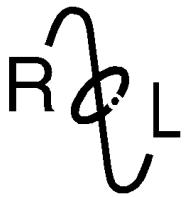


SUBMITTAL APPLICATION REPORT FOR FCC CFR47 15C GRANT OF CERTIFICATION


FOR
Model: AT200
434 MHz Transmitter

FCC ID: W4NAT200

FOR
AUTOMATIONtec LLC
1970 State Hwy 265
Hollister, MO 65672

Test Report Number: 090109

Authorized Signatory: *Scot D Rogers*
Scot D. Rogers

ROGERS LABS, INC.

4405 West 259th Terrace
Louisburg, KS 66053
Phone / Fax (913) 837-3214

Engineering Test Report For Application of Grant of Certification

FOR

CFR47, Part 15C - Intentional Radiators
Paragraph 15.231(e)
Low Power Transmitter
For
AUTOMATIONtec LLC
1970 State Hwy 265
Hollister, MO 65672
Daniel Smith

Model: AT200
Frequency 434 MHz
FCC ID#: W4NAT200

Test Date: January 9, 2009

Certifying Engineer:

Scot D. Rogers
Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Telephone/Fax: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory.
This report must not be used by the client to claim product endorsement by NVLAP, NIST, or
any agency of the U.S. Government.

Table of Contents

TABLE OF CONTENTS.....	3
FORWARD	4
OPINION / INTERPRETATION OF RESULTS	4
ENVIRONMENTAL CONDITIONS.....	4
2.1033(B) APPLICATION FOR CERTIFICATION.....	5
APPLICABLE STANDARDS & TEST PROCEDURES	6
UNITS OF MEASUREMENTS	6
TEST SITE LOCATIONS	6
LIST OF TEST EQUIPMENT	7
EQUIPMENT TESTED.....	8
EQUIPMENT FUNCTION AND TESTING PROCEDURES	8
Radiated Emission Test Procedure.....	8
SUBPART B – UNINTENTIONAL RADIATORS	9
Radiated EMI	9
Figure one Plot of General Radiated Emissions	10
Figure two Plot of General Radiated Emissions.....	10
Figure three Plot of General Radiated Emissions.....	11
Figure four Plot of General Radiated Emissions	11
General Radiated Emissions Data from EUT.....	12
Summary of Results for Radiated Emissions	12
Statement of Modifications and Deviations	12
SUBPART C - INTENTIONAL RADIATORS	12
15.203 Antenna Requirements	12
15.205 Restricted Bands of Operation.....	12
Radiated Emissions Data in Restricted Bands (15.205)	13
Summary of Results for Radiated Emissions in Restricted Bands	13
15.209 Radiated Emissions Limits; General Requirements	14
Radiated EMI.....	14
General Radiated Emissions Data from EUT (15.209)	14
Summary of Results for Radiated Emissions	14
RADIATED EMISSIONS IN THE BAND 434 MHZ PER CFR47 15.231(E).....	15
Intentional Radiated Emissions data per CFR47 15.231(e)	15
Figure five Plot of Occupied Bandwidth Emission	16
Figure six Plot of Duty Cycle in 100 mS Period	16
Summary of Results for Intentional Radiator Emissions per CFR47 15.231	17
Statement of Modifications and Deviations	17
ANNEX.....	18
Annex A Measurement Uncertainty Calculations.....	19
Annex B Test Equipment List For Rogers Labs, Inc.....	21
Annex C Rogers Qualifications.....	22
Annex D FCC Site Registration Letter	23
Annex E Industry Canada Site Registration Letter.....	24

NVLAP Lab Code 200087-0

Forward

The following information is submitted for consideration in obtaining Grant of Certification for license exempt low power intentional radiator operating under CFR47 Paragraph 15.231(e).

Name of Applicant:

AUTOMATIONtec LLC
1970 State Hwy 265
Hollister, MO 65672

FCC ID: W4NAT200

Model: AT200

Frequency Range: 434 MHz.

Operating Power: Peak power of 92.1 dB μ V/m @ 3-meters (3 meter radiated measurement), average power 20.0 dB μ V/m @ 3-meters

Opinion / Interpretation of Results

Tests Performed	Results
Emissions Tests	
Emissions as per CFR47 paragraphs 2 and 15.205	Complies
Emissions as per CFR47 paragraphs 2 and 15.209	Complies
Emissions as per CFR47 paragraphs 2 and 15.231(e)	Complies

Environmental Conditions

Ambient Temperature 19.3° C

Relative Humidity 30%

Atmospheric Pressure 1030.4 mb

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

AUTOMATIONtec LLC
Model: AT200
Test #: 090109
Test to: FCC CFR47 Parts 2 and 15c (15.231e)
Automationtec AT200 TstRpt 090109

FCC ID#: W4NAT200
Page 4 of 24
Date: February 13, 2009

2.1033(b) Application for Certification

(1) Manufacturer: AUTOMATIONtec LLC
1970 State Hwy 265
Hollister, MO 65672

(2) Identification: Model: AT200
FCC I.D.: W4NAT200

(3) Instruction Book:
Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:
Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:
Refer to Exhibit of Operational Description.

