10.4	56	22.1	QP	N	GND

MEASUREMENT RESULT: "11HR-1205N_fin2"

8/18/2011 19:34

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.186000	32.20	11.1	54	22.0	AV	N	GND
0.379500	24.40	10.6	48	23.9	AV	N	GND
0.469500	28.00	10.4	47	18.5	AV	N	GND
0.798000	24.40	10.3	46	21.6	AV	N	GND
2.098500	27.60	10.2	46	18.4	AV	N	GND
3.084000	38.30	10.3	46	7.7	AV	N	GND

5. BAND EDGES MEASUREMENT

5.1 Limit of Band Edges Measurement

1. In the above emission table, the tighter limit applies at the band edges.
2. As shown in Section 15.35(b), for frequencies above 1000 MHz, the above field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Frequency (MHz)	Field Strength ($\mu\text{V/m}$ at 3-meter)	Field Strength ($\text{dB}\mu\text{V/m}$ at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Note: (1) The tighter limit shall apply at the edge between two frequency bands.

(2) The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

5.2 EUT Setup

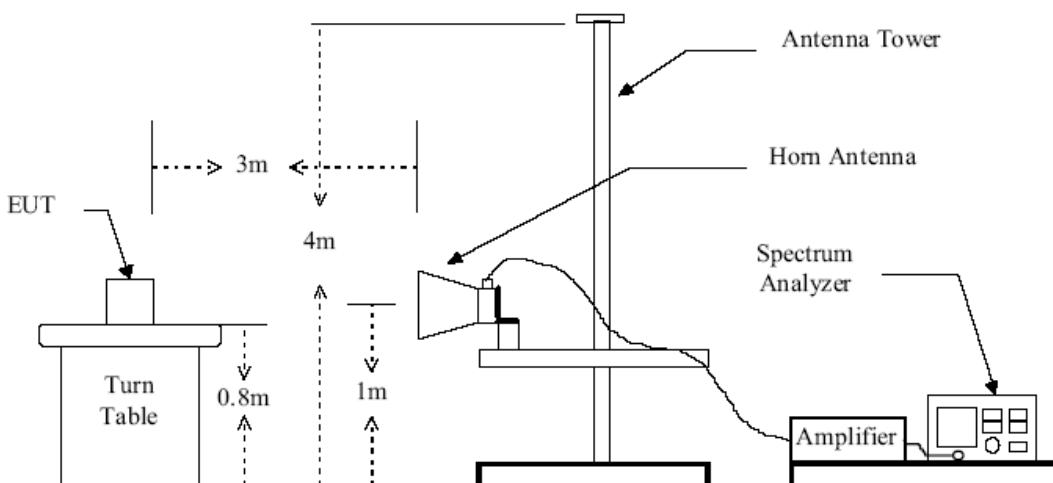
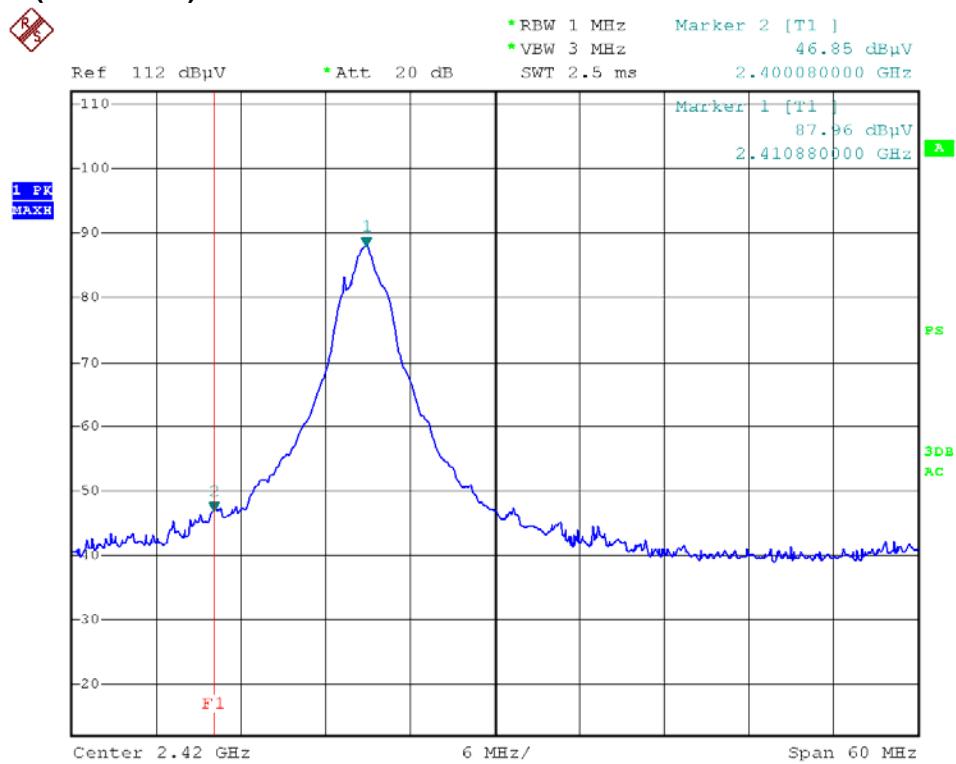
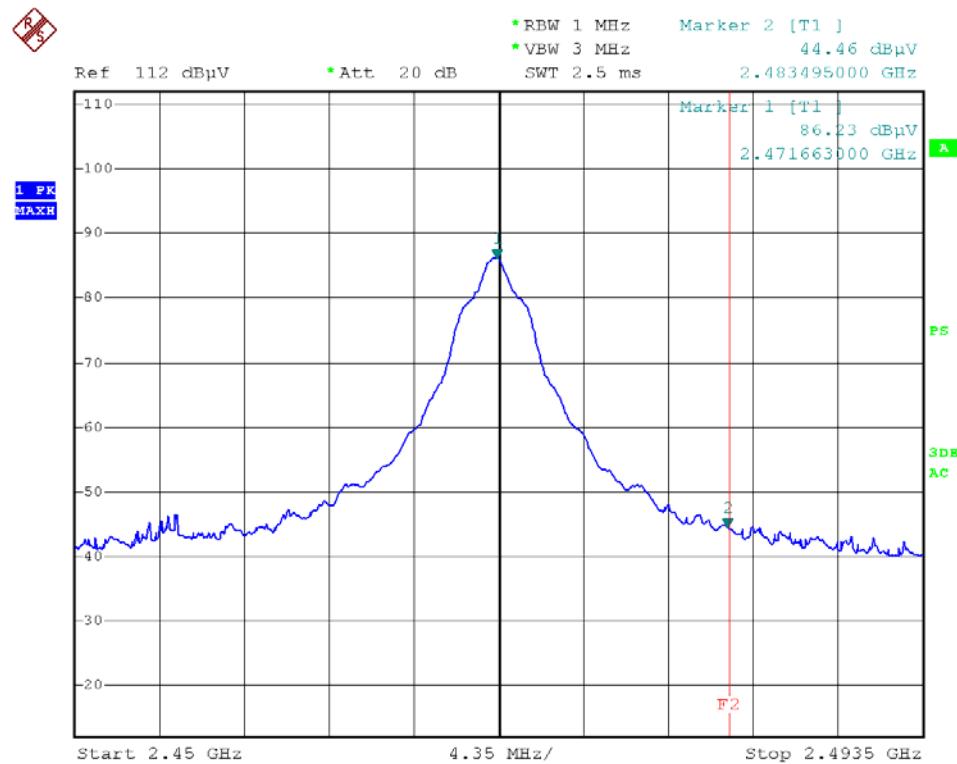


