

FCC PART 15.247

TEST AND MEASUREMENT REPORT

For

Lysar Industries

PO Box 717, York, WESTERN AUSTRALIA, AUSTRALIA 6302

FCC ID:W5CEQH

Report Type: Original Report	Product Type: Wireless Digital Audio Transmitter
Test Engineer: <u>Victor Zhang</u>	
Report Number: <u>R0903104-247-Headset</u>	
Report Date: <u>2009-04-22</u> Boni Baniqued	
Reviewed By: <u>Sr. RF Engineer</u>	
Prepared By: (66)	Bay Area Compliance Laboratories Corp. 1274 Anvilwood Ave Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732 9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government.

* This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk “*” (Rev. 2)

TABLE OF CONTENTS

1	GENERAL INFORMATION	6
1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	6
1.2	MECHANICAL DESCRIPTION OF EUT	6
1.3	EUT PHOTOGRAPH	6
1.4	OBJECTIVE	6
1.5	RELATED SUBMITTAL(S)/GRANT(S).....	7
1.6	TEST METHODOLOGY	7
1.7	MEASUREMENT UNCERTAINTY.....	7
1.8	TEST FACILITY	7
2	SYSTEM TEST CONFIGURATION	8
2.1	JUSTIFICATION	8
2.2	EUT EXERCISE SOFTWARE	8
2.3	SPECIAL ACCESSORIES.....	8
2.4	EQUIPMENT MODIFICATIONS	8
2.5	LOCAL SUPPORT EQUIPMENT.....	8
2.6	INTERNAL CONFIGURATION	8
3	SUMMARY OF TEST RESULTS FOR FCC PART 15	9
4	§15.203 - ANTENNA REQUIREMENT	10
4.1	APPLICABLE STANDARD	10
4.2	ANTENNA CONNECTED CONSTRUCTION	10
5	§15.207 – CONDUCTED EMISSIONS.....	11
5.1	APPLICABLE STANDARD	11
5.2	EUT SETUP	11
5.3	TEST PROCEDURE	11
5.4	TEST EQUIPMENT LIST AND DETAILS.....	12
5.5	ENVIRONMENTAL CONDITIONS.....	12
5.6	SUMMARY OF TEST RESULTS	12
5.7	CONDUCTED EMISSIONS TEST PLOTS AND DATA.....	13
6	§15.205, §15.209 & §15.247- RADIATED EMISSIONS.....	15
6.1	APPLICABLE STANDARD:	15
6.2	TEST SETUP	16
6.3	TEST EQUIPMENT LIST AND DETAILS.....	16
6.4	TEST SETUP DIAGRAM	17
6.5	ENVIRONMENTAL CONDITIONS.....	17
6.6	TEST PROCEDURE	18
6.7	CORRECTED AMPLITUDE & MARGIN CALCULATION	18
6.8	SUMMARY OF TEST RESULTS	19
6.9	RADIATED EMISSIONS TEST RESULT DATA:	20
7	§15.247 (A) (1) – HOPPING CHANNEL BANDWIDTH.....	23
7.1	APPLICABLE STANDARD	23
7.2	MEASUREMENT PROCEDURE.....	23
7.3	TEST EQUIPMENT LIST AND DETAILS.....	23
7.4	TEST SETUP DIAGRAM	24
7.5	ENVIRONMENTAL CONDITIONS.....	24
7.6	MEASUREMENT RESULTS.....	24

8	§15.247 (A) (1) - HOPPING CHANNEL SEPARATION.....	27
8.1	APPLICABLE STANDARD	27
8.2	MEASUREMENT PROCEDURE.....	27
8.3	TEST EQUIPMENT LIST AND DETAILS.....	27
8.4	TEST SETUP DIAGRAM	28
8.5	ENVIRONMENTAL CONDITIONS.....	28
8.6	MEASUREMENT RESULTS.....	28
9	§15.247 (A) (1) (III) - NUMBER OF HOPPING FREQUENCIES USED.....	31
9.1	APPLICABLE STANDARD	31
9.2	MEASUREMENT PROCEDURE.....	31
9.3	TEST EQUIPMENT LIST AND DETAILS.....	31
9.4	TEST SETUP DIAGRAM	32
9.5	ENVIRONMENTAL CONDITIONS.....	32
9.6	MEASUREMENT RESULT:.....	32
10	§15.247(A) (1) (III) - DWELL TIME	35
10.1	APPLICABLE STANDARD	35
10.2	MEASUREMENT PROCEDURE.....	35
10.3	TEST EQUIPMENT LIST AND DETAILS.....	35
10.4	TEST SETUP DIAGRAM	36
10.5	ENVIRONMENTAL CONDITIONS.....	36
10.6	MEASUREMENT RESULTS:	37
11	§15.247(B) (1) - MAXIMUM PEAK OUTPUT POWER.....	39
11.1	APPLICABLE STANDARD	39
11.2	MEASUREMENT PROCEDURE.....	39
11.3	TEST EQUIPMENT LIST AND DETAILS.....	40
11.4	TEST SETUP DIAGRAM	40
11.5	ENVIRONMENTAL CONDITIONS.....	40
11.6	MEASUREMENT RESULT	41
12	§15.247 (D) - 100 KHZ BANDWIDTH OF BAND EDGES	42
12.1	APPLICABLE STANDARD	42
12.2	MEASUREMENT PROCEDURE.....	42
12.3	TEST EQUIPMENT LIST AND DETAILS.....	42
12.4	TEST SETUP DIAGRAM	43
12.5	ENVIRONMENTAL CONDITIONS.....	43
13	§ 15.247 (I) & § 2.1093 - RF EXPOSURE	45
13.1	APPLICABLE STANDARD	45
13.2	CONCLUSION.....	45
14	EXHIBIT A – FCC PRODUCT LABELING AND WARNING STATEMENT.....	46
14.1	FCC ID LABEL REQUIREMENT	46
14.2	PROPOSED LABEL LOCATION ON EUT	46
15	EXHIBIT B - TEST SETUP PHOTOGRAPHS	47
15.1	CONDUCTED EMISSIONS – FRONT VIEW	47
15.2	CONDUCTED EMISSIONS - SIDE VIEW	47
15.3	RADIATED EMISSIONS (30 MHz – 1 GHz) - FRONT VIEW	48
15.4	RADIATED EMISSIONS (30 MHz – 1 GHz) – REAR VIEW	48
15.5	RADIATED EMISSIONS (ABOVE 1 GHz) - FRONT VIEW	49
15.6	RADIATED EMISSIONS (ABOVE 1 GHz) - REAR VIEW	49
16	EXHIBIT C - EUT PHOTOGRAPHS.....	50
16.1	EUT FRONT VIEW	50
16.2	EUT TOP VIEW	50

16.3	EUT SIDE VIEW.....	51
16.4	EUT PORT VIEW.....	51
16.5	EUT AC/DC CHARGING ONLY ADAPTER VIEW.....	52
16.6	EUT COVER OFF VIEW	53
16.7	EUT BOARD ASSEMBLY TOP VIEW	53
16.8	EUT BOARD ASSEMBLY BOTTOM VIEW	54

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R0903104-247-Headset	Original	2009-03-23
1	R0903104-247-Headset	Revised Typo	2009-04-22

1 GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

The *Lysar Industries* Product FCC ID: W5CEQH, the “EUT” as referred to in this report is Wireless Digital Audio Transmitter. This Wireless Communications system is a state of the art audio communication device specifically designed for Aviation headset applications in high noise open cockpit aircraft. The Headset is an extremely compact and includes re-chargeable batteries and active noise cancelling circuits for optimum listening pleasure. The headset features only essential controls to ensure ease of operation. Advanced configuration and operations can be accessed using the simple voice menu controls. This Wireless communication system works from 2401.5MHz to 2480.5MHz.

1.2 Mechanical Description of EUT

The *EUT* measures as follows:

Headset: 145mm L x 110 mm W x 215 mm H, and weighs approximately 465.5g.

* The test data gathered are from typical production sample, serial number: R0903104-1, assigned by BACL.

1.3 EUT Photograph

Headset

Please refer to Exhibit C for more EUT photographs.

1.4 Objective

This type approval report is prepared on behalf of *Lysar Industries* in accordance with Part 2, Subpart J, Part 15, Subparts A, B, and C.

1.5 Related Submittal(s)/Grant(s)

N/A

1.6 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.4-2003.

1.7 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values range from ± 2.0 for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL.

Detailed instrumentation measurement uncertainties can be found in BACL report QAP-018.

1.8 Test Facility

The semi-anechoic chambers used by BACL to collect radiated and conducted emissions measurement data is located in the building at it's facility in Sunnyvale, California, USA.

BACL's test sites have been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC registration number: 90464 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at <http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm>

2 SYSTEM TEST CONFIGURATION

2.1 Justification

The system was configured for testing in accordance with ANSI C63.4-2003. The EUT was tested in the testing mode to represent *worst-case* results during the final qualification test.

2.2 EUT Exercise Software

The software is provided by customer. The EUT exercise program used during radiated testing was designed to exercise the system components.

2.3 Special Accessories

N/A.

2.4 Equipment Modifications

No modifications were made to the EUT.