(6) Report of Measurements:
Report of measurements follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:
Refer to Exhibit for photographs of equipment.

(8) No Peripheral Equipment was Necessary.

(9) Transition Provisions of 15.37 are not being requested.

(10) Equipment is not a scanning receiver and this section is not applicable.

(11) The equipment does not operate in the 59 – 64 GHz frequency band and this section is not applicable.

(12) The equipment is not software defined and this section is not applicable.

Applicable Standards & Test Procedures

In accordance with the Federal Communications Commission (FCC) Code of Federal Regulations (CFR47), dated October 1, 2008, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable parts of paragraph 15, Part 15C Paragraph 15.231(e) the following information is submitted.

Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in the ANSI 63.4-2003.

Units of Measurements

Conducted EMI Data is in dB μ V; dB referenced to one microvolt.

Radiated EMI Data is in dB μ V/m; dB/m referenced to one microvolt per meter.

Test Site Locations

Conducted EMI The AC power line conducted emissions testing performed in a shielded screen room located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS.

Radiated EMI The radiated emissions tests were performed at the 3 meters, Open Area Test Site (OATS) located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS.

Site Approval Refer to Annex for FCC Site Registration Letter, # 90910, and Industry Canada Site Registration Letter, IC3041A-1.

List of Test Equipment

A Hewlett Packard 8591EM Spectrum Analyzer was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the annex for a complete list of test equipment.

HP 8591 EM Analyzer Settings		
Conducted Emissions		
RBW	AVG. BW	Detector Function
9 kHz	30 kHz	Peak / Quasi Peak
Radiated Emissions		
RBW	AVG. BW	Detector Function
120 kHz	300 kHz	Peak / Quasi Peak
HP 8562A Analyzer Settings		
RBW	Video BW	Detector Function
100 kHz	100 kHz	Peak
1 MHz	1 MHz	Peak / Average

<u>Equipment</u>	<u>Manufacturer</u>	<u>Model</u>	<u>Calibration Date</u>	<u>Due</u>
LISN	Comp. Design	FCC-LISN-2-MOD.CD	10/08	10/09
LISN	Comp. Design	1762	2/08	2/09
Antenna	ARA	BCD-235-B	10/08	10/09
Antenna	EMCO	3147	10/08	10/09
Antenna	EMCO	3143	5/08	5/09
Analyzer	HP	8591EM	5/08	5/09
Analyzer	HP	8562A	2/08	2/09

Equipment Tested

<u>Equipment</u>	<u>Model</u>	<u>FCC ID</u>
EUT	AT200	W4NAT200

Equipment Function and Testing Procedures

The EUT is a 434 MHz radio transmitter used to transmit sensor data from remote locations to complaint receivers. The AT200 is a wireless link used for transmitting sensor information from one location to another. The unit operates from direct current power supplied from replaceable internal batteries. The design offers interface connection to compliant sensors only and no provision to connect to other external peripheral equipment or alternate power sources. The equipment may transmit a 10 millisecond message during a 3 minute interval. The duty cycle correction factor (DCF) for the 10 mS transmission equates to a DCF of -20 dB. This value was calculated from $20\log(10/100)$ dB. The EUT was tested in all standard equipment configurations and through all modes of operation.

Radiated Emission Test Procedure

Testing for the unintentional radiated emissions was performed as defined in section 13.1.4 of ANSI C63.4. The EUT was placed on a rotating 1 x 1.5-meter wooden platform, 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken using a spectrum analyzer. Refer to test setup photographs in the exhibits for EUT placement.

Subpart B – Unintentional Radiators

The unit operates from internal DC battery power only. The EUT was arranged in a typical equipment configuration and placed on a 1 x 1.5-meter wooden bench 80 cm above the conducting ground plane, floor of a screen room. Power was supplied from new replaceable internal batteries during testing.

Radiated EMI

The EUT was arranged in a typical equipment configuration and operated through all of its various modes. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Plots were made of the radiated frequency spectrum from 30 MHz to 6000 MHz for the preliminary testing. Refer to figures one through four showing plots of the radiated emissions spectrum taken in a screen room. The highest radiated emission was then re-maximized at the OATS location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 30 MHz to 6,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 5 GHz and or, pyramidal horns and mixers from 4 GHz to 12 GHz, notch filters and appropriate amplifiers were utilized.