Figure 2 : Frequencies measured above 1 GHz configuration

5.3 Test Procedure


Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

- 1). Configure the EUT according to ANSI C63.4:2009.
- 2). The EUT was placed on the top of the turntable 0.8 meter above ground.
- 3). The receiving antenna was placed 3 meters far away from the turntable.
- 4). The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 5). The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization. For each suspected emission, the antenna tower was scanned (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.


5.4 Test Result

Temperature (°C) : 22~23	EUT: VIDEO DOORBELL
Humidity (%RH): 50~54	M/N: 8553
Barometric Pressure (mbar): 950~1000	Operation Condition: Continuous transmitting

Low Channel (2.1088GHz):

High Channel (2.47166GHz):

6. SPURIOUS EMISSIONS

6.1 Limit of Spurious Emissions

1. In the section 15.249(a): Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:
2. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Fundamental Frequency (MHz)	Field Strength of Fundamental Field Strength (mV/m)	Field Strength of Harmonics (μmV/m)
902-928 MHz	50	500
2400 - 2483.5 MHz	50	500
5725 - 5875 MHz	50	500
24.0 - 24.25 GHz	250	2500

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

3. In the above emission table, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (μV/m at 3-meter)	Field Strength (dBμV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

6.2 EUT Setup

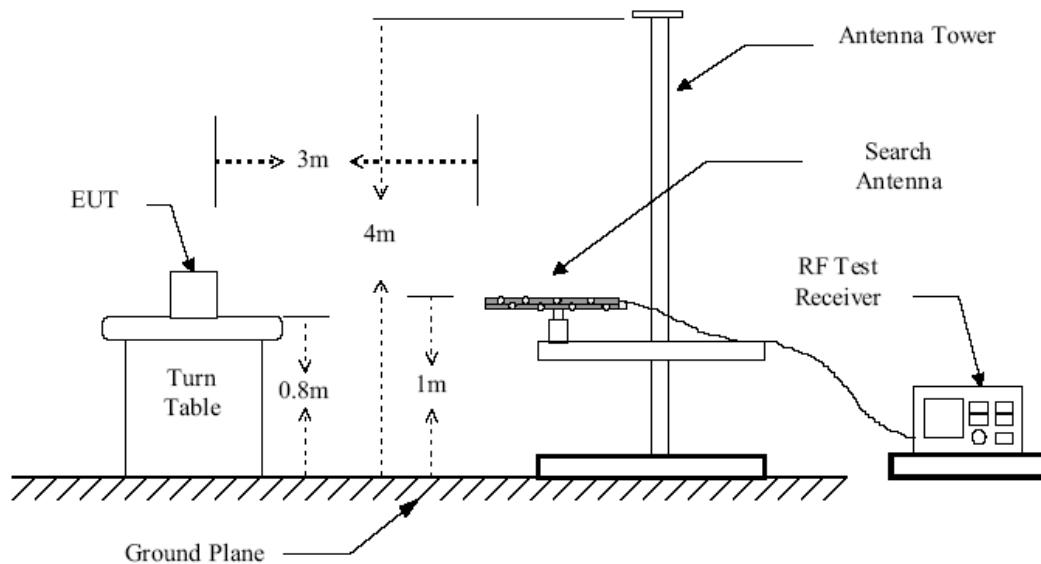


Figure 1 : Frequencies measured below 1 GHz configuration

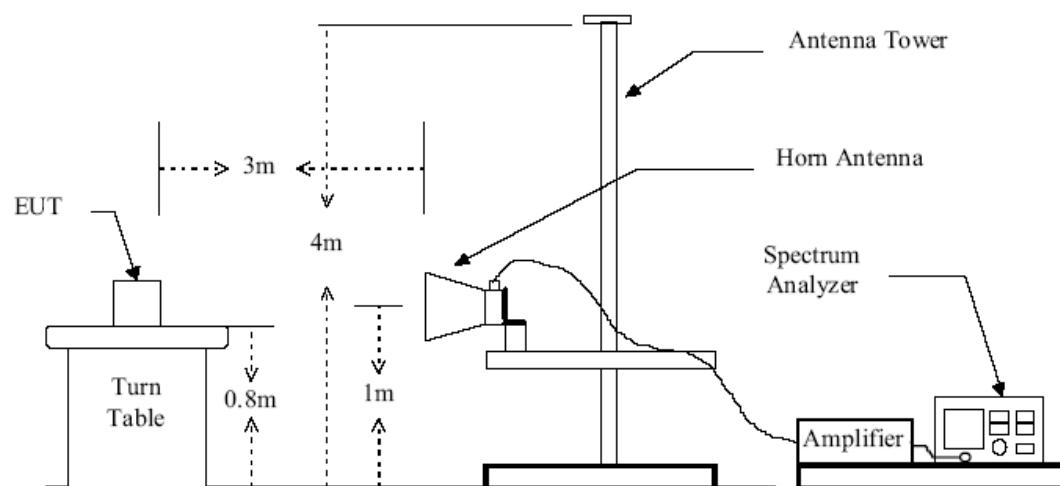


Figure 2 : Frequencies measured above 1 GHz configuration

6.3 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

- 1). Configure the EUT according to ANSI C63.4:2009.
- 2). The EUT was placed on the top of the turntable 0.8 meter above ground.
- 3). The receiving antenna was placed 3 meters far away from the turntable.
- 4). The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 5). The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization. For each suspected emission, the antenna tower was scanned (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.

