

TESTING
CERT #803.01, 803.02, 803.05, 803.06

**GRID NET, INC.
ADDENDUM TEST REPORT TO FC09-049A**

FOR THE

GE WIMAX SMARTGRID ROUTER, WX-SGR

**FCC PART 15 SUBPART B SECTIONS 15.107 & 15.109 CLASS B
AND PART 27**

TESTING
DRAFT
DATE OF ISSUE: AUGUST 10, 2009

PREPARED FOR:

Grid Net, Inc.
340 Brannan Street, Suite 501
San Francisco, CA 94107

P.O. No.: DEV 09-14
W.O. No.: 89201

PREPARED BY:

Joyce Walker
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Date of test: February 13 – July 27, 2009

Report No.: FC09-049B

This report contains a total of 80 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Summary of Results	4
Conditions During Testing	4
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	5
Temperature and Humidity During Testing	6
FCC 2.1033(c)(3) User's Manual	6
FCC 2.1033(c)(4) Type of Emissions	6
FCC 2.1033(c)(5) Frequency Range	6
FCC 2.1033(c)(6) Operating Power	6
FCC 2.1033(c)(8) DC Voltages	6
FCC 2.1033(c)(9) Tune-Up Procedure	6
FCC 2.1033(c)(10) Schematics and Circuitry Description	6
FCC 2.1033(c)(11) Label and Placement	6
FCC 2.1033(c)(12) Submittal Photos	6
FCC 2.1033(c)(13) Modulation Information	6
Measurement Uncertainties	7
FCC 15.107 – AC Conducted Emissions	8
FCC 15.109 – Radiated Emissions	29
FCC 2.1033(c)(14)/2.1046/27.50 – Conducted RF Power Output	35
FCC 2.1049 - Occupied Bandwidth	37
FCC 2.1033(c)(14)/2.1051/27.53 - Spurious Emissions at Antenna Terminal	45
FCC 27.53 – Bandedge Antenna Conducted	63
FCC 2.1033(c)(14)/2.1053/27.53 - Field Strength of Spurious Radiation	69
FCC 2.1033(c)(14)/2.1055 - Frequency Stability	73

DRAFT

ADMINISTRATIVE INFORMATION

DATE OF TEST: February 13 –
July 27, 2009

DATE OF RECEIPT: February 13, 2009

REPRESENTATIVE: Patrick Orallo

MANUFACTURER:
GE Energy

TEST LOCATION:
CKC Laboratories, Inc.
1120 Fulton Place
Fremont, CA 94539

FREQUENCY RANGE TESTED: 10 kHz-26.9 GHz

TEST METHOD: ANSI C63.4 (2003) and FCC Part 27

PURPOSE OF TEST:

Original: To perform the testing of the GE WiMAX SmartGrid Router, WX-SGR with the requirements for FCC Part 15 Subpart B Sections 15.107 & 15.109 Class B and Part 27 devices.

Addendum A: To repeat testing of sections 15.109, bandedge, spurious and radiated emissions with the external chassis removed from the EUT.

Addendum B: During the changes made for Addendum A, incorrect data sheets were placed in the bandedge antenna conducted data section and part of the test equipment was left out for spurious radiated emissions testing. These corrections did not require any additional testing.

APPROVALS

QUALITY ASSURANCE:

Steve Behm, Director of Engineering Services

Amrinder Brar, EMC Engineer/Lab Manager

TEST PERSONNEL:

Art Rice
Art Rice, Senior EMC Engineer

SUMMARY OF RESULTS

Test	Specification/Method	Results
Conducted Emissions	FCC 15.107	Pass
Radiated Emissions	FCC 15.109	Pass
RF Output Power	FCC 27.50(h)	Pass
Occupied Bandwidth	FCC 2.1049	Pass
Spurious Emissions at Antenna Terminal	FCC 27.53(m)	Pass
Bandedge Antenna Conducted	FCC 27.53(m)	Pass
OATS Spurious Emissions	FCC 27.53(m)	Pass
Bandedge OATS	FCC 27.53(m)	Pass
Frequency Stability	FCC 2.1055	Pass
Site File No.	FCC 1958979	

CONDITIONS DURING TESTING

E Tronic F5-NF-65B-02 ferrite was added to the Ethernet cable at the EUT to reduce an emission at 250 MHz.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

The following information has been changed by the customer since the time of testing. Any differences between the names does not affect their EMC characteristics and therefore meets the level of testing equivalent to the tested model name shown on the data sheets:

	<u>At the Time of Testing</u>	<u>Customer Declaration</u>
Device Name	WiMAX SmartGrid Router	GE WiMAX SmartGrid Router
Manufacturer Name	Grid-Net	GE Energy
Customer Name	GE Energy	None

EQUIPMENT UNDER TEST

WiMAX SmartGrid Router

Manuf: GE Energy
 Model: WX-SGR
 Serial: GN1S11ASS8BS000W

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Laptop PC

Manuf: Dell
 Model: Latitude D830
 Serial: 9THV3G1

24 VDC Power Supply

Manuf: CUI Inc.
 Model: 3A-401DN24
 Serial: NA

Power Supply for EUT Fan

Manuf: Tektronix
 Model: CPS250
 Serial: CKC AN00900A

Cooling Fan

Manuf: CoolerMaster
 Model: AA225-25BB-5EA-F1
 Serial: NA

Antenna

Manuf: Mars Antennas and RF System, Inc
 Model: ANT.MA-VM26-3F
 Serial: NA

AC Adapter for Laptop

Manuf: Dell
 Model: LA90PS0-00
 Serial: CN-0DF266-71615-834-0DC3

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within +15°C and + 35°C.
The relative humidity was between 20% and 75%.

FCC 2.1033(c) (3) USER'S MANUAL

The necessary information is contained in a separate document.

FCC 2.1033 (c)(4) TYPE OF EMISSIONS

4M 44 W7D and 9M06 W7D

FCC 2.1033 (c)(5) FREQUENCY RANGE

2498MHz – 2688MHz

FCC 2.1033 (c)(6) OPERATING POWER

26.1 dBm

FCC 2.1033 (c)(8) DC VOLTAGES

The necessary information is contained in a separate document.

FCC 2.1033 (c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

FCC 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

FCC 2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

FCC 2.1033 (c)(13) MODULATION INFORMATION OFDMA, QPSK, 16QAM

MEASUREMENT UNCERTAINTIES

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $k=2$. Compliance is deemed to occur provided measurements are below the specified limits.

DRAFT

FCC 15.107 – AC CONDUCTED EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**
 Specification: **FCC 15.107 B COND [AVE]**
 Work Order #: **89201** Date: 2/26/2009
 Test Type: **Conducted Emissions** Time: 18:29:50
 Equipment: **WiMAX SmartGrid Router** Sequence#: 17
 Manufacturer: Grid-Net Tested By: Art Rice
 Model: WX-SGR 120V 60Hz
 S/N: GN1S11ASS8BS000W

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., RF Section HP-8568B	2601A02492	01/06/2009	01/06/2011	02663
S.A., Display HP-85662A	2542A12169	01/06/2009	01/06/2011	02662
QP Adapter HP-85650A	2521A00909	01/07/2009	01/07/2011	00683
TTE High Pass Filter	H4120	12/18/2008	12/18/2010	05258
Cable	None	05/13/2008	05/13/2010	00880
10 dB Pad		04/05/2007	04/05/2009	00081
LISN, Emco 3816/2	9408-1006	04/02/2007	04/02/2009	00493

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid Router*	Grid-Net	WX-SGR	GN1S11ASS8BS000W

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A-401DN24	none
Power supply for EUT fan	Tektronix	CPS250	CKC AN00900A
Cooling Fan	CoolerMaster	AA225-25BB-5EA-F1	none
Antenna	Mars Antennas and RF System, Inc.	ANT.MA-VM26-3F	none
AC Adapter for laptop	Dell	LA90PS0-00	CN-0DF266-71615-834-0DC3

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table. It is mounted on styrofoam blocks. 24VDC power supply for EUT is powered by the AC input. The 24VDC power supply is inside the metal cabinet that contains the EUT. The laptop PC communicates to the EUT through the Ethernet connected to the laptop located on the test table. The laptop is constantly pinging the EUT to exercise the port. Using command prompt "ping -t 192.168.137.1" to exercise Ethernet. The laptop PC is also connected to the EUT through the RS232 cable. A Hyperterminal session is opened to establish communication. An unterminated RS-485 cable is bundled to 40cm above the ground plane.

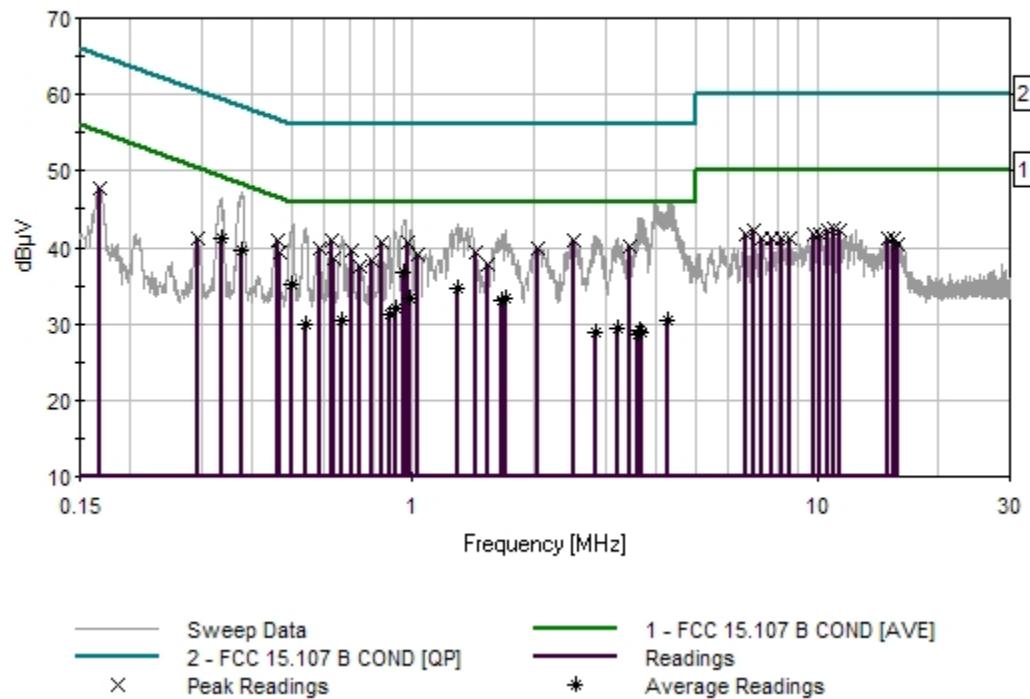
NOTES:

- 1) Spectrum analyzer settings: 0.15-30 MHz RBW=9kHz
- 2) Testing the digital circuitry of the EUT.

Conducted emissions 0.15-30 MHz.

Transducer Legend:

T1=LISN - AN00493 - Black - ELC "OUT"	T2=AN P00081 10dB Attenuator
T3=FIL-ANP05258-121808 CE HP Filter	T4=Cable Calibration ANP00880


Measurement Data: Reading listed by margin.

#	Freq MHz	Rdng dB μ V	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Test Lead: Line	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
1	628.498k	30.7	+0.0	+10.1	+0.0	+0.1	+0.0	Line	40.9	46.0	-5.1	Line
2	2.489M	30.6	-0.1	+10.0	+0.1	+0.2	+0.0	Line	40.8	46.0	-5.2	Line
3	970.566k	30.3	+0.1	+10.1	+0.1	+0.1	+0.0	Line	40.7	46.0	-5.3	Line
4	833.568k	30.4	+0.0	+10.0	+0.1	+0.1	+0.0	Line	40.6	46.0	-5.4	Line
5	462.696k	30.6	+0.1	+10.1	+0.0	+0.0	+0.0	Line	40.8	46.6	-5.8	Line
6	3.437M	30.0	-0.1	+10.0	+0.1	+0.2	+0.0	Line	40.2	46.0	-5.8	Line
7	587.047k	29.7	+0.1	+10.1	+0.0	+0.1	+0.0	Line	40.0	46.0	-6.0	Line
8	2.034M	29.7	+0.0	+10.0	+0.1	+0.2	+0.0	Line	40.0	46.0	-6.0	Line
9	705.581k	29.5	+0.0	+10.1	+0.0	+0.0	+0.0	Line	39.6	46.0	-6.4	Line
10	1.430M	29.2	+0.0	+10.0	+0.1	+0.1	+0.0	Line	39.4	46.0	-6.6	Line
11	1.034M	29.0	+0.0	+10.1	+0.1	+0.0	+0.0	Line	39.2	46.0	-6.8	Line
12	469.968k	29.1	+0.1	+10.1	+0.0	+0.1	+0.0	Line	39.4	46.5	-7.1	Line
13	168.180k	37.3	+0.0	+10.0	+0.4	+0.1	+0.0	Line	47.8	55.0	-7.2	Line
14	635.042k	28.3	+0.0	+10.1	+0.0	+0.1	+0.0	Line	38.5	46.0	-7.5	Line

15	795.026k	28.2	+0.0	+10.0	+0.1	+0.1	+0.0	38.4	46.0	-7.6	Line
16	11.013M	32.1	+0.0	+10.0	+0.1	+0.2	+0.0	42.4	50.0	-7.6	Line
17	10.644M	31.9	+0.0	+10.1	+0.1	+0.2	+0.0	42.3	50.0	-7.7	Line
18	11.409M	31.8	+0.0	+10.0	+0.1	+0.3	+0.0	42.2	50.0	-7.8	Line
19	6.959M	31.6	+0.1	+10.1	+0.1	+0.2	+0.0	42.1	50.0	-7.9	Line
20	336.000k Ave	31.1	+0.0	+10.0	+0.1	+0.0	+0.0	41.2	49.3	-8.1	Line
^	336.163k	36.4	+0.0	+10.0	+0.1	+0.0	+0.0	46.5	49.3	-2.8	Line
22	1.532M	27.7	+0.0	+10.0	+0.1	+0.1	+0.0	37.9	46.0	-8.1	Line
23	6.671M	31.3	+0.1	+10.1	+0.1	+0.2	+0.0	41.8	50.0	-8.2	Line
24	10.175M	31.4	+0.0	+10.1	+0.1	+0.2	+0.0	41.8	50.0	-8.2	Line
25	9.806M	31.2	+0.0	+10.1	+0.1	+0.3	+0.0	41.7	50.0	-8.3	Line
26	741.214k	27.5	+0.0	+10.1	+0.0	+0.0	+0.0	37.6	46.0	-8.4	Line
27	7.319M	30.7	+0.1	+10.1	+0.1	+0.1	+0.0	41.3	50.0	-8.7	Line
28	8.553M	30.9	+0.1	+10.0	+0.1	+0.2	+0.0	41.3	50.0	-8.7	Line
29	378.000k Ave	29.2	+0.1	+10.1	+0.0	+0.1	+0.0	39.5	48.3	-8.8	Line
^	378.341k	36.8	+0.1	+10.1	+0.0	+0.1	+0.0	47.1	48.3	-1.2	Line
31	8.184M	30.8	+0.1	+10.0	+0.1	+0.2	+0.0	41.2	50.0	-8.8	Line
32	15.013M	30.6	+0.0	+10.1	+0.2	+0.3	+0.0	41.2	50.0	-8.8	Line
33	15.544M	30.6	+0.0	+10.1	+0.2	+0.3	+0.0	41.2	50.0	-8.8	Line
34	7.725M	30.7	+0.1	+10.0	+0.1	+0.2	+0.0	41.1	50.0	-8.9	Line
35	294.713k	31.0	+0.1	+10.0	+0.2	+0.0	+0.0	41.3	50.4	-9.1	Line
36	949.000k Ave	26.3	+0.1	+10.1	+0.1	+0.1	+0.0	36.7	46.0	-9.3	Line
^	949.301k	33.2	+0.1	+10.1	+0.1	+0.1	+0.0	43.6	46.0	-2.4	Line
38	15.806M	29.6	+0.1	+10.1	+0.2	+0.3	+0.0	40.3	50.0	-9.7	Line

39	502.000k	24.8	+0.1	+10.1	+0.0	+0.1	+0.0	35.1	46.0	-10.9	Line
Ave											
^	502.328k	32.7	+0.1	+10.1	+0.0	+0.1	+0.0	43.0	46.0	-3.0	Line
41	1.285M	24.3	+0.0	+10.1	+0.1	+0.1	+0.0	34.6	46.0	-11.4	Line
Ave											
^	1.285M	32.6	+0.0	+10.1	+0.1	+0.1	+0.0	42.9	46.0	-3.1	Line
43	988.000k	23.1	+0.0	+10.1	+0.1	+0.1	+0.0	33.4	46.0	-12.6	Line
Ave											
^	987.578k	32.0	+0.0	+10.1	+0.1	+0.1	+0.0	42.3	46.0	-3.7	Line
45	1.694M	23.0	+0.0	+10.0	+0.1	+0.1	+0.0	33.2	46.0	-12.8	Line
Ave											
^	1.694M	32.0	+0.0	+10.0	+0.1	+0.1	+0.0	42.2	46.0	-3.8	Line
47	1.655M	22.8	+0.0	+10.0	+0.1	+0.1	+0.0	33.0	46.0	-13.0	Line
Ave											
^	1.655M	31.5	+0.0	+10.0	+0.1	+0.1	+0.0	41.7	46.0	-4.3	Line
49	905.000k	21.9	+0.0	+10.0	+0.1	+0.0	+0.0	32.0	46.0	-14.0	Line
Ave											
^	905.265k	31.9	+0.0	+10.0	+0.1	+0.1	+0.0	42.1	46.0	-3.9	Line
51	875.000k	21.0	+0.0	+10.0	+0.1	+0.1	+0.0	31.2	46.0	-14.8	Line
Ave											
^	875.473k	31.1	+0.0	+10.0	+0.1	+0.1	+0.0	41.3	46.0	-4.7	Line
53	668.000k	20.3	+0.0	+10.1	+0.0	+0.1	+0.0	30.4	46.0	-15.6	Line
Ave											
^	668.675k	31.3	+0.0	+10.1	+0.0	+0.1	+0.0	41.5	46.0	-4.5	Line
55	4.275M	20.0	+0.0	+10.1	+0.1	+0.2	+0.0	30.4	46.0	-15.6	Line
Ave											
^	4.275M	35.8	+0.0	+10.1	+0.1	+0.2	+0.0	46.2	46.0	+0.2	Line
57	545.000k	19.7	+0.0	+10.1	+0.0	+0.1	+0.0	29.9	46.0	-16.1	Line
Ave											
^	544.870k	32.3	+0.0	+10.1	+0.0	+0.1	+0.0	42.5	46.0	-3.5	Line
59	3.199M	19.3	-0.1	+10.0	+0.1	+0.1	+0.0	29.4	46.0	-16.6	Line
Ave											
^	3.199M	31.0	-0.1	+10.0	+0.1	+0.1	+0.0	41.1	46.0	-4.9	Line
61	3.650M	18.8	+0.0	+10.1	+0.1	+0.2	+0.0	29.2	46.0	-16.8	Line
Ave											
^	3.650M	33.4	+0.0	+10.1	+0.1	+0.2	+0.0	43.8	46.0	-2.2	Line

63	2.838M	18.8	-0.1	+10.0	+0.1	+0.1	+0.0	28.9	46.0	-17.1	Line
Ave											
^	2.838M	31.4	-0.1	+10.0	+0.1	+0.1	+0.0	41.5	46.0	-4.5	Line
65	3.688M	18.4	+0.0	+10.1	+0.1	+0.2	+0.0	28.8	46.0	-17.2	Line
Ave											
^	3.688M	33.3	+0.0	+10.1	+0.1	+0.2	+0.0	43.7	46.0	-2.3	Line
67	3.616M	18.3	+0.0	+10.1	+0.1	+0.2	+0.0	28.7	46.0	-17.3	Line
Ave											
^	3.616M	33.5	+0.0	+10.1	+0.1	+0.2	+0.0	43.9	46.0	-2.1	Line

CKC Laboratories, Inc. Date: 2/26/2009 Time: 18:29:50 GE Energy WO#: 89201
FCC 15.107 B COND [AVE] Test Lead: Line 120V 60Hz Sequence#: 17

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**
 Specification: **FCC 15.107 B COND [AVE]**
 Work Order #: **89201** Date: **2/26/2009**
 Test Type: **Conducted Emissions** Time: **18:15:22**
 Equipment: **WiMAX SmartGrid Router** Sequence#: **16**
 Manufacturer: Grid-Net Tested By: Art Rice
 Model: WX-SGR 120V 60Hz
 S/N: GN1S11ASS8BS000W

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., RF Section HP-8568B	2601A02492	01/06/2009	01/06/2011	02663
S.A., Display HP-85662A	2542A12169	01/06/2009	01/06/2011	02662
QP Adapter HP-85650A	2521A00909	01/07/2009	01/07/2011	00683
TTE High Pass Filter	H4120	12/18/2008	12/18/2010	05258
Cable	None	05/13/2008	05/13/2010	00880
10 dB Pad		04/05/2007	04/05/2009	00081
LISN, Emco 3816/2	9408-1006	04/02/2007	04/02/2009	00493

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid Router*	Grid-Net	WX-SGR	GN1S11ASS8BS000W

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A-401DN24	none
Power supply for EUT fan	Tektronix	CPS250	CKC AN00900A
Cooling Fan	CoolerMaster	AA225-25BB-5EA-F1	none
Antenna	Mars Antennas and RF System, Inc.	ANT.MA-VM26-3F	none
AC Adapter for laptop	Dell	LA90PS0-00	CN-0DF266-71615-834-0DC3

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table. It is mounted on styrofoam blocks. 24VDC power supply for EUT is powered by the AC input. The 24VDC power supply is inside the metal cabinet that contains the EUT.