2.5 Local Support Equipment

Manufacturer	Description	Model	Serial Number
Compaq	Laptop	EVO N610C	7E32KT81F03C
Everfine	DC Power Supply	WY305	809024

2.6 Internal Configuration

Manufacturer	Description	Model	Serial Number
Lysar Industries	Main PCB Board	EQ1 R5	-

3 SUMMARY OF TEST RESULTS FOR FCC PART 15

FCC Rules	Description of Test	Results
§15.203	Antenna Requirements	Compliant
§15.207 (a)	Conducted Emissions	Compliant
§ 15.205	Restricted Bands	Compliant
§15.209	Radiated Emissions	Compliant
§ 15.109	Receiver Spurious Emission	Compliant
§15.247 (a) (1)	Channel Bandwidth	Compliant
§15.247 (a) (1)	Hopping Channel Separation	Compliant
§15.247 (a) (1) (iii)	Number of Hopping Frequencies Used	Compliant
§15.247 (a) (1) (iii)	Dwell Time	Compliant
§15.247 (b) (1)	Maximum Peak Output Power	Compliant
§ 15.247 (d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§ 15.247 (i) & §2.1093	RF Exposure	Compliant

4 §15.203 - ANTENNA REQUIREMENT

4.1 Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Refer to statement below for compliance.

“The antenna for this device is an integral antenna that the end user cannot access. Furthermore the device is for indoor/outdoor use as detailed in the Users Manual and Operational Description”.

4.2 Antenna Connected Construction

The antenna for this device is an integral antenna that the end user cannot access. It is fully enclosed by the EUT chassis and removal/modification would result in irreparable damage to the device.

Compliant

N/A

5 §15.207 – CONDUCTED EMISSIONS

5.1 Applicable Standard

According to FCC §15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency Range (MHz)	Conducted limit (dBuV)	
	Quasi-Peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

**Decreases with the logarithm of the frequency*

5.2 EUT Setup

The conducted emissions tests were performed in the 10-meter test chamber, using the setup in accordance with ANSI C63.4-2003 measurement procedures. The specifications used were in accordance with FCC Part 15.207 limits.

The EUT's adapter was connected to a 120 V, 60 Hz AC mains power source.

5.3 Test Procedure

During the conducted emissions test, the power cord of the EUT was connected to the mains outlet of the LISN.

Maximizing procedure was performed on the six (6) highest provided emissions of the EUT.

All data was recorded in the quasi-peak and average detection mode. Quasi-Peak readings are distinguished with a "QP". Average readings are distinguished with an "Ave".

5.4 Test Equipment List and Details

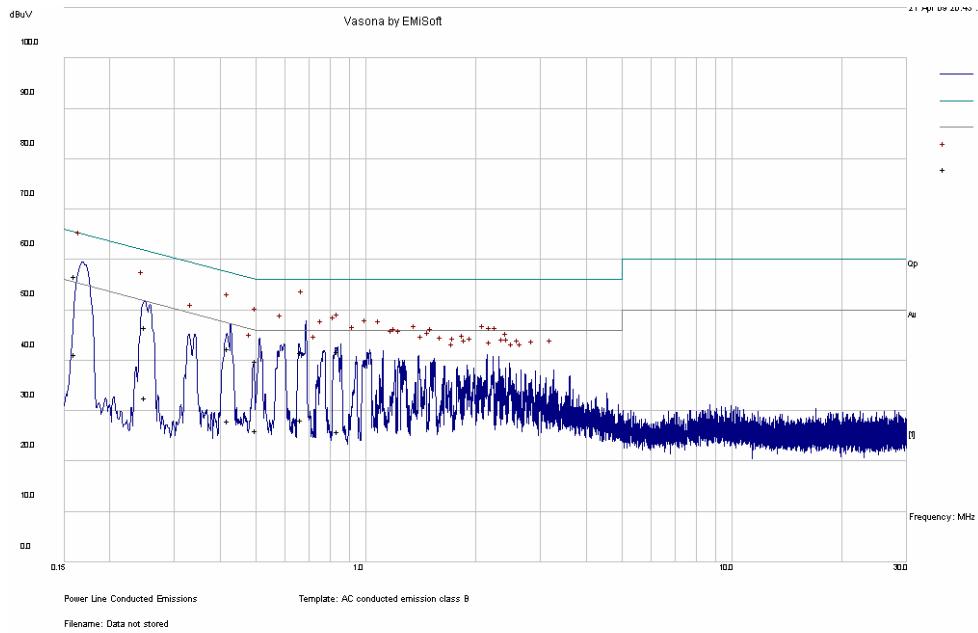
Manufacturer	Description	Model	Serial Number	Calibration Date
Solar Electronics	LISN	9252-R-24-BNC	511205	2008-07-31
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.595 0K03	100338	2008-05-07

***Statement of Traceability:** BACL Corp. attests that all calibrations have been performed according to NVLAP requirements, traceable to the NIST.

5.5 Environmental Conditions

Temperature:	21-22 °C
Relative Humidity:	43-44 %
ATM Pressure:	101.2-102.1 kPa

**The testing was performed by Victor Zhang from 2009-03-11 to 2009-03-21.*

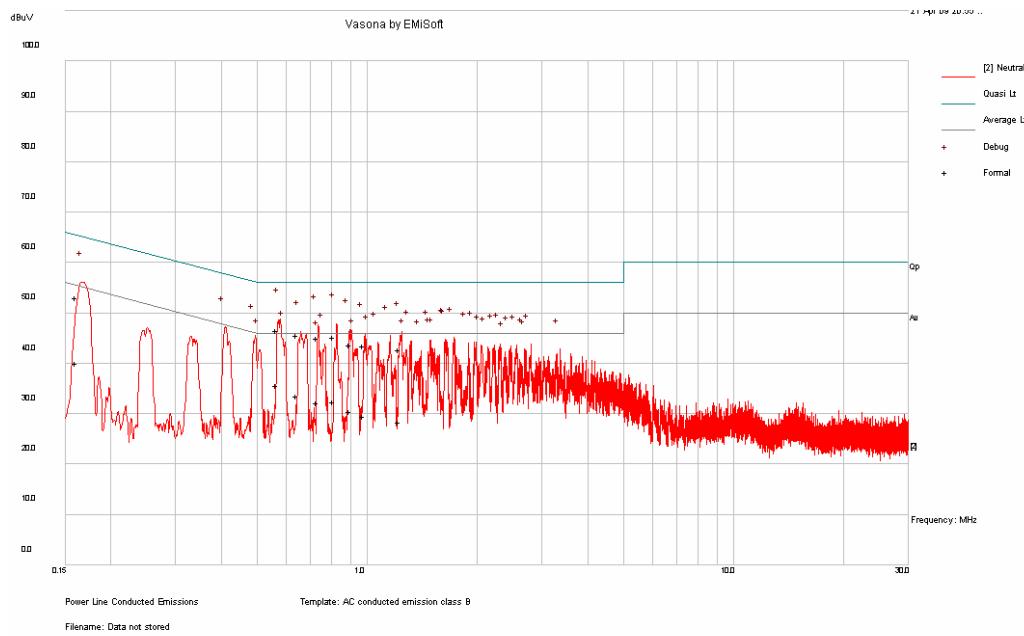

5.6 Summary of Test Results

According to the data hereinafter, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.207 standard's Conducted emissions limits for class B devices, and had the worst margin of:

Connection: AC/DC adapter connected to 120 V/ 60 Hz			
Margin (dB)	Frequency (MHz)	Conductor (Line/Neutral)	Range (MHz)
-8.56	0.163674	Line	0.150 to 30 MHz
-9.39	0.576354	Neutral	0.150 to 30 MHz

5.7 Conducted Emissions Test Plots and Data

120 V/60 Hz Line:


Quasi-Peak Measurements

Frequency (MHz)	Quasi-Peak (dB μ V)	Conductor (Line/Neutral)	Limit (dB μ V)	Margin (dB)
0.163674	56.72	Line	65.28	-8.56
0.853389	41.68	Line	56.0	-14.32
0.681798	41.52	Line	56.0	-14.48
0.428196	42.27	Line	57.29	-15.02
0.254133	46.5	Line	61.62	-15.12
0.5124	39.95	Line	56.0	-16.05

Average Measurements

Frequency (MHz)	Average (dB μ V)	Conductor (Line/Neutral)	Limit (dB μ V)	Margin (dB)
0.163674	41.18	Line	55.28	-14.09
0.681798	28.27	Line	46.0	-17.73
0.254133	32.67	Line	51.62	-18.95
0.428196	28.07	Line	47.29	-19.22
0.5124	26.09	Line	46.0	-19.91
0.853389	25.87	Line	46.0	-20.13

120 V/60 Hz Neutral

Quasi-Peak Measurements

Frequency (MHz)	Quasi-Peak (dB μ V)	Conductor (Line/Neutral)	Limit (dB μ V)	Margin (dB)
0.576354	46.61	Neutral	56	-9.39
0.656757	45.62	Neutral	56	-10.38
0.824631	45.14	Neutral	56	-10.86
0.742749	45.08	Neutral	56	-10.92
0.163674	53.05	Neutral	65.28	-12.22
0.913833	43.6	Neutral	56	-12.4

Average Measurements

Frequency (MHz)	Average (dB μ V)	Conductor (Line/Neutral)	Limit (dB μ V)	Margin (dB)
0.576354	35.67	Neutral	46	-10.33
0.656757	33.49	Neutral	46	-12.51
0.824631	32.43	Neutral	46	-13.57
0.742749	32.23	Neutral	46	-13.77
0.163674	40.15	Neutral	55.28	-15.13
0.913833	30.44	Neutral	46	-15.56

