

A D T

FCC TEST REPORT

REPORT NO.: RF980116A01

MODEL NO.: ZT-BBX433

RECEIVED: Jan. 16, 2009

TESTED: Feb. 10 ~ 13, 2009

ISSUED: Feb. 16, 2009

APPLICANT: ZIVO Technologies LLC

ADDRESS: 770 Harris Street, Charlottesville, VA 22903, USA

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

LAB LOCATION: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang, Taipei Hsien 244, Taiwan

This test report consists of 31 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

A D T

Table of Contents

1. CERTIFICATION	4
2. SUMMARY OF TEST RESULTS	5
2.1 MEASUREMENT UNCERTAINTY	5
3. GENERAL INFORMATION	6
3.1 GENERAL DESCRIPTION OF EUT	6
3.2 DESCRIPTION OF TEST MODES	7
3.2.1 CONFIGURATION OF SYSTEM UNDER TEST	7
3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL:	8
3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS	9
3.4 DESCRIPTION OF SUPPORT UNITS	9
4. TEST TYPES AND RESULTS	10
4.1 CONDUCTED EMISSION MEASUREMENT	10
4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT	10
4.1.2 TEST INSTRUMENTS	11
4.1.3 TEST PROCEDURES	11
4.1.4 DEVIATION FROM TEST STANDARD	12
4.1.5 TEST SETUP	12
4.1.6 EUT OPERATING CONDITIONS	12
4.1.7 TEST RESULTS	13
4.2 RADIATED EMISSION MEASUREMENT	15
4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT	15
4.2.2 TEST INSTRUMENTS	17
4.2.3 TEST PROCEDURES	18
4.2.4 DEVIATION FROM TEST STANDARD	18
4.2.5 TEST SETUP	19
4.2.6 EUT OPERATING CONDITIONS	19
4.2.7 TEST RESULTS	20
4.3 20dB OCCUPIED BANDWIDTH MEASUREMENT	23
4.3.1 LIMITS OF EMISSION BANDWIDTH MEASUREMENT	23
4.3.2 TEST INSTRUMENTS	23
4.3.3 TEST PROCEDURE	23
4.3.4 DEVIATION FROM TEST STANDARD	24
4.3.5 TEST SETUP	24
4.3.6 TEST RESULTS	24
4.4 DEACTIVATION TIME	26
4.4.1 LIMITS OF DEACTIVATION TIME MEASUREMENT	26
4.4.2 TEST INSTRUMENTS	26
4.4.3 TEST PROCEDURES	26
4.4.4 DEVIATION FROM TEST STANDARD	26
4.4.5 TEST SETUP	27
4.4.6 TESE RESULTS	27

A D T

5.	PHOTOGRAPHS OF THE TEST CONFIGURATION.....	29
6.	INFORMATION ON THE TESTING LABORATORIES	30
7.	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	31

A D T

1. CERTIFICATION

PRODUCT: WellAWARE , Bedbox
BRAND NAME: WellAWARE, Zivo Technologies
MODEL NO.: ZT-BBX433
APPLICANT: ZIVO Technologies LLC
TESTED: Feb. 10 ~ 13, 2009
TEST SAMPLE: ENGINEERING SAMPLE
STANDARDS: FCC Part 15, Subpart C (Section 15.231)
ANSI C63.4-2003

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : Annie Chang , **DATE:** Feb. 16, 2009
(Annie Chang / Senior Specialist)

**TECHNICAL
ACCEPTANCE** : Jamison Chan , **DATE:** Feb. 16, 2009
Responsible for RF
(Jamison Chan / Supervisor)

APPROVED BY : Ken Liu , **DATE:** Feb. 16, 2009
(Ken Liu / Assistant Manager)

A D T

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C (Section 15.231)			
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK
15.207	Conducted Emission Test	PASS	Minimum passing margin is -13.41dB at 0.241MHz
15.209 15.231(b)	Radiated Emission Test	PASS	Minimum passing margin is -5.56dB at 433.92MHz
15.231(c)	Emission Bandwidth Measurement	PASS	Meet the requirement of limit
15.231(a)	De-activation	PASS	Meet the requirement of limit

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Frequency	Uncertainty
Conducted emissions	9kHz ~ 30MHz	2.44 dB
Radiated emissions	30MHz ~ 1GHz	3.72 dB
	1GHz ~ 40GHz	2.89 dB

A D T

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	WellIAWARE , Bedbox
MODEL NO.	ZT-BBX433
FCC ID	W5GZTBBX433
POWER SUPPLY	24Vdc from adapter
MODULATION TYPE	FSK
OPERATING FREQUENCY	433.92MHz
NUMBER OF CHANNEL	1
ANTENNA TYPE	Monopole antenna with 0dBi gain
DATA CABLE	N/A
I/O PORTS	N/A
ASSOCIATED DEVICES	Refer to note 2 as below