MARKER
105.5 MHz
21.57 dB μ V

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 105.5 MHz
21.57 dB μ V

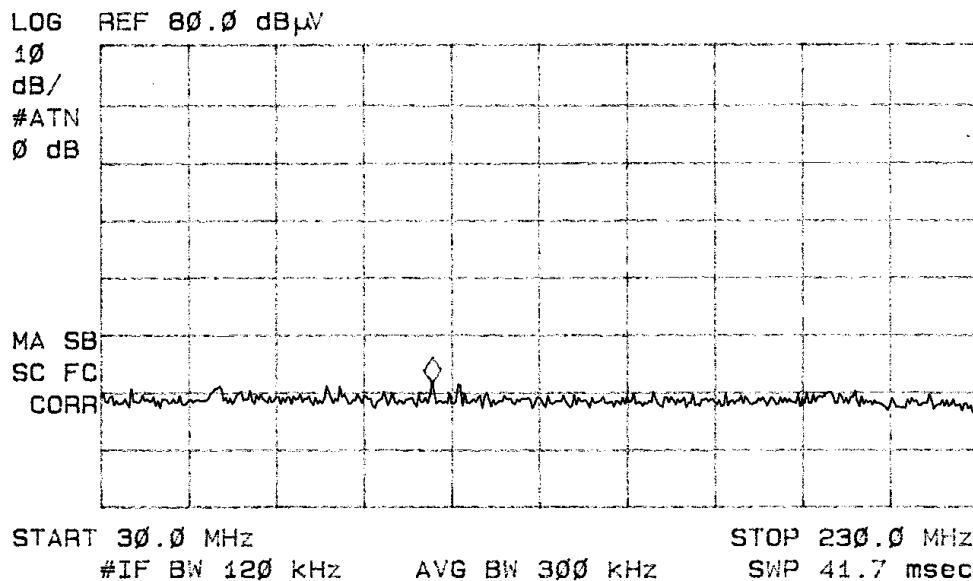


Figure one Plot of General Radiated Emissions

MARKER
438 MHz
81.58 dB μ V

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 438 MHz
81.58 dB μ V

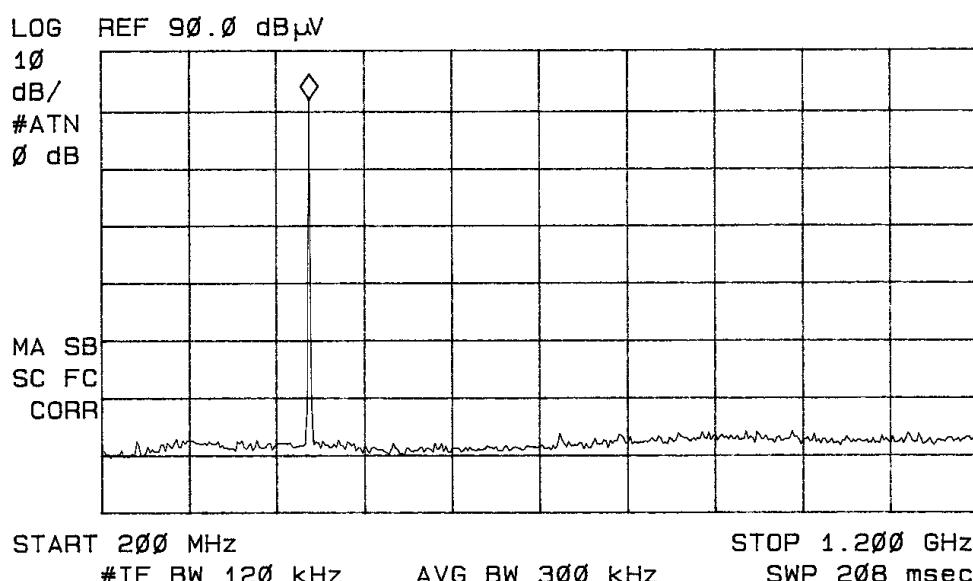
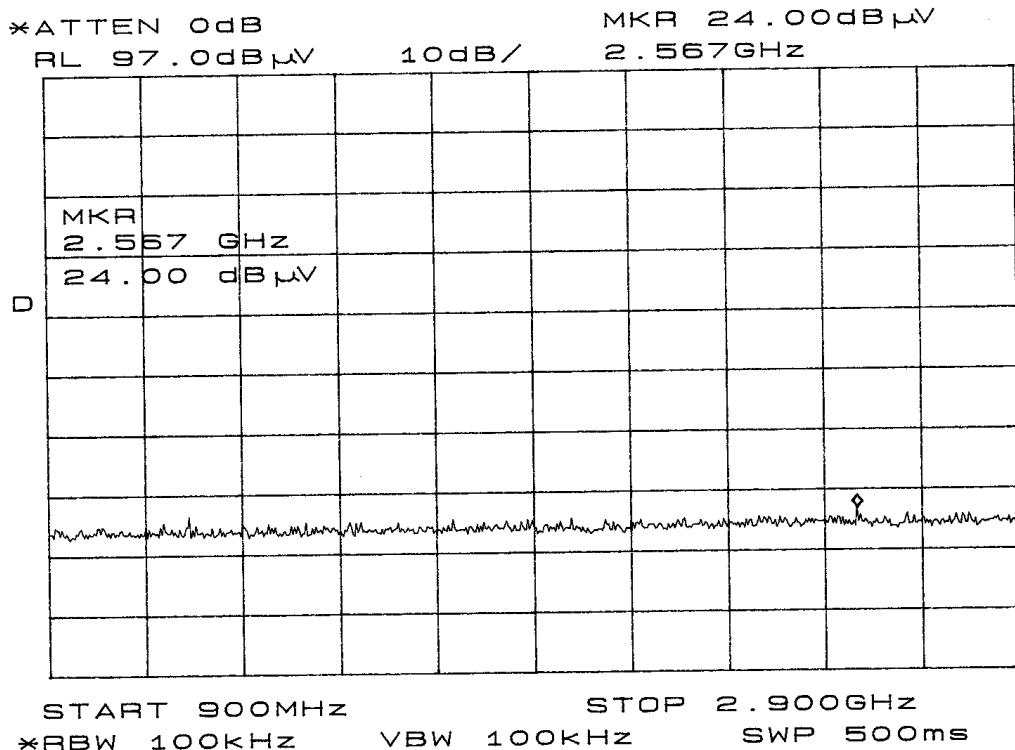
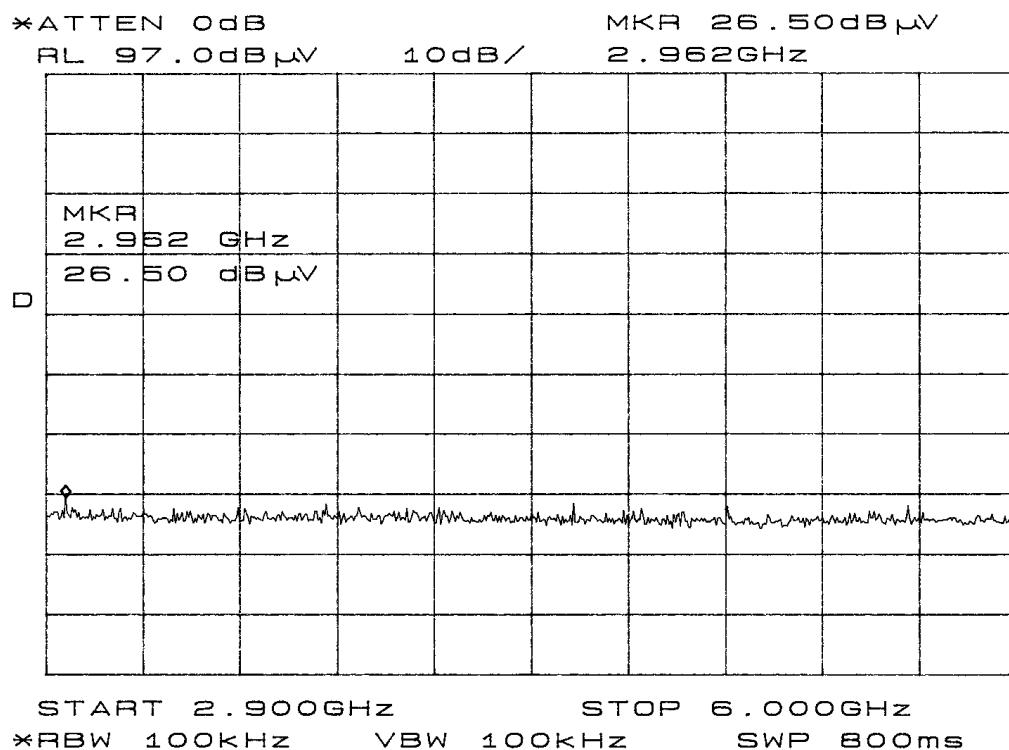




Figure two Plot of General Radiated Emissions

Figure three Plot of General Radiated Emissions

Figure four Plot of General Radiated Emissions

General Radiated Emissions Data from EUT

Frequency in MHz	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)

No general radiated emissions demonstrating amplitudes greater than 20 dB below the limits were found. Other emissions present had amplitudes at least 20 dB below the limit.

Summary of Results for Radiated Emissions

The radiated emissions for the EUT meet the requirements for CISPR 22, and CFR47 requirements. The EUT had at least a 20 dB minimum margin below the limit. Other emissions were present with amplitudes at least 20 dB below the limit.

Statement of Modifications and Deviations

No modifications to the EUT were required for the equipment to demonstrate compliance to the CFR47 requirements. There were no deviations, modifications, or exceptions to the specifications.

Subpart C - Intentional Radiators

As per CFR47 Part 15, Subpart C, paragraphs 15.203, 15.205, 15.209, 15.231(e) the following information is submitted.

15.203 Antenna Requirements

The unit is produced with a permanently attached antenna and has no provision for user service, replacement, or antenna modification. The requirements of 15.203 are fulfilled and there are no deviations or exceptions to the specification.

15.205 Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at a distance of three meters at the OATS. The EUT utilizes frequency determining circuitry, which generates harmonics falling in the restricted bands. Emissions were checked at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. No other

Rogers Labs, Inc.

