

Rogers Labs, a division of The Compatibility Center LLC

7915 Nieman Rd.
Lenexa, KS 66214
Phone / Fax (913) 660-0666

Test Report For Application of Certification 47CFR Part 87

Aviation Transponder 1090 MHz FCC ID: VZI02294

Trig Avionics Limited

Heriot Watt Research Park, Riccarton
Currie EH14 4AP United Kingdom

FCC Designation: US5305
ISED Registration: 3041A-1

Test Report Number: 241125

Test Date: November 25, 2024 – December 10, 2024

Authorized Signatory:

Patrick Powell
Rogers Labs, a division of The Compatibility Center LLC
FCC Designation: US5305
ISED Registration: 3041A

This report shall not be reproduced except in full, without the written approval of the laboratory.
This report must not be used by the client to claim product certification, approval, or
endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Rogers Labs, a division of The Compatibility Center LLC
7915 Nieman Road
Lenexa, KS 66214
Phone/Fax: (913) 660-0666
Revision 2

FCC ID: VZI02294
Test: 241125
Test to: 47CFR Parts 2 & 87
File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
Models: TT23 & TT23G
S/N: 6
Date: January 3, 2025
Page 1 of 42

TABLE OF CONTENTS.....	2
REVISION HISTORY	4
EXECUTIVE SUMMARY	5
OPINION / INTERPRETATION OF RESULTS	5
EQUIPMENT TESTED.....	5
Equipment Function	6
Equipment Configuration	6
APPLICABLE STANDARDS & TEST PROCEDURES	7
ENVIRONMENTAL CONDITIONS.....	7
TEST SITE LOCATIONS	7
UNITS OF MEASUREMENTS	8
APPLICATION FOR CERTIFICATION.....	9
TRANSMITTER POWER OUTPUT	13
Measurements Required	13
Test Arrangement.....	13
Table 1 Transmitter Power Results.....	14
Figure 1 Maximum Power Output Mode-A	15
Figure 2 Maximum Power Output mode-S	16
MODULATION CHARACTERISTICS.....	17
Modulation Characteristics Results	19
OCCUPIED BANDWIDTH	20

Measurements Required	20
Test Arrangement.....	20
Table 2 Occupied Bandwidth Results	21
Figure 3 Occupied Band Width Mode A	21
Figure 4 Occupied Band Width Mode S	22
SPURIOUS EMISSIONS AT ANTENNA TERMINALS.....	23
Measurements Required	23
Test Arrangement.....	23
Figure 5 Spurious Emissions at Antenna Terminal (A-Mode)	24
Figure 6 Spurious Emissions at Antenna Terminal (A-Mode)	25
Figure 7 Spurious Emissions at Antenna Terminal (S-Mode)	26
Figure 8 Spurious Emissions at Antenna Terminal (S-Mode)	27
Figure 9 Emissions Mask (Mode-A).....	28
Figure 10 Emissions Mask (Mode-S).....	29
Table 3 Spurious Emissions at Antenna Terminal Results Mode-A	30
Table 4 Spurious Emissions at Antenna Terminal Results Mode-S	30
FIELD STRENGTH OF SPURIOUS RADIATION (UNWANTED EMISSIONS).....	31
Measurements Required	31
Test Arrangement.....	31
Table 5 General Spurious Radiated Emission Results	33
Table 6 Spurious Radiated Emission Results Harmonics	34
FREQUENCY STABILITY	34
Measurements Required	34
Test Arrangement.....	35
Table 7 Frequency Stability vs. Temperature Results.....	36
Table 8 Frequency Stability vs. Input Power Supply Voltage Results.....	36

ANNEX.....	38
Annex A Measurement Uncertainty Calculations	39
Annex B Test Equipment	40
Annex C Certificate of Accreditation.....	42

Revision History

Revision 1 Issued December 20, 2024 – Initial release.

Revision 2 Issued January 3, 2025 – applied review fixes.

Rogers Labs, a division of The Compatibility Center LLC	FCC ID: VZI02294	Trig Avionics Ltd.
7915 Nieman Road	Test: 241125	Models: TT23 & TT23G
Lenexa, KS 66214	Test to: 47CFR Parts 2 & 87	S/N: 6
Phone/Fax: (913) 660-0666	File: Trig TT23 TstRpt 241125 r2	Date: January 3, 2025
Revision 2		Page 4 of 42

Executive Summary

In accordance with the Federal Communications, Code of Federal Regulations dated November 25, 2024, Part 2 Subpart J, Paragraphs 2.907, 2.911, 2.915, 2.925, 2.926, 2.1031 through 2.1057, and Part 87, Subchapter D, Paragraphs 87.131 through 87.147. The following information is submitted for consideration on obtaining Grant of Certification.

Opinion / Interpretation of Results

Tests Performed	Results
Emissions Tests	
Requirements per 47CFR paragraphs 2.1031-2.1057	Complies
Requirements per 47CFR paragraphs 87.131	Complies
Requirements per 47CFR paragraphs 87.133	Complies
Requirements per 47CFR paragraphs 87.135	Complies
Requirements per 47CFR paragraphs 87.139	Complies
Requirements per 47CFR paragraphs 87.141	Complies