6 §15.205, §15.209 & §15.247- RADIATED EMISSIONS

6.1 Applicable Standard:

FCC §15.205 Restricted bands of operation

(a) Except as shown in 15.205 paragraphs (d), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	MHz	GHz	GHz
0.090 – 0.110	8.291 – 8.294	16.69475 – 16.69525	156.7 – 156.9	1435 – 1626.5	3.332 – 3.339	10.6 – 12.7
0.495 – 0.505	8.362 – 8.366	25.5 – 25.67	162.0125 – 167.17	1645.5 – 1646.5	3.3458 – 3.358	13.25 – 13.4
2.1735 – 2.1905	8.37625 – 8.38675	37.5 – 38.25	167.72 – 173.2	1660 – 1710	3.600 – 4.400	14.47 – 14.5
4.125 – 4.128	8.41425 – 8.41475	73 – 74.6	240 – 285	1718.8 – 1722.2	4.5 – 5.15	15.35 – 16.2
4.17725 – 4.17775	12.29 – 12.293	74.8 – 75.2	322 – 335.4	2200 – 2300	5.35 – 5.46	17.7 – 21.4
4.20725 – 4.20775	12.51975 – 12.52025	108 – 121.94	399.9 – 410	2310 – 2390	7.25 – 7.75	22.01 – 23.12
6.215 – 6.218	12.57675 – 12.57725	123 – 138	608 – 614	2483.5 – 2500	8.025 – 8.5	23.6 – 24.0
6.26775 – 6.26825	13.36 – 13.41	149.9 – 150.05	960 – 1240	2690 – 2900	9.0 – 9.2	31.2 – 31.8
6.31175 – 6.31225	16.42 – 16.423	156.52475 – 156.52525	1300 – 1427	3260 – 3267	9.3 – 9.5	36.43 – 36.5
						Above 38.6

(b) Except as provided in 15.205 paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator.

Compliant

N/A

FCC §15.209 Radiated emission limits, general requirements.

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

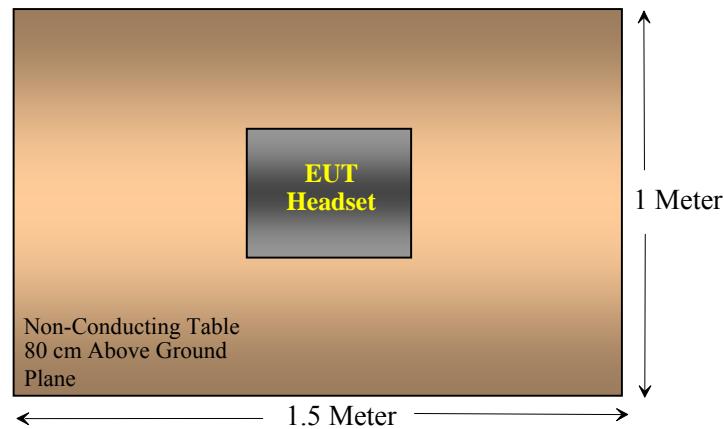
*** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.*

(b) In the emission table above, the tighter limit applies at the band edges.

Compliant

N/A

6.2 Test Setup


The radiated emissions tests were performed in the 3-meter semi-anechoic chamber test site, using the setup in accordance with ANSI C63.4-2003. The specification used was the FCC 15 Subpart C limits.

6.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Mini-Circuits	Pre-amplifier	ZKL-2	7786100643	2009-03-03
HP	Pre-amplifier	8449B	3147A00400	2008-10-22
Sunol Science Corp	Combination Antenna	JB1 Antenna	A103105-3	2008-03-25
A. H. Systems	Antenna, Horn, DRG	DRG-118/A	1132	2008-07-28
Agilent	Spectrum Analyzer	E4440A	MY44303352	2008-04-28

Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

6.4 Test Setup Diagram

6.5 Environmental Conditions

Temperature:	21-22 °C
Relative Humidity:	43-44 %
ATM Pressure:	101.2-102.1 kPa

*The testing was performed by Victor Zhang from 2009-03-11 to 2009-03-21.

6.6 Test Procedure

For the radiated emissions test, the EUT, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

$$\text{RBW} = 100 \text{ kHz} / \text{VBW} = 300 \text{ kHz} / \text{Sweep} = \text{Auto}$$

Above 1000 MHz:

- (1) Peak: $\text{RBW} = 1\text{MHz} / \text{VBW} = 1\text{MHz} / \text{Sweep} = \text{Auto}$
- (2) Average: $\text{RBW} = 1\text{MHz} / \text{VBW} = 10\text{Hz} / \text{Sweep} = \text{Auto}$

6.7 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Indicated Reading} + \text{Antenna Factor} + \text{Cable Factor} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corrected Amplitude} - \text{Limit}$$

6.8 Summary of Test Results

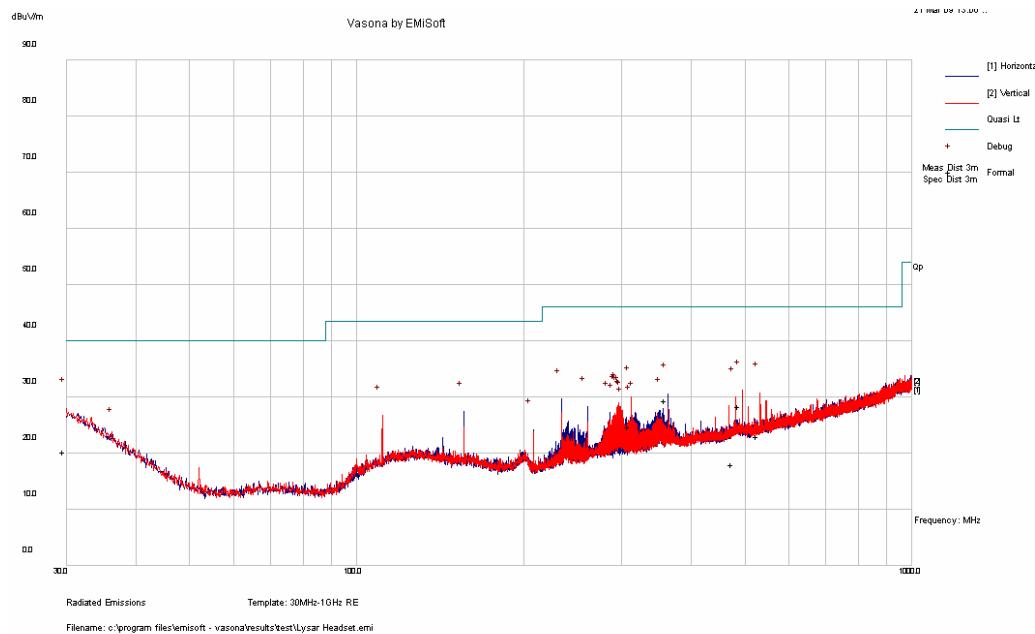
According to the data hereinafter, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247 standard's radiated emissions limits for class B devices, and had the worst margin of:

30-1000 MHz:

Worst case

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Channel, Range
-16.58	364.0097	Horizontal	Middle, 30 MHz – 1GHz

Above 1GHz:


Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Channel, Range
-9.53	4803	Horizontal	Low, 1~25 GHz
-9.37	4883	Horizontal	Mid, 1~25 GHz
-13.28	4961	Horizontal	High, 1~ 25 GHz

Please refer to the following table and plots for specific test result details

6.9 Radiated Emissions Test Result Data:

30 MHz – 1 GHz:

Radiated Emission at 3 meters, *Worst-case*

Frequency (MHz)	Quasi-Peak (dB μ V/m)	Antenna Height (cm)	Correction Factor (dB)	Antenna Polarity (H/V)	Azimuth (degrees)	Part 15C Limit (dB μ V/m)	Margin (dB)
364.0097	29.42	100	-1.13	H	234	46	-16.58
494.0058	28.30	100	1.01	V	318	46	-17.70
30.0000	20.32	161	4.10	V	46	40	-19.68
312.0076	24.68	172	-2.18	V	154	46	-21.32
532.9913	23.01	119	1.25	V	23	46	-22.99
481.0544	17.95	301	0.97	V	59	46	-28.05

1 GHz – 25 GHz:

Radiated Emission at 3 meters

Low Channel 2401.5 MHz

Frequency (MHz)	S.A. Reading (dB μ V)	Azimuth Degrees	Test Antenna		Ant. & Amp. Factor (dB/m)	Cable Loss (dB)	Duty Cycle Factor (dB)	Cord. Reading (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Comments
			Height (m)	Polar. (H/V)							
4803	63.08	273	1.23	H	-6.83	8.22	0	64.47	74	-9.53	Peak
4803	60.85	326	1.32	V	-6.83	8.22	0	62.24	74	-11.76	Peak
4803	63.08	273	1.23	H	-6.83	8.22	28.2	36.27	54	-17.73	Ave
4803	60.85	326	1.32	V	-6.83	8.22	28.2	34.04	54	-19.96	Ave
7204.5	44.04	223	1.13	H	0.09	9.74	0	53.87	74	-20.13	Peak
7204.5	40.23	167	1.54	V	0.09	9.74	0	50.06	74	-23.94	Peak
7204.5	44.04	223	1.13	H	0.09	9.74	28.2	25.67	54	-28.33	Ave
7204.5	40.23	167	1.54	V	0.09	9.74	28.2	21.86	54	-32.14	Ave