4405 W. 259th Terrace

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

AUTOMATIONtec LLC

Model: AT200

Test #: 090109

Test to: FCC CFR47 Parts 2 and 15c (15.231e)

Automationtec AT200 TstRpt 090109

FCC ID#: W4NAT200

Page 12 of 24

Date: February 13, 2009

significant emission was observed which fell into the restricted bands of operation.

Sample Calculations:

$$\begin{aligned}
 \text{RFS (dB}\mu\text{V/m @ 3m)} &= \text{FSM(dB}\mu\text{V)} + \text{A.F.(dB)} - \text{Gain(dB)} \\
 &= 22.7 + 25.8 - 30 \\
 &= 18.5
 \end{aligned}$$

Radiated Emissions Data in Restricted Bands (15.205)

Frequency (MHz)	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)
1302.0	22.7	23.6	25.8	30	18.5	19.4	54.0
4340.0	20.3	18.6	40.5	30	30.8	29.1	54.0

Other emissions present had amplitudes at least 20 dB below the margin.

Summary of Results for Radiated Emissions in Restricted Bands

The radiated emissions for the EUT demonstrated compliance with the requirements for FCC CFR47 Part 15C Intentional Radiators. The EUT had a 23.2 minimum margin below the limits. Both average and peak amplitudes above 1000 MHz were checked for compliance with the regulations. No other emissions were found in the restricted frequency bands. Other emissions were present with amplitudes at least 20 dB below the limits.

15.209 Radiated Emissions Limits; General Requirements

Radiated EMI

The EUT was arranged in a typical equipment configuration and operated through all of its various modes. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Emissions were checked in the screen room from 30 to 6000 MHz and plots were made of the frequency spectrum from 30 MHz to 6000 MHz for the preliminary testing. The highest radiated emission was then re-maximized at the OATS location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the open area test site at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 30 MHz to 6,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna polarization between horizontal and vertical. Antennas used were Broadband Biconical from 30 MHz to 200 MHz, Biconilog from 30 MHz to 1000 MHz, Log Periodic from 200 MHz to 5 GHz, and/or Pyramidal Horns from 4 GHz to 18 GHz.

General Radiated Emissions Data from EUT (15.209)

Frequency in MHz	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)

No general radiated emissions demonstrating amplitudes greater than 20 dB below the limits were found. Other emissions present had amplitudes at least 20 dB below the limit.

Summary of Results for Radiated Emissions

The radiated emissions for the EUT demonstrated compliance with the requirements for CFR47 Part 15C requirements. The EUT had at least a 20 dB minimum margin below the limit. Other emissions were present with amplitudes at least 20 dB below the limit.

Radiated Emissions in the Band 434 MHz per CFR47 15.231(e)

The power output was measured on an open field test site @ 3 meters. Data was taken per Paragraph 2.1046(a), 15.231(e). The EUT was placed on a wooden turntable 0.8 meters above the ground plane and at a distance of 3 meters from the FSM antenna. The peak and quasi-peak amplitude of the frequencies below 1000 MHz were measured using a spectrum analyzer. The peak and average amplitude of emissions above 1000 MHz including spurious emissions were measured using a spectrum analyzer; data was recorded from the analyzer display. The amplitude of the carrier frequency was measured using a spectrum analyzer. The amplitude of the emission was then recorded from the analyzer display. The amplitude of each emission was maximized by varying the FSM antenna height, polarization, and by rotating the turntable. A Biconilog Antenna was used for measuring emissions from 30 to 1000 MHz, a Log Periodic Antenna for 200 to 5000 MHz, and Pyramidal Horn Antennas from 4 GHz to 25 GHz. Emissions were measured in dB μ V/m @ 3 meters. Refer to figure five showing compliance with occupied bandwidth requirement and figure six demonstrating less than 10 mS duty cycle in 100 mS period.

Sample Calculations: Corrected Field Strength = CFS

$$\begin{aligned} \text{CFS (dB}\mu\text{V/m @ 3m)} &= \text{FSM(dB}\mu\text{V)} + \text{A.F.(dB)} - \text{Gain(dB)} + \text{DCF} \\ &= 105.0 + 17.1 - 30 + (-20) \\ &= 72.1 \end{aligned}$$

Intentional Radiated Emissions data per CFR47 15.231(e)

Emission Frequency (MHz)	Peak FSM Horz. (dB μ V)	Peak FSM Vert. (dB μ V)	Ant. Factor (dB)	Amp Gain (dB)	Duty Cycle Correction Factor	CFS Horz. @ 3m (dB μ V/m)	CFS Vert. @ 3m (dB μ V/m)	Limit @ 3m (dB μ V/m)
434.0	105.0	102.0	17.1	30	-20	72.1	69.1	72.3
868.0	46.9	31.6	23.1	30	-20	20.0	4.7	52.3
1302.0	57.2	49.6	25.8	30	-20	33.0	25.4	54.0

Other emissions present had amplitudes at least 20 dB below the margin.