Equipment Tested

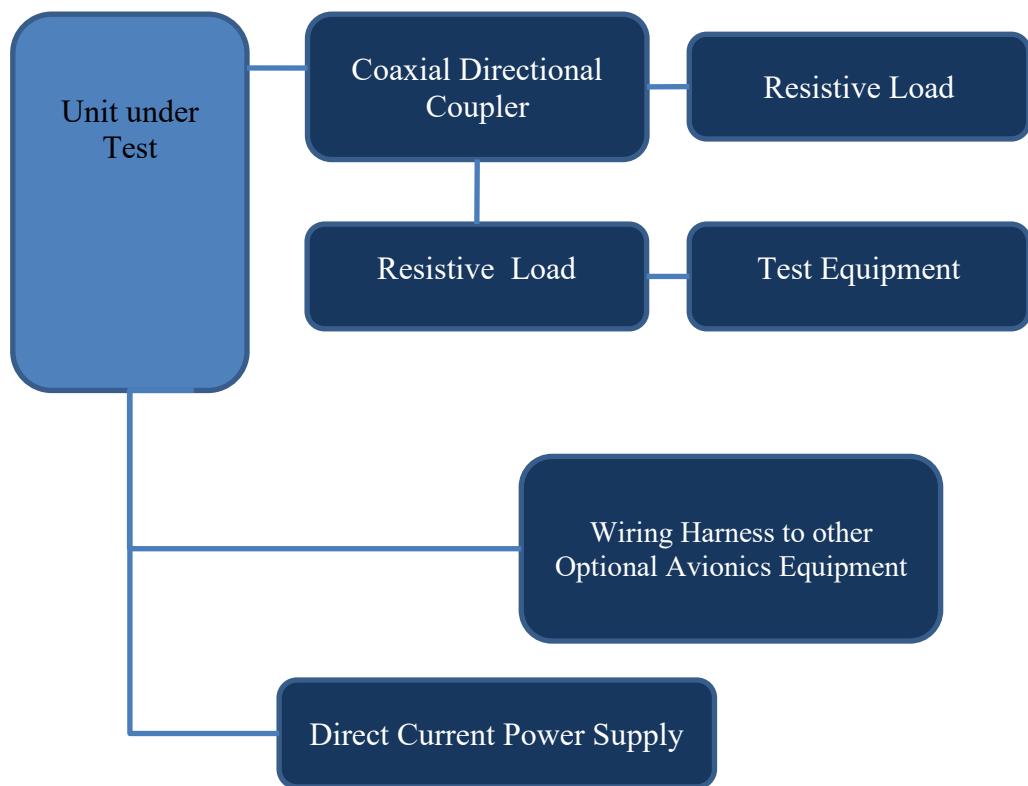
Equipment	Model / PN	Serial Number
EUT	TT23	6
Interface cables	Manufacturer provided	N/A
DC Power Supply	BK 1745A	209C13
Avionics Tester	IFR 6000	104001611

Different models are function of face plate and GPS receiver option. Transmitter is identical in all.

Test results in this report relate only to the items tested

Rogers Labs, a division of The Compatibility Center LLC
 7915 Nieman Road
 Lenexa, KS 66214
 Phone/Fax: (913) 660-0666
 Revision 2

FCC ID: VZI02294
 Test: 241125
 Test to: 47CFR Parts 2 & 87
 File: Trig TT23 TstRpt 241125 r2


Trig Avionics Ltd.
 Models: TT23 & TT23G
 S/N: 6
 Date: January 3, 2025
 Page 5 of 42

Equipment Function

The EUT is a Mode A and Mode S Avionics transponder. The design is provided under two models representing the similar variant, TT23 and TT23G. The differences between the models relates to the fitment of a GPS receiver and branding of the front faceplate. The transponder design provides a coded response when it receives a radio-frequency interrogation from outside the craft to assist in identifying the aircraft to others. The unit operates on aviation-defined frequencies, receiving radar interrogations at 1030 MHz and transmitting a coded response of pulses back at 1090 MHz. This report documents operation of the transmitter for this application as authorized in 47CFR 87 Subpart D.

Equipment Configuration

- 1) EUT powered by Bench DC power supply and connected to interface cabling

Applicable Standards & Test Procedures

Applicable requirements include the 47CFR Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.915, 2.925, 2.926, 2.1031 through 2.1057, and applicable paragraphs of Part 87. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.26-2015 and C63.4-2014.

Environmental Conditions

Ambient Temperature	21.2° C
Relative Humidity	32%
Atmospheric Pressure	1022.7 mb

Test Site Locations

Conducted EMI	AC line conducted emissions testing performed in a shielded screen room located at Rogers Labs, a division of The Compatibility Center LLC, 7915 Nieman Rd., Lenexa, KS (or satellite location).
Antenna port	Antenna port conducted emissions testing was performed in a shielded screen room located at Rogers Labs, a division of The Compatibility Center LLC, 7915 Nieman Rd., Lenexa, KS (or satellite location).
Radiated EMI	The radiated emissions tests were performed at the 3 meters Semi-Anechoic Chamber (SAC) located at Rogers Labs, a division of The Compatibility Center LLC, 7915 Nieman Rd., Lenexa, KS or at the 3 meters Outdoor Area Test Site (OATS) in the satellite location.

Registered Site information: FCC Site: US5305, ISED: 3041A, CAB Identifier: US0096

NVLAP Accreditation Lab code 200087-0

Rogers Labs, a division of The Compatibility Center LLC 7915 Nieman Road Lenexa, KS 66214 Phone/Fax: (913) 660-0666 Revision 2	FCC ID: VZI02294 Test: 241125 Test to: 47CFR Parts 2 & 87 File: Trig TT23 TstRpt 241125 r2	Trig Avionics Ltd. Models: TT23 & TT23G S/N: 6 Date: January 3, 2025 Page 7 of 42
--	---	---

Units of Measurements

Conducted EMI Data presented in dB μ V; dB referenced to one microvolt

Antenna port Conducted Data is in dBm; dB referenced to one milliwatt

Radiated EMI Data presented in dB μ V/m; dB referenced to one microvolt per meter

Note: The limit is expressed for a measurement in dB μ V/m when the measurement is taken at a distance of 3 or 10 meters. Data taken for this report was taken at distance of 3 meters. Sample calculation demonstrates corrected field strength reading for Semi-Anechoic Chamber using the measurement reading and correcting for receive antenna factor, cable losses, and amplifier gains.

Sample Calculation:

RFS = Radiated Field Strength, FSM = Field Strength Measured

A.F. = Receive antenna factor, Losses = attenuators/cable losses, Gain = amplification gains

RFS (dB μ V/m @ 3m) = FSM (dB μ V) + A.F. (dB/m) + Losses (dB) - Gain (dB)

Frequency: 9 kHz-30 MHz	Frequency: 30 MHz- 1 GHZ	Frequency: Above 1 GHz
Loop Antenna	Broadband Biconilog	Horn
RBW = 9 kHz	RBW = 120 kHz	RBW = 1 MHz
VBW = 30 kHz	VBW = 500 kHz	VBW = 3 MHz
Sweep time = Auto	Sweep time = Auto	Sweep time = Auto
Detector = PK, QP	Detector = PK, QP	Detector = PK, AV
Antenna Height 1m	Antenna Height 1-4m	Antenna Height 1-4m

Application for Certification

(1) The full name and mailing address of the manufacturer of the device and the applicant for certification.

Applicant

Trig Avionics Limited
Heriot Watt Research Park, Riccarton
Currie EH14 4AP United Kingdom

Manufacturer

Trig Avionics Europe B.V.
Hardwareweg 3
3821 BL Amersfoort Netherlands

(2) FCC identifier. FCC I.D.: VZI02294

(3) A copy of the installation and operating instructions furnished to the user has been submitted with this certification.