Middle Channel 2441.5 MHz

Frequency (MHz)	S.A. Reading (dB μ V)	Azimuth Degrees	Test Antenna		Ant. & Amp. Factor (dB/m)	Cable Loss (dB)	Duty Cycle Factor (dB)	Cord. Reading (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Comments
			Height (m)	Polar. (H/V)							
4883	62.87	275	1.22	H	-6.53	8.29	0	64.63	74	-9.37	Peak
4883	59.74	62	1.25	V	-6.53	8.29	0	61.50	74	-12.50	Peak
4883	62.87	275	1.22	H	-6.53	8.29	28.2	36.43	54	-17.57	Ave
7324.5	44.85	215	1.0	H	0.31	9.83	0	54.99	74	-19.01	Peak
4883	59.74	62	1.25	V	-6.53	8.29	28.2	33.30	54	-20.70	Ave
7324.5	42.9	327	1.0	V	0.31	9.83	0	53.04	74	-20.96	Peak
7324.5	44.85	215	1.0	H	0.31	9.83	28.2	26.79	54	-27.21	Ave
7324.5	42.9	327	1.0	V	0.31	9.83	28.2	24.84	54	-29.16	Ave

High Channel 2480.5 MHz

Frequency (MHz)	S.A. Reading (dB μ V)	Azimuth Degrees	Test Antenna		Ant. & Amp. Factor (dB/m)	Cable Loss (dB)	Duty Cycle Factor (dB)	Cord. Reading (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Comments
			Height (m)	Polar. (H/V)							
4961	58.60	274	1.23	H	-6.24	8.36	0	60.72	74	-13.28	Peak
4961	54.28	50	1.0	V	-6.24	8.36	0	56.4	74	-17.60	Peak
7441.5	44.96	211	1.24	H	0.62	9.92	0	55.5	74	-18.50	Peak
4961	58.60	274	1.23	H	-6.24	8.36	28.2	32.52	54	-21.48	Ave
7441.5	39.31	337	1.05	V	0.62	9.92	0	49.85	74	-24.15	Peak
4961	54.28	50	1.0	V	-6.24	8.36	28.2	28.20	54	-25.80	Ave
7441.5	44.96	211	1.24	H	0.62	9.92	28.2	27.30	54	-26.70	Ave
7441.5	39.31	337	1.05	V	0.62	8.36	28.2	20.09	54	-33.91	Ave

Base on the Manufacture's information, the average value can be calculated by a "Duty Cycle Correction Factor" as follows:

The dwell time is less than 100ms and is $1/260=3.846$ ms

Duty Cycle correction factor = $20 \log (3.846/100) = -28.2$ dB

Restricted Band Edge (Near Band Edge): Low channel

Frequency (MHz)	S.A. Reading (dB μ V)	Azimuth Degrees	Test Antenna		Ant. & Amp. Factor (dB/m)	Cable Loss (dB)	Cord. Reading (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Comments
			Height (m)	Polar. (H/V)						
2337.349	37.25	255	1	H	-7.32	5.57	35.50	54	-18.50	Ave
2337.349	36.48	178	1	V	-7.32	5.57	34.73	54	-19.27	Ave
2337.349	43.21	255	1	H	-7.32	5.57	41.46	74	-32.54	Peak
2337.349	41.37	178	1	V	-7.32	5.57	39.62	74	-34.38	Peak

Restricted Band Edge (Near Band Edge): High channel

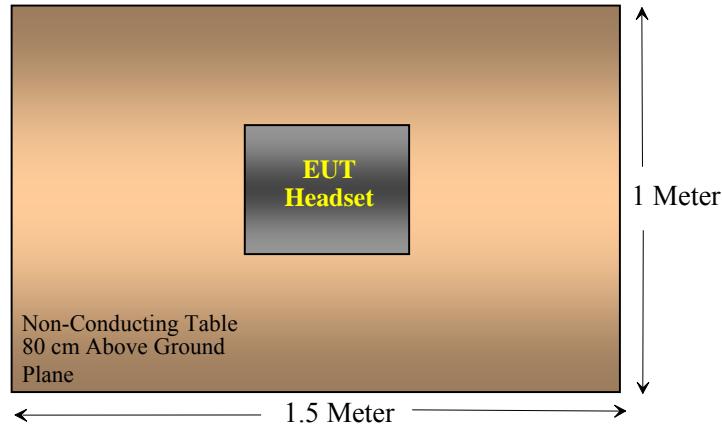
Frequency (MHz)	S.A. Reading (dB μ V)	Azimuth Degrees	Test Antenna		Ant. & Amp. Factor (dB/m)	Cable Loss (dB)	Cord. Reading (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Comments
			Height (m)	Polar. (H/V)						
2487.535	33.57	364	1	V	-6.96	5.76	32.37	54	-21.63	Ave
2484.807	53.20	190	1	H	-6.96	5.76	52.00	74	-22.00	Peak
2487.535	48.07	364	1	V	-6.96	5.76	46.87	74	-27.13	Peak
2484.807	36.42	190	1	H	-6.96	5.76	35.22	74	-38.78	Ave

7 §15.247 (a) (1) – HOPPING CHANNEL BANDWIDTH

7.1 Applicable Standard

According to §15.247(a) (1), the maximum 20 dB bandwidth of the hopping channel shall be presented.

7.2 Measurement Procedure


1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emissions bandwidth.
4. Repeat above procedures until all frequencies measured were complete.

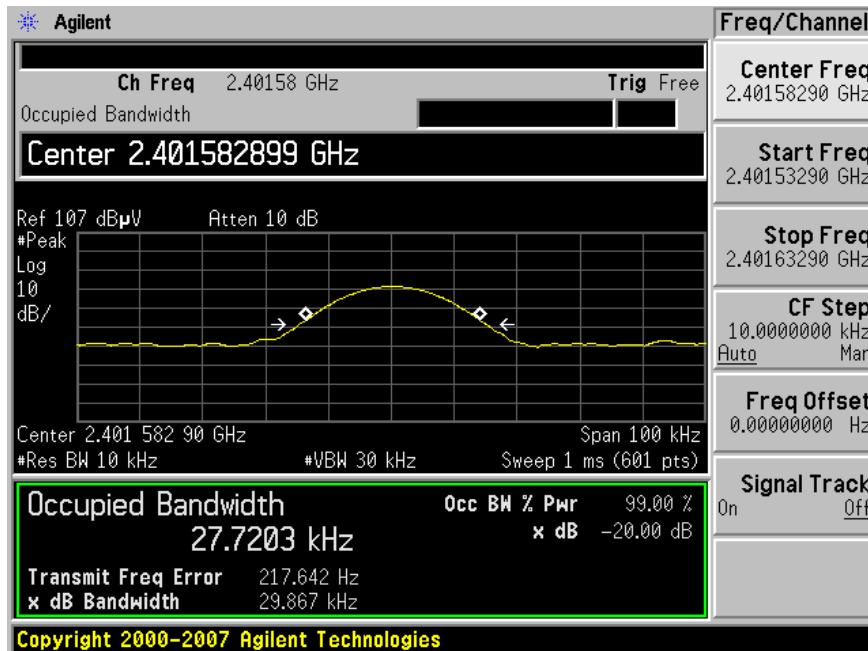
7.3 Test Equipment List and Details

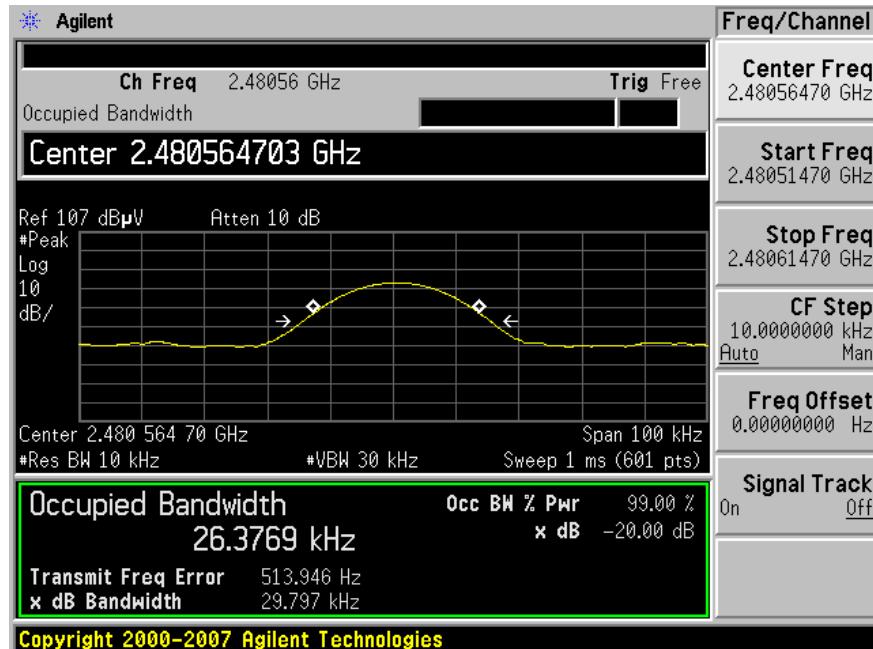
Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Mini-Circuits	Pre-amplifier	ZKL-2	7786100643	2009-03-03
HP	Pre-amplifier	8449B	3147A00400	2008-10-22
A. H. Systems	Antenna, Horn, DRG	DRG-118/A	1132	2008-07-28
Agilent	Spectrum Analyzer	E4440A	MY44303352	2008-04-28

* **Statement of Traceability:** BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

7.4 Test Setup Diagram

7.5 Environmental Conditions


Temperature:	21-22 °C
Relative Humidity:	43-44 %
ATM Pressure:	101.2-102.1 kPa


*The testing was performed by Victor Zhang from 2009-03-11 to 2009-03-21.