MARKER Δ
110 kHz
1.11 dB

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 110 kHz
1.11 dB

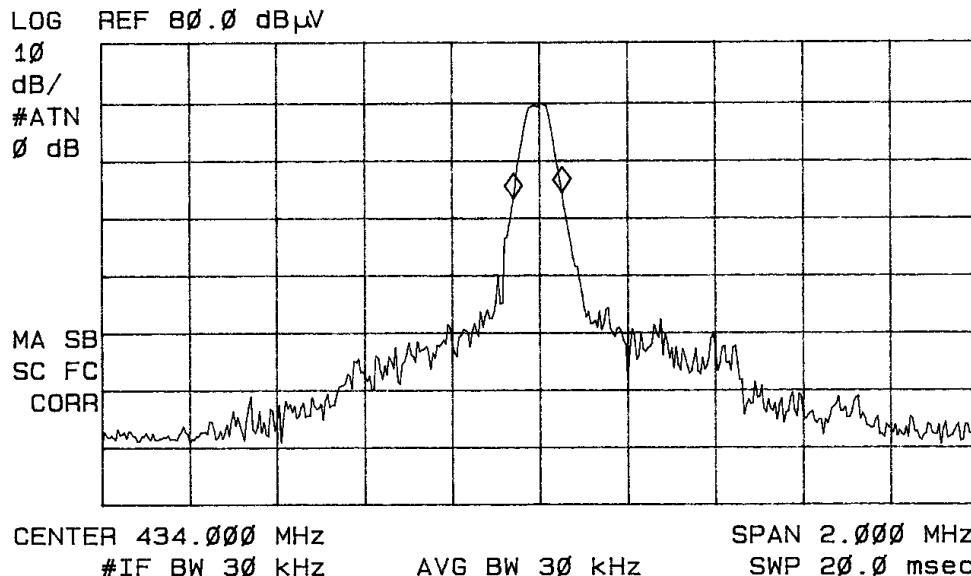


Figure five Plot of Occupied Bandwidth Emission

MARKER Δ
9.7500 msec
-68.98 dB

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 9.7500 msec
-68.98 dB

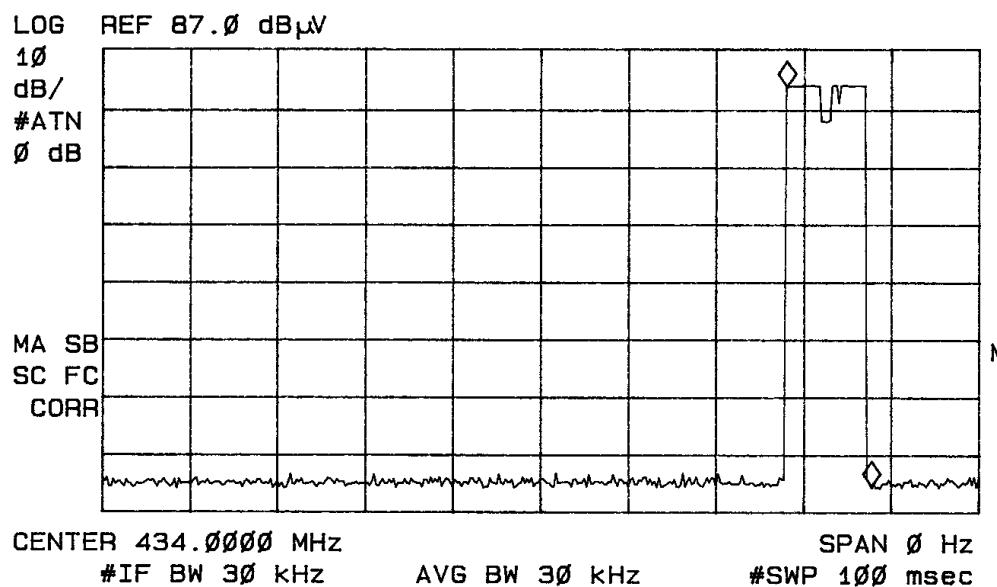


Figure six Plot of Duty Cycle in 100 mS Period

NVLAP Lab Code 200087-0

The calculated average limit for the fundamental at a three meter distance was 72.3 dB μ V/m, and harmonic limits were 52.3 which was less than the require level of 15.209 of 54 dB μ V/m.

Summary of Results for Intentional Radiator Emissions per CFR47 15.231

The EUT fundamental frequency of operation demonstrated corrected peak emission value of 72.1 dB μ V/m at 3 meters demonstrating compliance with the average limit of 72.3 dB μ V/m required by 15.231(e). Peak, Quasi-peak, and average amplitudes of emissions were measured for harmonic emissions. The harmonic emission levels were compared to requirements of 15.209, 15.231(e) and found in compliance with limits. There are no measurable emissions in the restricted bands other than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the Limits. The specifications of 15.231(e) were met; there are no deviations or exceptions to the requirements.