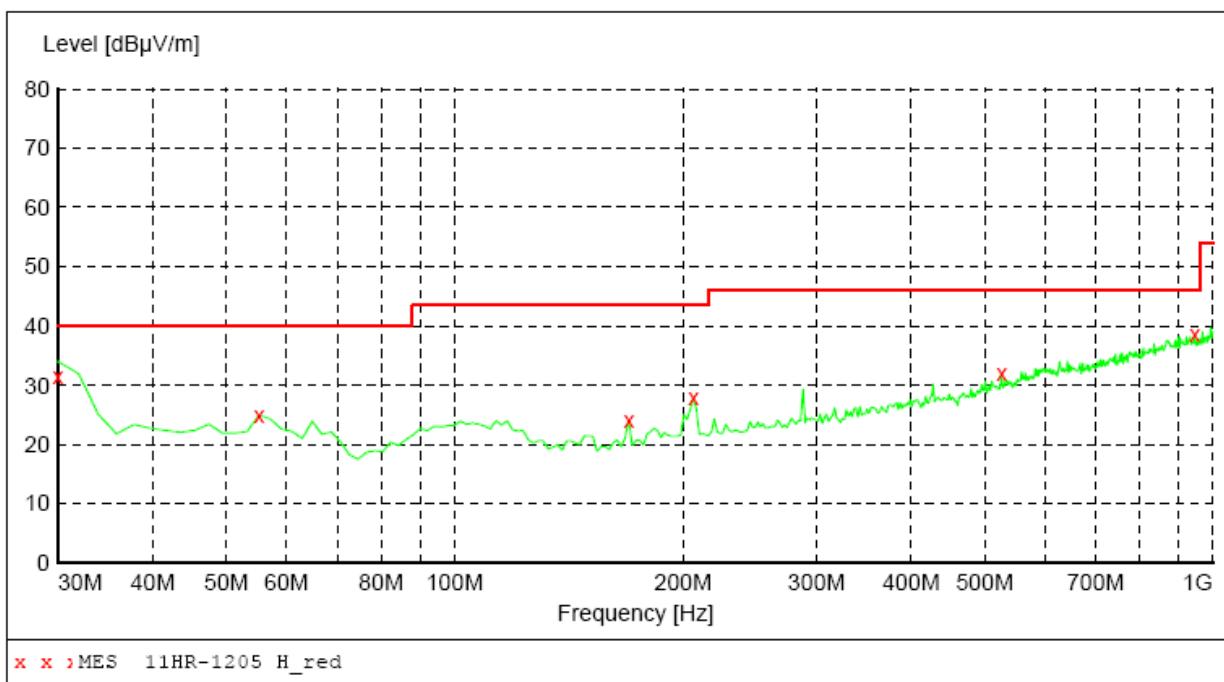
6.4 Spurious Emissions Test Result

Temperature (°C) : 22~23	EUT: VIDEO DOORBELL
Humidity (%RH): 50~54	M/N: 8553
Barometric Pressure (mbar): 950~1000	Operation Condition: Continuous transmitting

Note: In this testing, the EUT was respectively tested in three different orientations. That is:

- (1) EUT was lie vertically, and then its Antenna oriented upward
- (2) EUT was lie vertically, and then its Antenna oriented downward
- (3) EUT was lie flatwise, and then its Antenna oriented to the receiving antenna

The worst test data see following pages


When the EUT was lie flatwise, and its Antenna oriented to the receiving antenna, the worst test data was got as following pages

The worst Spurious Emission Data Below 1GHz:

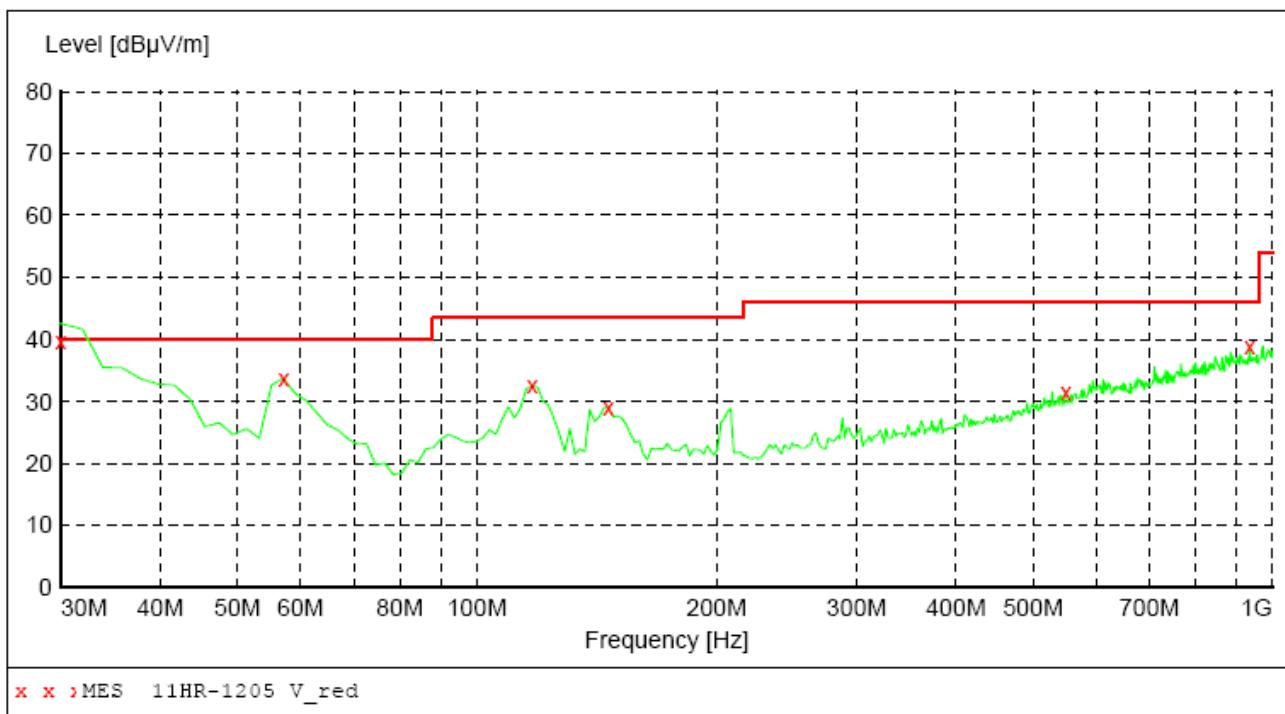
EUT: VIDEO DOORBELL
 M/N: 8553
 Operating Condition: Continuous transmitting
 Test Site: 3m CHAMBER
 Operator: Chen
 Test Specification: DC 6V
 Comment: Polarization: Horizontal
 Tem:25°C Hum:50%

SWEEP TABLE: "test (30M-1G)"

Short Description:		Field Strength			
Start Frequency	Stop Frequency	Detector	Meas.	IF	Transducer
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	VULB9163 NEW

MEASUREMENT RESULT: "11HR-1205 H_red"

8/19/2011 13:14


Frequency MHz	Level dB μ V/m	Transd dB	Limit dB μ V/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	31.40	14.3	40.0	8.6	QP	300.0	0.00	HORIZONTAL
55.220000	25.00	15.6	40.0	15.0	QP	300.0	0.00	HORIZONTAL
169.680000	24.00	14.2	43.5	19.5	QP	100.0	0.00	HORIZONTAL
206.540000	27.90	16.1	43.5	15.6	QP	300.0	0.00	HORIZONTAL
526.640000	32.00	24.6	46.0	14.0	QP	100.0	0.00	HORIZONTAL
945.680000	38.60	31.7	46.0	7.4	QP	100.0	0.00	HORIZONTAL

The worst Spurious Emission Data Below 1GHz:

EUT: VIDEO DOORBELL
 M/N: 8553
 Operating Condition: Continuous transmitting
 Test Site: 3m CHAMBER
 Operator: Chen
 Test Specification: DC 6V
 Comment: Polarization: Vertical
 Tem:25°C Hum:50%

SWEEP TABLE: "test (30M-1G)"

Short Description:		Field Strength			
Start Frequency	Stop Frequency	Detector	Meas.	IF	Transducer
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	VULB9163 NEW

MEASUREMENT RESULT: "11HR-1205 V_red"

8/19/2011 13:16

Frequency MHz	Level dB μ V/m	Transd dB	Limit dB μ V/m	Margin dB	Det. QP	Height cm	Azimuth deg	Polarization
30.000000	39.60	14.3	40.0	0.4	QP	100.0	0.00	VERTICAL
57.160000	33.70	15.1	40.0	6.3	QP	100.0	0.00	VERTICAL
117.300000	32.50	15.5	43.5	11.0	QP	100.0	0.00	VERTICAL
146.400000	29.10	13.2	43.5	14.4	QP	100.0	0.00	VERTICAL
549.920000	31.60	25.2	46.0	14.4	QP	100.0	0.00	VERTICAL
935.980000	39.00	31.6	46.0	7.0	QP	100.0	0.00	VERTICAL