7.6 Measurement Results

Channel	Frequency (MHz)	20 dB Occupied Bandwidth (kHz)
Low	2401.5	29.867
Mid	2441.5	29.389
High	2480.5	29.797

Please refer to the following plots.

Low Channel**Middle Channel**

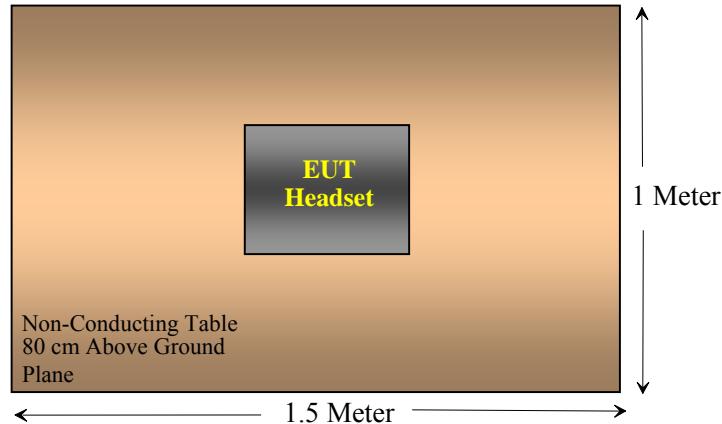
High Channel

8 §15.247 (a) (1) - HOPPING CHANNEL SEPARATION

8.1 Applicable Standard

According to §15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

8.2 Measurement Procedure


1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
2. Position the EUT on a bench without connection to measurement instrument Turn on the EUT and set it to any one convenient frequency within its operating range.
3. By using the Max-Hold function record the separation of two adjacent channels.
4. Measure the frequency difference of these two adjacent channels by SA MARK function, and then plot the result on SA screen.
5. Repeat above procedures until all frequencies measured were complete.

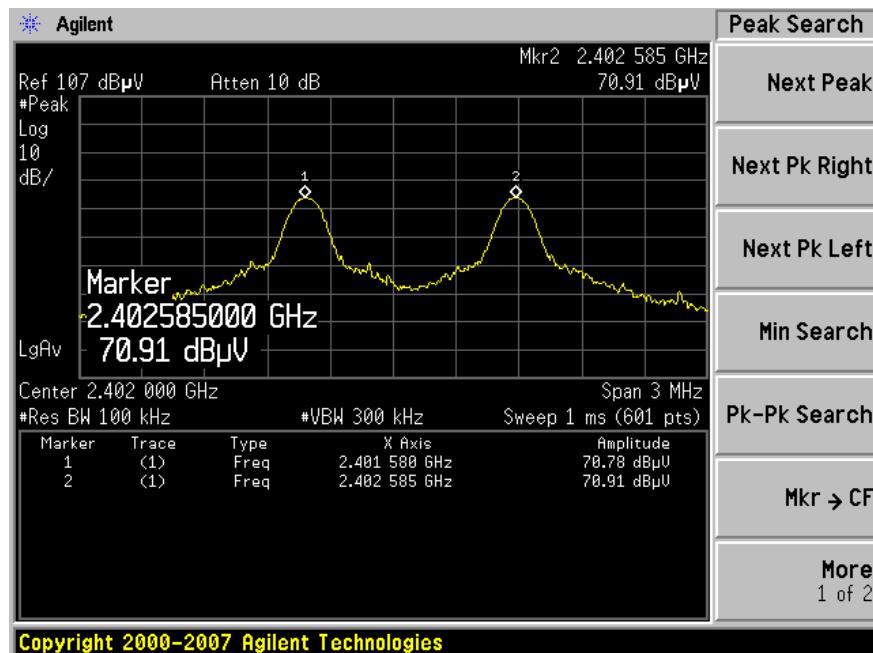
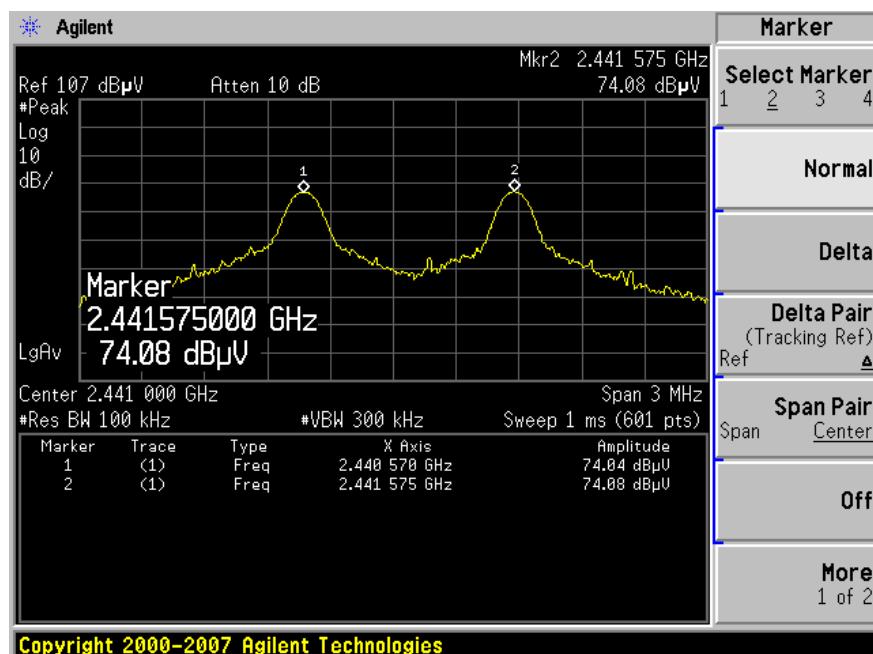
8.3 Test Equipment List and Details

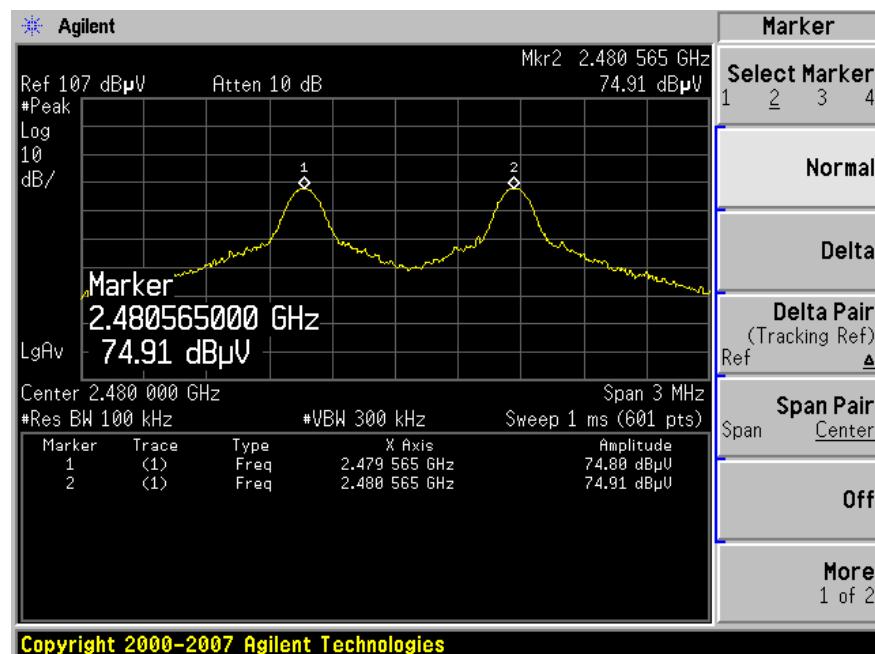
Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Mini-Circuits	Pre-amplifier	ZKL-2	7786100643	2009-03-03
HP	Pre-amplifier	8449B	3147A00400	2008-10-22
A. H. Systems	Antenna, Horn, DRG	DRG-118/A	1132	2008-07-28
Agilent	Spectrum Analyzer	E4440A	MY44303352	2008-04-28

* **Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

8.4 Test Setup Diagram

8.5 Environmental Conditions



Temperature:	21-22 °C
Relative Humidity:	43-44 %
ATM Pressure:	101.2-102.1 kPa


*The testing was performed by Victor Zhang from 2009-03-11 to 2009-03-21.

8.6 Measurement Results

Channel	Frequency (MHz)	Channel Separation (kHz)	Limit (> 20 dB BW) (kHz)
Low	2401.5	1005	29.867
Mid	2441.5	1005	29.389
High	2480.5	1005	29.797

Please refer to the following plots.