The laptop PC communicates to the EUT through the Ethernet connected to the laptop located on the test table. The laptop is constantly pinging the EUT to exercise the port.

Using command prompt "ping -t 192.168.137.1" to exercise Ethernet.

The laptop PC is also connected to the EUT through the RS232 cable. A Hyperterminal session is opened to establish communication.

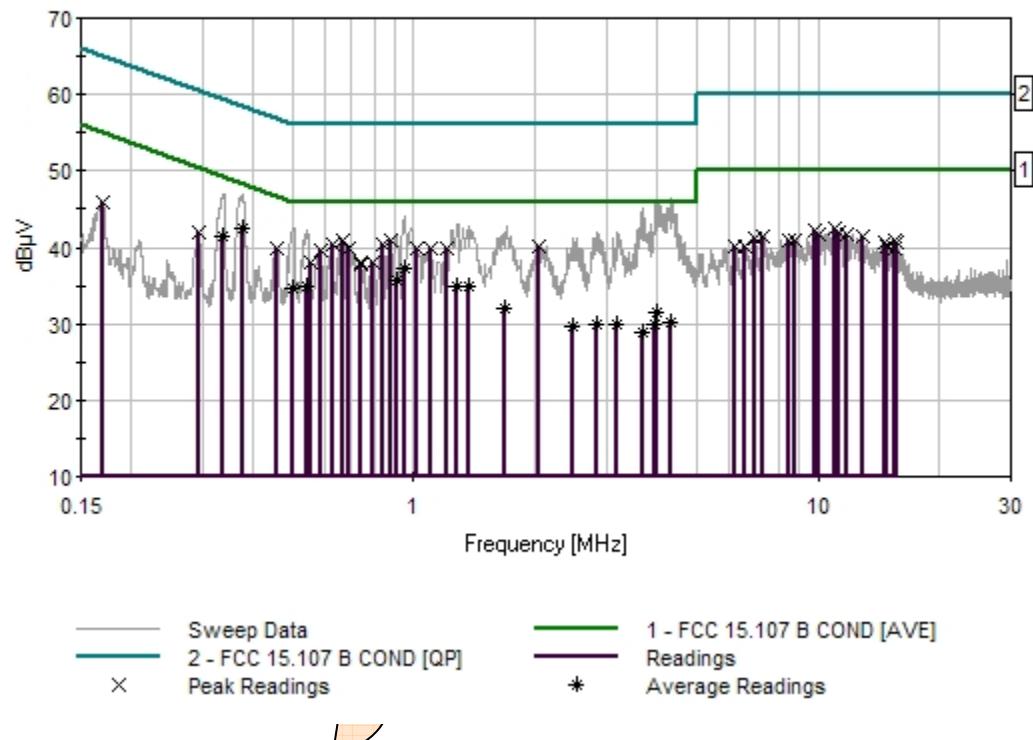
An unterminated RS-485 cable is bundled to 40cm above the ground plane.

NOTES:

- 1) Spectrum analyzer settings: 0.15-30 MHz RBW=9kHz
- 2) Testing the digital circuitry of the EUT.

Conducted emissions 0.15-30 MHz.

Transducer Legend:


T1=LISN - AN00493 - White - ELC "OUT"	T2=AN P00081 10dB Attenuator
T3=FIL-ANP05258-121808 CE HP Filter	T4=Cable Calibration ANP00880

#	Freq MHz	Reading listed by margin.						Test Lead: Neutral			
		Rdng dB μ V	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
1	667.039k	30.7	+0.0	+10.1	+0.0	+0.1	+0.0	40.9	46.0	-5.1	Neutral
2	873.564k	30.6	+0.0	+10.0	+0.1	+0.1	+0.0	40.8	46.0	-5.2	Neutral
3	627.043k	30.2	+0.0	+10.1	+0.0	+0.1	+0.0	40.4	46.0	-5.6	Neutral
4	377.000k Ave	32.3	+0.1	+10.1	+0.0	+0.1	+0.0	42.6	48.3	-5.7	Neutral
^	376.886k	36.6	+0.1	+10.1	+0.0	+0.1	+0.0	46.9	48.3	-1.4	Neutral
6	833.568k	30.1	+0.0	+10.0	+0.1	+0.1	+0.0	40.3	46.0	-5.7	Neutral
7	2.034M	29.8	+0.0	+10.0	+0.1	+0.2	+0.0	40.1	46.0	-5.9	Neutral
8	1.200M	29.7	+0.0	+10.1	+0.1	+0.1	+0.0	40.0	46.0	-6.0	Neutral
9	688.128k	29.7	+0.0	+10.1	+0.0	+0.1	+0.0	39.9	46.0	-6.1	Neutral
10	1.017M	29.7	+0.0	+10.1	+0.1	+0.1	+0.0	39.9	46.0	-6.1	Neutral
11	1.098M	29.5	+0.0	+10.1	+0.1	+0.1	+0.0	39.8	46.0	-6.2	Neutral
12	587.774k	29.5	+0.0	+10.1	+0.0	+0.1	+0.0	39.7	46.0	-6.3	Neutral
13	457.606k	29.7	+0.0	+10.1	+0.0	+0.0	+0.0	39.8	46.7	-6.9	Neutral
14	10.995M	32.2	+0.0	+10.0	+0.1	+0.2	+0.0	42.5	50.0	-7.5	Neutral
15	9.815M	31.7	+0.1	+10.1	+0.1	+0.3	+0.0	42.3	50.0	-7.7	Neutral
16	336.000k Ave	31.3	+0.1	+10.0	+0.1	+0.0	+0.0	41.5	49.3	-7.8	Neutral
^	336.345k	36.7	+0.1	+10.0	+0.1	+0.0	+0.0	46.9	49.2	-2.3	Neutral
18	555.050k	27.9	+0.0	+10.1	+0.0	+0.1	+0.0	38.1	46.0	-7.9	Neutral
19	736.123k	28.0	+0.0	+10.1	+0.0	+0.0	+0.0	38.1	46.0	-7.9	Neutral
20	795.026k	27.9	+0.0	+10.0	+0.1	+0.1	+0.0	38.1	46.0	-7.9	Neutral
21	11.319M	31.5	+0.0	+10.0	+0.1	+0.3	+0.0	41.9	50.0	-8.1	Neutral
22	11.752M	31.4	+0.0	+10.0	+0.1	+0.3	+0.0	41.8	50.0	-8.2	Neutral

23	737.578k	27.6	+0.0	+10.1	+0.0	+0.0	+0.0	37.7	46.0	-8.3	Neutral
24	10.094M	31.1	+0.1	+10.1	+0.1	+0.2	+0.0	41.6	50.0	-8.4	Neutral
25	293.986k	31.7	+0.0	+10.0	+0.2	+0.0	+0.0	41.9	50.4	-8.5	Neutral
26	7.328M	30.9	+0.1	+10.1	+0.1	+0.3	+0.0	41.5	50.0	-8.5	Neutral
27	12.851M	31.1	+0.0	+10.0	+0.1	+0.3	+0.0	41.5	50.0	-8.5	Neutral
28	953.000k Ave	27.0	+0.0	+10.1	+0.1	+0.1	+0.0	37.3	46.0	-8.7	Neutral
^	953.048k	33.8	+0.0	+10.0	+0.1	+0.1	+0.0	44.0	46.0	-2.0	Neutral
30	6.950M	30.7	+0.1	+10.1	+0.1	+0.2	+0.0	41.2	50.0	-8.8	Neutral
31	170.362k	35.5	+0.0	+10.0	+0.4	+0.1	+0.0	46.0	54.9	-8.9	Neutral
32	8.788M	30.6	+0.1	+10.0	+0.1	+0.2	+0.0	41.0	50.0	-9.0	Neutral
33	8.508M	30.5	+0.1	+10.0	+0.1	+0.2	+0.0	40.9	50.0	-9.1	Neutral
34	15.418M	30.2	+0.0	+10.1	+0.2	+0.3	+0.0	40.8	50.0	-9.2	Neutral
35	14.616M	30.0	+0.0	+10.1	+0.2	+0.3	+0.0	40.6	50.0	-9.4	Neutral
36	15.698M	30.0	+0.0	+10.1	+0.2	+0.3	+0.0	40.6	50.0	-9.4	Neutral
37	6.607M	29.7	+0.1	+10.1	+0.1	+0.2	+0.0	40.2	50.0	-9.8	Neutral
38	6.229M	29.6	+0.1	+10.1	+0.1	+0.2	+0.0	40.1	50.0	-9.9	Neutral
39	14.743M	29.5	+0.0	+10.1	+0.2	+0.3	+0.0	40.1	50.0	-9.9	Neutral
40	15.481M	29.4	+0.0	+10.1	+0.2	+0.3	+0.0	40.0	50.0	-10.0	Neutral
41	911.000k Ave	25.6	+0.0	+10.0	+0.1	+0.0	+0.0	35.7	46.0	-10.3	Neutral
^	911.024k	31.7	+0.0	+10.0	+0.1	+0.0	+0.0	41.8	46.0	-4.2	Neutral
43	543.000k Ave	24.8	+0.0	+10.1	+0.0	+0.1	+0.0	35.0	46.0	-11.0	Neutral
^	543.597k	32.1	+0.0	+10.1	+0.0	+0.1	+0.0	42.3	46.0	-3.7	Neutral
45	1.281M Ave	24.7	+0.0	+10.1	+0.1	+0.1	+0.0	35.0	46.0	-11.0	Neutral
^	1.281M	32.6	+0.0	+10.1	+0.1	+0.1	+0.0	42.9	46.0	-3.1	Neutral

47	1.366M	24.6	+0.0	+10.1	+0.1	+0.1	+0.0	34.9	46.0	-11.1	Neutral
Ave											
^	1.366M	32.4	+0.0	+10.1	+0.1	+0.1	+0.0	42.7	46.0	-3.3	Neutral
49	502.000k	24.6	+0.0	+10.1	+0.0	+0.1	+0.0	34.7	46.0	-11.3	Neutral
Ave											
^	502.601k	32.4	+0.0	+10.1	+0.0	+0.1	+0.0	42.6	46.0	-3.4	Neutral
51	1.689M	21.7	+0.0	+10.0	+0.1	+0.1	+0.0	31.9	46.0	-14.1	Neutral
Ave											
^	1.689M	32.6	+0.0	+10.0	+0.1	+0.1	+0.0	42.8	46.0	-3.2	Neutral
53	4.011M	20.9	+0.1	+10.1	+0.1	+0.2	+0.0	31.4	46.0	-14.6	Neutral
Ave											
^	4.011M	35.4	+0.1	+10.1	+0.1	+0.2	+0.0	45.9	46.0	-0.1	Neutral
55	4.347M	19.8	+0.1	+10.1	+0.1	+0.2	+0.0	30.3	46.0	-15.7	Neutral
Ave											
^	4.347M	35.9	+0.1	+10.1	+0.1	+0.2	+0.0	46.4	46.0	+0.4	Neutral
57	3.943M	19.6	+0.1	+10.1	+0.1	+0.1	+0.0	30.0	46.0	-16.0	Neutral
Ave											
^	3.943M	35.3	+0.1	+10.1	+0.1	+0.1	+0.0	45.7	46.0	-0.3	Neutral
59	3.182M	19.6	+0.1	+10.0	+0.1	+0.1	+0.0	29.9	46.0	-16.1	Neutral
Ave											
^	3.182M	31.6	+0.1	+10.0	+0.1	+0.1	+0.0	41.9	46.0	-4.1	Neutral
61	2.821M	19.6	+0.1	+10.0	+0.1	+0.1	+0.0	29.9	46.0	-16.1	Neutral
Ave											
^	2.821M	31.6	+0.1	+10.0	+0.1	+0.1	+0.0	41.9	46.0	-4.1	Neutral
63	2.485M	19.3	+0.1	+10.0	+0.1	+0.2	+0.0	29.7	46.0	-16.3	Neutral
Ave											
^	2.485M	30.8	+0.1	+10.0	+0.1	+0.2	+0.0	41.2	46.0	-4.8	Neutral
65	3.675M	18.3	+0.1	+10.1	+0.1	+0.2	+0.0	28.8	46.0	-17.2	Neutral
Ave											
^	3.675M	34.6	+0.1	+10.1	+0.1	+0.2	+0.0	45.1	46.0	-0.9	Neutral

CKC Laboratories, Inc. Date: 2/26/2009 Time: 18:15:22 GE Energy WO#: 89201
FCC 15.107 B COND [AVE] Test Lead: Neutral 120V 60Hz Sequence#: 16

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**
 Specification: **FCC 15.107 B COND [AVE]**
 Work Order #: **89201** Date: **2/26/2009**
 Test Type: **Conducted Emissions** Time: **17:37:31**
 Equipment: **WiMAX SmartGrid Router** Sequence#: **14**
 Manufacturer: Grid-Net
 Model: WX-SGR
 S/N: GN1S11ASS8BS000W
 Tested By: Art Rice
 240V 60Hz

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., RF Section HP-8568B	2601A02492	01/06/2009	01/06/2011	02663
S.A., Display HP-85662A	2542A12169	01/06/2009	01/06/2011	02662
QP Adapter HP-85650A	2521A00909	01/07/2009	01/07/2011	00683
TTE High Pass Filter	H4120	12/18/2008	12/18/2010	05258
Cable	None	05/13/2008	05/13/2010	00880
10 dB Pad		04/05/2007	04/05/2009	00081
LISN, Emco 3816/2	9408-1006	04/02/2007	04/02/2009	00493

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid Router*	Grid-Net	WX-SGR	GN1S11ASS8BS000W

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A-401DN24	none
Power supply for EUT fan	Tektronix	CPS250	CKC AN00900A
Cooling Fan	CoolerMaster	AA225-25BB-5EA-F1	none
Antenna	Mars Antennas and RF System, Inc.	ANT.MA-VM26-3F	none
AC Adapter for laptop	Dell	LA90PS0-00	CN-0DF266-71615-834-0DC3

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table. It is mounted on styrofoam blocks. 24VDC power supply for EUT is powered by the AC input. The 24VDC power supply is inside the metal cabinet that contains the EUT.

The laptop PC communicates to the EUT through the Ethernet connected to the laptop located on the test table. The laptop is constantly pinging the EUT to exercise the port.

Using command prompt "ping -t 192.168.137.1" to exercise Ethernet.

The laptop PC is also connected to the EUT through the RS232 cable. A Hyperterminal session is opened to establish communication.

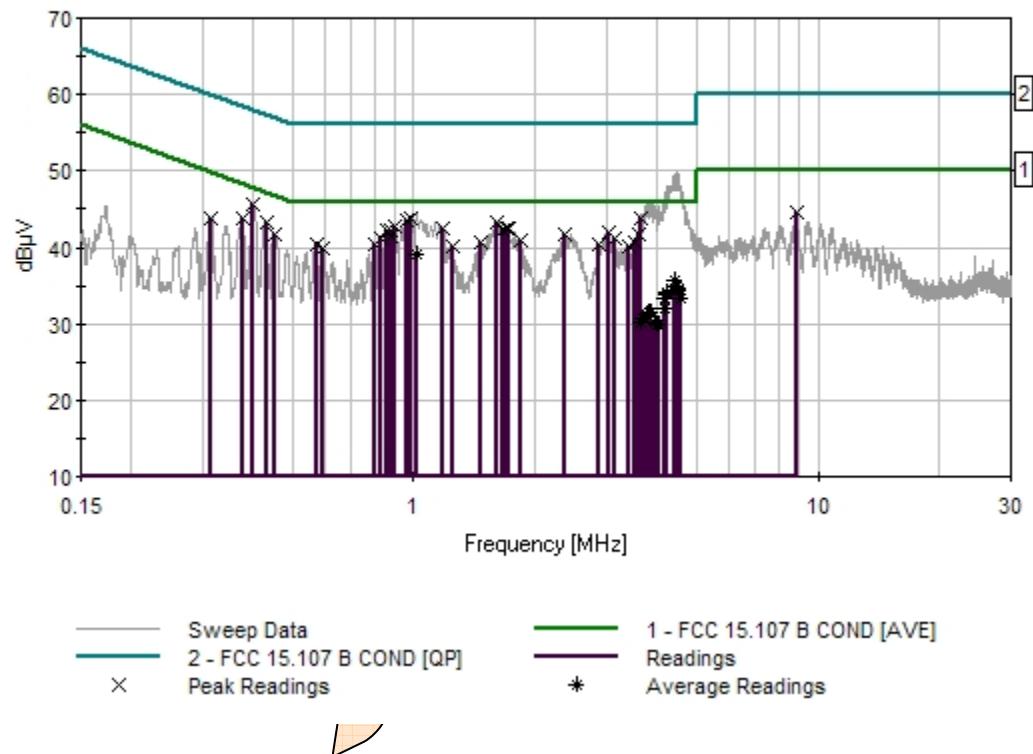
An unterminated RS-485 cable is bundled to 40cm above the ground plane.