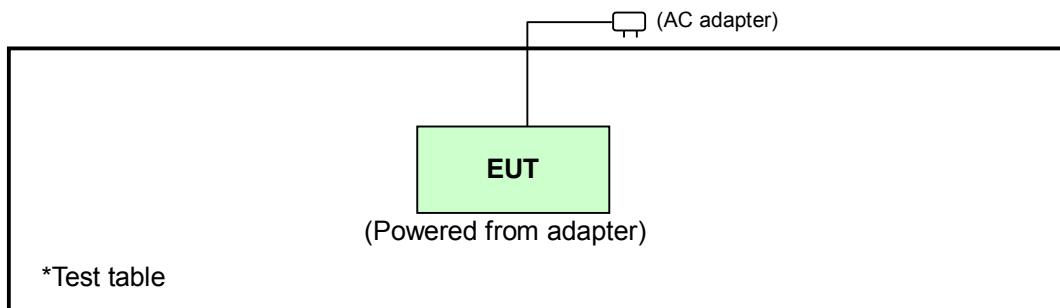
NOTE:

1. The EUT is a transceiver.

2. The EUT was power supplied from the following power adapter:

Brand Name	AHEAD
Model No.	ADB-2400200
AC I/P Rating	120V, 60Hz, 9W
DC O/P Rating	24 V, 200mA
Power Cord	Non-shielded DC (1.8m), AC 2-pin

3. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.


A D T

3.2 DESCRIPTION OF TEST MODES

1 channel was provided to this EUT.

Channel	Frequency
1	433.92MHz

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

*Test table

A D T

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL:

EUT configure mode	Applicable to					Description
	PLC	RE<1G	RE≥1G	EB	DT	
-	√	√	√	√	√	-

Where PLC: Power Line Conducted Emission

RE<1G: Radiated Emission below 1GHz

RE≥1G: Radiated Emission above 1GHz

EB: 20dB Bandwidth Measurement

DT: Deactivation Time Measurement

POWER LINE CONDUCTED EMISSION TEST:

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1	1	FSK

RADIATED EMISSION TEST (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	AXIS
1	1	FSK	X

RADIATED EMISSION TEST (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	AXIS
1	1	FSK	X

A D T

EMISSION BANDWIDTH MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1	1	FSK

DEACTIVATION TIME MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1	1	FSK

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.231)

ANSI C63.4-2003

All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with its adapter.

A D T

4. TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

NOTE:

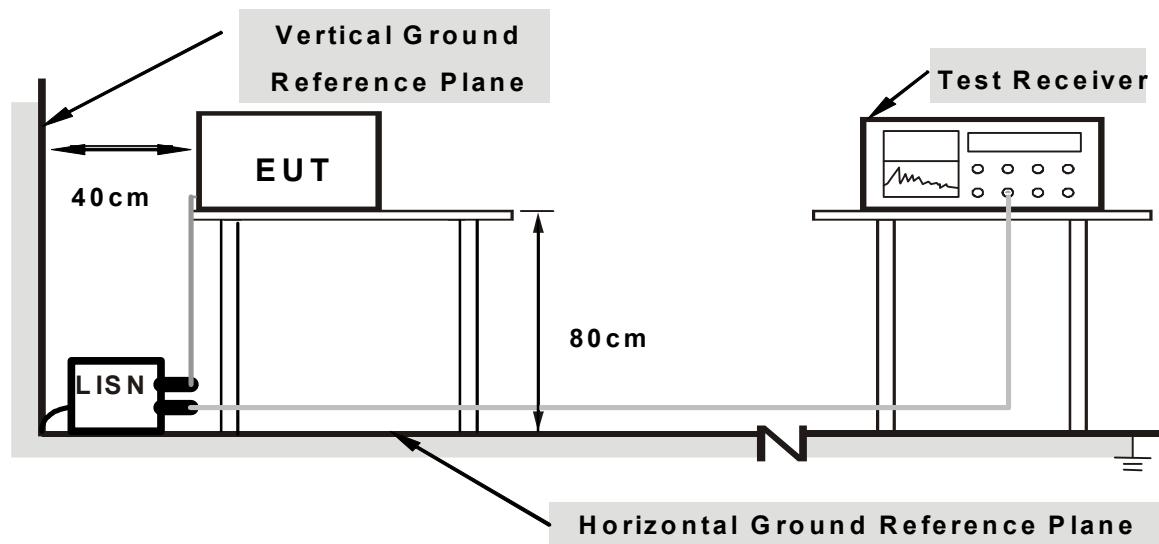
1. The lower limit shall apply at the transition frequencies.
2. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