(4) Type or types of emission. 8M67M1D

(5) Frequency range. 1090 MHz

(6) Range of operating power values or specific operating power levels, and description of any means provided for variation of operating power.

247.7 Watts peak, 2.48 Watts average power

(7) Maximum power rating as defined in the applicable part(s) of the rules.

Maximum power output as determined by appropriate standards during certification per CFR 47 paragraph 87.131.

(8) The dc voltages applied to and dc currents into the several elements of the final radio frequency amplifying device for normal operation over the power range.

Power delivered into final amplifier 50.0 Volts @ 9.0 Amps (450 Watts peak)

(9) Tune-up procedure over the power range, or at specific operating power levels.

Refer to Exhibit for Transceiver Alignment Procedure.

Rogers Labs, a division of The Compatibility Center LLC
7915 Nieman Road
Lenexa, KS 66214
Phone/Fax: (913) 660-0666
Revision 2

FCC ID: VZI02294
Test: 241125
Test to: 47CFR Parts 2 & 87
File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
Models: TT23 & TT23G
S/N: 6
Date: January 3, 2025
Page 9 of 42

(10) A schematic diagram and a description of all circuitry and devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation, and for limiting power.

Refer to Exhibit for Circuit Schematic and Theory of Operation.

(11) A photograph or drawing of the equipment identification plate or label showing the information to be placed thereon.

Refer to Exhibit for Photograph or Drawing of Label exhibit

(12) Photographs (8" x 10") of the equipment of sufficient clarity to reveal equipment construction and layout, including meters, if any, and labels for controls and meters and sufficient views of the internal construction to define component placement and chassis assembly. Insofar as these requirements are met by photographs or drawings contained in instruction manuals supplied with the certification request, additional photographs are necessary only to complete the required showing.

Refer to Exhibit for Components Layout and Chassis Drawings.

(13) For equipment employing digital modulation techniques, a detailed description of the modulation system to be used, including the response characteristics (frequency, phase and amplitude) of any filters provided, and a description of the modulating wave train, shall be submitted for the maximum rated conditions under which the equipment will be operated.

Not applicable

(14) The data required by §2.1046 through 2.1057, inclusive, measured in accordance with the procedures set out in §2.1041.

Data is contained in this application

(15) The application for certification of an external radio frequency power amplifier under part 97 of this chapter need not be accompanied by the data required by paragraph (b)(14) of this section. In lieu thereof, measurements shall be submitted to show compliance with the technical specifications in subpart C of part 97 of this chapter and such information as required by §2.1060 of this part.

Rogers Labs, a division of The Compatibility Center LLC
7915 Nieman Road
Lenexa, KS 66214
Phone/Fax: (913) 660-0666
Revision 2

FCC ID: VZI02294
Test: 241125
Test to: 47CFR Parts 2 & 87
File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
Models: TT23 & TT23G
S/N: 6
Date: January 3, 2025
Page 10 of 42

Does not apply to this device or application.

(16) An application for certification of an AM broadcast stereophonic exciter-generator intended for interfacing with existing certified, or formerly type accepted or notified transmitters must include measurements made on a complete stereophonic transmitter. The instruction book must include complete specifications and circuit requirements for interconnecting with existing transmitters. The instruction book must also provide a full description of the equipment and measurement procedures to monitor modulation and to verify that the combination of stereo exciter-generator and transmitter meet the emission limitations of §73.44.

Does not apply to this device or application.

(17) Applications for certification required by §25.129 of this chapter shall include any additional equipment test data required by that section.

Does not apply to this device or application.

(18) An application for certification of a software defined radio must include the information required by §2.944.

Does not apply to this device or application.

(19) Applications for certification of equipment operating under part 27 of this chapter, that a manufacturer is seeking to certify for operation in the:

(i) 1755-1780 MHz, 2155-2180 MHz, or both bands shall include a statement indicating compliance with the pairing of 1710-1780 and 2110-2180 MHz specified in §§27.5(h) and 27.75 of this chapter.

(ii) 1695-1710 MHz, 1755-1780 MHz, or both bands shall include a statement indicating compliance with §27.77 of this chapter.

(iii) 600 MHz band shall include a statement indicating compliance with §27.75 of this chapter.

Does not apply to this device or application.

(20) Before equipment operating under part 90 of this chapter and capable of operating on the 700 MHz interoperability channels (See §90.531(b)(1) of this chapter) may be marketed or sold, the manufacturer thereof shall have a Compliance Assessment Program Supplier's Declaration of

Rogers Labs, a division of The Compatibility Center LLC
7915 Nieman Road
Lenexa, KS 66214
Phone/Fax: (913) 660-0666
Revision 2

FCC ID: VZI02294
Test: 241125
Test to: 47CFR Parts 2 & 87
File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
Models: TT23 & TT23G
S/N: 6
Date: January 3, 2025
Page 11 of 42

Conformity and Summary Test Report or, alternatively, a document detailing how the manufacturer determined that its equipment complies with §90.548 of this chapter and that the equipment is interoperable across vendors. Submission of a 700 MHz narrowband radio for certification will constitute a representation by the manufacturer that the radio will be shown, by testing, to be interoperable across vendors before it is marketed or sold.

Does not apply to this device or application.