Spurious Emission test data above 1G

Maximum Frequency (MHz)	Channel Low					Limit (dB μ V/m)	Margin (dB μ V/m)	Mark (P/Q/A)			
	Polarity and Level										
	Polarity	Height (m)	Reading dB μ V	Transd	Result dB μ V/m						
4821.78	H	1.00	23.8	24.2	48.0	74.0	26.0	P			
			19.5	24.2	43.7	54.0	10.3	A			
4821.78	V	1.00	25.1	24.2	49.3	74.0	24.7	P			
			21.5	24.4	45.9	54.0	8.1	A			
7232.66	H	1.00	24.0	24.8	48.8	74.0	25.2	P			
			20.3	24.8	45.1	54.0	8.9	A			
7232.66	V	1.00	25.2	24.8	50	74.0	24.0	P			
			21.7	24.8	46.5	54.0	7.5	A			
9643.51	H	1.00	22.2	25.1	47.3	74.0	26.7	P			
			16.8	25.1	41.9	54.0	12.1	A			
9643.51	V	1.00	22.3	25.1	47.4	74.0	26.6	P			
			19.1	25.1	44.2	54.0	9.8	A			
12054.39	---	---	---	---	---	---	---	---			
14465.25	---	---	---	---	---	---	---	---			
16876.13	---	---	---	---	---	---	---	---			
19286.71	---	---	---	---	---	---	---	---			
21697.86	---	---	---	---	---	---	---	---			
24108.74	---	---	---	---	---	---	---	---			

Remark: 1. Transd.=Antenna Factor+Cable Loss+Pre-amplifier

Margin = Level-Limit

Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value

2. Data of measurement within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz.
4. The test limit distance is 3m limit

Channel Mid								
Maximum Frequency (MHz)	Polarity and Level					Limit (dB μ V/m)	Margin (dB μ V/m)	Mark (P/Q/A)
	Polarity	Height (m)	Reading dB μ V	Transd	Result dB μ V/m			
4882.24	H	1.00	24.2	24.3	48.5	74.0	25.5	P
			19.1	24.3	43.4	54.0	10.6	A
4882.24	V	1.00	24.6	24.3	48.9	74.0	25.1	P
			20.4	24.3	44.7	54.0	9.3	A
7323.35	H	1.00	25.8	24.8	50.6	74.0	23.4	P
			19.3	24.8	44.1	54.0	9.9	A
7323.35	V	1.00	26.3	24.8	51.1	74.0	22.9	P
			22.7	24.8	47.5	54.0	6.5	A
9764.46	H	1.00	18.7	25.0	43.7	74.0	30.3	P
			18.8	25.0	43.8	54.0	10.2	A
9764.46	V	1.00	19.3	25.0	44.3	74.0	29.7	P
			16.9	25.0	41.9	54.0	12.1	A
12205.58	---	---	---	---	---	---	---	---
14646.67	---	---	---	---	---	---	---	---
17087.79	---	---	---	---	---	---	---	---
19528.89	---	---	---	---	---	---	---	---
21970.01	---	---	---	---	---	---	---	---
24411.13	---	---	---	---	---	---	---	---