NOTES:

- 1) Spectrum analyzer settings: 0.15-30 MHz RBW=9kHz
- 2) Testing the digital circuitry of the EUT.

Conducted emissions 0.15-30 MHz.

Transducer Legend:


T1=LISN - AN00493 - Black - ELC "OUT"	T2=AN P00081 10dB Attenuator
T3=FIL-ANP05258-121808 CE HP Filter	T4=Cable Calibration ANP00880

#	Freq MHz	Reading listed by margin.						Test Lead: Line 1			
		Rdng dB μ V	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
1	987.578k	33.6	+0.0	+10.1	+0.1	+0.1	+0.0	43.9	46.0	-2.1	Line
2	401.611k	35.3	+0.1	+10.1	+0.0	+0.1	+0.0	45.6	47.8	-2.2	Line
3	3.637M	33.3	+0.0	+10.1	+0.1	+0.2	+0.0	43.7	46.0	-2.3	Line
4	957.807k	33.2	+0.1	+10.1	+0.1	+0.1	+0.0	43.6	46.0	-2.4	Line
5	1.613M	33.1	+0.0	+10.0	+0.1	+0.1	+0.0	43.3	46.0	-2.7	Line
6	902.518k	32.6	+0.0	+10.0	+0.1	+0.0	+0.0	42.7	46.0	-3.3	Line
7	1.715M	32.4	+0.0	+10.0	+0.1	+0.1	+0.0	42.6	46.0	-3.4	Line
8	1.183M	32.2	+0.0	+10.1	+0.1	+0.1	+0.0	42.5	46.0	-3.5	Line
9	1.694M	32.3	+0.0	+10.0	+0.1	+0.1	+0.0	42.5	46.0	-3.5	Line
10	856.111k	32.0	+0.0	+10.0	+0.1	+0.1	+0.0	42.3	46.0	-3.7	Line
11	1.660M	32.1	+0.0	+10.0	+0.1	+0.1	+0.0	42.3	46.0	-3.7	Line
12	430.699k	33.2	+0.1	+10.1	+0.0	+0.0	+0.0	43.4	47.2	-3.8	Line
13	877.000k	31.9	+0.0	+10.0	+0.1	+0.1	+0.0	42.1	46.0	-3.9	Line
14	3.055M	31.8	-0.1	+10.0	+0.1	+0.1	+0.0	41.9	46.0	-4.1	Line
15	2.353M	31.5	+0.0	+10.0	+0.1	+0.2	+0.0	41.8	46.0	-4.2	Line
16	3.612M	31.4	+0.0	+10.1	+0.1	+0.2	+0.0	41.8	46.0	-4.2	Line
17	376.886k	33.6	+0.1	+10.1	+0.0	+0.1	+0.0	43.9	48.3	-4.4	Line
18	875.018k	31.2	+0.0	+10.0	+0.1	+0.1	+0.0	41.4	46.0	-4.6	Line
19	3.135M	31.1	-0.1	+10.0	+0.1	+0.1	+0.0	41.2	46.0	-4.8	Line
20	829.205k	30.9	+0.0	+10.0	+0.1	+0.1	+0.0	41.1	46.0	-4.9	Line
21	1.830M	30.7	+0.0	+10.0	+0.1	+0.1	+0.0	40.9	46.0	-5.1	Line
22	453.970k	31.4	+0.1	+10.1	+0.0	+0.0	+0.0	41.6	46.8	-5.2	Line

23	1.460M	30.4	+0.0	+10.0	+0.1	+0.1	+0.0	40.6	46.0	-5.4	Line
24	3.531M	30.2	+0.0	+10.1	+0.1	+0.2	+0.0	40.6	46.0	-5.4	Line
25	800.117k	30.3	+0.0	+10.0	+0.1	+0.1	+0.0	40.5	46.0	-5.5	Line
26	8.815M	34.1	+0.1	+10.0	+0.1	+0.2	+0.0	44.5	50.0	-5.5	Line
27	574.685k	30.1	+0.1	+10.1	+0.0	+0.1	+0.0	40.4	46.0	-5.6	Line
28	2.867M	30.3	-0.1	+10.0	+0.1	+0.1	+0.0	40.4	46.0	-5.6	Line
29	1.243M	29.8	+0.0	+10.1	+0.1	+0.1	+0.0	40.1	46.0	-5.9	Line
30	3.408M	29.9	-0.1	+10.0	+0.1	+0.2	+0.0	40.1	46.0	-5.9	Line
31	597.228k	29.7	+0.1	+10.1	+0.0	+0.1	+0.0	40.0	46.0	-6.0	Line
32	315.802k	33.3	+0.1	+10.0	+0.2	+0.1	+0.0	43.7	49.8	-6.1	Line
33	1.013M Ave	28.8	+0.0	+10.1	+0.1	+0.0	+0.0	39.0	46.0	-7.0	Line
^	1.013M	34.0	+0.0	+10.1	+0.1	+0.0	+0.0	44.2	46.0	-1.8	Line
35	4.403M Ave	25.2	+0.0	+10.1	+0.1	+0.2	+0.0	35.6	46.0	-10.4	Line
^	4.403M	39.1	+0.0	+10.1	+0.1	+0.2	+0.0	49.5	46.0	+3.5	Line
37	4.471M Ave	24.4	+0.0	+10.1	+0.1	+0.2	+0.0	34.8	46.0	-11.2	Line
^	4.471M	39.3	+0.0	+10.1	+0.1	+0.2	+0.0	49.7	46.0	+3.7	Line
39	4.513M Ave	24.3	+0.1	+10.0	+0.1	+0.2	+0.0	34.7	46.0	-11.3	Line
^	4.513M	39.1	+0.1	+10.0	+0.1	+0.2	+0.0	49.5	46.0	+3.5	Line
41	4.530M Ave	23.9	+0.1	+10.0	+0.1	+0.2	+0.0	34.3	46.0	-11.7	Line
^	4.530M	38.7	+0.1	+10.0	+0.1	+0.2	+0.0	49.1	46.0	+3.1	Line
43	4.245M Ave	23.8	+0.0	+10.1	+0.1	+0.2	+0.0	34.2	46.0	-11.8	Line
^	4.245M	37.5	+0.0	+10.1	+0.1	+0.2	+0.0	47.9	46.0	+1.9	Line
45	4.220M Ave	23.4	+0.0	+10.1	+0.1	+0.2	+0.0	33.8	46.0	-12.2	Line
^	4.220M	37.1	+0.0	+10.1	+0.1	+0.2	+0.0	47.5	46.0	+1.5	Line

47	4.569M	22.9	+0.1	+10.0	+0.1	+0.2	+0.0	33.3	46.0	-12.7	Line
Ave											
^	4.569M	37.6	+0.1	+10.0	+0.1	+0.2	+0.0	48.0	46.0	+2.0	Line
49	4.199M	22.8	+0.0	+10.1	+0.1	+0.2	+0.0	33.2	46.0	-12.8	Line
Ave											
^	4.199M	36.7	+0.0	+10.1	+0.1	+0.2	+0.0	47.1	46.0	+1.1	Line
51	4.156M	21.7	+0.0	+10.1	+0.1	+0.2	+0.0	32.1	46.0	-13.9	Line
Ave											
^	4.156M	36.4	+0.0	+10.1	+0.1	+0.2	+0.0	46.8	46.0	+0.8	Line
53	3.858M	21.1	+0.0	+10.1	+0.1	+0.1	+0.0	31.4	46.0	-14.6	Line
Ave											
^	3.858M	35.8	+0.0	+10.1	+0.1	+0.1	+0.0	46.1	46.0	+0.1	Line
55	3.824M	21.1	+0.0	+10.1	+0.1	+0.1	+0.0	31.4	46.0	-14.6	Line
Ave											
^	3.824M	35.8	+0.0	+10.1	+0.1	+0.1	+0.0	46.1	46.0	+0.1	Line
57	3.761M	20.9	+0.0	+10.1	+0.1	+0.2	+0.0	31.3	46.0	-14.7	Line
Ave											
^	3.761M	35.6	+0.0	+10.1	+0.1	+0.2	+0.0	46.0	46.0	+0.0	Line
59	3.680M	20.2	+0.0	+10.1	+0.1	+0.1	+0.0	30.6	46.0	-15.4	Line
Ave											
^	3.680M	33.9	+0.0	+10.1	+0.1	+0.2	+0.0	44.3	46.0	-1.7	Line
61	3.663M	19.9	+0.0	+10.1	+0.1	+0.2	+0.0	30.3	46.0	-15.7	Line
Ave											
^	3.663M	34.0	+0.0	+10.1	+0.1	+0.2	+0.0	44.4	46.0	-1.6	Line
63	3.935M	19.8	+0.0	+10.1	+0.1	+0.1	+0.0	30.1	46.0	-15.9	Line
Ave											
^	3.935M	35.2	+0.0	+10.1	+0.1	+0.1	+0.0	45.5	46.0	-0.5	Line
65	3.982M	19.5	+0.0	+10.1	+0.1	+0.1	+0.0	29.8	46.0	-16.2	Line
Ave											
^	3.982M	34.2	+0.0	+10.1	+0.1	+0.1	+0.0	44.5	46.0	-1.5	Line
67	4.028M	19.4	+0.0	+10.1	+0.1	+0.2	+0.0	29.8	46.0	-16.2	Line
Ave											
^	4.028M	35.0	+0.0	+10.1	+0.1	+0.2	+0.0	45.4	46.0	-0.6	Line

CKC Laboratories, Inc. Date: 2/26/2009 Time: 17:37:31 GE Energy WO#: 89201
FCC 15.107 B COND [AVE] Test Lead: Line 1 240V 60Hz Sequence#: 14

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**
 Specification: **FCC 15.107 B COND [AVE]**
 Work Order #: **89201** Date: **2/26/2009**
 Test Type: **Conducted Emissions** Time: **17:53:21**
 Equipment: **WiMAX SmartGrid Router** Sequence#: **15**
 Manufacturer: Grid-Net
 Model: WX-SGR
 S/N: GN1S11ASS8BS000W
 Tested By: Art Rice
 240V 60Hz

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., RF Section HP-8568B	2601A02492	01/06/2009	01/06/2011	02663
S.A., Display HP-85662A	2542A12169	01/06/2009	01/06/2011	02662
QP Adapter HP-85650A	2521A00909	01/07/2009	01/07/2011	00683
TTE High Pass Filter	H4120	12/18/2008	12/18/2010	05258
Cable	None	05/13/2008	05/13/2010	00880
10 dB Pad		04/05/2007	04/05/2009	00081
LISN, Emco 3816/2	9408-1006	04/02/2007	04/02/2009	00493

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid Router*	Grid-Net	WX-SGR	GN1S11ASS8BS000W

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A-401DN24	none
Power supply for EUT fan	Tektronix	CPS250	CKC AN00900A
Cooling Fan	CoolerMaster	AA225-25BB-5EA-F1	none
Antenna	Mars Antennas and RF System, Inc.	ANT.MA-VM26-3F	none
AC Adapter for laptop	Dell	LA90PS0-00	CN-0DF266-71615-834-0DC3

Test Conditions / Notes:

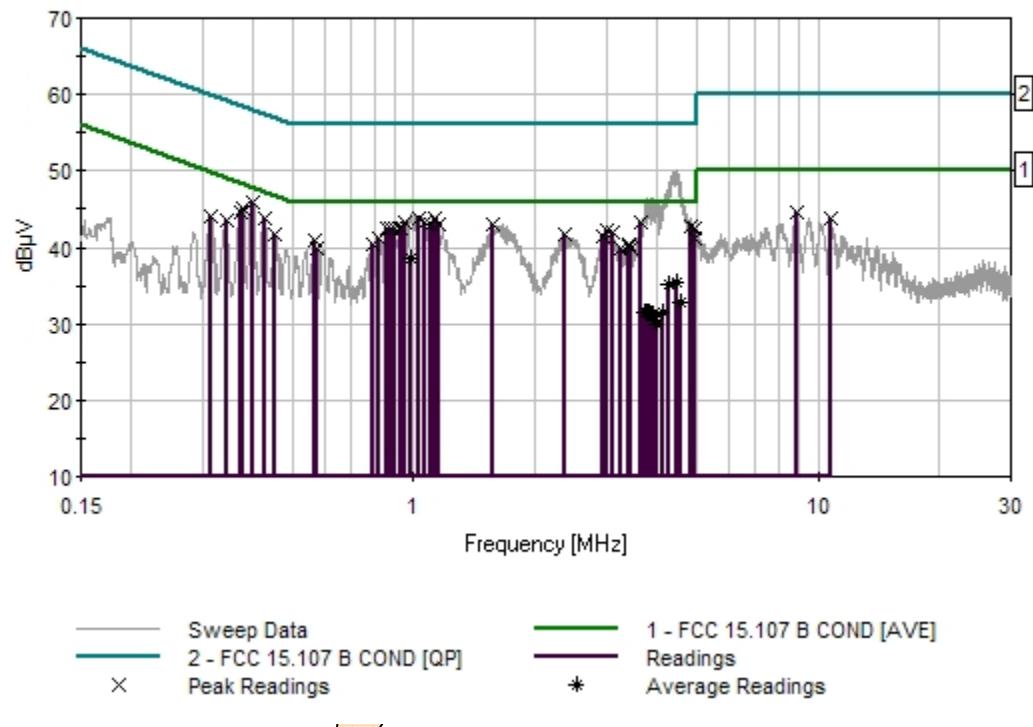
The wall mount transceiver is placed on top of the wooden test table. It is mounted on styrofoam blocks.
 24VDC power supply for EUT is powered by the AC input. The 24VDC power supply is inside the metal cabinet that contains the EUT.
 The laptop PC communicates to the EUT through the Ethernet connected to the laptop located on the test table. The laptop is constantly pinging the EUT to exercise the port.
 Using command prompt "ping -t 192.168.137.1" to exercise Ethernet.
 The laptop PC is also connected to the EUT through the RS232 cable. A Hyperterminal session is opened to establish communication.
 An unterminated RS-485 cable is bundled to 40cm above the ground plane.

NOTES:

- 1) Spectrum analyzer settings: 0.15-30 MHz RBW=9kHz
- 2) Testing the digital circuitry of the EUT.

Conducted emissions 0.15-30 MHz.

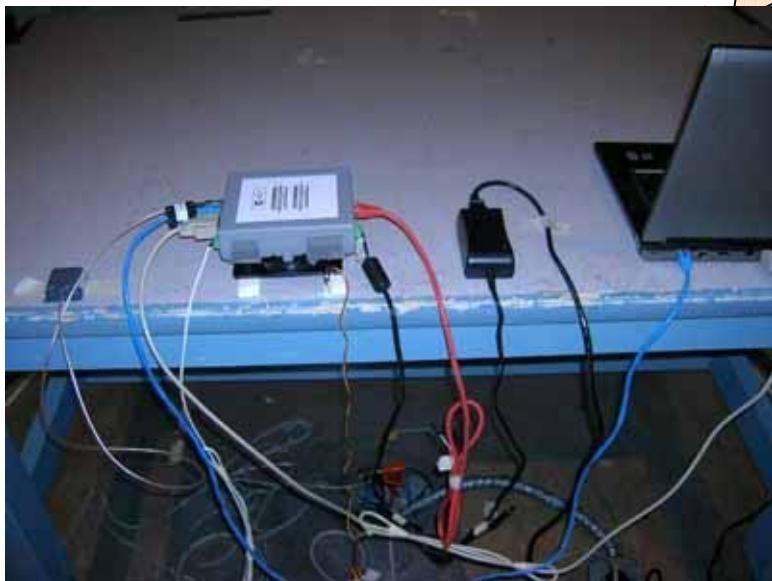
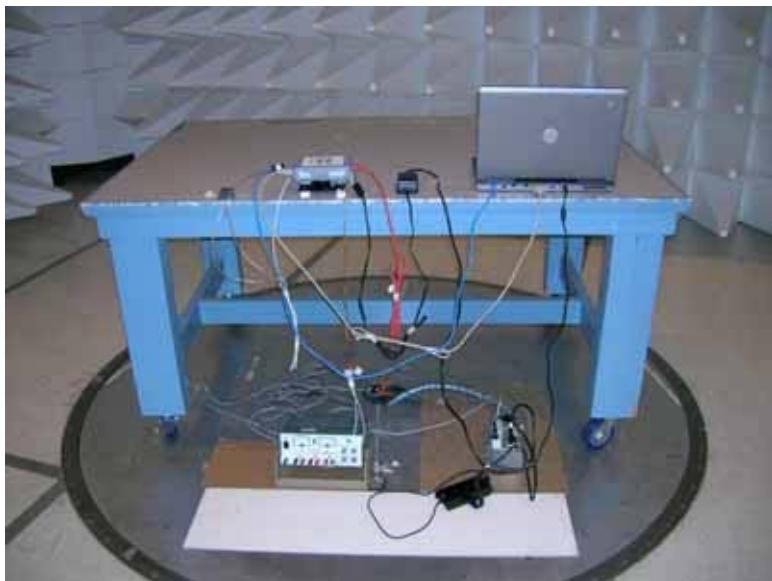
Transducer Legend:


T1=LISN - AN00493 - White - ELC "OUT"	T2=AN P00081 10dB Attenuator
T3=FIL-ANP05258-121808 CE HP Filter	T4=Cable Calibration ANP00880

#	Freq MHz	Reading listed by margin.						Test Lead: Line 2			
		Rdng dB μ V	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
1	399.430k	35.5	+0.1	+10.1	+0.0	+0.1	+0.0	45.8	47.9	-2.1	Line
2	1.034M	33.7	+0.0	+10.1	+0.1	+0.0	+0.0	43.9	46.0	-2.1	Line
3	1.124M	33.6	+0.0	+10.1	+0.1	+0.1	+0.0	43.9	46.0	-2.1	Line
4	953.554k	33.1	+0.0	+10.1	+0.1	+0.1	+0.0	43.4	46.0	-2.6	Line
5	1.064M	33.1	+0.0	+10.1	+0.1	+0.1	+0.0	43.4	46.0	-2.6	Line
6	3.633M	32.7	+0.1	+10.1	+0.1	+0.2	+0.0	43.2	46.0	-2.8	Line
7	1.098M	32.7	+0.0	+10.1	+0.1	+0.1	+0.0	43.0	46.0	-3.0	Line
8	1.149M	32.7	+0.0	+10.1	+0.1	+0.1	+0.0	43.0	46.0	-3.0	Line
9	1.570M	32.8	+0.0	+10.0	+0.1	+0.1	+0.0	43.0	46.0	-3.0	Line
10	379.068k	34.7	+0.1	+10.1	+0.0	+0.1	+0.0	45.0	48.3	-3.3	Line
11	4.832M	32.4	+0.0	+10.0	+0.1	+0.2	+0.0	42.7	46.0	-3.3	Line
12	4.947M	32.3	+0.0	+10.0	+0.1	+0.2	+0.0	42.6	46.0	-3.4	Line
13	427.063k	33.7	+0.0	+10.1	+0.0	+0.0	+0.0	43.8	47.3	-3.5	Line
14	853.930k	32.2	+0.0	+10.0	+0.1	+0.2	+0.0	42.5	46.0	-3.5	Line
15	928.036k	32.4	+0.0	+10.0	+0.1	+0.0	+0.0	42.5	46.0	-3.5	Line
16	876.473k	32.2	+0.0	+10.0	+0.1	+0.1	+0.0	42.4	46.0	-3.6	Line
17	894.012k	32.2	+0.0	+10.0	+0.1	+0.1	+0.0	42.4	46.0	-3.6	Line
18	3.008M	31.9	+0.1	+10.0	+0.1	+0.1	+0.0	42.2	46.0	-3.8	Line
19	373.978k	34.2	+0.1	+10.1	+0.0	+0.1	+0.0	44.5	48.4	-3.9	Line
20	3.106M	31.6	+0.1	+10.0	+0.1	+0.1	+0.0	41.9	46.0	-4.1	Line
21	2.353M	31.3	+0.0	+10.0	+0.1	+0.2	+0.0	41.6	46.0	-4.4	Line
22	2.927M	31.2	+0.1	+10.0	+0.1	+0.1	+0.0	41.5	46.0	-4.5	Line