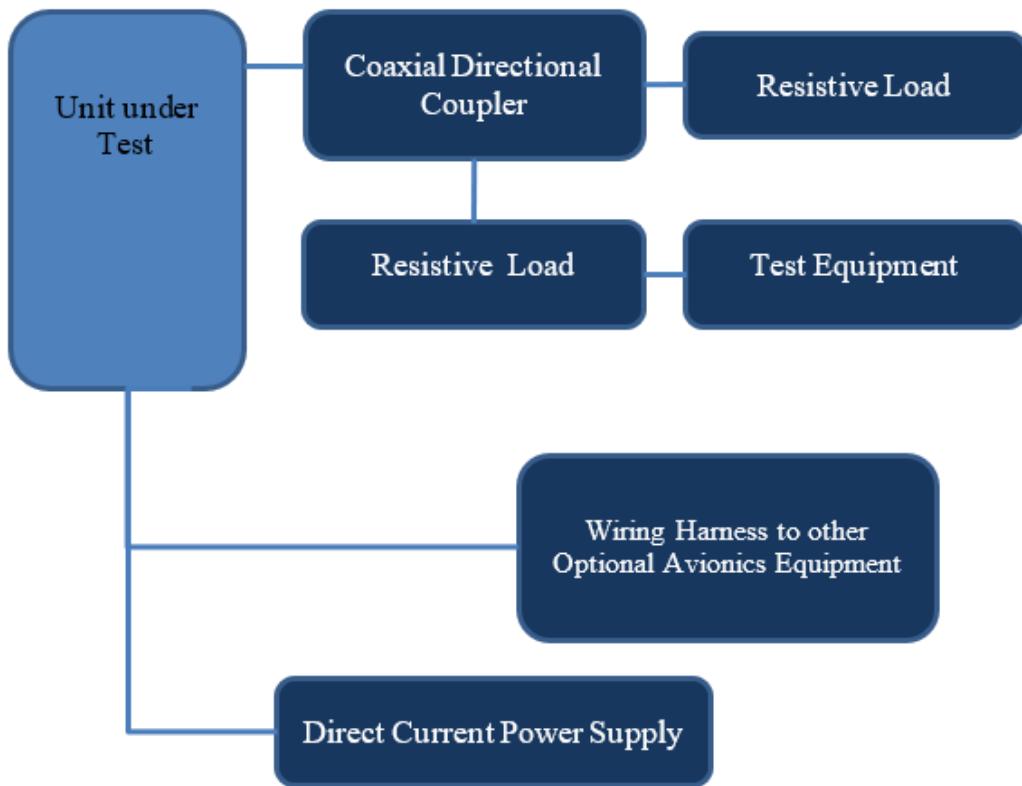
(21) Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used.

Data is contained in this application or application exhibits.

Rogers Labs, a division of The Compatibility Center LLC
7915 Nieman Road
Lenexa, KS 66214
Phone/Fax: (913) 660-0666
Revision 2

FCC ID: VZI02294
Test: 241125
Test to: 47CFR Parts 2 & 87
File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
Models: TT23 & TT23G
S/N: 6
Date: January 3, 2025
Page 12 of 42


Transmitter Power Output

Measurements Required

Measurements shall be made to establish the radio frequency power delivered by the transmitter into the standard output termination. The power output shall be monitored and recorded, and no adjustment shall be made to the transmitter after the test has begun, except as noted below:

If the power output is adjustable, measurements shall be made for the highest and lowest power levels. The design does not provide power variation so no change made during testing.

Test Arrangement

The radio frequency power output was measured at the antenna terminal by placing a directional coupler (power splitter) and attenuation in the antenna line and observing the transmitter emissions with the spectrum analyzer. The spectrum analyzer and attenuation provided an impedance of 50Ω to match the impedance of the standard antenna. A Rohde & Schwarz ESU40

and/or ESW44 Spectrum Analyzer was used to measure the radio frequency power at the antenna port. Data was taken in dBm and converted to watts as shown in the following table. Refer to Figures one and two showing plots of output power of the transmitter across the frequency band. Data was taken per 47CFR Paragraph 2.1046(a) and applicable paragraphs of Part 87.131.

Peak Output Power:

P _{dBm}	= power in dB above 1 milliwatt
Milliwatts	= $10^{(P_{dBm}/10)}$
Watts	= (Milliwatts)(0.001)(W/mW)
	<u>A-Mode</u>
Milliwatts	= $10^{(53.87/10)}$
	= 243,781.1 mW
	= 243.8 Watts power
	<u>S-Mode</u>
	= $10^{(53.94/10)}$
	= 247,742.2 mW
	= 247.7 Watts power

Average output power is calculated using 1.0% duty cycle.

Average output power:

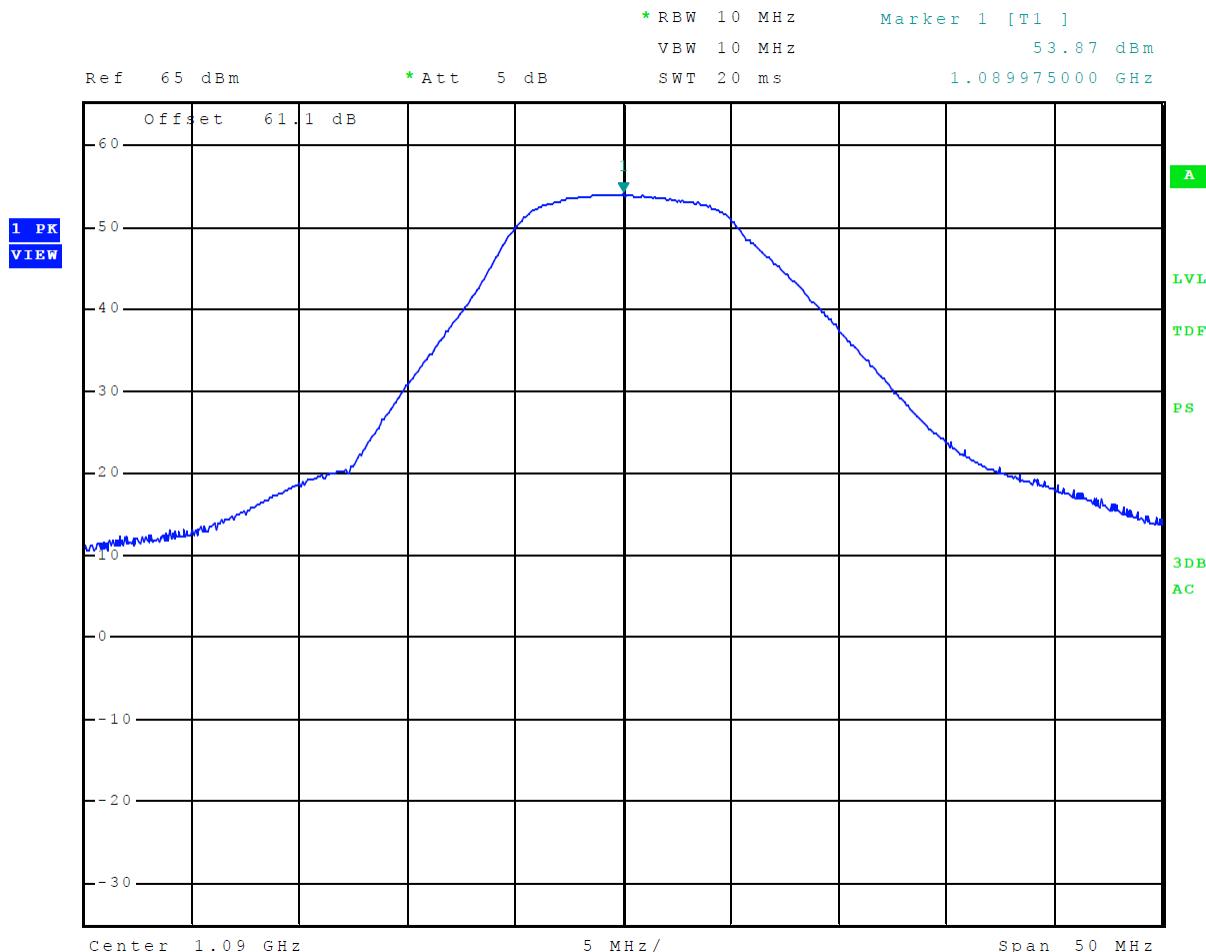
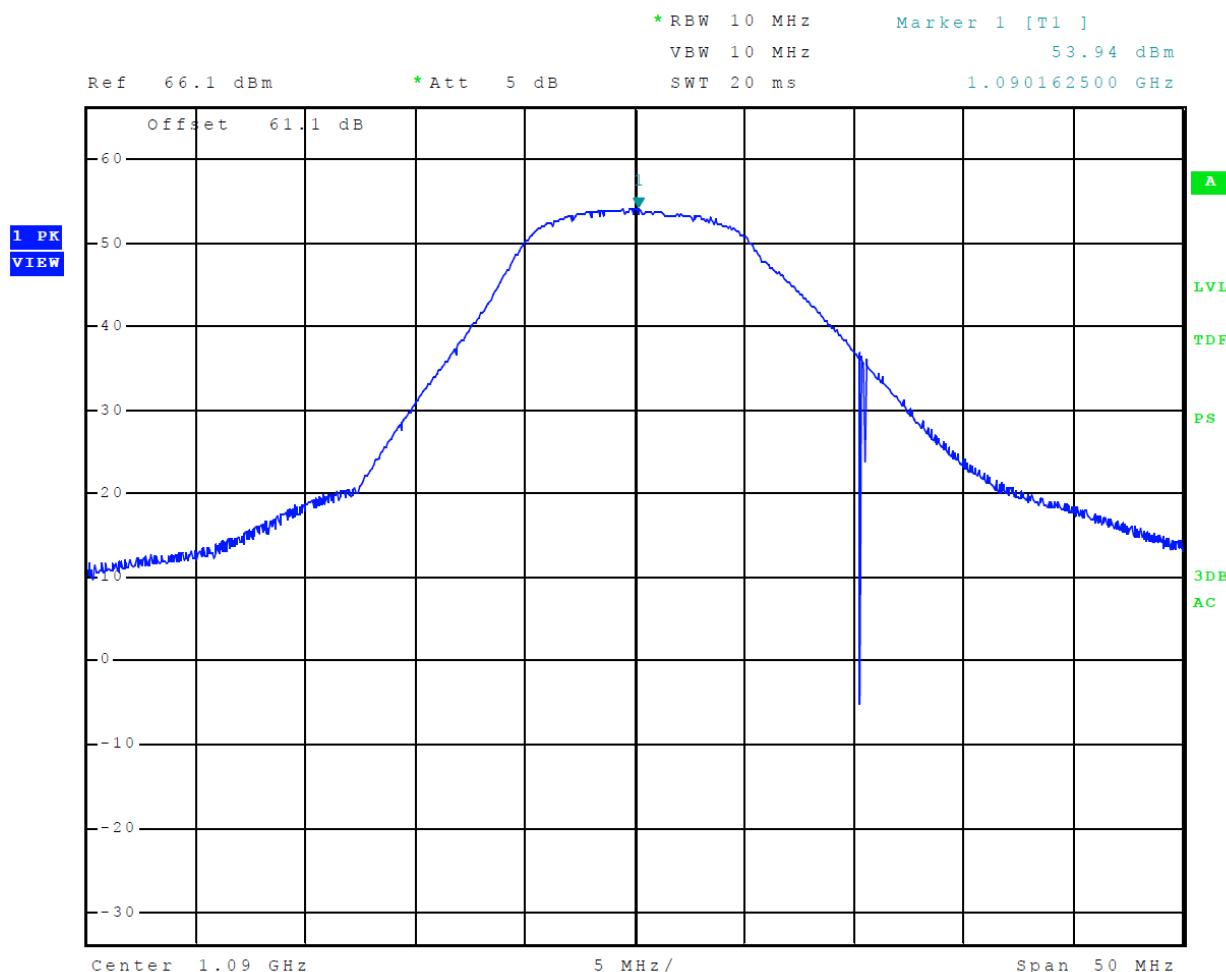

<u>A-Mode</u>	<u>S-Mode</u>
243.8*0.01 = 2.44 W (Ave)	247.7*0.01 = 2.48 W (Ave)

Table 1 Transmitter Power Results

Frequency (MHz)	P _{dBm} (Peak)	P _{mw} (Peak)	P _w (Peak)	P _w (Average)	P _{dBm} (Average)
1090 (A-Mode)	53.87	243,781.1	243.8	2.44	33.9
1090 (S-Mode)	53.94	247,742.2	247.7	2.48	33.9

The EUT demonstrated compliance with specifications of 47CFR Paragraph 2.1046(a) and applicable Parts of 2 and 87.131. There are no deviations to the specifications.


Figure 1 Maximum Power Output Mode-A

Rogers Labs, a division of The Compatibility Center LLC
 7915 Nieman Road FCC ID: VZI02294
 Lenexa, KS 66214 Test: 241125
 Phone/Fax: (913) 660-0666 Test to: 47CFR Parts 2 & 87
 Revision 2 File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
 Models: TT23 & TT23G
 S/N: 6
 Date: January 3, 2025
 Page 15 of 42

Figure 2 Maximum Power Output mode-S

Rogers Labs, a division of The Compatibility Center LLC
 7915 Nieman Road
 Lenexa, KS 66214
 Phone/Fax: (913) 660-0666
 Revision 2

FCC ID: VZI02294
 Test: 241125
 Test to: 47CFR Parts 2 & 87
 File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
 Models: TT23 & TT23G
 S/N: 6
 Date: January 3, 2025
 Page 16 of 42

Modulation Characteristics

A curve or equivalent data, which shows that the equipment will meet the modulation requirements of the rules, under which the equipment is to be licensed, shall be submitted. The modulation specifications are defined by the RTCA.

The following specifications apply to Mode-A

The reply function shall use two framing pulses nominally spaced 20.3 μ s apart.

Mode A Information Pulses

The designators of the information pulses and their positions from the first framing pulse (F1) are as follows.