A D T

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ Test Receiver	ESCS 30	838251/021	Dec. 20, 2008	Dec. 19, 2009
ROHDE & SCHWARZ Artificial Mains Network (for EUT)	ESH3-Z5	100218	Nov. 26, 2008	Nov. 25, 2009
LISN With Adapter (for EUT)	AD10	C10Ada-001	Nov. 26, 2008	Nov. 25, 2009
ROHDE & SCHWARZ Artificial Mains Network (for peripherals)	ESH3-Z5	100219	Nov. 20, 2008	Nov. 19, 2009
ROHDE & SCHWARZ Artificial Mains Network (for peripherals)	ESH3-Z5	100220	Nov. 05, 2008	Nov. 04, 2009
Software	ADT_Cond_V7.3.7	NA	NA	NA
Software	ADT_ISN_V7.3.7	NA	NA	NA
RF cable (JYEBAO)	5D-FB	Cable-C10.01	Feb. 27, 2008	Feb. 26, 2009
SUHNER Terminator (For ROHDE & SCHWARZ LISN)	65BNC-5001	E1-010773	Feb. 13, 2009	Feb. 12, 2010

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The test was performed in Shielded Room No. 10.
3. The VCCI Site Registration No. C-1852.


4.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under limit - 20dB was not recorded.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

Note: 1. Support units were connected to second LISN.

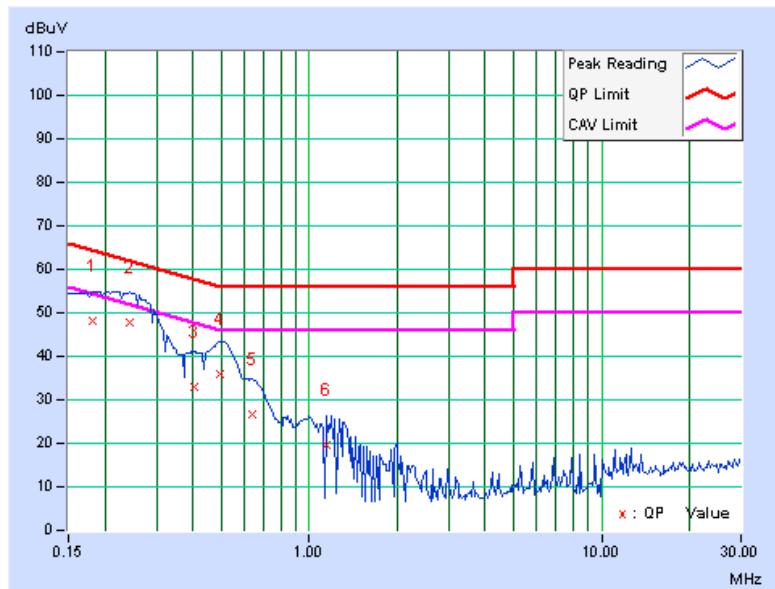
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS

Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.

4.1.7 TEST RESULTS

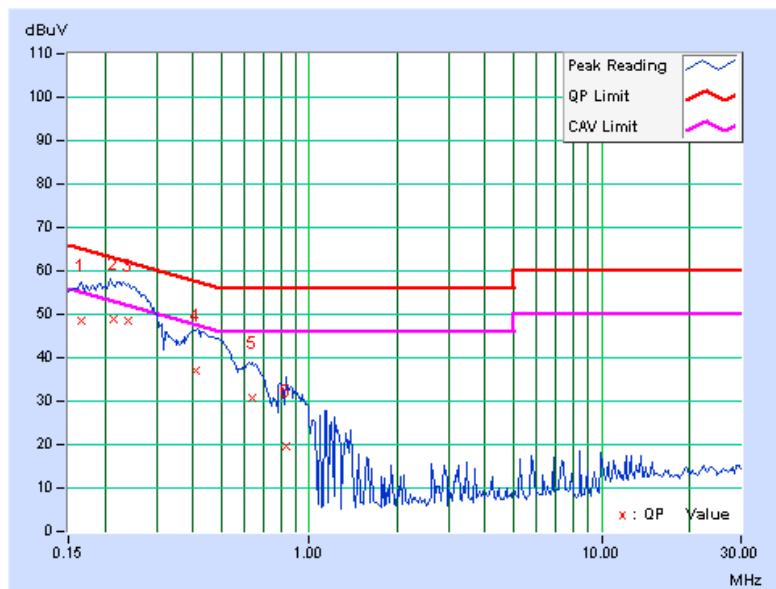

CONDUCTED WORST CASE DATA

MODULATION TYPE	FSK	CHANNEL	1
INPUT POWER	120Vac, 60 Hz	6dB BANDWIDTH	9 kHz
ENVIRONMENTAL CONDITIONS	21deg. C, 70% RH, 1004hPa	PHASE	Line 1
TESTED BY	Chad Lee		

No	Freq. Factor	Corr. Factor	Reading Value		Emission Level		Limit		Margin	
			[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
			[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.181	0.20	48.13	-	48.33	-	64.43	54.43	-16.10	-
2	0.244	0.22	47.49	-	47.71	-	61.97	51.97	-14.26	-
3	0.404	0.22	32.67	-	32.89	-	57.77	47.77	-24.88	-
4	0.494	0.22	35.55	-	35.77	-	56.10	46.10	-20.33	-
5	0.638	0.23	26.46	-	26.69	-	56.00	46.00	-29.31	-
6	1.152	0.25	19.47	-	19.72	-	56.00	46.00	-36.28	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
3. The emission levels of other frequencies were very low against the limit.
4. Margin value = Emission level - Limit value
5. Correction factor = Insertion loss + Cable loss
6. Emission Level = Correction Factor + Reading Value.