23	4.985M	31.0	+0.0	+10.0	+0.1	+0.2	+0.0	41.3	46.0	-4.7	Line
24	820.478k	30.9	+0.0	+10.0	+0.1	+0.1	+0.0	41.1	46.0	-4.9	Line
25	455.424k	31.6	+0.0	+10.1	+0.0	+0.0	+0.0	41.7	46.8	-5.1	Line
26	569.594k	30.6	+0.0	+10.1	+0.0	+0.1	+0.0	40.8	46.0	-5.2	Line
27	343.435k	33.4	+0.1	+10.0	+0.1	+0.0	+0.0	43.6	49.1	-5.5	Line
28	8.842M	34.1	+0.1	+10.0	+0.1	+0.2	+0.0	44.5	50.0	-5.5	Line
29	795.026k	30.2	+0.0	+10.0	+0.1	+0.1	+0.0	40.4	46.0	-5.6	Line
30	315.074k	33.8	+0.0	+10.0	+0.2	+0.1	+0.0	44.1	49.8	-5.7	Line
31	3.399M	29.9	+0.1	+10.0	+0.1	+0.2	+0.0	40.3	46.0	-5.7	Line
32	3.416M	29.7	+0.1	+10.0	+0.1	+0.2	+0.0	40.1	46.0	-5.9	Line
33	578.321k	29.8	+0.0	+10.1	+0.0	+0.1	+0.0	40.0	46.0	-6.0	Line
34	3.242M	29.7	+0.1	+10.0	+0.1	+0.1	+0.0	40.0	46.0	-6.0	Line
35	3.437M	29.6	+0.1	+10.0	+0.1	+0.1	+0.0	40.0	46.0	-6.0	Line
36	10.806M	33.5	+0.0	+10.1	+0.1	+0.2	+0.0	43.9	50.0	-6.1	Line
37	983.000k Ave	28.2	+0.0	+10.1	+0.1	+0.1	+0.0	38.5	46.0	-7.5	Line
^	983.325k	34.0	+0.0	+10.1	+0.1	+0.1	+0.0	44.3	46.0	-1.7	Line
39	4.462M Ave	24.9	+0.1	+10.1	+0.1	+0.2	+0.0	35.4	46.0	-10.6	Line
^	4.462M	39.6	+0.1	+10.1	+0.1	+0.2	+0.0	50.1	46.0	+4.1	Line
41	4.292M Ave	24.6	+0.1	+10.1	+0.1	+0.2	+0.0	35.1	46.0	-10.9	Line
^	4.292M	37.9	+0.1	+10.1	+0.1	+0.2	+0.0	48.4	46.0	+2.4	Line
43	4.573M Ave	22.6	+0.0	+10.0	+0.1	+0.2	+0.0	32.9	46.0	-13.1	Line
^	4.573M	38.3	+0.0	+10.0	+0.1	+0.2	+0.0	48.6	46.0	+2.6	Line
45	3.795M Ave	21.2	+0.1	+10.1	+0.1	+0.1	+0.0	31.6	46.0	-14.4	Line
^	3.795M	35.8	+0.1	+10.1	+0.1	+0.1	+0.0	46.2	46.0	+0.2	Line

47	3.778M	21.1	+0.1	+10.1	+0.1	+0.1	+0.0	31.5	46.0	-14.5	Line
Ave											
^	3.778M	36.0	+0.1	+10.1	+0.1	+0.1	+0.0	46.4	46.0	+0.4	Line
^	3.769M	35.1	+0.1	+10.1	+0.1	+0.1	+0.0	45.5	46.0	-0.5	Line
50	4.126M	20.9	+0.1	+10.1	+0.1	+0.2	+0.0	31.4	46.0	-14.6	Line
Ave											
^	4.126M	35.3	+0.1	+10.1	+0.1	+0.2	+0.0	45.8	46.0	-0.2	Line
52	3.739M	20.9	+0.1	+10.1	+0.1	+0.2	+0.0	31.4	46.0	-14.6	Line
Ave											
^	3.739M	35.4	+0.1	+10.1	+0.1	+0.2	+0.0	45.9	46.0	-0.1	Line
54	3.833M	21.0	+0.1	+10.1	+0.1	+0.1	+0.0	31.4	46.0	-14.6	Line
Ave											
^	3.833M	35.7	+0.1	+10.1	+0.1	+0.1	+0.0	46.1	46.0	+0.1	Line
56	3.901M	20.9	+0.1	+10.1	+0.1	+0.1	+0.0	31.3	46.0	-14.7	Line
Ave											
^	3.901M	36.0	+0.1	+10.1	+0.1	+0.1	+0.0	46.4	46.0	+0.4	Line
58	3.854M	20.8	+0.1	+10.1	+0.1	+0.1	+0.0	31.2	46.0	-14.8	Line
Ave											
^	3.854M	35.9	+0.1	+10.1	+0.1	+0.1	+0.0	46.3	46.0	+0.3	Line
60	3.939M	20.0	+0.1	+10.1	+0.1	+0.1	+0.0	30.4	46.0	-15.6	Line
Ave											
^	3.939M	35.8	+0.1	+10.1	+0.1	+0.1	+0.0	46.2	46.0	+0.2	Line
62	3.994M	19.5	+0.1	+10.1	+0.1	+0.2	+0.0	30.0	46.0	-16.0	Line
Ave											
^	3.994M	35.6	+0.1	+10.1	+0.1	+0.2	+0.0	46.1	46.0	+0.1	Line



CKC Laboratories, Inc. Date: 2/26/2009 Time: 17:53:21 GE Energy WO#: 89201
FCC 15.107 B COND [AVE] Test Lead: Line 2 240V 60Hz Sequence#: 15

FCC 15.109 – RADIATED EMISSIONS

Test Setup Photos

DRAFT

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**
 Specification: **FCC 15.109 Class B Radiated 30-1000MHz**
 Work Order #: **89201** Date: 7/22/2009
 Test Type: **Maximized Emissions** Time: 17:01:52
 Equipment: **WiMAX SmartGrid Router** Sequence#: 31
 Manufacturer: Grid-Net Tested By: Art Rice
 Model: WX-SGR
 S/N: GN1S11ASS8BS000W

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Preamp, HP8447D	2443A03707	02/09/2009	02/09/2011	00730
Antenna, Bilog	2630	12/22/2008	12/22/2010	00852
Cable	None	04/21/2008	04/21/2010	P05440
Cable	None	03/06/2009	03/06/2011	P05299
Cable	None	03/06/2009	03/06/2011	P05300
SA - Agilent E4446A	US44300408	03/09/2009	03/09/2011	02668

Equipment Under Test (= EUT):*

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid Router*	Grid-Net	WX-SGR	GN1S11ASS8BS000W

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A-401DN24	none
Power supply for EUT fan	Tektronix	CPS250	CKC AN00900A
Cooling Fan	CoolerMaster	AA225-25BB-5EA-F1	none
Antenna	Mars Antennas and RF System, Inc.	ANT.MA-VM26-3F	none
AC Adapter for laptop	Dell	LA90PS0-00	CN-0DF266-71615-834-0DC3

Test Conditions / Notes:

The transceiver is placed on top of the wooden test table. The fan is taped to the bottom of the EUT. It is mounted on styrofoam blocks.

24VDC power supply for EUT powered by 120VAC.

The laptop PC communicates to the EUT through the Ethernet connected to the laptop located on the test table. The laptop is constantly pinging the EUT to exercise the port.

Use command prompt command "ping -t 192.168.137.1" to exercise Ethernet.

The laptop PC is also connected to the EUT through the RS232 cable. A Hyperterminal session is opened to establish communication.

An unterminated RS-485 cable is bundled to 40cm above the ground plane.

A loopback cable is connected to the unsupported second RJ45 port.

NOTES:

1) Spectrum analyzer settings: 0.15-30 MHz RBW=9kHz, 30-1000 MHz RBW=120kHz

2) Testing the digital circuitry of the EUT.

3) E Tronic F5-NF-65B-02 ferrite was added to the Ethernet cable at the EUT to reduce an emission at 250 MHz.

Radiated emissions 30-1000 MHz.

Transducer Legend:

T1=AMP-AN00730-020909 .01-1000

T2=ANT AN00852 25-1000MHz

T3=CAB-ANP05299-030609

T4=CAB-ANP05300-030609

T5=Cable Calibration ANP05440

#	Freq MHz	Rdng dB μ V	Reading listed by margin			Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar Ant
			T1 dB	T2 dB	T3 dB					
1	250.000M QP	56.9 +1.0	-27.2 +12.5	+12.5 +0.3	+0.3 +0.7	+0.7 +0.0	44.2 46.0	-1.8 -1.8	Horiz 123	
^	249.993M	57.5 +1.0	-27.2 +1.0	+12.5 +0.3	+0.3 +0.7	+0.7 +0.0	44.8 46.0	-1.2 -1.2	Horiz 123	
3	399.998M QP	52.9 +1.2	-27.3 +1.2	+16.0 +0.1	+0.1 +0.6	+0.6 +0.0	43.5 46.0	-2.5 -2.5	Vert 100	
^	400.003M	53.3 +1.2	-27.3 +1.2	+16.0 +0.1	+0.1 +0.6	+0.6 +0.0	43.9 46.0	-2.1 -2.1	Vert 100	
5	250.002M QP	55.0 +1.0	-27.2 +1.0	+12.5 +0.3	+0.3 +0.7	+0.7 +0.0	42.3 46.0	-3.7 -3.7	Vert 100	
^	250.003M	55.3 +1.0	-27.2 +1.0	+12.5 +0.3	+0.3 +0.7	+0.7 +0.0	42.6 46.0	-3.4 -3.4	Vert 100	
7	549.995M	45.9 +1.4	-27.2 +1.4	+18.8 +0.2	+0.2 +0.9	+0.9 +0.0	40.0 46.0	-6.0 -6.0	Horiz 175	
8	674.998M	42.4 +1.6	-27.0 +1.6	+20.1 +0.2	+0.2 +0.9	+0.9 +0.0	38.2 46.0	-7.8 -7.8	Horiz 145	
9	500.009M	44.2 +1.3	-27.2 +1.3	+17.9 +0.2	+0.2 +0.9	+0.9 +0.0	37.3 46.0	-8.7 -8.7	Horiz 185	

10	403.564M	46.4	-27.3 +1.2	+16.1	+0.1	+0.7	+0.0	37.2	46.0	-8.8	Vert 101
11	650.007M	41.5	-27.0 +1.6	+19.9	+0.2	+0.9	+0.0	37.1	46.0	-8.9	Horiz 154
12	407.139M	45.5	-27.3 +1.2	+16.2	+0.1	+0.7	+0.0	36.4	46.0	-9.6	Vert 101
13	74.840M	45.4	-27.3 +0.5	+6.8	+0.2	+0.4	+0.0	26.0	40.0	-14.0	Vert 101
14	81.180M	44.5	-27.3 +0.5	+7.4	+0.1	+0.4	+0.0	25.6	40.0	-14.4	Vert 101

DRAFT

FCC 2.1033(c)(14)/2.1046/27.50 – CONDUCTED RF POWER OUTPUT

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Power Meter	00174	HP	435B	2342A08531	01-04-08	01-04-10
Sensor & 30 dB attenuator	02572	HP	8482B	2703A04102	11-30-07	11-30-09

Test Conditions

The router is placed on top of the wooden test table.

Powered by 120VAC to the 24VDC power supply.

The laptop PC communicates to the EUT through the Ethernet cable.

NOTES:

1) The EUT is transmitting continuously with OFDMA modulation.

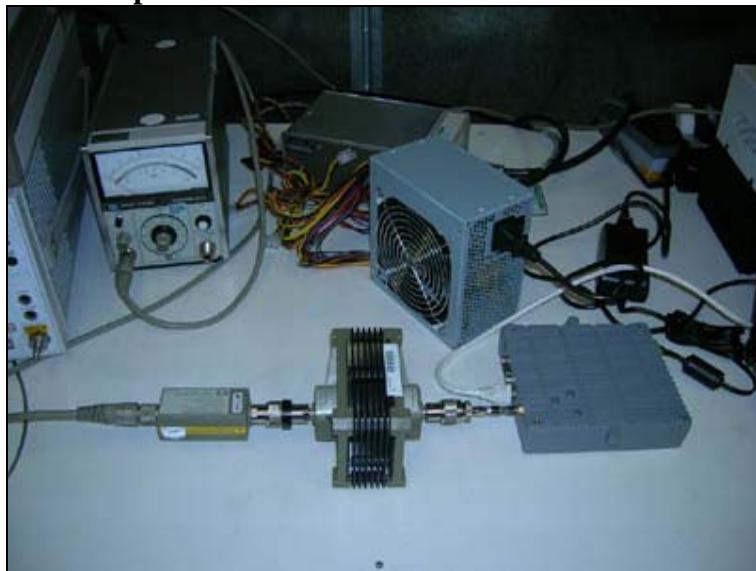
Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW


Hi ch=2685 MHz for 10 MHz BW

2) Transmit power set at 27dBm.

3) CONDUCTED FROM ANTENNA PORT.

DRAFT

Test Setup Photos

Test Data

Model: WX-SGR 5 MHz Channel Bandwidth

Channel-Frequency in MHz	Average Conducted Power Output-dBm: QPSK 1/2	Average Conducted Power Output-dBm: 16 QAM 3/4
Low-2498.5	25.2	25.2
Mid-2600	26.1	26.1
Hi-2687.5	25.1	25.1

Model: WX-SGR 10 MHz Channel Bandwidth

Channel-Frequency in MHz	Average Conducted Power Output-dBm: QPSK 1/2	Average Conducted Power Output-dBm: 16 QAM 3/4
Low-2501	23.4	23.4
Mid-2600	24.2	23.9
Hi-2685	22.7	22.8

DRAFT

FCC 2.1049 - OCCUPIED BANDWIDTH

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02668	Agilent	E4446A	US44300408	03/05/07	03/05/09
Cable	03015	Astrolab	32022-2-29094K-24TC	none	02/04/08	02/04/10
10 dB attenuator	ANP05411	Weinschel	54A-10	P7186	02/05/08	02/05/10

Test Conditions

The router is placed on top of the wooden test table.

Powered by 120VAC to the 24VDC power supply.

The laptop PC communicates to the EUT through the Ethernet cable.

NOTES:

1) The EUT is transmitting continuously with OFDMA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

2) Transmit power set at 27dBm.

3) CONDUCTED FROM ANTENNA PORT.

4) EUT on table next to Spectrum Analyzer.

5) Spectrum analyzer atten=40 dB, External atten=10dB.

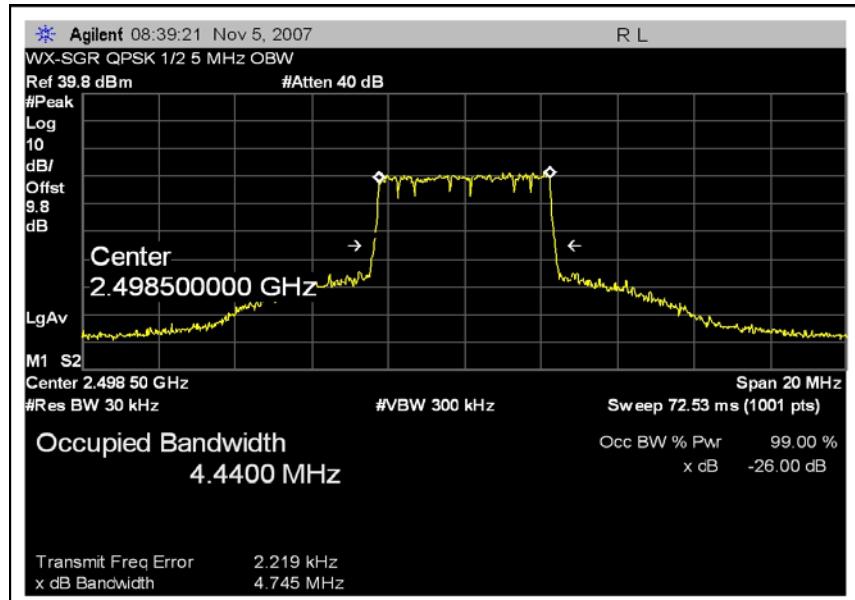
6) SA offset of 9.8 dB to correct for cable and attenuator loss.