Bit X shall not be used

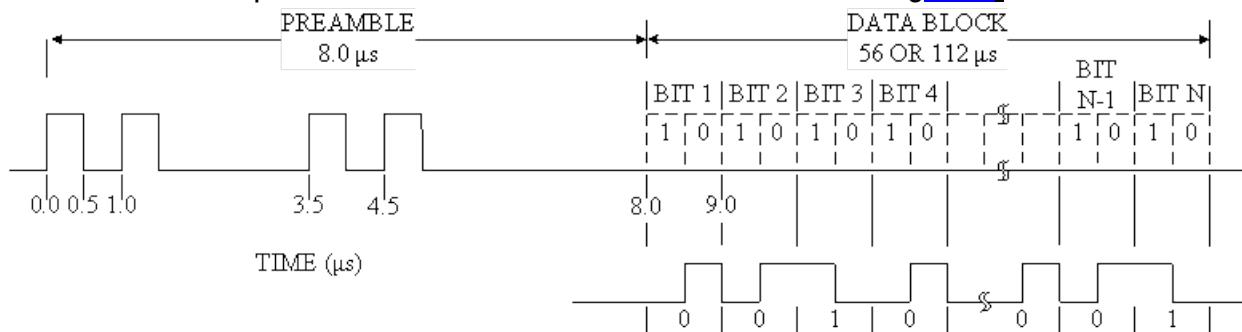
PULSE	POSITION
C1	F1+1.45 μ s
A1	F1+2.90 μ s
C2	F1+4.35 μ s
A2	F1+5.80 μ s
C4	F1+7.25 μ s
A4	F1+8.70 μ s
X	F1+10.15 μ s
B1	F1+11.60 μ s
D1	F1+13.05 μ s
B2	F1+14.50 μ s
D2	F1+15.95 μ s
B4	F1+17.40 μ s
D4	F1 + 18.85 μ s

Mode A/C Reply Pulse Shape

All reply pulses including SPI pulses shall have the following characteristics.

Duration: $0.45 \pm 0.1 \mu$ s.

Rise Time: Between 0.05 and 0.1 μ s.


Decay Time: Between 0.05 and 0.2 μ s.

Specification	Data	Unit
Rise Time (10%/90%)	50-100	ns
Fall Time (90%/10%)	50-200	ns
Pulse width	450 +/- 100	ns

The following specifications apply to Mode-S

Mode S Reply Preamble

- a. The preamble shall consist of four $0.5 \pm 0.05 \mu\text{s}$ pulses.
- b. The second, third and fourth pulses shall be spaced 1.0, 3.5 and 4.5 μs respectively from the first transmitted pulse.
- c. The position tolerance shall be in accordance with [§3.6.4](#).

Example: Reply Data Block Waveform Corresponding to bit sequence 0010...001

Mode S Reply Data Pulses

- a. The block of reply data pulses shall begin 8.0 μs after the first transmitted pulse.
- b. Either 56 or 112 one-microsecond intervals shall be assigned to each transmission.
- c. A pulse with a width of $0.5 \pm 0.05 \mu\text{s}$ shall be transmitted either in the first or in the second half of each interval.
- d. If a pulse transmitted in the second half of one interval is followed by another pulse transmitted in the first half of the next interval, the two pulses merge and a single $1.0 \pm 0.05 \mu\text{s}$ pulse shall be transmitted.

Mode S Reply Pulse Shape

- a. The pulse amplitude variation between one pulse and any other pulse in a reply shall be within $\pm 2 \text{ dB}$.
- b. The pulse rise time shall be within $\pm 0.1 \text{ microsecond}$.
- c. The pulse decay time shall be within $\pm 0.2 \text{ microseconds}$.
- d. The spectrum of a reply shall be within the bounds defined in Table 3-1 and Figure 3-1.

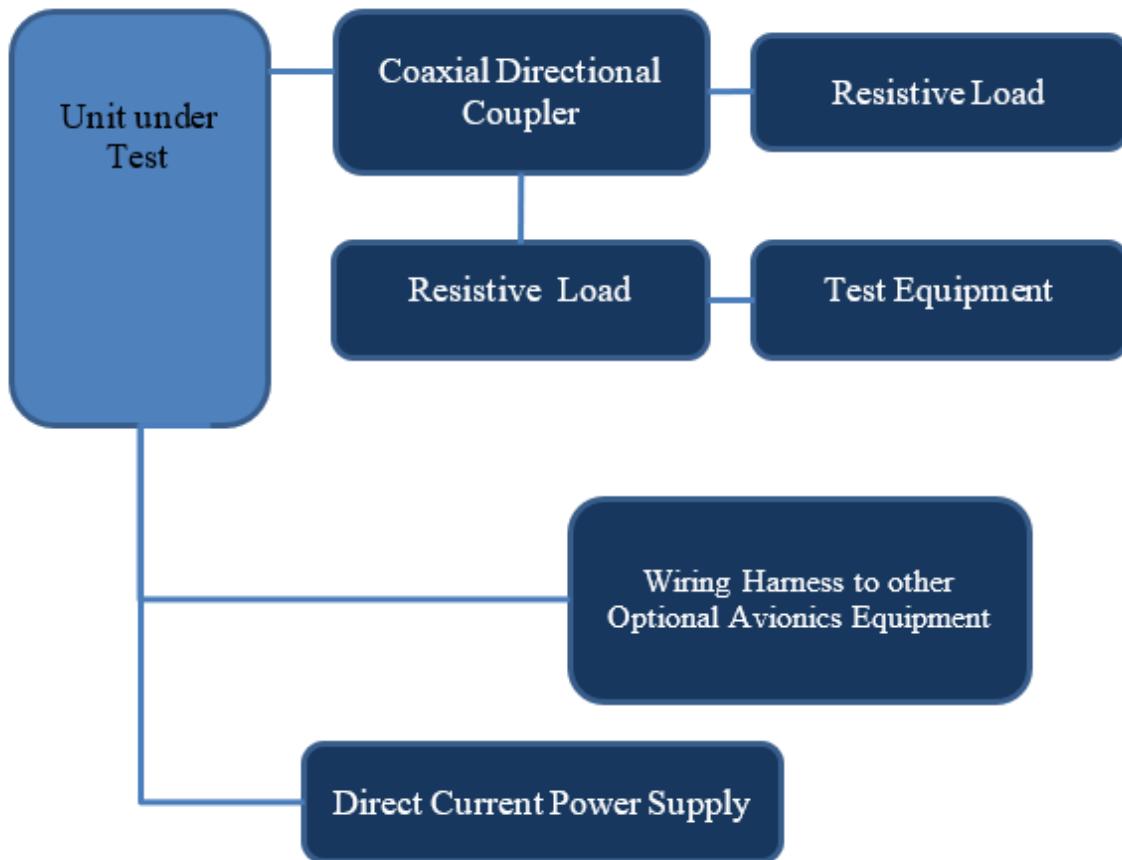
Mode S Reply Pulse Intervals

- a. Mode S reply pulses shall start at a defined multiple of $0.5 \mu\text{s}$ from the first transmitted pulse of the preamble.
- b. The pulse position tolerance shall be $\pm 0.05 \mu\text{s}$, measured from the first transmitted pulse of the preamble.