Low Channel**Middle Channel**

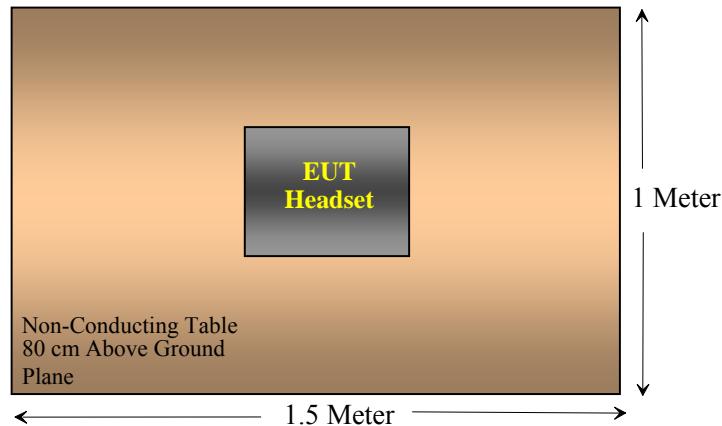
High Channel

9 §15.247 (a) (1) (iii) - NUMBER OF HOPPING FREQUENCIES USED

9.1 Applicable Standard

According to §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

9.2 Measurement Procedure


1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
2. Position the EUT on the bench without connection to measurement instrument. Turn on the EUT and set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set the SA on Max-Hold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
4. Set the SA on View mode and then plot the result on SA screen.
5. Repeat above procedures until all frequencies measured were complete.

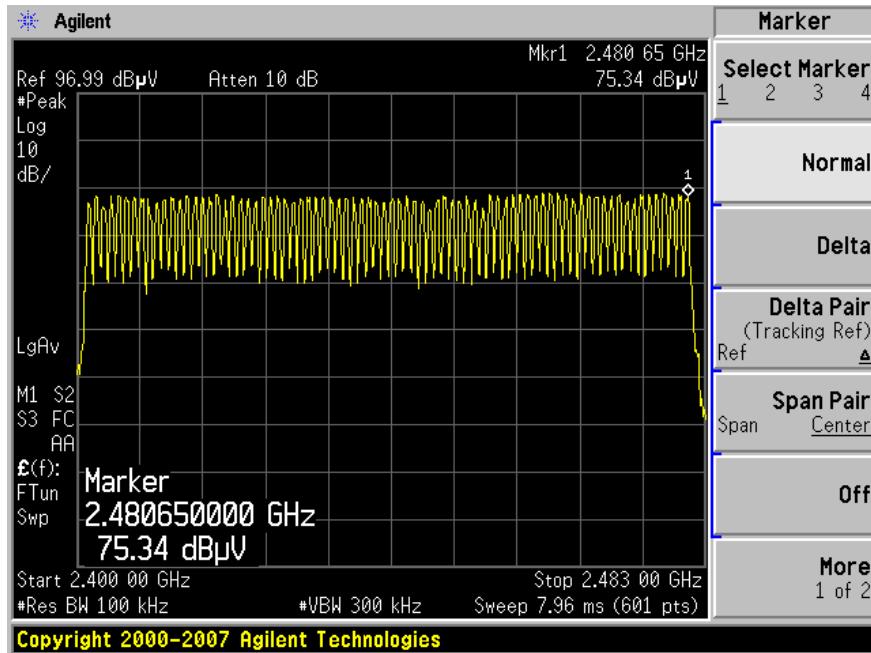
9.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Mini-Circuits	Pre-amplifier	ZKL-2	7786100643	2009-03-03
HP	Pre-amplifier	8449B	3147A00400	2008-10-22
A. H. Systems	Antenna, Horn, DRG	DRG-118/A	1132	2008-07-28
Agilent	Spectrum Analyzer	E4440A	MY44303352	2008-04-28

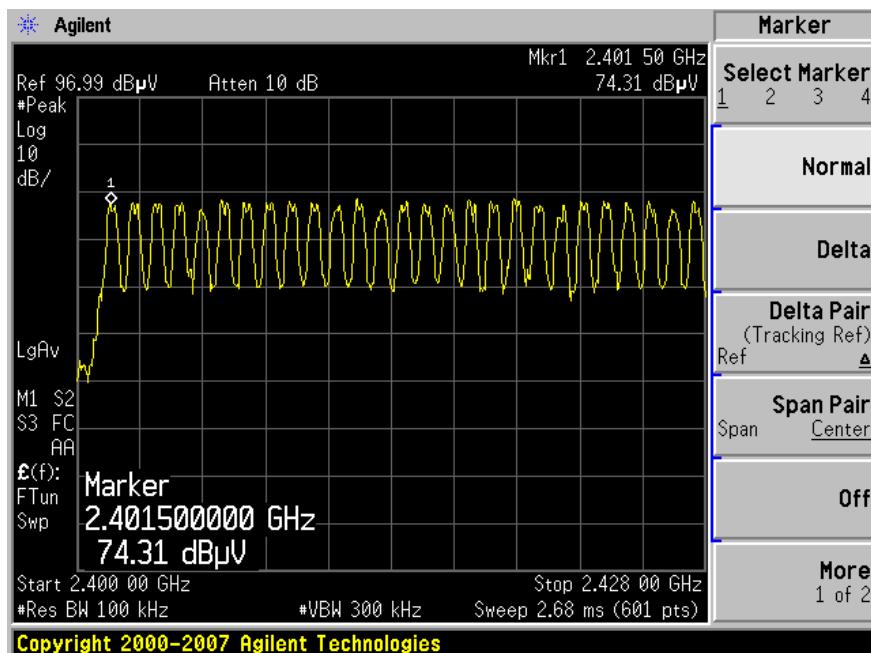
* **Statement of Traceability:** BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

9.4 Test Setup Diagram

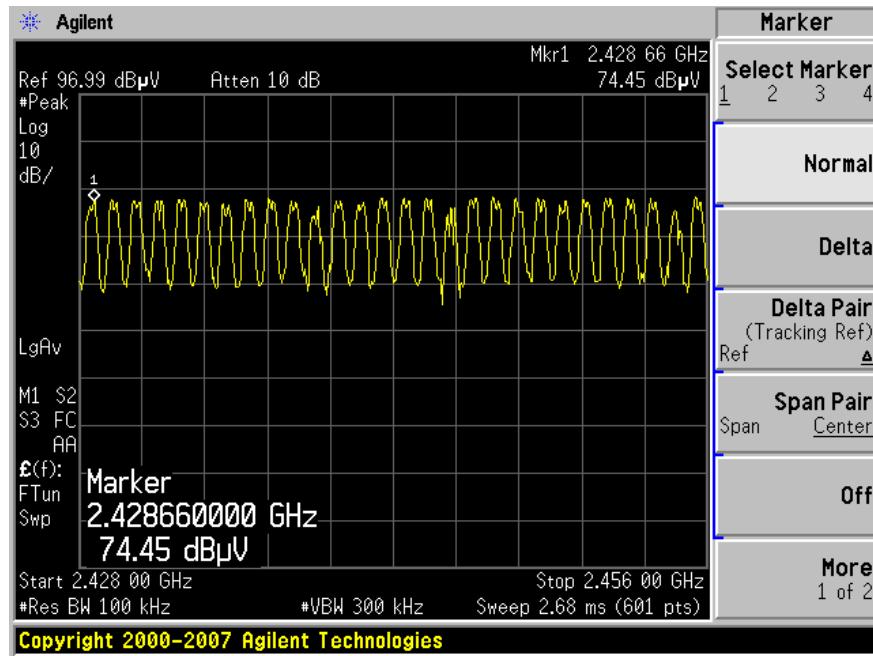
9.5 Environmental Conditions

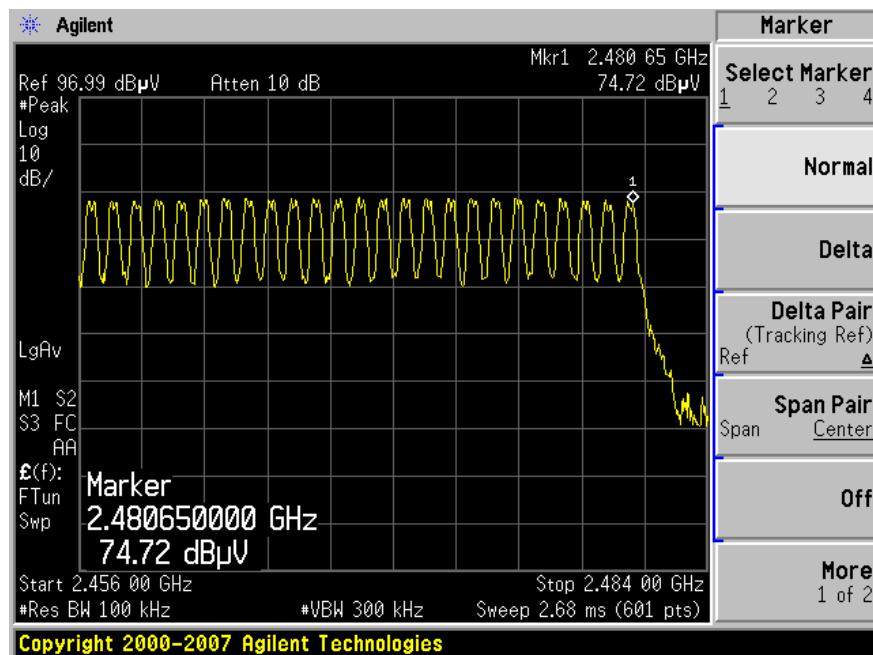

Temperature:	21-22 °C
Relative Humidity:	43-44 %
ATM Pressure:	101.2-102.1 kPa

*The testing was performed by Victor Zhang from 2009-03-11 to 2009-03-21.