A D T

MODULATION TYPE	FSK	CHANNEL	1
INPUT POWER	120Vac, 60 Hz	6dB BANDWIDTH	9 kHz
ENVIRONMENTAL CONDITIONS	21deg. C, 70% RH, 1004hPa	PHASE	Line 2
TESTED BY	Chad Lee		

No	Freq. [MHz]	Corr. Factor (dB)	Reading Value		Emission Level		Limit		Margin	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
			[dB (uV)]	[dB (uV)]	[dB (uV)]	[dB (uV)]	[dB (uV)]	[dB (uV)]	(dB)	(dB)
1	0.166	0.16	48.53	-	48.69	-	65.17	55.17	-16.48	-
2	0.214	0.19	48.86	-	49.05	-	63.04	53.04	-13.99	-
3	0.241	0.19	48.45	-	48.64	-	62.05	52.05	-13.41	-
4	0.407	0.20	36.88	-	37.08	-	57.71	47.71	-20.63	-
5	0.642	0.21	30.57	-	30.78	-	56.00	46.00	-25.22	-
6	0.831	0.21	19.37	-	19.58	-	56.00	46.00	-36.42	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
3. The emission levels of other frequencies were very low against the limit.
4. Margin value = Emission level - Limit value
5. Correction factor = Insertion loss + Cable loss
6. Emission Level = Correction Factor + Reading Value.

A D T

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

According to 15.231 the field strength of emissions from intentional radiators operated under these frequencies bands shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental		Field Strength of Spurious	
	uV/meter	dBuV/meter	uV/meter	dBuV/meter
40.66 ~ 40.70	2250	67.04	225	48.04
70 ~ 130	1250	61.94	125	41.94
130 ~ 174	1250 ~ 3750	61.94 ~ 71.48	125 ~ 375	41.94 ~ 51.48
174 ~ 260	3750	71.48	75	37.50
260 ~ 470	3750 ~ 12500	71.48 ~ 81.94	375 ~ 1250	51.48 ~ 61.94
Above 470	12500	81.94	1250	61.94

NOTE:

1. Where F is the frequency in MHz, the formula for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = $56.81818(F)-6136.3636$; for the band 260-470 MHz, uV/m at 3 meters = $41.6667(F)-7083.3333$. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.
2. The above field strength limits are specified at a distance of 3meters. The tighter limits apply at the band edges.

A D T

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB_uV/m) = 20 log Emission level (uV/m).
3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

A D T

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	May 09, 2008	May 08, 2009
HP Preamplifier	8449B	3008A01924	Sep. 03, 2008	Sep. 02, 2009
HP Preamplifier	8449B	3008A01292	Aug. 06, 2008	Aug. 05, 2009
ROHDE & SCHWARZ TEST RECEIVER	ESI7	836697/012	Dec. 04, 2008	Dec. 03, 2009
Schwarzbeck Antenna	VULB 9168	137	May 02, 2008	May 01, 2009
Schwarzbeck Antenna	VHBA 9123	480	Apr. 23, 2008	Apr. 22, 2009
EMCO Horn Antenna	3115	6714	Oct. 17, 2008	Oct. 16, 2009
EMCO Horn Antenna	3115	9312-4192	Apr. 21, 2008	Apr. 20, 2009
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	ADT_Radiated_V 7.6.15.9.2	NA	NA	NA
SUHNER RF cable	SF104-26.5	CABLE-CH6-17m -01	Aug. 22, 2008	Aug. 21, 2009
ROHDE & SCHWARZ Spectrum Analyzer	FSP 40	100035	Mar. 26, 2008	Mar. 25, 2009