Remark: 1. Transd.=Antenna Factor+Cable Loss+Pre-amplifier

Margin = Level-Limit

Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value

2. Data of measurement within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz.

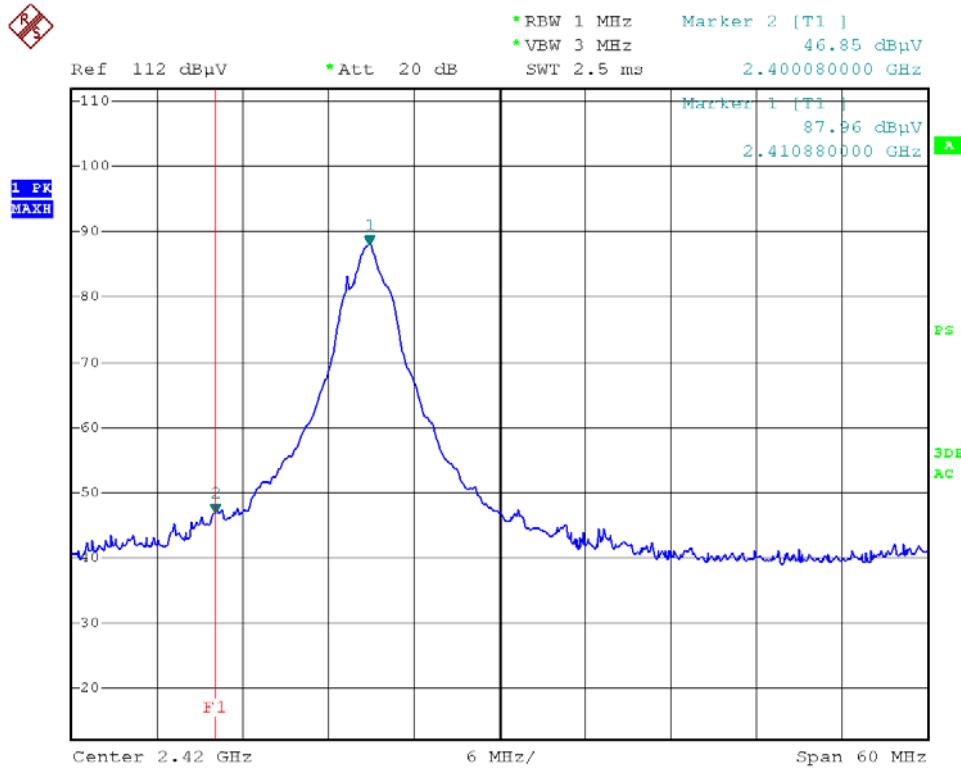
4. The test limit distance is 3m limit

Channel High								
Maximum Frequency (MHz)	Polarity and Level					Limit (dB μ V/m)	Margin (dB μ V/m)	Mark (P/Q/A)
	Polarity	Height (m)	Reading dB μ V	Transd	Result dB μ V/m			
4943.33	H	1.00	25. 2	24.0	49.2	74.0	24.8	P
			21. 8	24.0	45.8	54.0	8.2	A
4943.33	V	1.00	25. 7	24.0	49.7	74.0	24.3	P
			22. 9	24.0	46.9	54.0	7.1	A
7414.99	H	1.00	25. 2	25.2	50.4	74.0	23.6	P
			19. 1	25.2	44.3	54.0	9.7	A
7414.99	V	1.00	27. 6	25.2	52.8	74.0	21.2	P
			20. 1	25.2	45.3	54.0	8.7	A
9886.65	H	1.00	18. 5	24.9	43.4	74.0	30.6	P
			16. 4	24.9	41.3	54.0	12.7	A
9886.65	V	1.00	22. 4	24.9	47.3	74.0	26.7	P
			19. 9	24.9	44.8	54.0	9.2	A
12358.30	---		---	---	---	---	---	
14829.95	---		---	---	---	---	---	
17301.59	---		---	---	---	---	---	
19733.25	---		---	---	---	---	---	
22204.91	---		---	---	---	---	---	
24676.57	---		---	---	---	---	---	