9.6 Measurement Result:

80 Channels, please refer to the following plot:


2400 ~ 2483.5 MHz


2400 ~ 2428 MHz

2428 ~ 2456 MHz

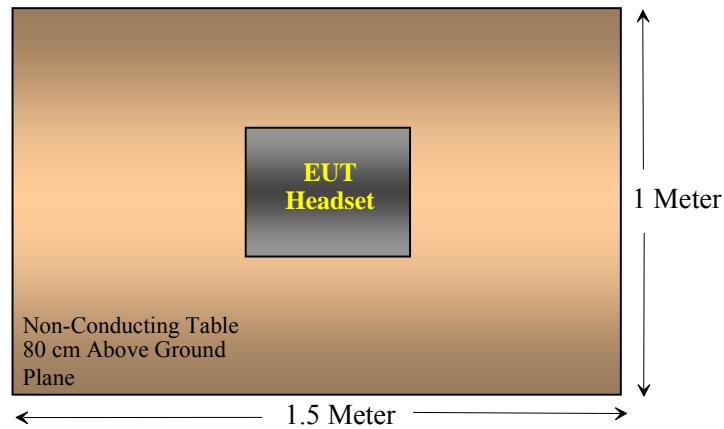
2456 ~ 2483.5 MHz

10 §15.247(a) (1) (iii) - DWELL TIME

10.1 Applicable Standard

According to §15.247 (a)(1)(iii), the average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

10.2 Measurement Procedure


1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
5. Repeat above procedures until all frequencies measured were complete.

10.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Mini-Circuits	Pre-amplifier	ZKL-2	7786100643	2009-03-03
HP	Pre-amplifier	8449B	3147A00400	2008-10-22
A. H. Systems	Antenna, Horn, DRG	DRG-118/A	1132	2008-07-28
Agilent	Spectrum Analyzer	E4440A	MY44303352	2008-04-28

* **Statement of Traceability:** BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

10.4 Test Setup Diagram

10.5 Environmental Conditions

Temperature:	21-22 °C
Relative Humidity:	43-44 %
ATM Pressure:	101.2-102.1 kPa

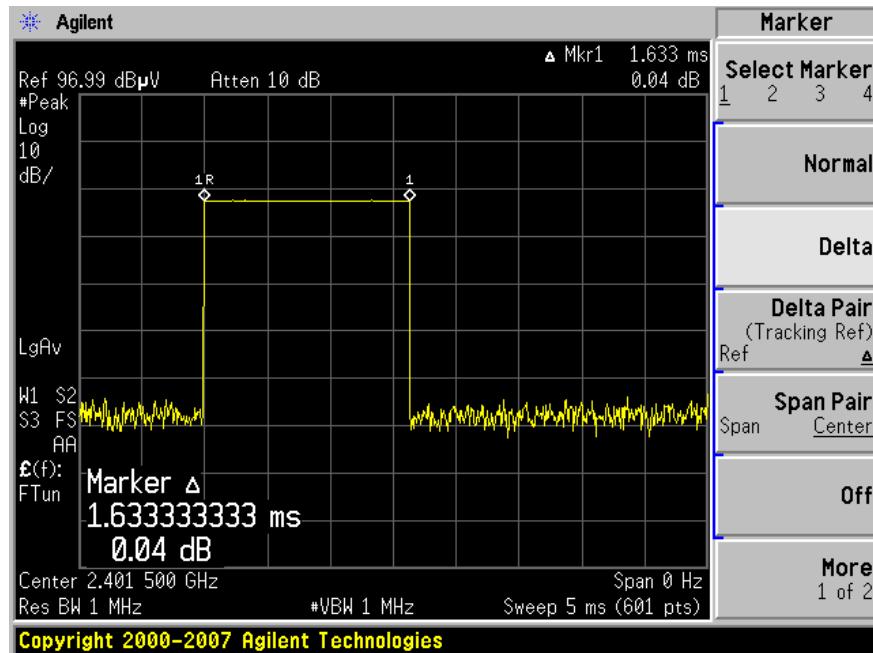
*The testing was performed by Victor Zhang from 2009-03-11 to 2009-03-21.

10.6 Measurement Results:

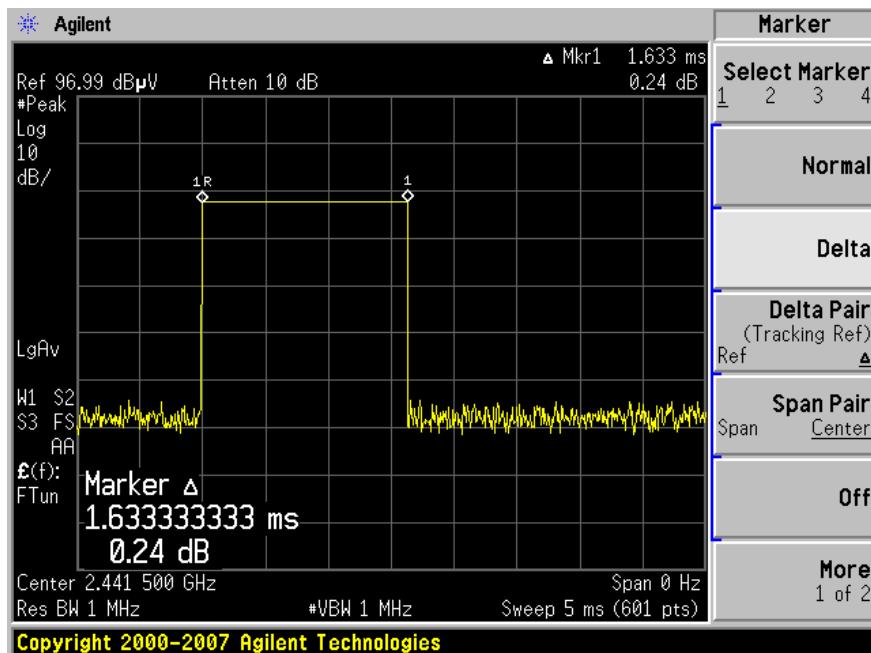
Channel	Frequency (MHz)	Pulse Width (ms)	Dwell Time (Sec.)	Limit (Sec.)	Results
Low	2401.5	1.6333	0.0839	0.4	Compliant
Mid	2441.5	1.6333	0.0839	0.4	Compliant
High	2480.5	1.6333	0.0839	0.4	Compliant

Notes:

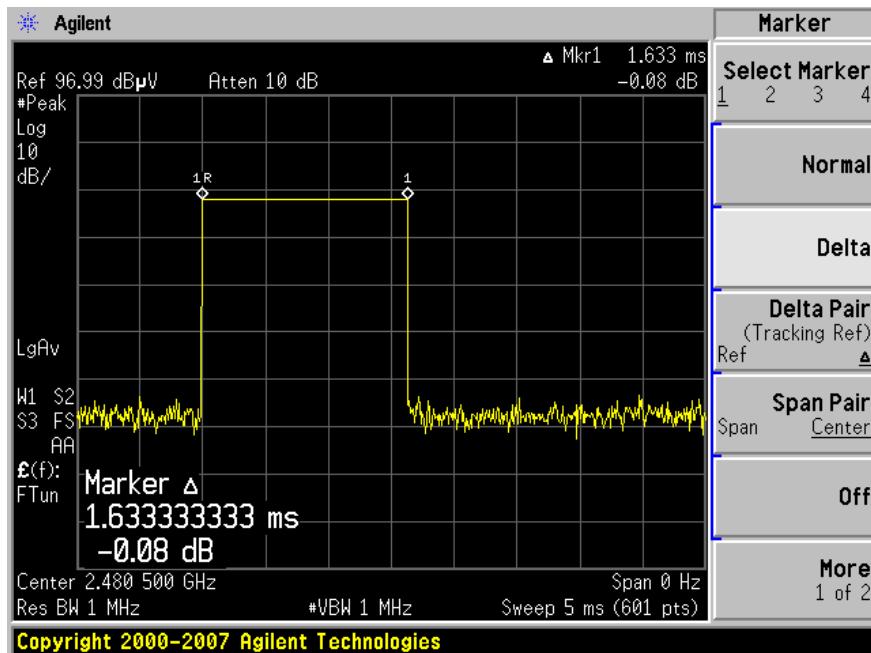
Dwell time = Pulse time*(hop rate/2/number of channels)*31.6 sec


- Hop Rate = 260

- Number of Channels = 80


Dwell time = Pulse time*(260/2/80)*31.6 sec

Please refer the following plots.


Low Channel

Middle Channel

High Channel

11 §15.247(B) (1) - MAXIMUM PEAK OUTPUT POWER

11.1 Applicable Standard

According to §15.247(b) (1), for frequency hopping systems in the 2400-2483.5MHz band employing at least 75 hopping channels, and all direct sequence systems, the maximum peak output power of the transmitter shall not exceed 1 Watt. For all other frequency hopping system in the 2400 – 2483.5 MHz band, the maximum peak output power of the transmitter shall not exceed 0.125 Watt.

According to DA 00-705 - Released March 30, 2000:

If antenna conducted tests cannot be performed on this device, radiated tests to show compliance with the peak output power limit specified in Section 15.247(b) and the spurious RF conducted emission limit specified in Section 15.247(c) are acceptable. As stated previously, a pre-amp, and, in the latter case, a high pass filter, are required for the following measurements.

- 1) Calculate the transmitter's peak power using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where:

E is the measured maximum fundamental field strength in V/m, utilizing a RBW \geq the 20 dB bandwidth of the emission, $VBW > RBW$, peak detector function. Follow the procedures in C63.4-1992 with respect to maximizing the emission.