Modulation Characteristics Results

The modulation characteristics are defined in aviation standards and regulations. This equipment complies with the pulse timing requirements as defined above. The requirements of 47CFR 2.1047(d) and applicable paragraphs of Part 87.141 are met. There are no deviations to the specifications.

Rogers Labs, a division of The Compatibility Center LLC
7915 Nieman Road FCC ID: VZI02294
Lenexa, KS 66214 Test: 241125
Phone/Fax: (913) 660-0666 Test to: 47CFR Parts 2 & 87
Revision 2 File: Trig TT23 TstRpt 241125 r2


Trig Avionics Ltd.
Models: TT23 & TT23G
S/N: 6
Date: January 3, 2025
Page 19 of 42

Occupied Bandwidth

Measurements Required

The occupied bandwidth, that is the frequency bandwidth such that below its lower and above its upper frequency limits, the mean powers radiated are equal to 0.5 percent of the total mean power radiated by a given emission.

Test Arrangement

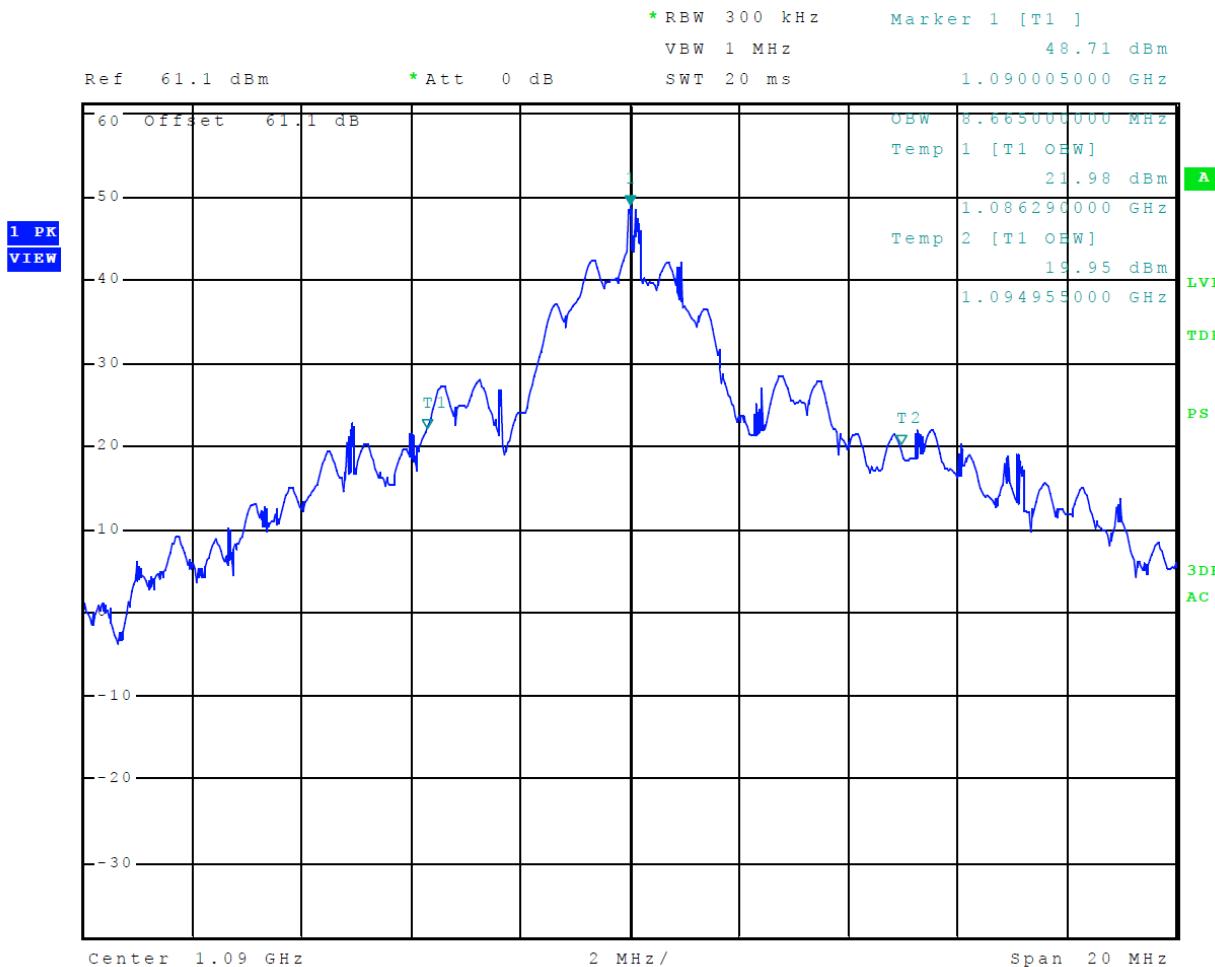
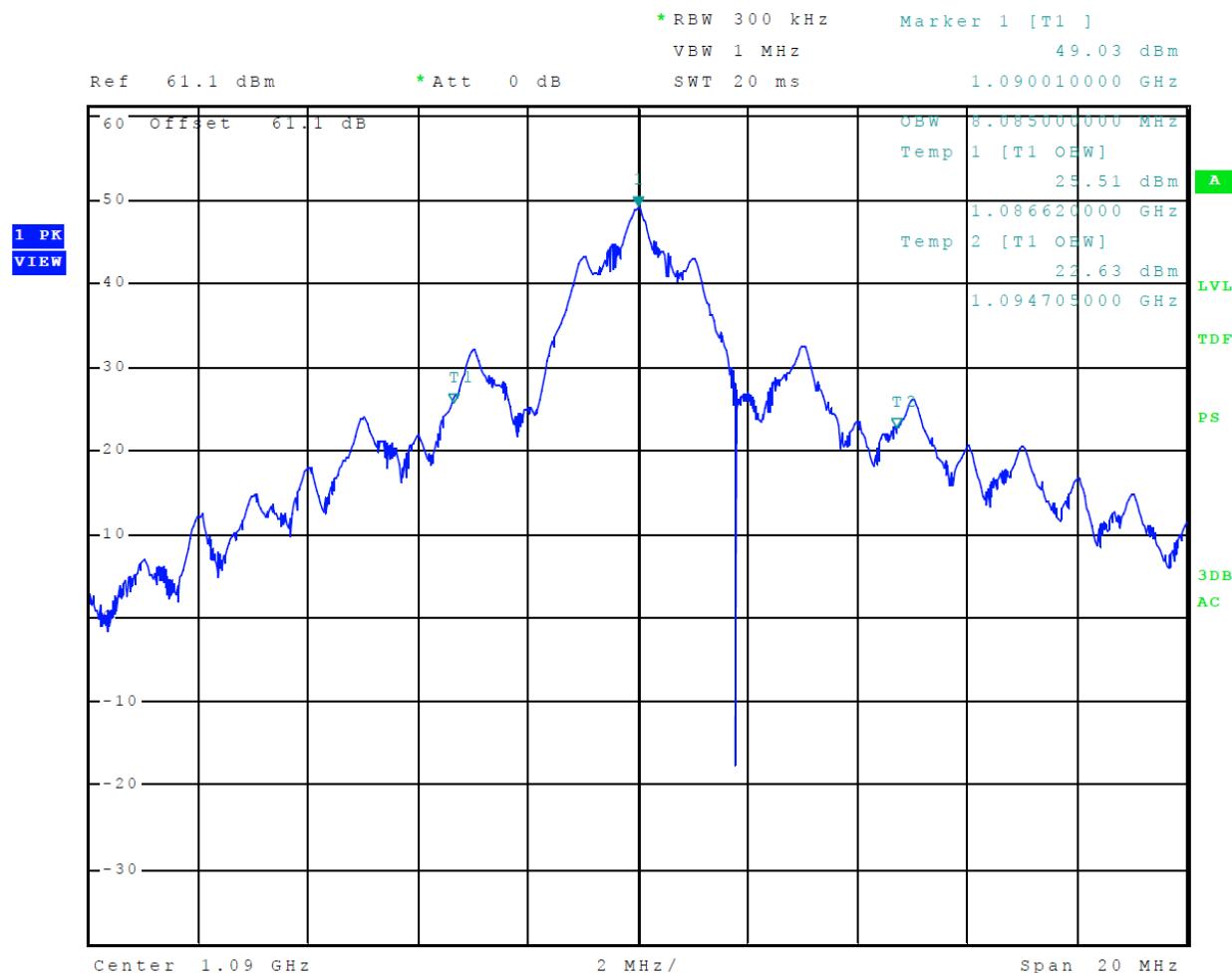