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to demonstrated compliance with the CFR47 Part 15C requirements. There were no modifications or deviations to the specifications.

NVLAP Lab Code 200087-0

Annex

- Annex A, Measurement Uncertainty Calculations
- Annex B, Test Equipment List.
- Annex C, Rogers Qualifications.
- Annex D, FCC Site Registration Letter.
- Annex E, Industry Canada Registration Letter.

Rogers Labs, Inc. AUTOMATIONtec LLC
4405 W. 259th Terrace Model: AT200
Louisburg, KS 66053 Test #: 090109
Phone/Fax: (913) 837-3214 Test to: FCC CFR47 Parts 2 and 15c (15.231e)
Revision 1 Automationtec AT200 TstRpt 090109

FCC ID#: W4NAT200

Page 18 of 24
Date: February 13, 2009

Annex A Measurement Uncertainty Calculations

Radiated Emissions Measurement Uncertainty Calculation

Measurement of vertically polarized radiated field strength over the frequency range 30 MHz to 1 GHz on an open area test site at 3m and 10m includes following uncertainty:

Contribution	Probability Distribution	Uncertainty (dB)
Antenna factor calibration	normal ($k = 2$)	± 0.58
Cable loss calibration	normal ($k = 2$)	± 0.2
Receiver specification	rectangular	± 1.0
Antenna directivity	rectangular	± 0.1
Antenna factor variation with height	rectangular	± 2.0
Antenna factor frequency interpolation	rectangular	± 0.1
Measurement distance variation	rectangular	± 0.2
Site Imperfections	rectangular	± 1.5

Combined standard uncertainty $u_c(y)$ is

$$U_c(y) = \pm \sqrt{\left[\frac{1.0}{2}\right]^2 + \left[\frac{0.2}{2}\right]^2 + \left[\frac{1.0^2 + 0.1^2 + 2.0^2 + 0.1^2 + 0.2^2 + 1.5^2}{3}\right]}$$

$$U_c(y) = \pm 1.6 \text{ dB}$$

It is probable that $u_c(y) / s(q_k) > 3$, where $s(q_k)$ is estimated standard deviation from a sample of n readings unless the repeatability of the EUT is particularly poor, and a coverage factor of $k = 2$ will ensure that the level of confidence will be approximately 95%, therefore:

$$s(q_k) = \sqrt{\frac{1}{(n-1)} \sum_{k=1}^n (q_k - \bar{q})^2}$$

$$U = 2 U_c(y) = 2 \times \pm 1.6 \text{ dB} = \pm 3.2 \text{ dB}$$

Notes:

- 1.1 Uncertainties for the antenna and cable were estimated, based on a normal probability distribution with $k = 2$.
- 1.2 The receiver uncertainty was obtained from the manufacturer's specification for which a rectangular distribution was assumed.
- 1.3 The antenna factor uncertainty does not take account of antenna directivity.
- 1.4 The antenna factor varies with height and since the height was not always the same in use as when the antenna was calibrated an additional uncertainty is added.
- 1.5 The uncertainty in the measurement distance is relatively small but has some effect on the received signal strength. The increase in measurement distance as the antenna height is increased is an inevitable consequence of the test method and is therefore not considered a contribution to uncertainty.
- 1.6 Site imperfections are difficult to quantify but may include the following contributions:
 - Unwanted reflections from adjacent objects.
 - Ground plane imperfections: reflection coefficient, flatness, and edge effects.
 - Losses or reflections from "transparent" cabins for the EUT or site coverings.
 - Earth currents in antenna cable (mainly effect biconical antennas).

The specified limits for the difference between measured site attenuation and the theoretical value (± 4 dB) were not included in total since the measurement of site attenuation includes uncertainty contributions already allowed for in this budget, such as antenna factor.

Conducted Measurements Uncertainty Calculation

Measurement of conducted emissions over the frequency range 9 kHz to 30 MHz includes following uncertainty:

	Probability	Uncertainty
Contribution	Distribution	(dB)
Receiver specification	rectangular	± 1.5
LISN coupling specification	rectangular	± 1.5
Cable and input attenuator calibration	normal (k=2)	± 0.5

Combined standard uncertainty $u_c(y)$ is

$$U_c(y) = \pm \sqrt{\left[\frac{0.5}{2}\right]^2 + \frac{1.5^2 + 1.5^2}{3}}$$

$$U_c(y) = \pm 1.2 \text{ dB}$$

As with radiated field strength uncertainty, it is probable that $u_c(y) / s(qk) > 3$ and a coverage factor of $k = 2$ will suffice, therefore:

$$U = 2 U_c(y) = 2 \times \pm 1.2 \text{ dB} = \pm 2.4 \text{ dB}$$

NVLAP Lab Code 200087-0

Annex B Test Equipment List For Rogers Labs, Inc.

The test equipment used is maintained in calibration and good operating condition. Use of this calibrated equipment ensures measurements are traceable to national standards.