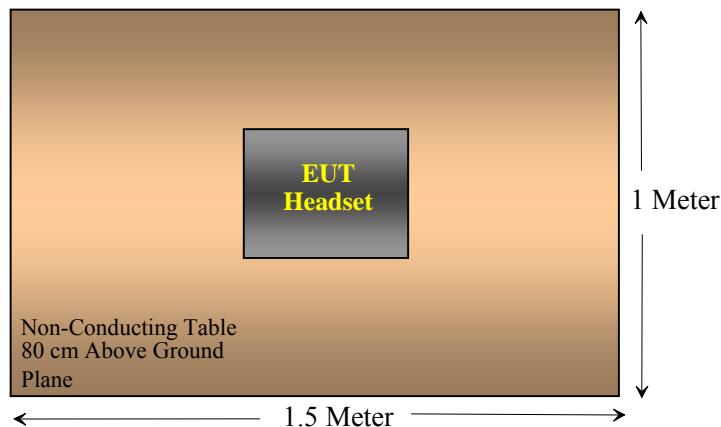
G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.

d is the distance in meters from which the field strength was measured.

P is the power in watts for which you are solving:

$$P = \frac{(E*d)^2}{30G}$$

11.2 Measurement Procedure


1. Place the EUT on the turntable and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

11.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Number	Calibration Dates
Mini-Circuits	Pre-amplifier	ZKL-2	7786100643	2009-03-03
HP	Pre-amplifier	8449B	3147A00400	2008-10-22
A. H. Systems	Antenna, Horn, DRG	DRG-118/A	1132	2008-07-28
Agilent	Spectrum Analyzer	E4440A	MY44303352	2008-04-28
Sunol Science Corp	Combination Antenna	JB1 Antenna	A103105-3	2008-03-25

* **Statement of Traceability:** BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

11.4 Test Setup Diagram

11.5 Environmental Conditions

Temperature:	21-22 °C
Relative Humidity:	43-44 %
ATM Pressure:	101.2-102.1 kPa

*The testing was performed by Victor Zhang from 2009-03-11 to 2009-03-21.

11.6 Measurement Result

Measured at 3 Meter distance

Indicated		Table Azimuth (degrees)	Test Antenna		Output Power		FCC Part 15.247	
Frequency (MHz)	Field Strength Reading (dB μ V)		Height (m)	Polar. (H/V)	(mW)	(dBm)	Limit (dBm)	Margin (dB)
2401.5	93.24	85	1.35	V	0.296	-5.29	21	-26.29
2401.5	89.82	248	1.38	H	0.135	-8.71	21	-29.71
2441.5	94.51	61	1.41	V	0.396	-4.02	21	-25.02
2441.5	89.92	35	1.46	H	0.138	-8.61	21	-29.61
2480.5	93.23	60	1.24	V	0.295	-5.3	21	-26.3
2480.5	90.34	31	1.25	H	0.152	-8.19	21	-29.19

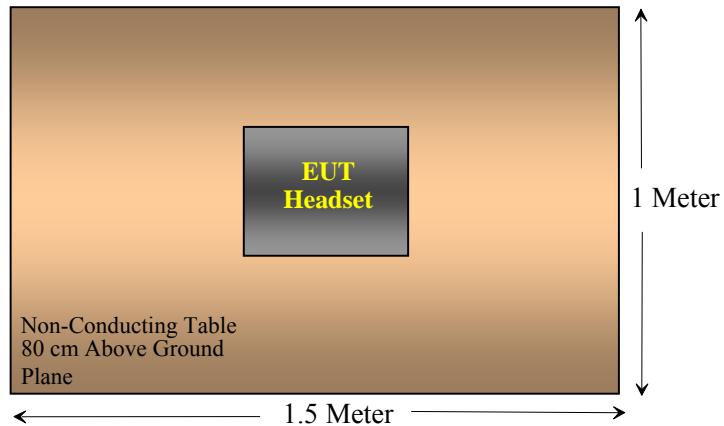
Note: Antenna Gain = 3.3 dBi

12 §15.247 (d) - 100 KHz BANDWIDTH OF BAND EDGES

12.1 Applicable Standard

According to §15.247(c), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required.

12.2 Measurement Procedure

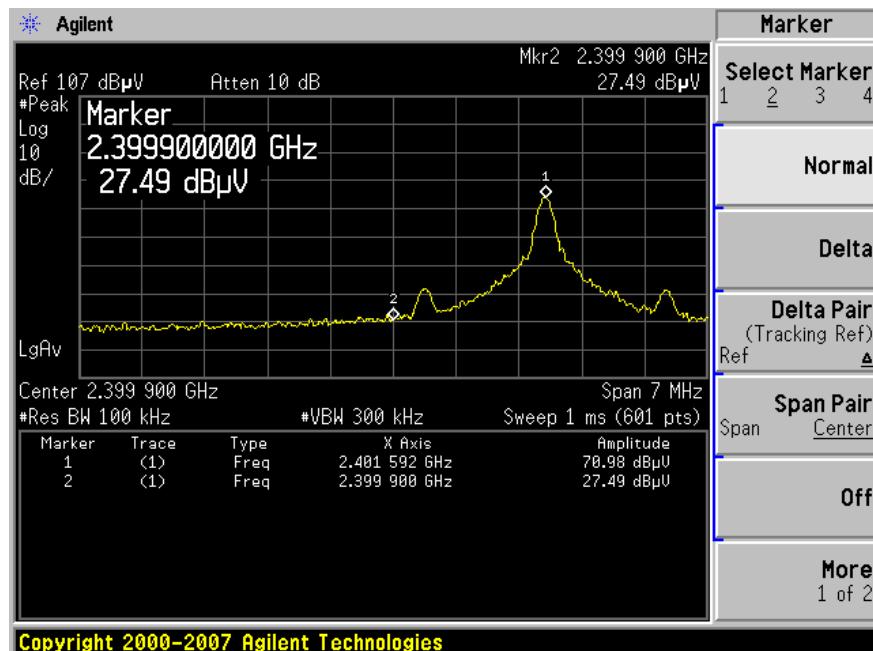

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5. Repeat above procedures until all measured frequencies were complete.

12.3 Test Equipment List and Details

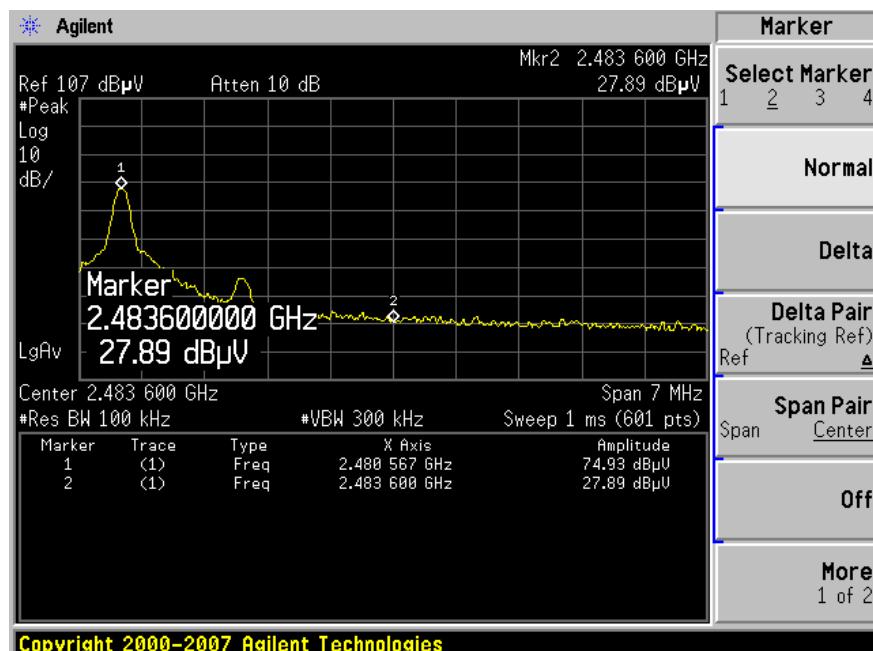
Manufacturers	Descriptions	Models	Serial Number	Calibration Dates
Mini-Circuits	Pre-amplifier	ZKL-2	7786100643	2009-03-03
HP	Pre-amplifier	8449B	3147A00400	2008-10-22
A. H. Systems	Antenna, Horn, DRG	DRG-118/A	1132	2008-07-28
Agilent	Spectrum Analyzer	E4440A	MY44303352	2008-04-28
Sunol Science Corp	Combination Antenna	JB1 Antenna	A103105-3	2008-03-25

* **Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

12.4 Test Setup Diagram


12.5 Environmental Conditions

Temperature:	21-22 °C
Relative Humidity:	43-44 %
ATM Pressure:	101.2-102.1 kPa


**The testing was performed by Victor Zhang from 2009-03-11 to 2009-03-21.*

Please refer to the following plots for results.

Lowest Channel

Highest Channel

13 § 15.247 (i) & § 2.1093 - RF EXPOSURE

13.1 Applicable Standard

According to TCB Exclusions List revised on 17 July 2002:

Exposure Category	Low Threshold	High Threshold
General Population	(60/f) mW, d<2.5cm (120/f) mW, d≥2.5cm	(900/f) mW, d<20cm
Occupational	(375/f) mW, d<2.5cm (900/f) mW, d≥2.5cm	(2250/f) mW, d<20cm

Note: f in GHz

13.2 Conclusion

The maxima output power of the headset is 0.396 mw which is less then $60/2.4415=24.58$ mw, so SAR is not required.