DRAFT

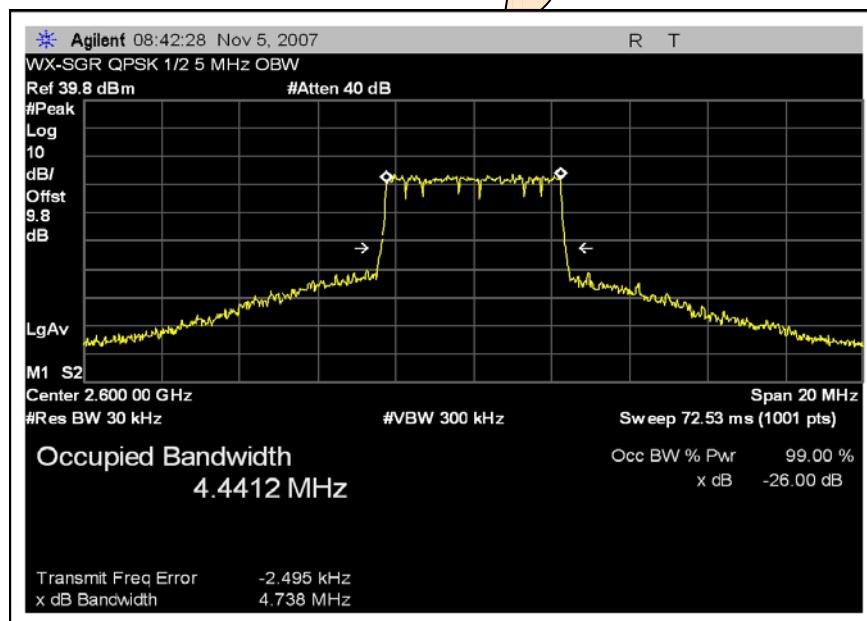
Test Setup Photos

Test Data

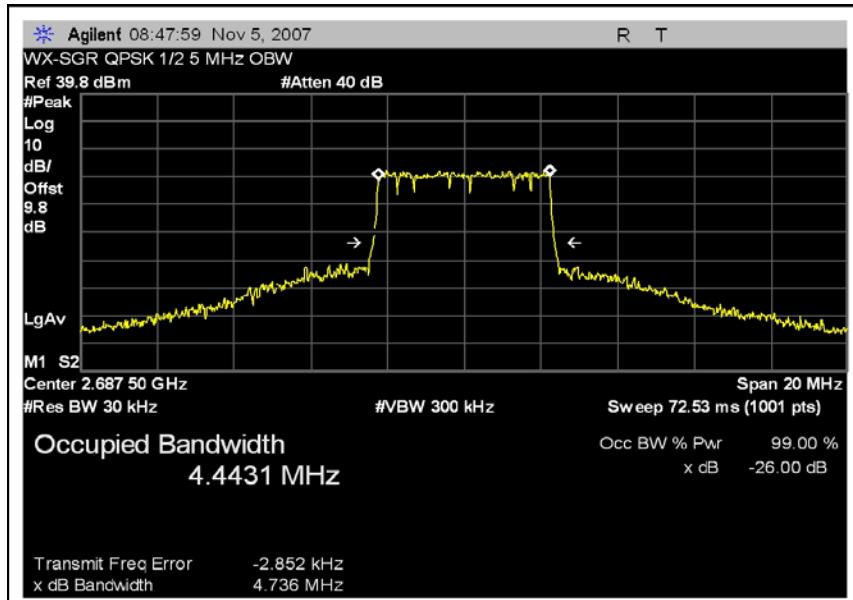
Model: WX-SGR 5 MHz Channel Bandwidth


Channel-Frequency in MHz	Occupied bandwidth in MHz: QPSK 1/2	Occupied bandwidth in MHz: 16 QAM 3/4
Low-2498.5	4.4400	4.4272
Mid-2600	4.4412	4.4283
Hi-2687.5	4.4431	4.4383

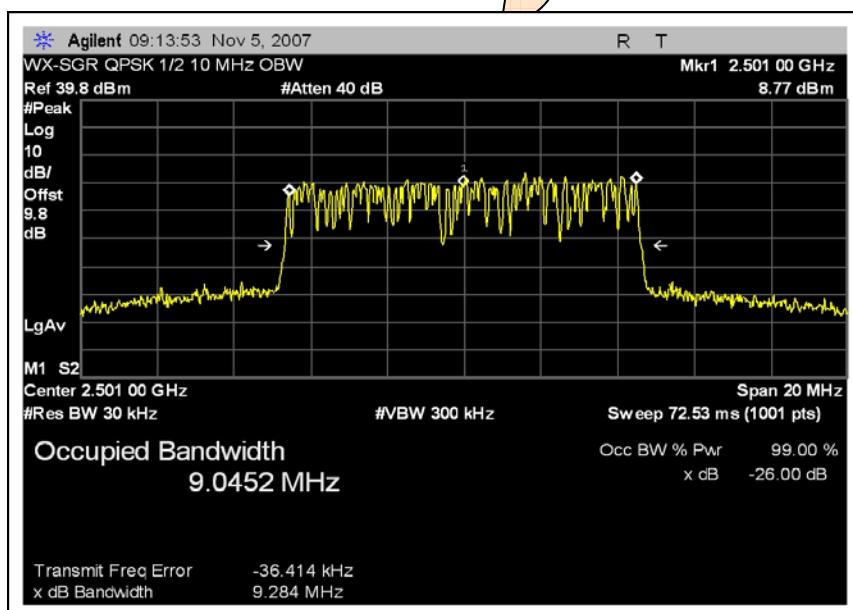
Model: WX-SGR 10 MHz Channel Bandwidth


Channel-Frequency in MHz	Occupied bandwidth in MHz: QPSK 1/2	Occupied bandwidth in MHz: 16 QAM 3/4
Low-2501	9.0542	9.0556
Mid-2600	9.0491	9.0653
Hi-2685	9.0601	9.0626

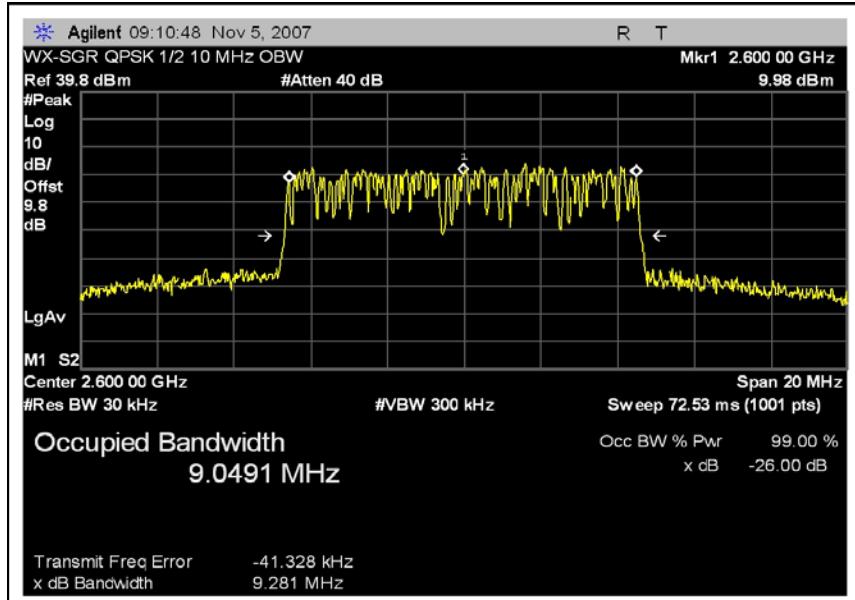
Test Plots


OCCUPIED BANDWIDTH – 5 MHz QPSK LOW CHANNEL

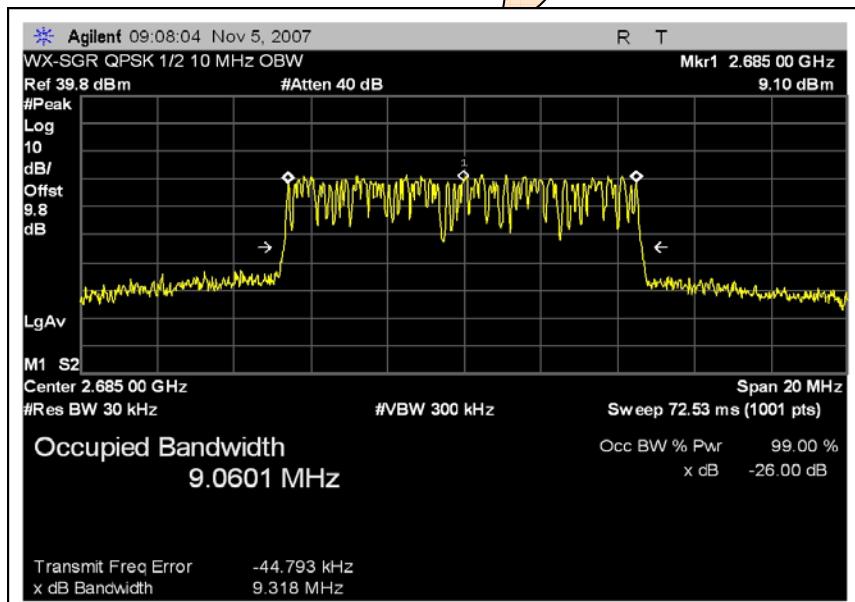
OCCUPIED BANDWIDTH - 5 MHz QPSK MID CHANNEL

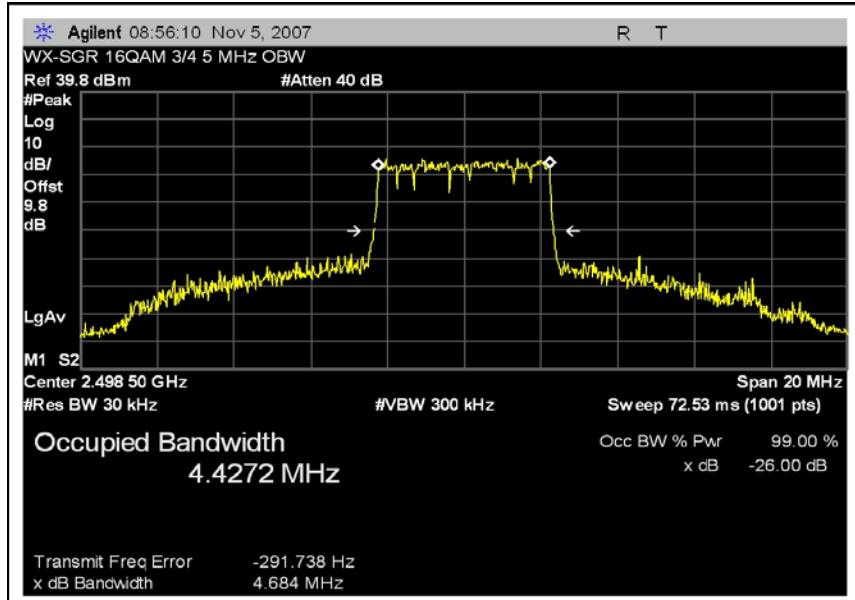


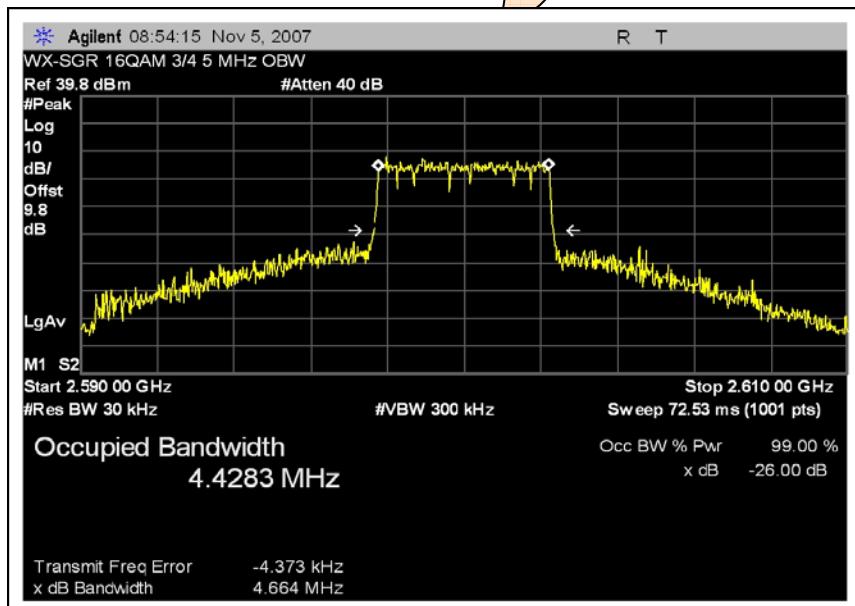
OCCUPIED BANDWIDTH - 5 MHz QPSK HIGH CHANNEL

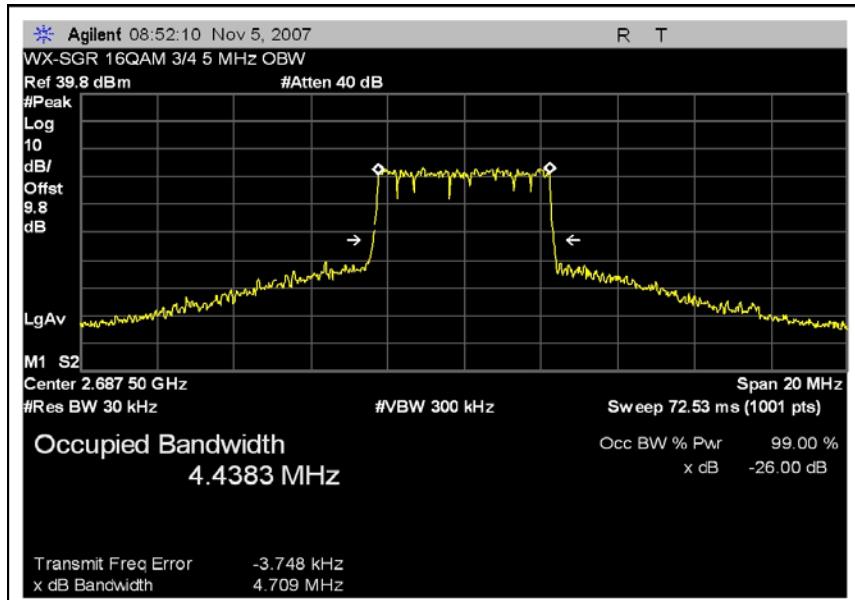


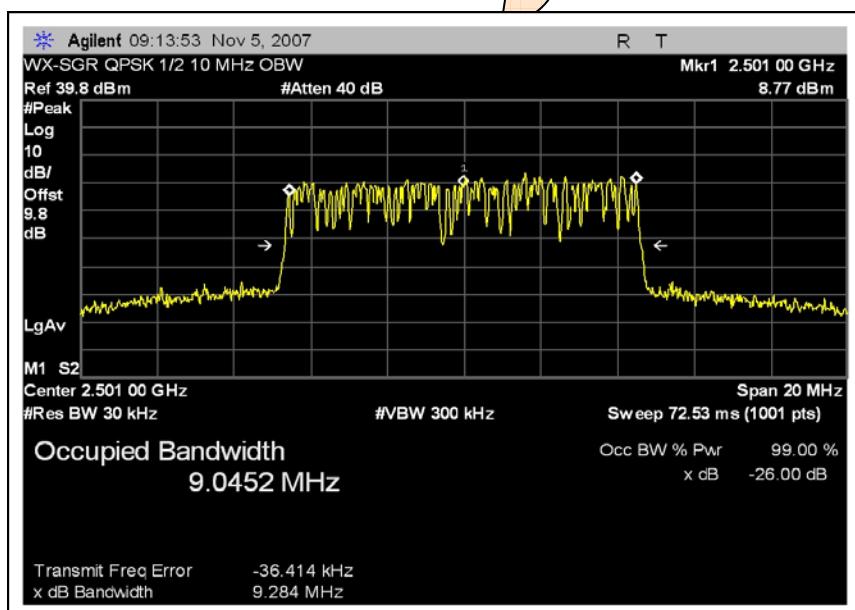
OKAY

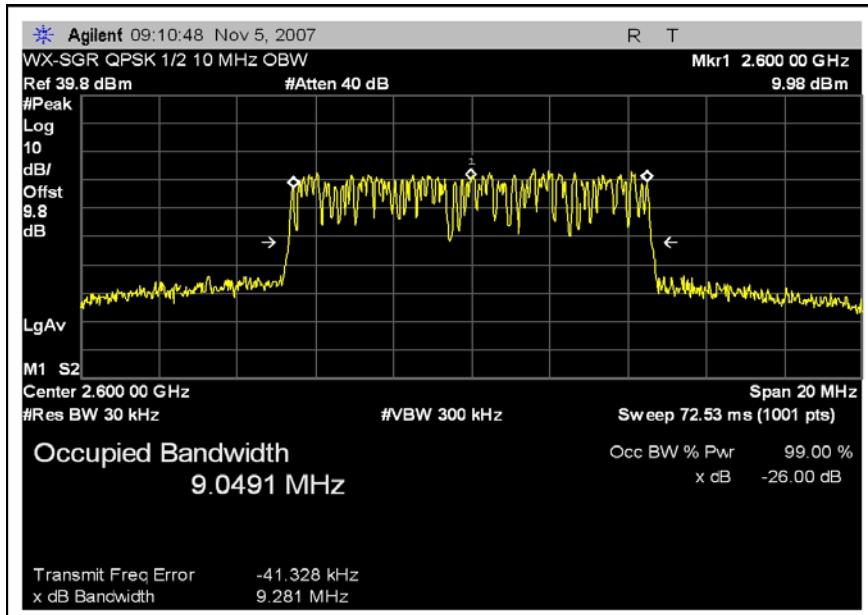

OCCUPIED BANDWIDTH - 10 MHz QPSK LOW CHANNEL


OCCUPIED BANDWIDTH - 10 MHz QPSK MID CHANNEL


OCCUPIED BANDWIDTH - 10 MHz QPSK HIGH CHANNEL


OCCUPIED BANDWIDTH - 5 MHz 16QAM LOW CHANNEL


OCCUPIED BANDWIDTH - 5 MHz 16QAM MID CHANNEL


OCCUPIED BANDWIDTH - 5 MHz 16QAM HIGH CHANNEL

OCCUPIED BANDWIDTH - 10 MHz 16QAM LOW CHANNEL

OCCUPIED BANDWIDTH - 10 MHz 16QAM MID CHANNEL

OCCUPIED BANDWIDTH - 10 MHz 16QAM HIGH CHANNEL

FCC 2.1033(c)(14)/2.1051/27.53 - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Test Setup Photos

DRAFT

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**
 Specification: **FCC 27.53(m)(2)(v) spurious dBuV Ave**
 Work Order #: **89201** Date: **2/20/2009**
 Test Type: **Conducted Emissions** Time: **18:30:46**
 Equipment: **WiMAX SmartGrid Router** Sequence#: **6**
 Manufacturer: Grid-Net Tested By: Art Rice
 Model: **WX-SGR** **120V 60Hz**
 S/N: **GN1S11ASS8BS000W**

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum Analyzer	US44300408	03/05/2007	03/05/2009	02668
Cable - HF - 32022-2- 29094K-24TC	n/a	02/04/2008	02/04/2010	03015
10dB Pad 54A-10	P7186	02/05/2008	02/05/2010	P05411

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid Router*	Grid-Net	WX-SGR	GN1S11ASS8BS000W

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A-401DN24	none

Test Conditions / Notes:

The router is placed on top of the wooden test table.

Powered by 120VAC to the 24VDC power supply.

The laptop PC communicates to the EUT through the Ethernet cable.

NOTES:

1) The EUT is transmitting continuously with OFDMA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

2) Transmit power set at 27dBm.

3) CONDUCTED FROM ANTENNA PORT.

4) EUT on table next to Spectrum Analyzer.

5) Spectrum analyzer atten=40 dB, External atten=10dB.

6) Spectrum analyzer settings: 10kHz-150kHz RBW=VBW=200Hz, 0.15-30MHz RBW=VBW=9kHz, 30-1000MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz

7) Transmitting with worst case modulation 5 MHz QPSK 1/2.

8) Transmitting on Low channel.

FCC 27.53(m)(2)(v)

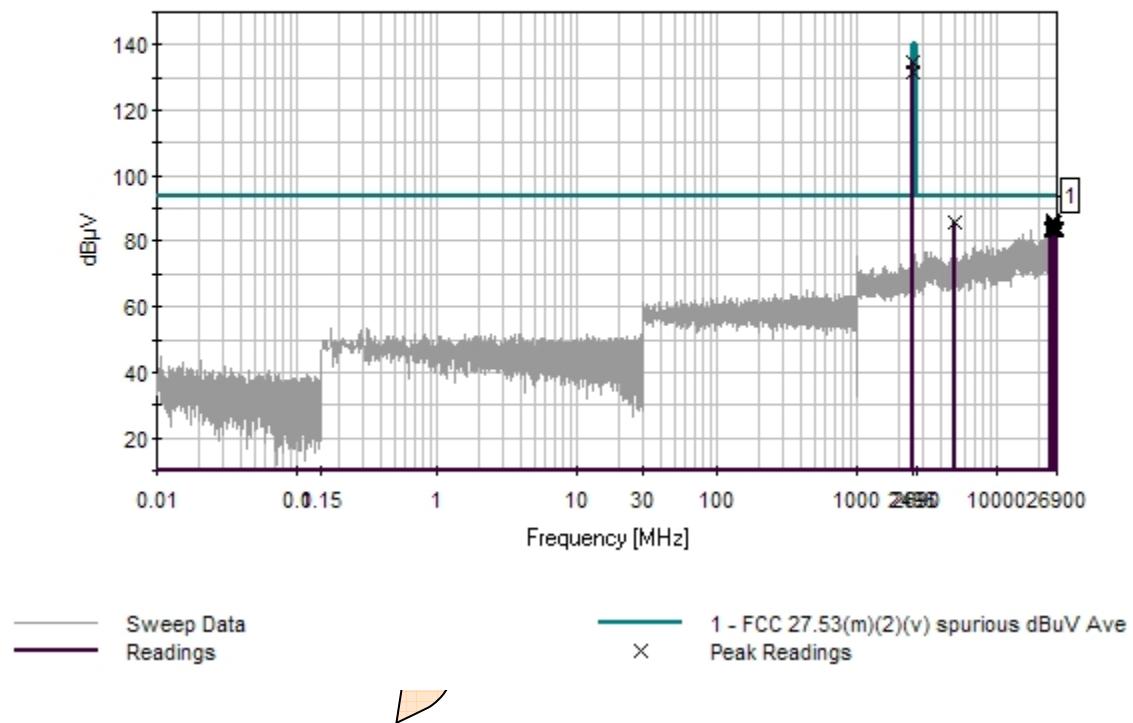
Conducted emissions 10 kHz-26900 MHz.