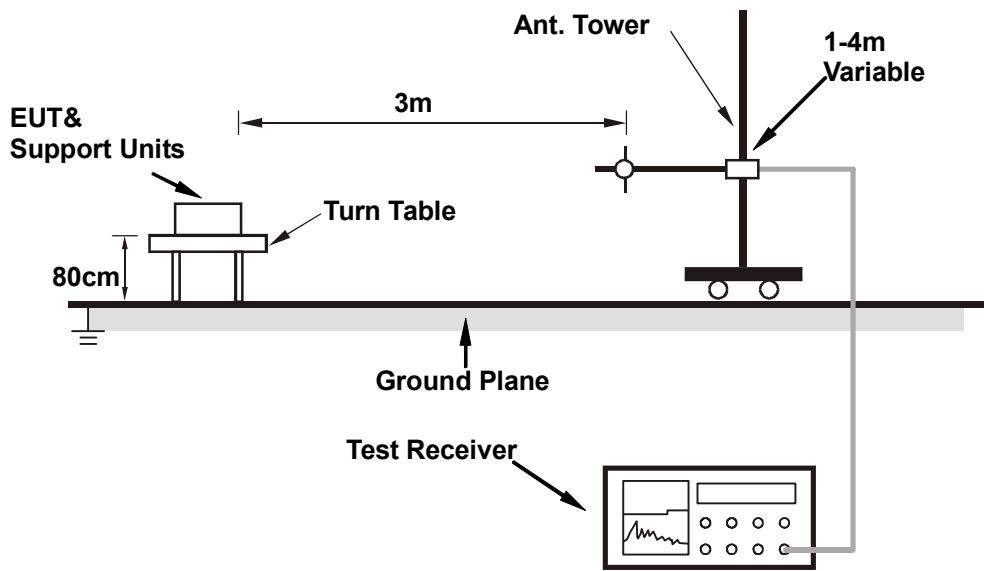
NOTE:

1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.
2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
3. The test was performed in Chamber No. 6.
4. The Industry Canada Reference No. IC 7450E-6.
5. The FCC Site Registration No. is 447212.

A D T

4.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak method or average method as specified and then reported in data sheet.


NOTE:

1. The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
2. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.

A D T

4.2.7 TEST RESULTS

RADIATED DATA: BELOW 1GHz

MODULATION TYPE	FSK	FREQUENCY RANGE	Below 1000MHz
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Quasi-Peak (QP) Peak (PK) Average (AV)
ENVIRONMENTAL CONDITIONS	18deg. C, 63% RH, 1016hPa	TESTED BY	Chad Lee

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	35.832	34.02 QP	60.80	-26.78	2.16 H	64	19.17	14.85
2	249.659	31.74 QP	60.80	-29.06	1.06 H	91	16.55	15.19
3	401.283	34.74 QP	60.80	-26.06	1.18 H	106	15.83	18.91
4	*433.920	92.24 PK	100.80	-8.56	1.74 H	270	72.53	19.71
5	*433.920	75.24 AV	80.80	-5.56	1.74 H	270	55.53	19.71
6	550.962	39.12 QP	60.80	-21.68	1.50 H	223	16.75	22.37
7	867.840	41.93 PK	80.80	-38.87	1.56 H	55	13.98	27.95
8	867.840	24.93 AV	60.80	-35.87	1.56 H	55	-3.02	27.95

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	68.878	30.90 QP	60.80	-29.90	2.00 V	217	18.26	12.64
2	234.108	31.40 QP	60.80	-29.40	1.50 V	10	17.32	14.08
3	*433.920	84.64 PK	100.80	-16.16	1.40 V	120	64.93	19.71
4	*433.920	67.64 AV	80.80	-13.16	1.40 V	120	47.93	19.71
5	517.916	33.38 QP	60.80	-27.42	2.00 V	340	11.73	21.65
6	550.962	36.33 QP	60.80	-24.47	1.00 V	139	13.96	22.37
7	867.840	36.45 PK	80.80	-44.35	1.56 V	55	8.50	27.95
8	867.840	19.45 AV	60.80	-41.35	1.56 V	55	-8.50	27.95

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. “*”: Fundamental frequency
6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:

$$20\log(\text{Duty cycle}) = 20\log \frac{14.11\text{ms} \times 1}{100 \text{ ms}} = -17\text{dB}$$

Please see page 22 for plotted duty.

A D T

RADIATED DATA: ABOVE 1GHz

MODULATION TYPE	FSK	FREQUENCY RANGE	1 ~ 25GHz
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak(PK) Average (AV)
ENVIRONMENTAL CONDITIONS	18deg. C, 63% RH, 1016hPa	TESTED BY	Chad Lee