List of Test Equipment	Calibration Date
Oscilloscope Scope: Tektronix 2230	2/08
Wattmeter: Bird 43 with Load Bird 8085	2/08
Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140	2/08
H/V Power Supply: Fluke Model: 408B (SN: 573)	2/08
R.F. Generator: HP 606A	2/08
R.F. Generator: HP 8614A	2/08
R.F. Generator: HP 8640B	2/08
Spectrum Analyzer: HP 8562A,	2/08
Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W	
HP Adapters: 11518, 11519, 11520	
Spectrum Analyzer: HP 8591EM	5/08
Frequency Counter: Leader LDC825	2/08
Antenna: EMCO Biconilog Model: 3143	5/08
Antenna: EMCO Log Periodic Model: 3147	10/08
Antenna: Antenna Research Biconical Model: BCD 235	10/08
Antenna: EMCO Dipole Set 3121C	2/08
Antenna: C.D. B-101	2/08
Antenna: Solar 9229-1 & 9230-1	2/08
Antenna: EMCO 6509	2/08
Audio Oscillator: H.P. 201CD	2/08
R.F. Power Amp 65W Model: 470-A-1010	2/08
R.F. Power Amp 50W M185- 10-501	2/08
R.F. PreAmp CPPA-102	2/08
LISN 50 μ Hy/50 ohm/0.1 μ f	10/08
LISN Compliance Eng. 240/20	2/08
LISN Fischer Custom Communications FCC-LISN-50-16-2-08	2/08
Peavey Power Amp Model: IPS 801	2/08
Power Amp A.R. Model: 10W 1010M7	2/08
Power Amp EIN Model: A301	2/08
ELGAR Model: 1751	2/08
ELGAR Model: TG 704A-3D	2/08
ESD Test Set 2010i	2/08
Fast Transient Burst Generator Model: EFT/B-101	2/08
Current Probe: Singer CP-105	2/08
Current Probe: Solar 9108-1N	2/08
Field Intensity Meter: EFM-018	2/08
KEYTEK Ecat Surge Generator	2/08

Rogers Labs, Inc.

4405 W. 259th Terrace

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

AUTOMATIONtec LLC

Model: AT200

Test #: 090109

Test to: FCC CFR47 Parts 2 and 15c (15.231e)

Automationtec AT200 TstRpt 090109

FCC ID#: W4NAT200

Page 21 of 24

Date: February 13, 2009

Annex C Rogers Qualifications

Scot D. Rogers, Engineer

Rogers Labs, Inc.

Mr. Rogers has approximately 17 years experience in the field of electronics. Six years working in the automated controls industry and 6 years working with the design, development and testing of radio communications and electronic equipment.

Positions Held:

Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

Educational Background:

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Scot D Rogers

Scot D. Rogers

Annex D FCC Site Registration Letter**FEDERAL COMMUNICATIONS COMMISSION**

**Laboratory Division
7435 Oakland Mills Road
Columbia, MD 21046**

June 18, 2008

Registration Number: 90910

**Rogers Labs, Inc.
4405 West 259th Terrace,
Louisburg, KS 66053**


Attention: Scot Rogers

**Re: Measurement facility located at Louisburg
3 & 10 meter site
Date of Renewal: June 18, 2008**

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Phyllis Parish
Industry Analyst

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

AUTOMATIONtec LLC
Model: AT200
Test #: 090109
Test to: FCC CFR47 Parts 2 and 15c (15.231e)
Automationtec AT200 TstRpt 090109

FCC ID#: W4NAT200
Page 23 of 24
Date: February 13, 2009

Annex E Industry Canada Site Registration Letter

July 29th, 2008

**Industry
Canada****Industrie
Canada**

OUR FILE: 46405-3041

Submission No: 127059

Rogers Labs Inc.
4405 West 259th Terrace
Louisburg KY 66053
USA

Attention: Scot D. Rogers

Dear Sir/Madame:

The Bureau has received your application for the registration / renewal of a 3/10m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (3040A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please be informed that the Bureau is now utilizing a **new site numbering scheme** in order to simplify the electronic filing process. Our goal is to reduce the number of secondary codes associated to one particular company. The following changes have been made to your records.

Your primary code is: **3041**

The company number associated to the site(s) located at the above address is: **3041A**

The table below is a summary of the changes made to the unique site registration number(s):

New Site Number	Obsolete Site Number	Description of Site	Expiry Date (YYYY-MM-DD)
3041A-1	3041-1	3 / 10m OATS	2010-07-29

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 meter OATS or 3 meter chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed two years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL;

If you have any questions, you may contact the Bureau by e-mail at certification.bureau@ic.gc.ca
Please reference our file and submission number above for all correspondence.

Yours sincerely,

S. Proulx Wireless Laboratory
Manager Certification and
Engineering Bureau Industry Canada
3701 Carling Ave., Building 94
Ottawa, Ontario K2H 8S2
Canada

Canada