Transducer Legend:

T1=CAB-AN03015-020408

T2=ATT-ANP05411-020508

Measurement Data:		Reading listed by margin.			Test Lead: Antenna port						
#	Freq MHz	Rdng dB μ V	T1 dB	T2 dB	Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant		
1	2499.167M	125.2	+0.4	+9.4	+0.0	135.0	140.0	-5.0	Anten	Fundamental	
2	25325.020 M	74.9	+1.1	+10.3	+0.0	86.3	94.0	-7.7	Anten		
3	25230.400 M	74.5	+1.2	+10.3	+0.0	86.0	94.0	-8.0	Anten		
4	4997.148M	75.8	+0.7	+9.4	+0.0	85.9	94.0	-8.1	Anten	Harmonic	
5	2500.188M	121.9	+0.4	+9.4	+0.0	131.7	140.0	-8.3	Anten		
6	25747.810 M	74.3	+1.0	+10.4	+0.0	85.7	94.0	-8.3	Anten		
7	25251.030 M	73.8	+1.2	+10.3	+0.0	85.3	94.0	-8.7	Anten		
8	25026.710 M	73.7	+1.1	+10.3	+0.0	85.1	94.0	-8.9	Anten		


9	25028.130	73.7	+1.1	+10.3	+0.0	85.1	94.0	-8.9	Anten
M									
10	25133.180	73.4	+1.2	+10.3	+0.0	84.9	94.0	-9.1	Anten
M									
11	25008.450	73.5	+1.0	+10.3	+0.0	84.8	94.0	-9.2	Anten
M									
12	25150.250	73.2	+1.2	+10.3	+0.0	84.7	94.0	-9.3	Anten
M									
13	25224.000	73.0	+1.2	+10.3	+0.0	84.5	94.0	-9.5	Anten
M									
14	24888.990	73.1	+0.9	+10.4	+0.0	84.4	94.0	-9.6	Anten
M									
15	24952.990	73.1	+1.0	+10.3	+0.0	84.4	94.0	-9.6	Anten
M									
16	25190.330	72.9	+1.2	+10.3	+0.0	84.4	94.0	-9.6	Anten
M									
17	25185.590	72.8	+1.2	+10.3	+0.0	84.3	94.0	-9.7	Anten
M									
18	25216.410	72.6	+1.2	+10.3	+0.0	84.1	94.0	-9.9	Anten
M									
19	26665.250	72.6	+1.1	+10.4	+0.0	84.1	94.0	-9.9	Anten
M									
20	24171.900	72.8	+0.9	+10.3	+0.0	84.0	94.0	-10.0	Anten
M									
21	25065.360	72.6	+1.1	+10.3	+0.0	84.0	94.0	-10.0	Anten
M									
22	25074.140	72.6	+1.1	+10.3	+0.0	84.0	94.0	-10.0	Anten
M									
23	25135.550	72.5	+1.2	+10.3	+0.0	84.0	94.0	-10.0	Anten
M									
24	25175.630	72.5	+1.2	+10.3	+0.0	84.0	94.0	-10.0	Anten
M									
25	25301.300	72.6	+1.1	+10.3	+0.0	84.0	94.0	-10.0	Anten
M									

26	24509.940	72.7	+0.8	+10.4	+0.0	83.9	94.0	-10.1	Anten
M									
27	25003.710	72.6	+1.0	+10.3	+0.0	83.9	94.0	-10.1	Anten
M									
28	26020.740	72.5	+1.0	+10.4	+0.0	83.9	94.0	-10.1	Anten
M									
29	24140.890	72.6	+0.9	+10.3	+0.0	83.8	94.0	-10.2	Anten
M									
30	24261.910	72.5	+1.0	+10.3	+0.0	83.8	94.0	-10.2	Anten
M									
31	26623.990	72.3	+1.1	+10.4	+0.0	83.8	94.0	-10.2	Anten
M									
32	24292.910	72.4	+1.0	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
33	25006.560	72.4	+1.0	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
34	25043.790	72.3	+1.1	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
35	25125.830	72.2	+1.2	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
36	25163.770	72.2	+1.2	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
37	25173.490	72.2	+1.2	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
38	25189.380	72.2	+1.2	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
39	25235.860	72.2	+1.2	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
40	25330.000	72.3	+1.1	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
41	26114.640	72.3	+1.0	+10.4	+0.0	83.7	94.0	-10.3	Anten
M									
42	26315.490	72.3	+1.0	+10.4	+0.0	83.7	94.0	-10.3	Anten
M									

43	24229.900	72.3	+1.0	+10.3	+0.0	83.6	94.0	-10.4	Anten
M									
44	25031.460	72.2	+1.1	+10.3	+0.0	83.6	94.0	-10.4	Anten
M									
45	25080.070	72.2	+1.1	+10.3	+0.0	83.6	94.0	-10.4	Anten
M									
46	25141.480	72.1	+1.2	+10.3	+0.0	83.6	94.0	-10.4	Anten
M									
47	25744.020	72.2	+1.0	+10.4	+0.0	83.6	94.0	-10.4	Anten
M									
48	26321.890	72.2	+1.0	+10.4	+0.0	83.6	94.0	-10.4	Anten
M									
49	25063.700	72.1	+1.1	+10.3	+0.0	83.5	94.0	-10.5	Anten
M									
50	25207.160	72.0	+1.2	+10.3	+0.0	83.5	94.0	-10.5	Anten
M									
51	26595.770	72.0	+1.1	+10.4	+0.0	83.5	94.0	-10.5	Anten
M									

DRAFT

CKC Laboratories, Inc. Date: 2/20/2009 Time: 18:30:46 GE Energy WO#: 89201
FCC 27.53(m)(2)(v) spurious dBuV Ave Test Lead: Antenna port 120V 60Hz Sequence#: 6
WX-SGR Antenna port through cable and 10 dB atten. QPSK 1/2 5 MHz Low ch

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**
 Specification: **FCC 27.53(m)(2)(v) spurious dBuV Ave**
 Work Order #: **89201** Date: **2/20/2009**
 Test Type: **Conducted Emissions** Time: **18:08:55**
 Equipment: **WiMAX SmartGrid Router** Sequence#: **5**
 Manufacturer: Grid-Net
 Model: WX-SGR
 S/N: GN1S11ASS8BS000W
 Tested By: Art Rice
 120V 60Hz

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum Analyzer	US44300408	03/05/2007	03/05/2009	02668
Cable - HF - 32022-2- 29094K-24TC	n/a	02/04/2008	02/04/2010	03015
10dB Pad 54A-10	P7186	02/05/2008	02/05/2010	P05411

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid Router*	Grid-Net	WX-SGR	GN1S11ASS8BS000W

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A401DN24	none

Test Conditions / Notes:

The router is placed on top of the wooden test table.

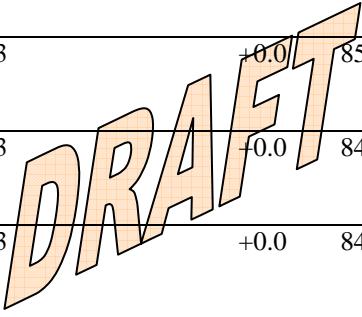
Powered by 120VAC to the 24VDC power supply.

The laptop PC communicates to the EUT through the Ethernet cable.

NOTES:

- 1) The EUT is transmitting continuously with OFDMA modulation.
- Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.
- Low ch=2498.5 MHz for 5 MHz BW
- Low ch=2501 MHz for 10 MHz BW
- Mid ch=2600MHz
- Hi ch=2687.5MHz for 5 MHz BW
- Hi ch=2685 MHz for 10 MHz BW
- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) Spectrum analyzer settings: 10kHz-150kHz RBW=VBW=200Hz, 0.15-30 MHz RBW=VBW=9kHz, 30-1000 MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz
- 7) Transmitting with worst case modulation 5 MHz QPSK 1/2.
- 8) Transmitting on Mid channel.

FCC 27.53(m)(2)(v)

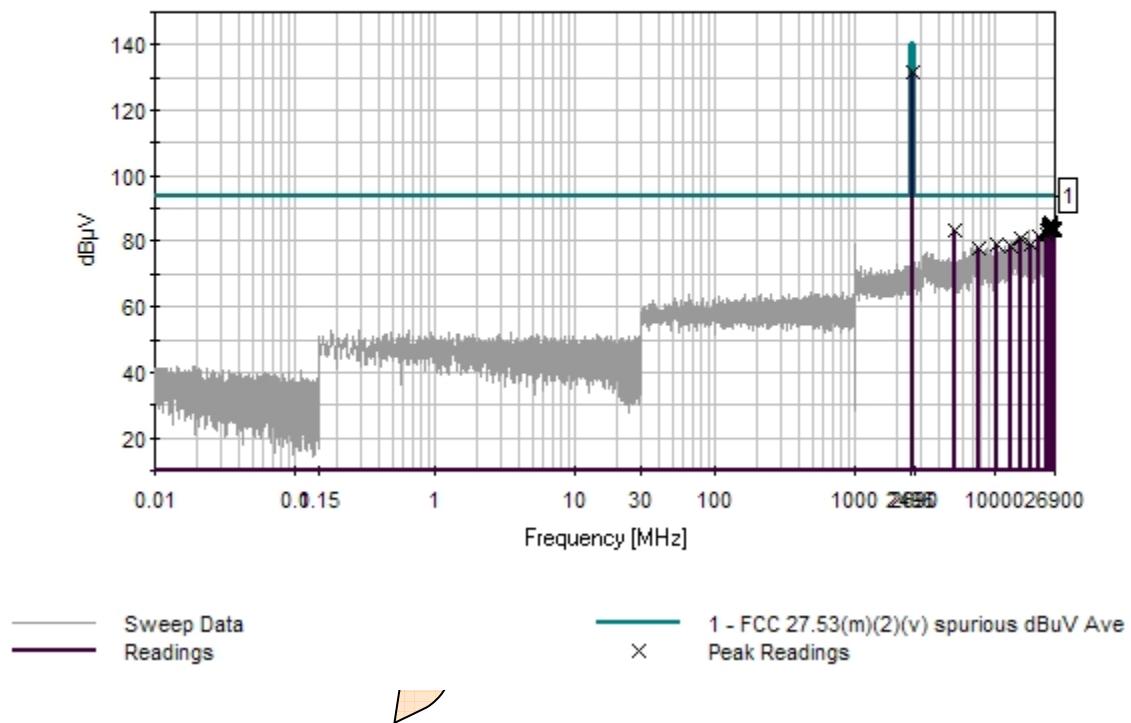

Conducted emissions 10 kHz-26900 MHz.

Transducer Legend:

T1=CAB-AN03015-020408

T2=ATT-ANP05411-020508

Measurement Data:			Reading listed by margin.			Test Lead: Antenna port				
#	Freq MHz	Rdng dB μ V	T1 dB	T2 dB	dB	Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
1	25267.160 M	74.4	+1.2	+10.3		+0.0	85.9	94.0	-8.1	Anten
2	2601.200M	121.9	+0.4	+9.4		+0.0	131.7	140.0	-8.3	Anten
3	25034.300 M	74.3	+1.1	+10.3		+0.0	85.7	94.0	-8.3	Anten
4	24188.900 M	74.0	+0.9	+10.3		+0.0	85.2	94.0	-8.8	Anten
5	25074.610 M	73.7	+1.1	+10.3		+0.0	85.1	94.0	-8.9	Anten
6	25174.440 M	73.6	+1.2	+10.3		+0.0	85.1	94.0	-8.9	Anten
7	25108.280 M	73.4	+1.1	+10.3		+0.0	84.8	94.0	-9.2	Anten
8	25081.010 M	73.2	+1.1	+10.3		+0.0	84.6	94.0	-9.4	Anten
9	25163.770 M	73.1	+1.2	+10.3		+0.0	84.6	94.0	-9.4	Anten
10	24116.890 M	73.3	+0.9	+10.3		+0.0	84.5	94.0	-9.5	Anten
11	24832.980 M	73.2	+0.8	+10.4		+0.0	84.4	94.0	-9.6	Anten
12	24868.980 M	73.1	+0.9	+10.4		+0.0	84.4	94.0	-9.6	Anten
13	26000.040 M	72.8	+1.0	+10.4		+0.0	84.2	94.0	-9.8	Anten
14	25090.970 M	72.8	+1.1	+10.3		+0.0	84.2	94.0	-9.8	Anten
15	24235.900 M	72.8	+1.0	+10.3		+0.0	84.1	94.0	-9.9	Anten


16	25083.380	72.7	+1.1	+10.3	+0.0	84.1	94.0	-9.9	Anten
M									
17	25152.150	72.6	+1.2	+10.3	+0.0	84.1	94.0	-9.9	Anten
M									
18	25183.690	72.6	+1.2	+10.3	+0.0	84.1	94.0	-9.9	Anten
M									
19	25006.790	72.7	+1.0	+10.3	+0.0	84.0	94.0	-10.0	Anten
M									
20	26086.660	72.6	+1.0	+10.4	+0.0	84.0	94.0	-10.0	Anten
M									
21	24388.920	72.7	+0.9	+10.3	+0.0	83.9	94.0	-10.1	Anten
M									
22	25879.650	72.5	+1.0	+10.4	+0.0	83.9	94.0	-10.1	Anten
M									
23	25104.020	72.4	+1.1	+10.3	+0.0	83.8	94.0	-10.2	Anten
M									
24	26565.180	72.3	+1.1	+10.4	+0.0	83.8	94.0	-10.2	Anten
M									
25	24968.000	72.4	+1.0	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
26	25175.150	72.2	+1.2	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
27	25197.440	72.2	+1.2	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
28	5200.314M	73.5	+0.7	+9.4	+0.0	83.6	94.0	-10.4	Anten
29	24166.890	72.4	+0.9	+10.3	+0.0	83.6	94.0	-10.4	Anten
M									
30	25060.860	72.2	+1.1	+10.3	+0.0	83.6	94.0	-10.4	Anten
M									
31	25147.170	72.1	+1.2	+10.3	+0.0	83.6	94.0	-10.4	Anten
M									
32	25165.900	72.1	+1.2	+10.3	+0.0	83.6	94.0	-10.4	Anten
M									

33	25178.000	72.1	+1.2	+10.3	+0.0	83.6	94.0	-10.4	Anten
M									
34	25223.050	72.1	+1.2	+10.3	+0.0	83.6	94.0	-10.4	Anten
M									
35	25257.200	72.1	+1.2	+10.3	+0.0	83.6	94.0	-10.4	Anten
M									
36	25318.140	72.2	+1.1	+10.3	+0.0	83.6	94.0	-10.4	Anten
M									
37	26573.240	72.1	+1.1	+10.4	+0.0	83.6	94.0	-10.4	Anten
M									
38	23497.810	72.5	+0.7	+10.3	+0.0	83.5	94.0	-10.5	Anten
M									
39	25020.310	72.2	+1.0	+10.3	+0.0	83.5	94.0	-10.5	Anten
M									
40	23527.820	72.4	+0.7	+10.3	+0.0	83.4	94.0	-10.6	Anten
M									
41	25167.800	71.9	+1.2	+10.3	+0.0	83.4	94.0	-10.6	Anten
M									
42	25188.670	71.9	+1.2	+10.3	+0.0	83.4	94.0	-10.6	Anten
M									
43	25314.580	72.0	+1.1	+10.3	+0.0	83.4	94.0	-10.6	Anten
M									
44	25880.840	72.0	+1.0	+10.4	+0.0	83.4	94.0	-10.6	Anten
M									
45	26098.040	72.0	+1.0	+10.4	+0.0	83.4	94.0	-10.6	Anten
M									
46	26358.410	72.0	+1.0	+10.4	+0.0	83.4	94.0	-10.6	Anten
M									
47	26750.850	72.0	+1.0	+10.4	+0.0	83.4	94.0	-10.6	Anten
M									
48	25232.300	71.8	+1.2	+10.3	+0.0	83.3	94.0	-10.7	Anten
M									
49	25241.310	71.8	+1.2	+10.3	+0.0	83.3	94.0	-10.7	Anten
M									

50	25399.950	71.8	+1.1	+10.4	+0.0	83.3	94.0	-10.7	Anten
M									
51	25980.900	71.9	+1.0	+10.4	+0.0	83.3	94.0	-10.7	Anten
M									
52	26606.680	71.8	+1.1	+10.4	+0.0	83.3	94.0	-10.7	Anten
M									
53	23400.040	71.1	+0.7	+10.3	+0.0	82.1	94.0	-11.9	Anten
M									
54	20800.020	70.8	+0.6	+10.1	+0.0	81.5	94.0	-12.5	Anten
M									
55	15600.070	69.5	+1.1	+10.1	+0.0	80.7	94.0	-13.3	Anten
M									
56	18200.010	68.6	+0.7	+10.0	+0.0	79.3	94.0	-14.7	Anten
M									
57	10400.130	68.5	+1.0	+9.6	+0.0	79.1	94.0	-14.9	Anten
M									
58	13000.140	67.4	+1.4	+9.7	+0.0	78.5	94.0	-15.5	Anten
M									
59	7800.219M	67.7	+0.6	+9.4	+0.0	77.7	94.0	-16.3	Anten

DRAFT

CKC Laboratories, Inc. Date: 2/20/2009 Time: 18:08:55 GE Energy WO#: 89201
FCC 27.53(m)(2)(v) spurious dBuV Ave Test Lead: Antenna port 120V 60Hz Sequence#: 5
WX-SGR Antenna port through cable and 10 dB atten. QPSK 1/2 5 MHz Mid ch

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**
 Specification: **FCC 27.53(m)(2)(v) spurious dBuV Ave**
 Work Order #: **89201** Date: **2/20/2009**
 Test Type: **Conducted Emissions** Time: **18:54:36**
 Equipment: **WiMAX SmartGrid Router** Sequence#: **7**
 Manufacturer: Grid-Net
 Model: WX-SGR
 S/N: GN1S11ASS8BS000W
 Tested By: Art Rice
 120V 60Hz

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum Analyzer	US44300408	03/05/2007	03/05/2009	02668
Cable - HF - 32022-2- 29094K-24TC	n/a	02/04/2008	02/04/2010	03015
10dB Pad 54A-10	P7186	02/05/2008	02/05/2010	P05411

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid Router*	Grid-Net	WX-SGR	GN1S11ASS8BS000W

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A401DN24	none

Test Conditions / Notes:

The router is placed on top of the wooden test table.