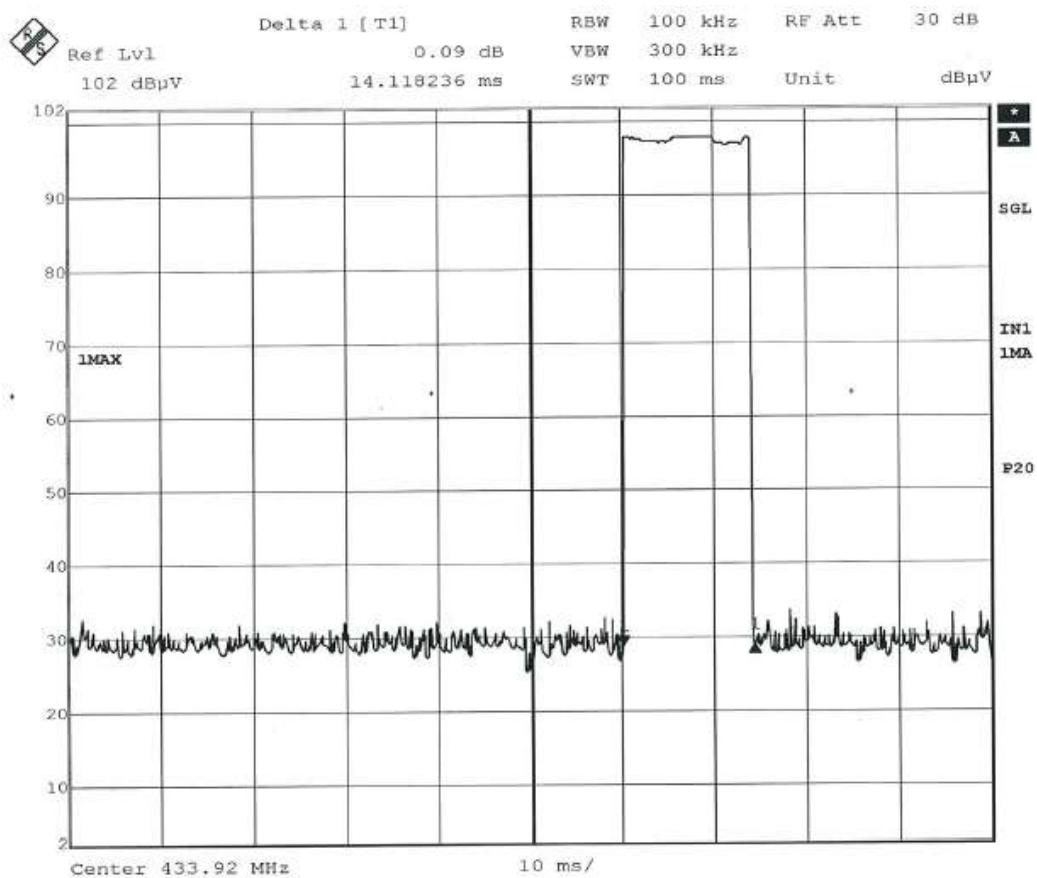
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1301.760	55.32 PK	80.80	-25.48	1.00 H	56	24.53	30.79
2	1301.760	38.32 AV	60.80	-22.48	1.00 H	56	7.53	30.79
3	2169.600	56.88 PK	80.80	-23.92	1.00 H	193	22.71	34.17
4	2169.600	39.88 AV	60.80	-20.92	1.00 H	193	5.71	34.17

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1301.760	53.88 PK	80.80	-26.92	1.38 V	268	23.09	30.79
2	1301.760	36.88 AV	60.80	-23.92	1.38 V	268	6.09	30.79
3	2169.600	50.88 PK	80.80	-29.92	1.00 V	154	16.71	34.17
4	2169.600	33.88 AV	60.80	-26.92	1.00 V	154	-0.29	34.17

REMARKS:


1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:

$$20\log(\text{Duty cycle}) = 20\log \frac{14.11\text{ms} \times 1}{100 \text{ ms}} = -17\text{dB}$$

Please see page 22 for plotted duty.

A D T

$$20\log(\text{Duty cycle}) = 20\log \frac{14.11\text{ms} \times 1}{100\text{ ms}} = -17\text{dB}$$

A D T

4.3 20dB OCCUPIED BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF EMISSION BANDWIDTH MEASUREMENT

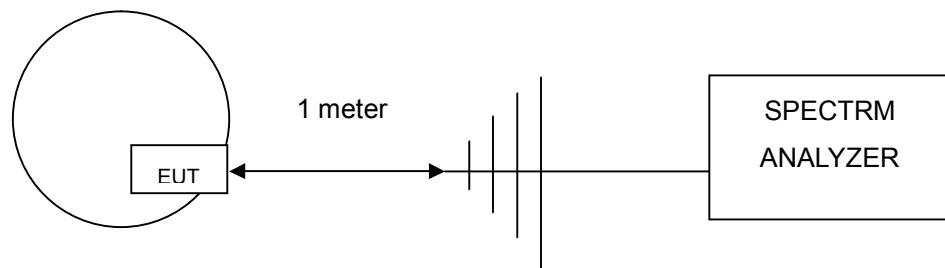
The bandwidth of the emission shall be no wider than 0.25% of the center frequency for device operating above 70 MHz and below 900 MHz.