Remark: 1. Transd.=Antenna Factor+Cable Loss+Pre-amplifier

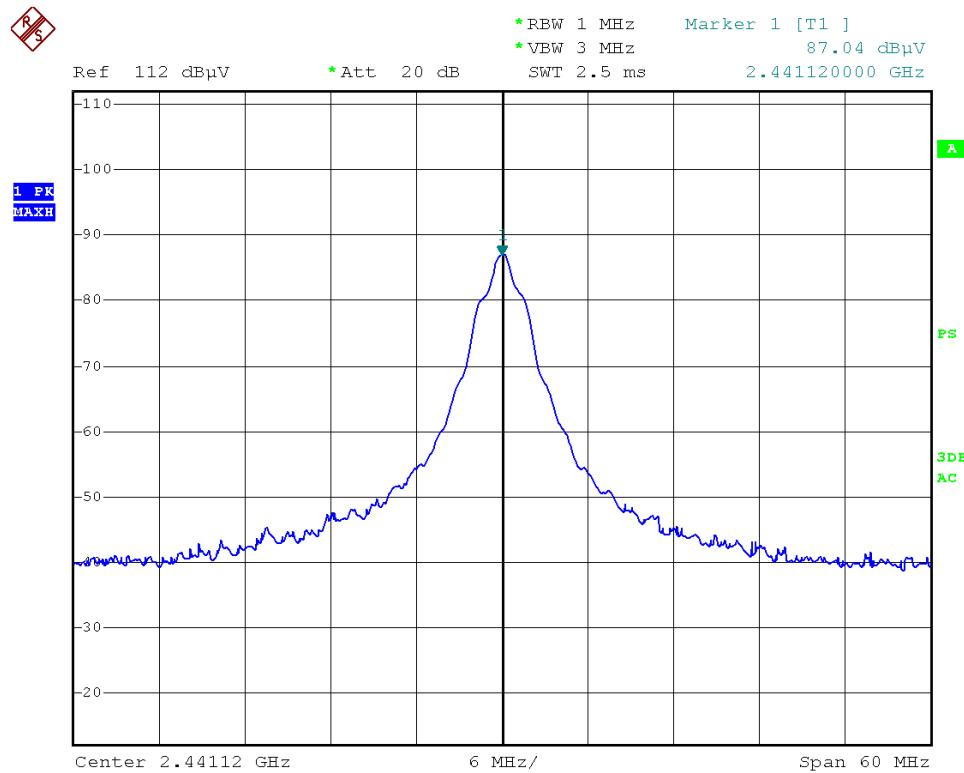
Margin = Level-Limit

Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value

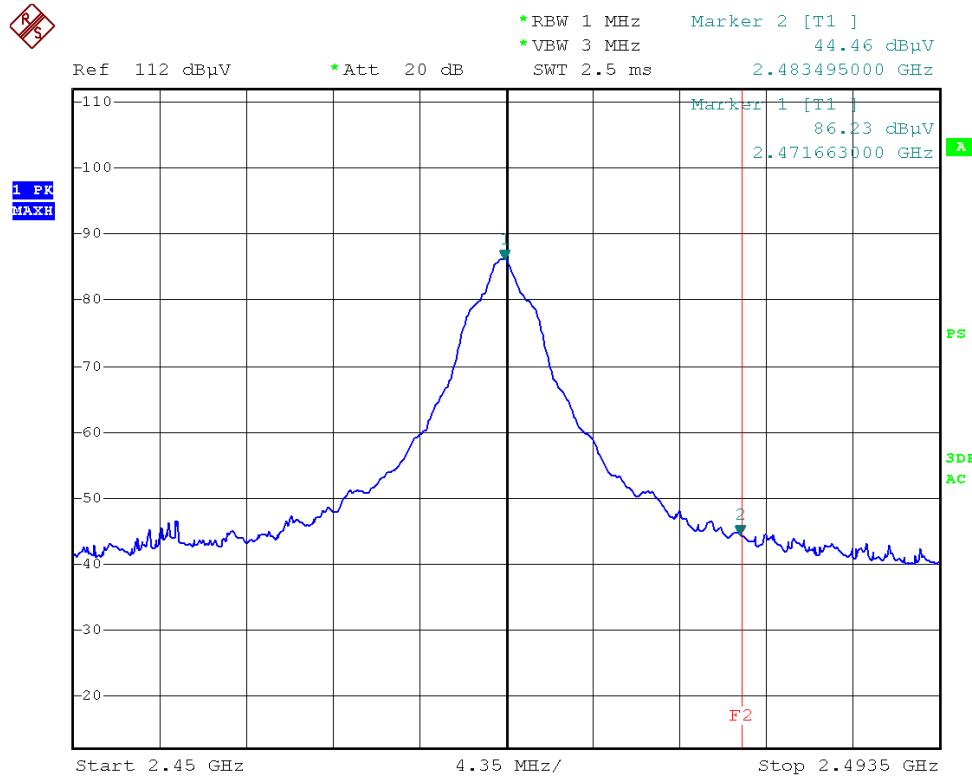

2. Data of measurement within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz.

4. The test limit distance is 3m limit


The result of Field Strength of Fundamental Field Strength

Low Channel:


Remark: Field Strength of Fundamental Field Strength of the EUT is 87.96dB μ V/m , is lower than 50mv/m(94 dB μ V/m), complies with limit of section 15.249(a) ,and the result is pass.

Middle Channel:

Remark: Field Strength of Fundamental Field Strength of the EUT is 87.04dB μ V/m , is lower than 50mv/m(94 dB μ V/m), complies with limit of section 15.249(a) ,and the result is pass.

High Channel:

Remark: Field Strength of Fundamental Field Strength of the EUT is 89.23dB μ V/m , is lower than 50mv/m(94 dB μ V/m), complies with limit of section 15.249(a) ,and the result is pass.

7. ANTENNA REQUIREMENT

7.1 Standard Applicable

Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2 Antenna Connected Construction

The antenna connector is designed with permanent attachment and no consideration of replacement.