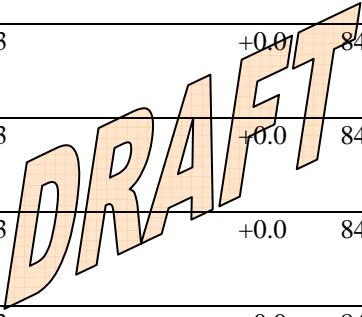
Powered by 120VAC to the 24VDC power supply.

The laptop PC communicates to the EUT through the Ethernet cable.

NOTES:

- 1) The EUT is transmitting continuously with OFDMA modulation.
- Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.
- Low ch=2498.5 MHz for 5 MHz BW
- Low ch=2501 MHz for 10 MHz BW
- Mid ch=2600MHz
- Hi ch=2687.5MHz for 5 MHz BW
- Hi ch=2685 MHz for 10 MHz BW
- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) Spectrum analyzer settings: 10kHz-150kHz RBW=VBW=200Hz, 0.15-30 MHz RBW=VBW=9kHz, 30-1000 MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz
- 7) Transmitting with worst case modulation 5 MHz QPSK 1/2.
- 8) Transmitting on High channel.

FCC 27.53(m)(2)(v)

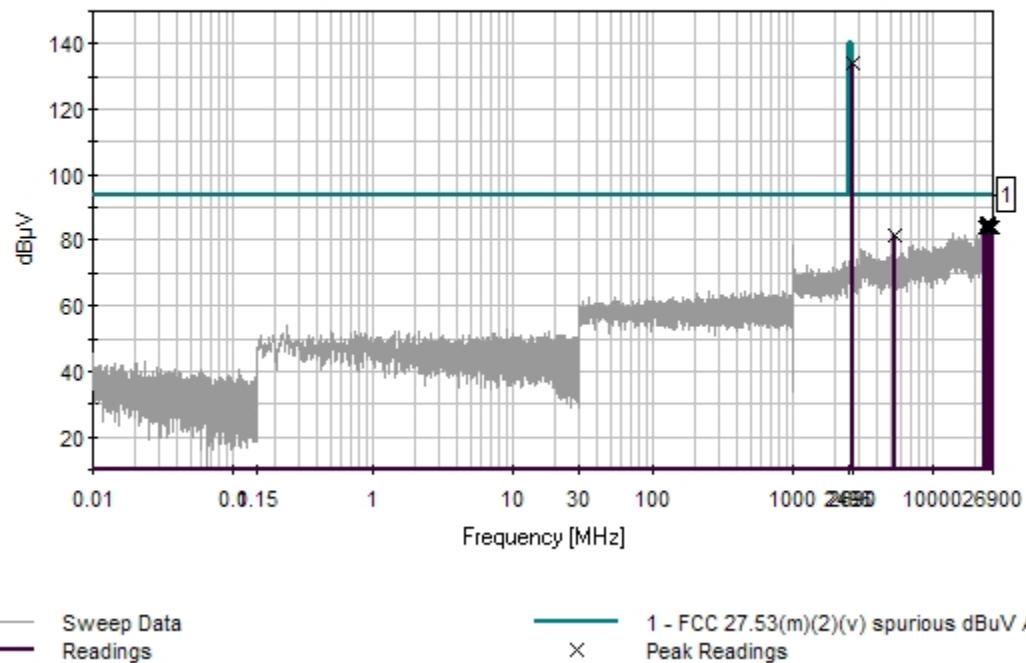

Conducted emissions 10 kHz-26900 MHz.

Transducer Legend:

T1=CAB-AN03015-020408

T2=ATT-ANP05411-020508

Measurement Data:				Reading listed by margin.		Test Lead: Antenna port				
#	Freq MHz	Rdng dB μ V	T1 dB	T2 dB	dB	Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
1	2688.171M	124.5	+0.4	+9.4		+0.0	134.3	140.0	-5.7	Anten
									Fundamental	
2	25265.730 M	73.7	+1.2	+10.3		+0.0	85.2	94.0	-8.8	Anten
3	24078.880 M	73.9	+0.8	+10.3		+0.0	85.0	94.0	-9.0	Anten
4	24990.000 M	73.7	+1.0	+10.3		+0.0	85.0	94.0	-9.0	Anten
5	25072.480 M	73.6	+1.1	+10.3		+0.0	85.0	94.0	-9.0	Anten
6	24338.920 M	73.6	+0.9	+10.3		+0.0	84.8	94.0	-9.2	Anten
7	25177.760 M	73.3	+1.2	+10.3		+0.0	84.8	94.0	-9.2	Anten
8	25003.000 M	73.3	+1.0	+10.3		+0.0	84.6	94.0	-9.4	Anten
9	25076.510 M	73.2	+1.1	+10.3		+0.0	84.6	94.0	-9.4	Anten
10	25130.100 M	73.1	+1.2	+10.3		+0.0	84.6	94.0	-9.4	Anten
11	25159.740 M	73.1	+1.2	+10.3		+0.0	84.6	94.0	-9.4	Anten
12	25208.110 M	73.1	+1.2	+10.3		+0.0	84.6	94.0	-9.4	Anten
13	24156.890 M	73.2	+0.9	+10.3		+0.0	84.4	94.0	-9.6	Anten
14	25007.980 M	73.1	+1.0	+10.3		+0.0	84.4	94.0	-9.6	Anten
15	24921.990 M	73.0	+0.9	+10.4		+0.0	84.3	94.0	-9.7	Anten



16	25013.200	73.0	+1.0	+10.3	+0.0	84.3	94.0	-9.7	Anten
M									
17	25023.160	73.0	+1.0	+10.3	+0.0	84.3	94.0	-9.7	Anten
M									
18	25142.430	72.8	+1.2	+10.3	+0.0	84.3	94.0	-9.7	Anten
M									
19	25156.420	72.8	+1.2	+10.3	+0.0	84.3	94.0	-9.7	Anten
M									
20	25158.550	72.8	+1.2	+10.3	+0.0	84.3	94.0	-9.7	Anten
M									
21	25164.010	72.8	+1.2	+10.3	+0.0	84.3	94.0	-9.7	Anten
M									
22	25226.610	72.8	+1.2	+10.3	+0.0	84.3	94.0	-9.7	Anten
M									
23	24928.990	72.9	+0.9	+10.4	+0.0	84.2	94.0	-9.8	Anten
M									
24	24988.000	72.9	+1.0	+10.3	+0.0	84.2	94.0	-9.8	Anten
M									
25	25323.120	72.8	+1.1	+10.3	+0.0	84.2	94.0	-9.8	Anten
M									
26	23400.800	73.1	+0.7	+10.3	+0.0	84.1	94.0	-9.9	Anten
M									
27	24966.000	72.8	+1.0	+10.3	+0.0	84.1	94.0	-9.9	Anten
M									
28	26231.540	72.7	+1.0	+10.4	+0.0	84.1	94.0	-9.9	Anten
M									
29	26544.790	72.6	+1.1	+10.4	+0.0	84.1	94.0	-9.9	Anten
M									
30	26601.460	72.6	+1.1	+10.4	+0.0	84.1	94.0	-9.9	Anten
M									
31	24084.880	72.8	+0.9	+10.3	+0.0	84.0	94.0	-10.0	Anten
M									
32	24354.920	72.8	+0.9	+10.3	+0.0	84.0	94.0	-10.0	Anten
M									

33	24860.980	72.7	+0.9	+10.4	+0.0	84.0	94.0	-10.0	Anten
M									
34	24889.990	72.7	+0.9	+10.4	+0.0	84.0	94.0	-10.0	Anten
M									
35	26350.110	72.6	+1.0	+10.4	+0.0	84.0	94.0	-10.0	Anten
M									
36	24816.980	72.7	+0.8	+10.4	+0.0	83.9	94.0	-10.1	Anten
M									
37	25072.000	72.5	+1.1	+10.3	+0.0	83.9	94.0	-10.1	Anten
M									
38	25193.650	72.4	+1.2	+10.3	+0.0	83.9	94.0	-10.1	Anten
M									
39	25937.510	72.5	+1.0	+10.4	+0.0	83.9	94.0	-10.1	Anten
M									
40	26596.480	72.4	+1.1	+10.4	+0.0	83.9	94.0	-10.1	Anten
M									
41	25224.950	72.3	+1.2	+10.3	+0.0	83.8	94.0	-10.2	Anten
M									
42	25261.940	72.3	+1.2	+10.3	+0.0	83.8	94.0	-10.2	Anten
M									
43	25283.990	72.4	+1.1	+10.3	+0.0	83.8	94.0	-10.2	Anten
M									
44	25771.760	72.4	+1.0	+10.4	+0.0	83.8	94.0	-10.2	Anten
M									
45	26030.220	72.4	+1.0	+10.4	+0.0	83.8	94.0	-10.2	Anten
M									
46	24253.910	72.4	+1.0	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
47	25000.000	72.4	+1.0	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
48	25053.740	72.3	+1.1	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
49	25064.890	72.3	+1.1	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									

50	25349.910	72.3	+1.1	+10.3	+0.0	83.7	94.0	-10.3	Anten
M									
51	5375.144M	71.0	+0.8	+9.5	+0.0	81.3	94.0	-12.7	Anten
									Harmonic

CKC Laboratories, Inc. Date: 2/20/2009 Time: 18:54:36 GE Energy WO#: 89201
 FCC 27.53(m)(2)(v) spurious dBuV Ave Test Lead: Antenna port 120V 60Hz Sequence#: 7
 WX-SGR Antenna port through cable and 10 dB atten. QPSK 1/2 5 MHz High ch

FCC 27.53 – BANDEDGE ANTENNA CONDUCTED

Test Setup Photos

DRAFT

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**
 Specification: **FCC 27.53(m)(2)(v) Band Edge dBm Ave**
 Work Order #: **89201** Date: **7/21/2009**
 Test Type: **Conducted Emissions** Time: **15:06:31**
 Equipment: **WiMAX SmartGrid Router** Sequence#: **4**
 Manufacturer: Grid-Net Tested By: Art Rice
 Model: **WX-SGR** **120V 60Hz**
 S/N: **GN1S11ASS8BS000W**

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Cable - HF - 32022-2- 29094K-24TC	n/a	02/04/2008	02/04/2010	03015
10dB Pad 54A-10	P7186	02/05/2008	02/05/2010	P05411
SA - Agilent E4446A	US44300408	03/09/2009	03/09/2011	02668

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid Router*	Grid-Net	WX-SGR	GN1S11ASS8BS000W

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A-401DN24	none

Test Conditions / Notes:

The router is placed on top of the wooden test table.

Powered by 120VAC to the 24VDC power supply.

The laptop PC communicates to the EUT through the Ethernet cable.

NOTES:

1) The EUT is transmitting continuously with OFMDA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

2) Transmit power set at 27dBm.

3) CONDUCTED FROM ANTENNA PORT.

4) EUT on table next to Spectrum Analyzer.

5) Spectrum analyzer atten=40 dB, External atten=10dB.

6) Spectrum analyzer settings: 9kHz-150kHz RBW=VBW=200Hz, 0.15-30 MHz RBW=VBW=9kHz, 30-1000 MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz

7) Averaged (100 samples) readings.

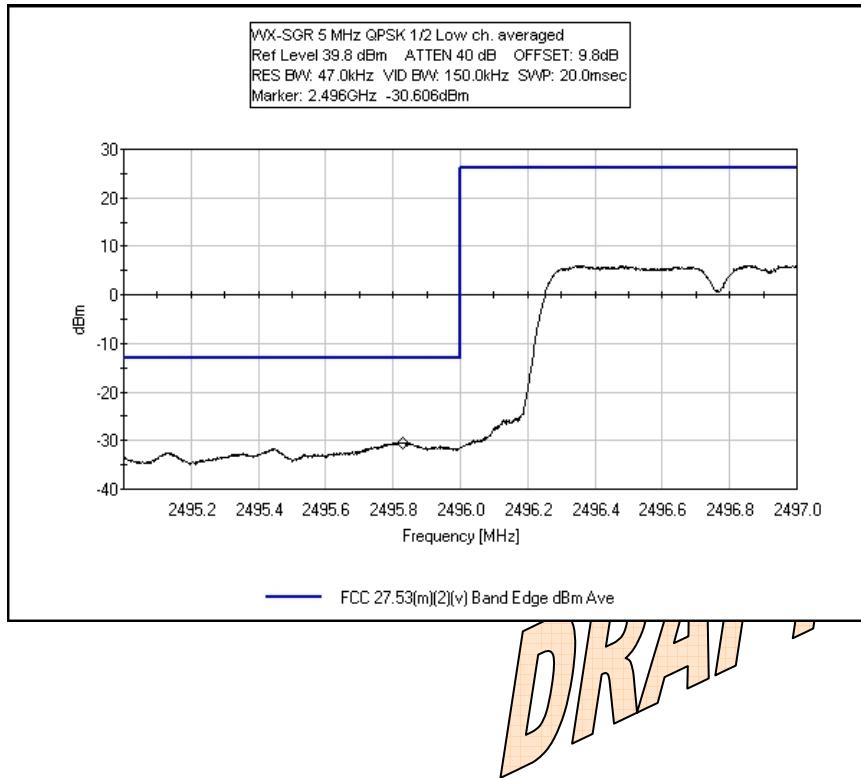
8) Band edge readings performed at 1% of 26dB BW of signal. 47 kHz for 5 MHz BW (26dB BW=4.7MHz). 100kHz for 10 MHz BW (26dB BW=9.3 MHz), per 27.53(m)(6).

9) SA offset of 9.8 dB to correct for cable and attenuator loss.

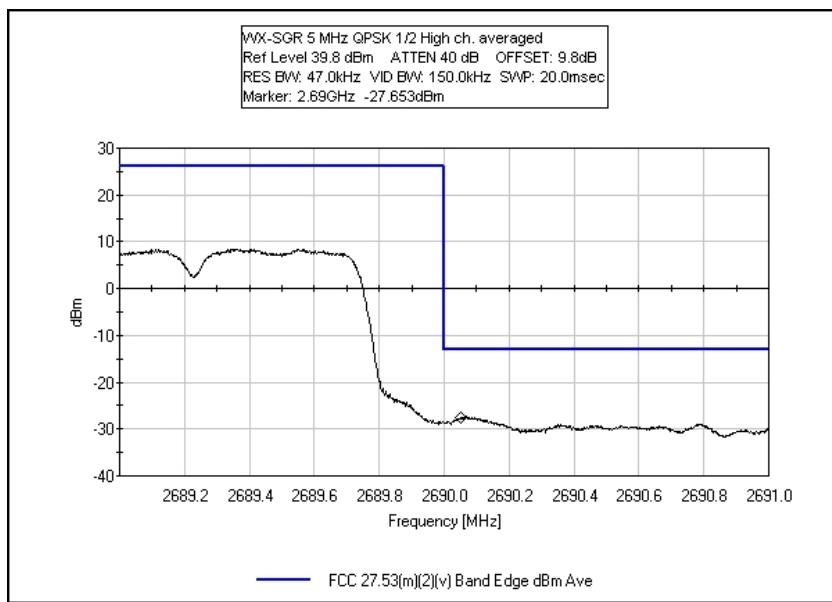
FCC 27.53(m)(2)(v)

Conducted emissions 2.4-2.7 GHz

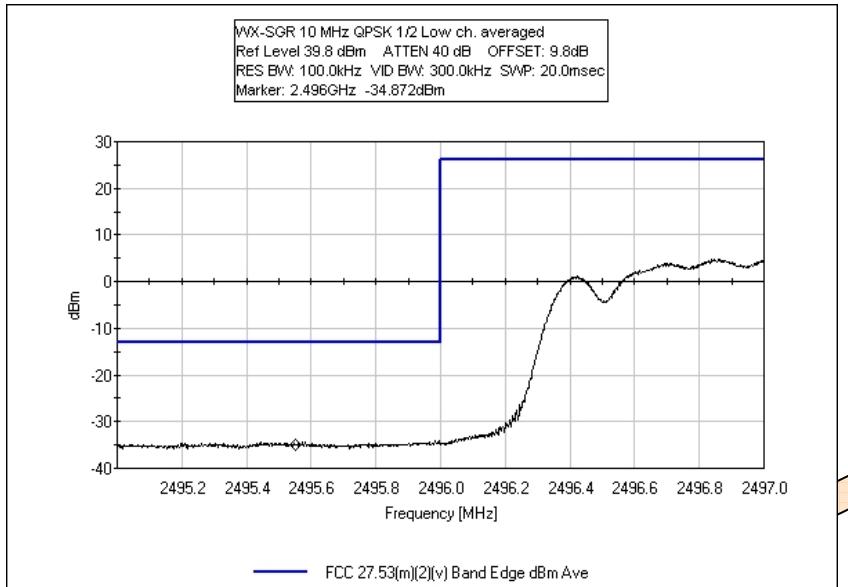
DRAFT

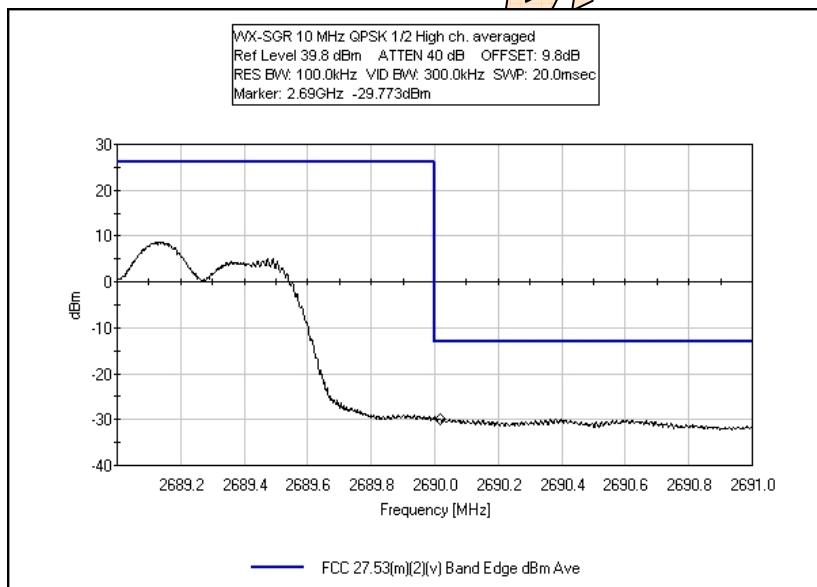

Transducer Legend:

Measurement Data:			Reading listed by margin.		Test Lead: Antenna port				
#	Freq MHz	Rdng dB μ V			Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
1	2687.850M Ave	25.6		+0.0	25.6	26.1	-0.5	Anten	Fundamental, 5 MHz QPSK 1/2, High
2	2499.000M Ave	24.2		+0.0	24.2	26.1	-1.9	Anten	Fundamental, 5 MHz QPSK 1/2, Low
3	2502.580M Ave	21.8		+0.0	21.8	26.1	-4.3	Anten	Fundamental, 10 MHz QPSK 1/2, Low
4	2685.440M Ave	20.6		+0.0	20.6	26.1	-5.5	Anten	Fundamental, 10 MHz QPSK 1/2, High