Fundamental Frequency (MHz)	Limit of Emission Bandwidth(kHz)
433.92	1084.80

4.3.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
SPECTRUM ANALYZER	FSP 40	100035	Mar. 26, 2008	Mar. 25, 2009

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

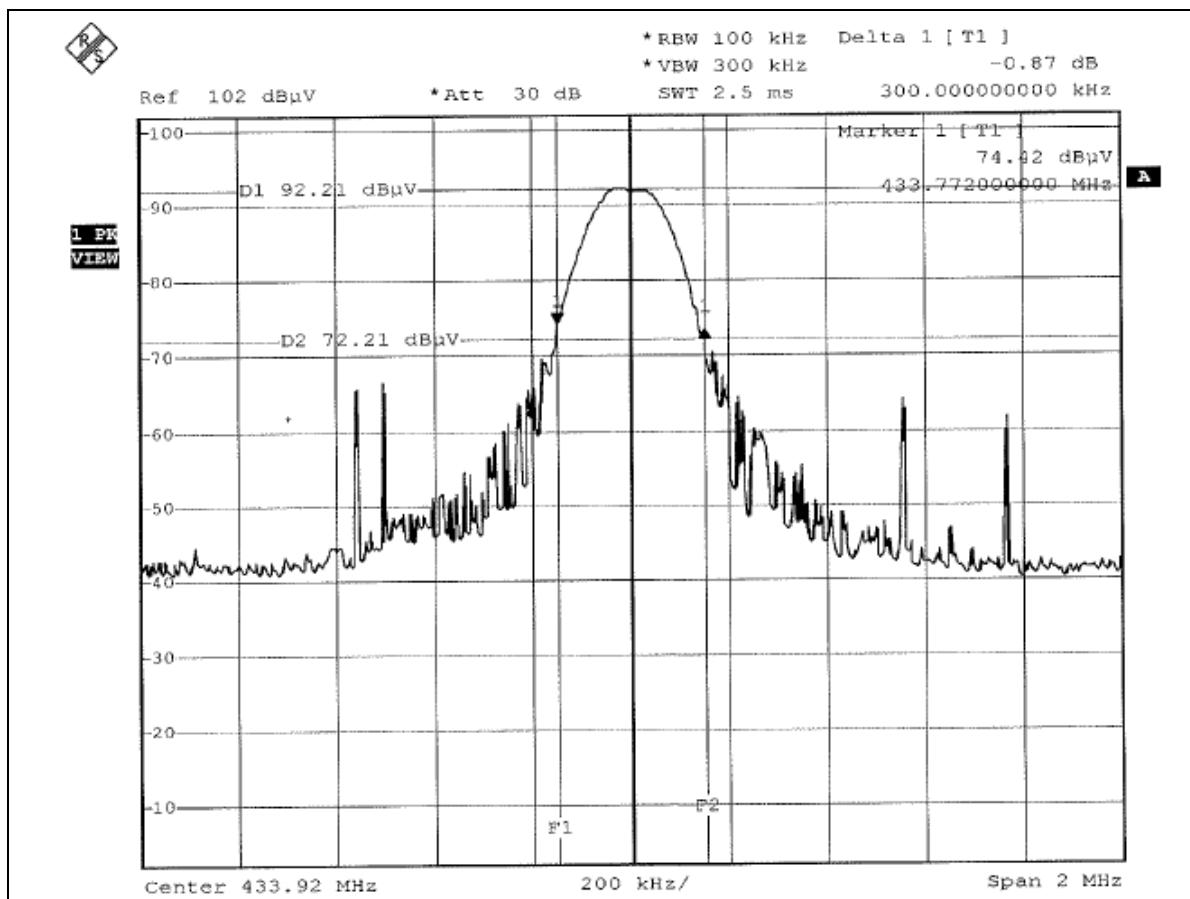

4.3.3 TEST PROCEDURE

- a. The EUT was placed on the turn table.
- b. The signal was coupled to the spectrum analyzer through an antenna.
- c. Set the resolution bandwidth to 100kHz and video bandwidth to 300kHz then select Peak function to scan the channel frequency.
- d. The emission bandwidth was measured and recorded.

4.3.4 DEVIATION FROM TEST STANDARD

No deviation

4.3.5 TEST SETUP


4.3.6 TEST RESULTS

Frequency (MHz)	20dB Bandwidth (kHz)	Maximum Limit (kHz)	PASS/FAIL
433.92	300.00	1084.80	PASS

The plot of test result is attached as below.

A D T

A D T

4.4 DEACTIVATION TIME

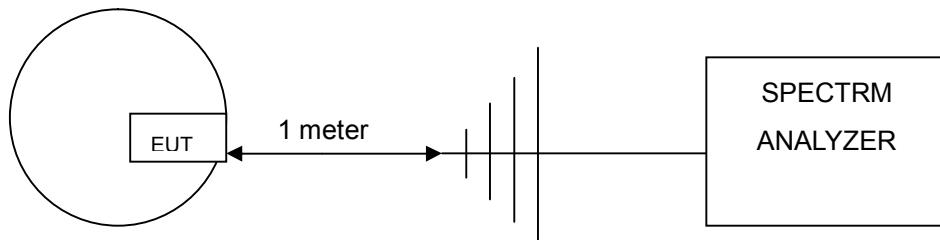
4.4.1 LIMITS OF DEACTIVATION TIME MEASUREMENT

A transmitter activated automatically shall cease transmission within 5 seconds after activation.