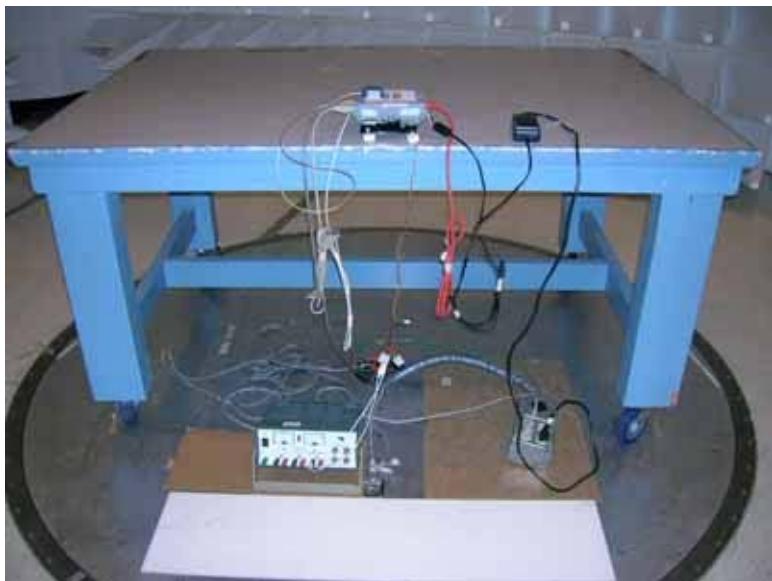

5	2690.050M	-27.6	+0.0	-27.6	-13.0	-14.6	Anten
	Ave				Band Edge, 5 MHz		
					QPSK 1/2, High,		
					RBW=47kHz		
6	2690.390M	-29.8	+0.0	-29.8	-13.0	-16.8	Anten
	Ave				Band Edge, 10		
					MHz QPSK 1/2,		
					High,		
					RBW=100kHz		
7	2495.828M	-30.6	+0.0	-30.6	-13.0	-17.6	Anten
	Ave				Band Edge, 5 MHz		
					QPSK 1/2, Low,		
					RBW=47kHz		
8	2495.550M	-34.9	+0.0	-34.9	-13.0	-21.9	Anten
	Ave				Band Edge, 10		
					MHz QPSK 1/2,		
					Low,		
					RBW=100kHz		

DRAFT


BANDEDGE - 5 MHz QPSK LOW CHANNEL


BANDEDGE - 5 MHz QPSK HIGH CHANNEL

BANDEDGE - 10 MHz QPSK LOW CHANNEL


BANDEDGE - 10 MHz QPSK HIGH CHANNEL

FCC 2.1033(c)(14)/2.1053/27.53 - FIELD STRENGTH OF SPURIOUS RADIATION

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**
 Specification: **FCC 27.53(m)(2)(v) Spurious Rad dBuV Ave**
 Work Order #: **89201** Date: **7/22/2009**
 Test Type: **Maximized Emissions** Time: **13:57:20**
 Equipment: **WiMAX SmartGrid Router** Sequence#: **28**
 Manufacturer: Grid-Net Tested By: Art Rice
 Model: **WX-SGR**
 S/N: **GN1S11ASS8BS000W**

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum Analyzer	US44300408	03/11/2009	03/11/2011	02668
Active Horn 26-40GHz	1097854	11/12/2008	11/12/2010	02695
Active Horn 18-26GHz	1114018	11/13/2008	11/13/2010	02742
HF Cable	None	08/12/2008	08/12/2010	05843
HF Cable	None	02/04/2008	02/04/2010	03015
HF Cable	HOL-HF-025-06	05/06/2008	05/06/2010	P05138
HF Cable	None	05/06/2008	05/06/2010	P04241
Horn - DRG-118A	1064	01/09/2009	01/09/2011	02061
Preamp, HP83017A	00873	02/20/2009	02/20/2011	02812
Cable	None	04/21/2008	04/21/2010	P05440
3.5 GHz HP Filter	None	04/01/2008	04/01/2010	P01416
Cable	None	03/06/2009	03/06/2011	P05300
Cable	None	03/06/2009	03/06/2011	P05299
Preamp, HP8447D	2443A03707	02/09/2009	02/09/2011	00730
Antenna, Bilog	2630	12/22/2008	12/22/2010	00852
Mag Loop - 6502	2078	05/18/2009	05/18/2011	00432

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid Router*	Grid-Net	WX-SGR	GN1S11ASS8BS000W

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A-401DN24	none
Power supply for EUT fan	Tektronix	CPS250	CKC AN00900A
Cooling Fan	CoolerMaster	AA225-25BB-5EA-F1	none
Antenna	Mars Antennas and RF System, Inc.	ANT.MA-VM26-3F	none

Test Conditions / Notes:

The transceiver is placed on top of the wooden test table.
 24VDC power supply for EUT powered by 120VAC.
 The laptop PC communicates to the EUT through the Ethernet.
 Unterminated RS-232 and RS-485 cables are bundled to 40cm above the floor.
NOTES:
 1) The EUT is transmitting continuously with OFMDA modulation.
 Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.
 Low ch=2498.5 MHz for 5 MHz BW
 Low ch=2501 MHz for 10 MHz BW
 Mid ch=2600MHz
 Hi ch=2687.5MHz for 5 MHz BW
 Hi ch=2685 MHz for 10 MHz BW
 2) Transmit power set at 27dBm.
 3)
 4)
 5) Spectrum analyzer atten=10 dB.
 6) Spectrum analyzer settings: 10kHz-150kHz RBW=VBW=200Hz, 0.15-30 MHz RBW=VBW=9kHz, 30-1000 MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz
 7) Transmitting with worst case modulation 5 MHz QPSK 1/2.
 8) Checked low, mid, and high channels.
 9) Frequencies above 1 GHz were pre-scanned near field. Signals found in the pre-scans 9kHz-26900MHz were maximized.

Radiated emissions 4.9-5.4 GHz.

DRAFT

Operating Frequency: 2498 MHz - 2688 MHz

Channels: Low, Mid and High

Highest Measured Output Power: 26.10 ERP(dBm)= 0.407 ERP(Watts)

Distance: 3 meters

Limit: 43+10Log(P) 39.10 dBc

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
4,997.12	-38.4	Vert	64.50
5,200.06	-40	Vert	66.10
5,375.17	-42	Vert	68.10
4,997.01	-45.5	Horiz	71.60
5,200.06	-45.8	Horiz	71.90
5,375.17	-46.4	Horiz	72.50

FCC 2.1033(c)(14)/2.1055- FREQUENCY STABILITY

Test Setup Photos

RAFT

DRAFT

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**
 Specification: **FCC 27.50(h)(2) Max Power dBuV**
 Work Order #: **89201** Date: 3/4/2009
 Test Type: **Frequency Stability with Voltage Variations** Time: 11:37:28
 Equipment: **WiMAX SmartGrid Router** Sequence#: 18
 Manufacturer: Grid-Net Tested By: Art Rice
 Model: WX-SGR 15-30VDC
 S/N: GN1S11ASS8BS000W

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum Analyzer	US44300408	03/05/2007	03/05/2009	02668
Cable - HF - 32022-2- 29094K-24TC	n/a	02/04/2008	02/04/2010	03015
10dB Pad 54A-10	P7186	02/05/2008	02/05/2010	P05411
DMM, Fluke 85	65380320	07/17/2008	07/17/2010	02361
Tenma Power Supply	0201714	10/06/2008	10/06/2010	P05574
Temperature Chamber	10911-S	04/03/2008	04/03/2010	02721

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid Router*	Grid-Net	WX-SGR	GN1S11ASS8BS000W

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
Power supply for EUT fan	Tektronix	CPS250	CKC AN00900A
Cooling Fan	CoolerMaster	AA225-25BB-5EA-F1	none
AC Adapter for laptop	Dell	LA90PS0-00	CN-0DF266-71615-834-0DC3

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table.

Powered by 15-30VDC.

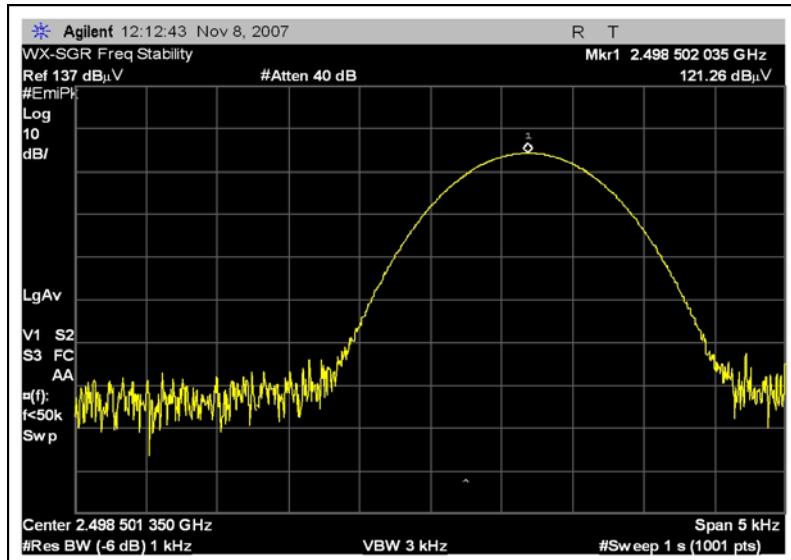
The laptop PC communicates through the Ethernet cable to the EUT.

NOTES:

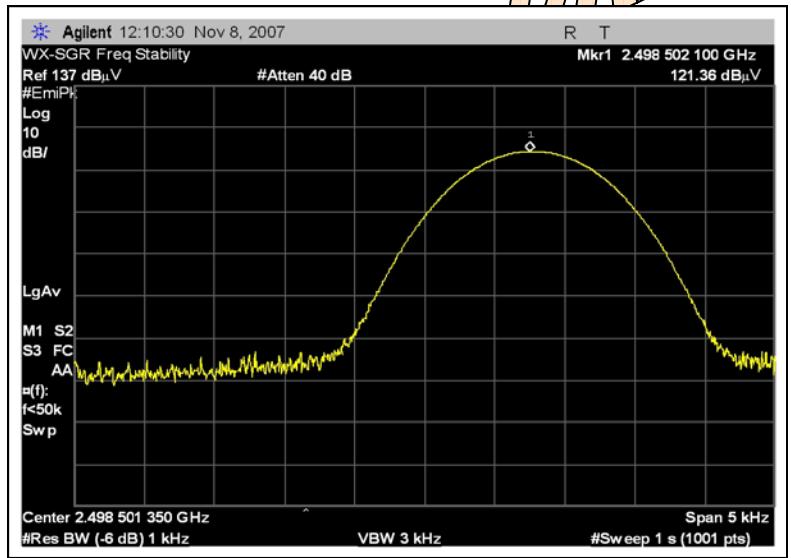
- 1) The EUT is transmitting continuously with a single-tone signal.
Low ch=2498.5 MHz
Hi ch=2687.5MHz
- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) Spectrum analyzer settings: RBW=VBW=1 kHz
- 7) Frequency stability with voltage variation per FCC 2.1055(d)
- 8) Testing over the entire specified voltage input range.

Conducted emissions 2.4-2.7 GHz.

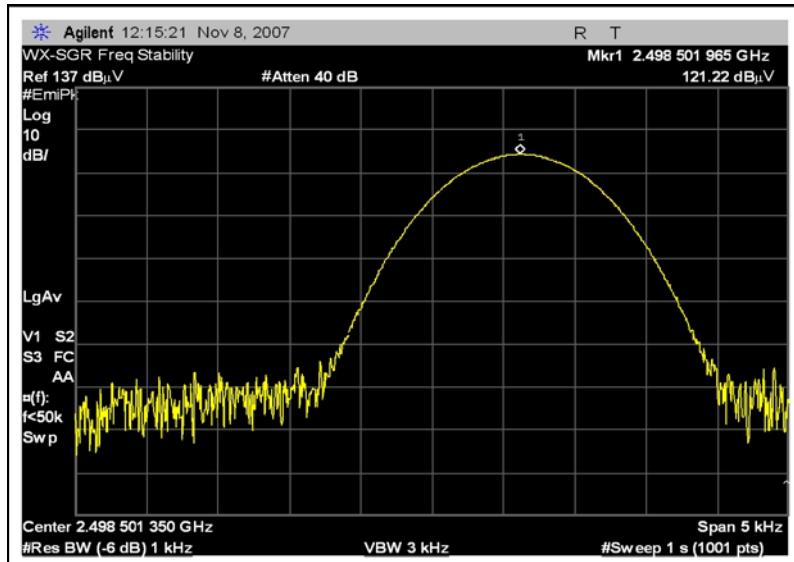
Transducer Legend:

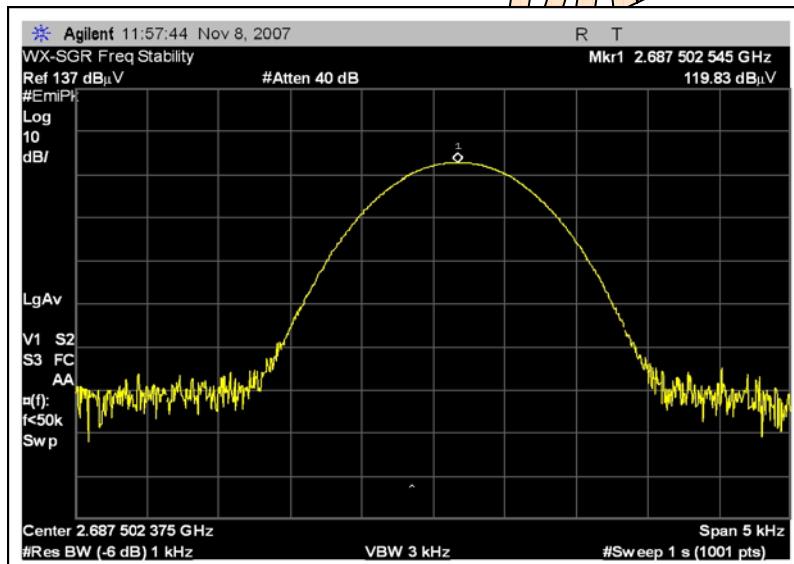

T1=CAB-AN03015-020408

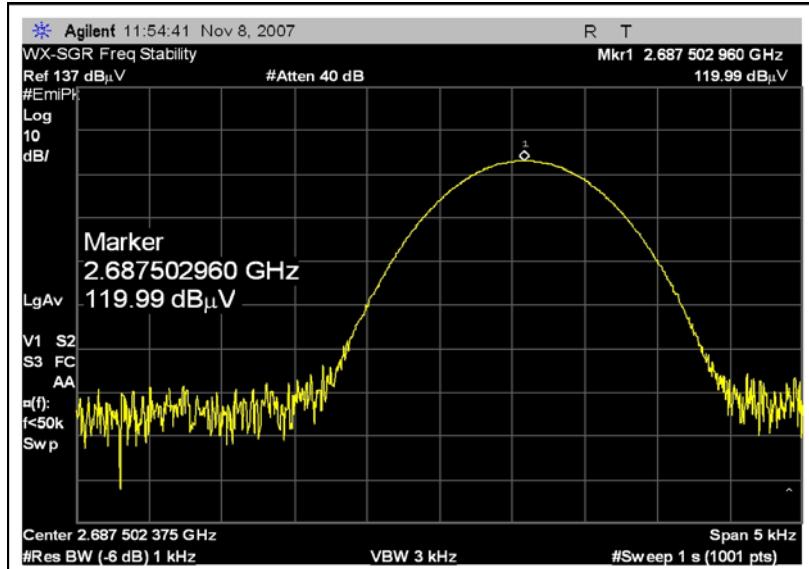
T2=ATT-ANP05411-020508

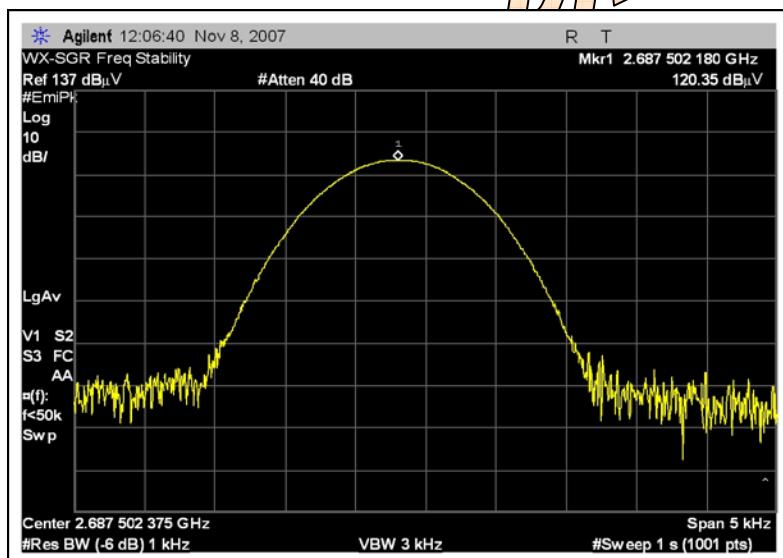

Measurement Data: Reading listed by margin.

#	Freq MHz	Rdng dB μ V	T1 dB	T2 dB	Diss dB	Table +0.0	Test Lead: Antenna port			
							Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
1	2498.502M	121.4	+0.4	+9.4	DRA	+0.0	131.2	140.0	-8.8	Anten Low ch, 24VDC
2	2498.502M	121.3	+0.4	+9.4	DRA	+0.0	131.1	140.0	-8.9	Anten Low ch, 15VDC
3	2498.502M	121.2	+0.4	+9.4	DRA	+0.0	131.0	140.0	-9.0	Anten Low ch, 30VDC
4	2687.502M	120.4	+0.4	+9.4	DRA	+0.0	130.2	140.0	-9.8	Anten High ch, 30VDC
5	2687.503M	120.1	+0.4	+9.4	DRA	+0.0	129.9	140.0	-10.1	Anten High ch, 24VDC
6	2687.503M	119.8	+0.4	+9.4	DRA	+0.0	129.6	140.0	-10.4	Anten High ch, 15VDC


FREQUENCY STABILITY - LOW CHANNEL 15VDC


FREQUENCY STABILITY - LOW CHANNEL 24VDC


FREQUENCY STABILITY - LOW CHANNEL 30VDC


FREQUENCY STABILITY - HIGH CHANNEL 15VDC

FREQUENCY STABILITY - HIGH CHANNEL 24VDC

FREQUENCY STABILITY - HIGH CHANNEL 30VDC

Temperature Variations

Channel Frequency:		Channel 1 (MHz)	Dev. (MHz)	Channel 3 (MHz)	Dev. (MHz)
		2498.5		2687.5	
Temp (C)	Voltage				
-30	24.0	2498.50347	0.00347	2687.50347	0.00347
-20	24.0	2498.50167	0.00167	2687.50133	0.00133
-10	24.0	2498.50253	0.00253	2687.50220	0.00220
0	24.0	2498.50360	0.00360	2687.50403	0.00403
10	24.0	2498.50447	0.00447	2687.50447	0.00447
20	24.0	2498.50373	0.00373	2687.50423	0.00423
30	24.0	2498.50210	0.00210	2687.50127	0.00127
40	24.0	2498.50130	0.00130	2687.50107	0.00107
50	24.0	2498.50123	0.00123	2687.50093	0.00093

Voltage Variations ($\pm 15\%$)

20	15.0	2498.50204	0.00203	2687.50254	0.00254
20	24.0	2498.50210	0.00210	2687.50296	0.00296
20	30.0	2498.50197	0.00196	2687.50218	0.00218

Max Deviation (MHz)

0.00447

0.00447