4.4.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
SPECTRUM ANALYZER	FSP 40	100035	Mar. 26, 2008	Mar. 25, 2009

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

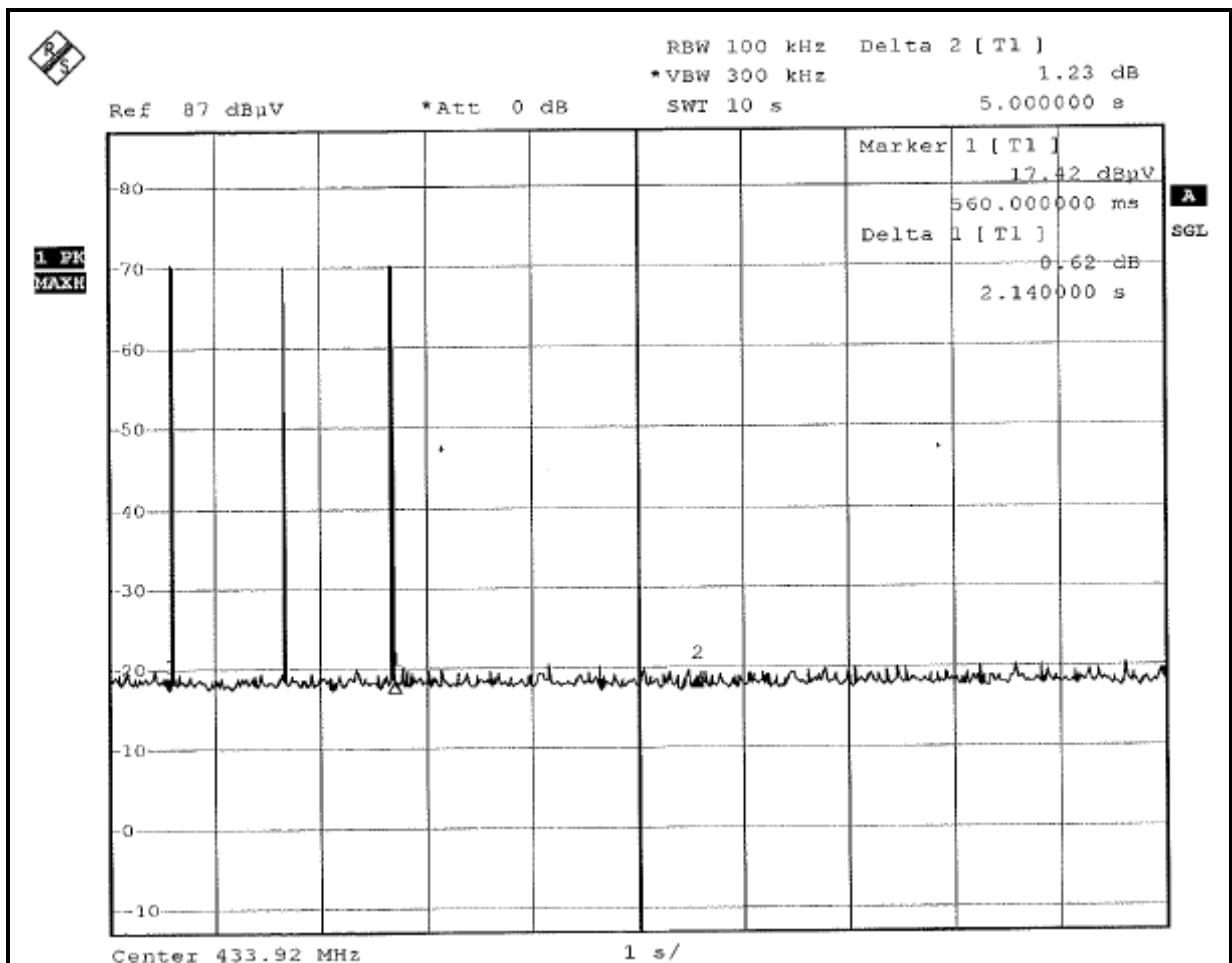

4.4.3 TEST PROCEDURES

- a. The EUT was placed on the turning table.
- b. The signal was coupled to the spectrum analyzer through an antenna.
- c. Set the resolution bandwidth to 100kHz and video bandwidth to 300kHz. The spectrum analyser was turned to the centre frequency of the transmitter's and the analyser's marker function was used to determine the duration of transmission.
- d. The transmission duration was measured and recorded.

4.4.4 DEVIATION FROM TEST STANDARD

No deviation

4.4.5 TEST SETUP


4.4.6 TEST RESULTS

Push button	Frequency (MHz)	Maximum limit (sec)	PASS/FAIL
1	433.92	5	PASS

The plots of test results are attached as below.

A D T

A D T

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

A D T

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, NVLAP
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA, CSA
R.O.C.	TAF, BSMI, NCC
Netherlands	Telefication
Singapore	GOST-ASIA(MOU)
Russia	CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343
Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232
Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also

A D T

7. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---