A spectrum analyzer was used to observe the radio frequency spectrum with the transmitter operating in all normal modes. The EUT was set to transmit in normal modes while measurements were made. The power ratio in dB representing 99.5% of the total mean power was recorded from the spectrum analyzer. Refer to figures three and four showing the plot of the 99.5% power occupied bandwidth for operational modes.

Table 2 Occupied Bandwidth Results


Frequency (MHz)	Mode	Occupied bandwidth(kHz)	FAA Authorized Occupied bandwidth(kHz)
1090.00	Mode A	8,665.0	12,000.0
1090.00	Mode S	8,085.0	12,000.0

The requirements of 47CFR 2.1049(h) and applicable paragraphs of Part 87.135 are met. There are no deviations to the specifications.

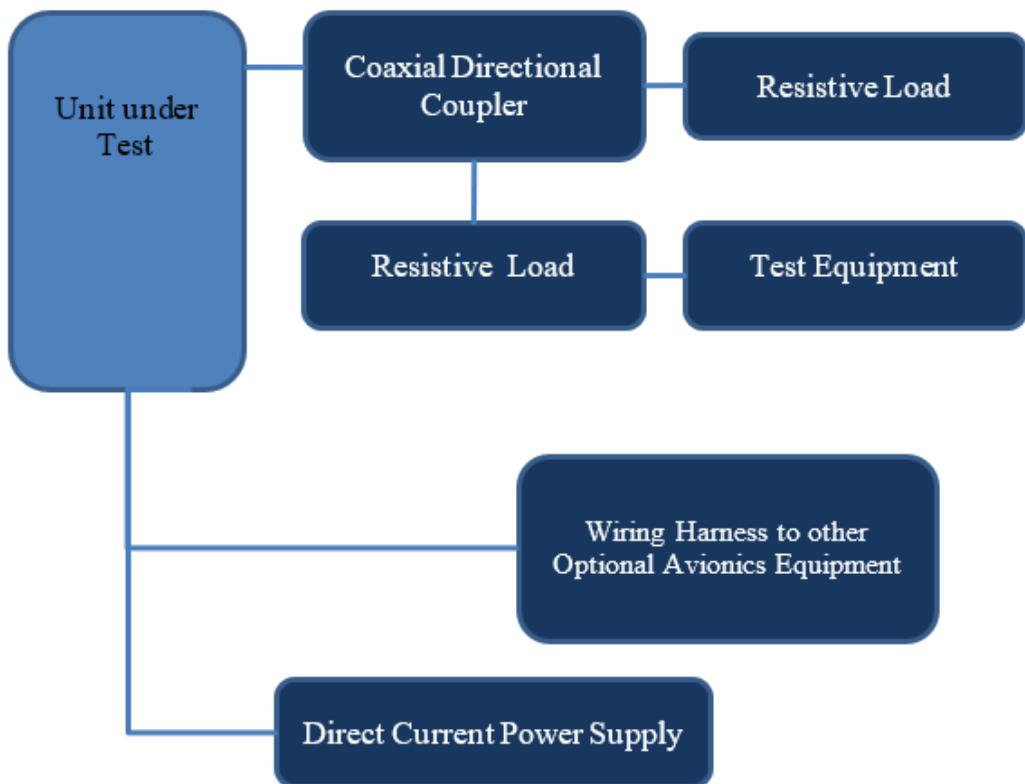
Figure 3 Occupied Band Width Mode A

Figure 4 Occupied Band Width Mode S

Rogers Labs, a division of The Compatibility Center LLC
7915 Nieman Road FCC ID: VZI02294
Lenexa, KS 66214 Test: 241125
Phone/Fax: (913) 660-0666 Test to: 47CFR Parts 2 & 87
Revision 2 File: Trig TT23 TstRpt 241125 r2

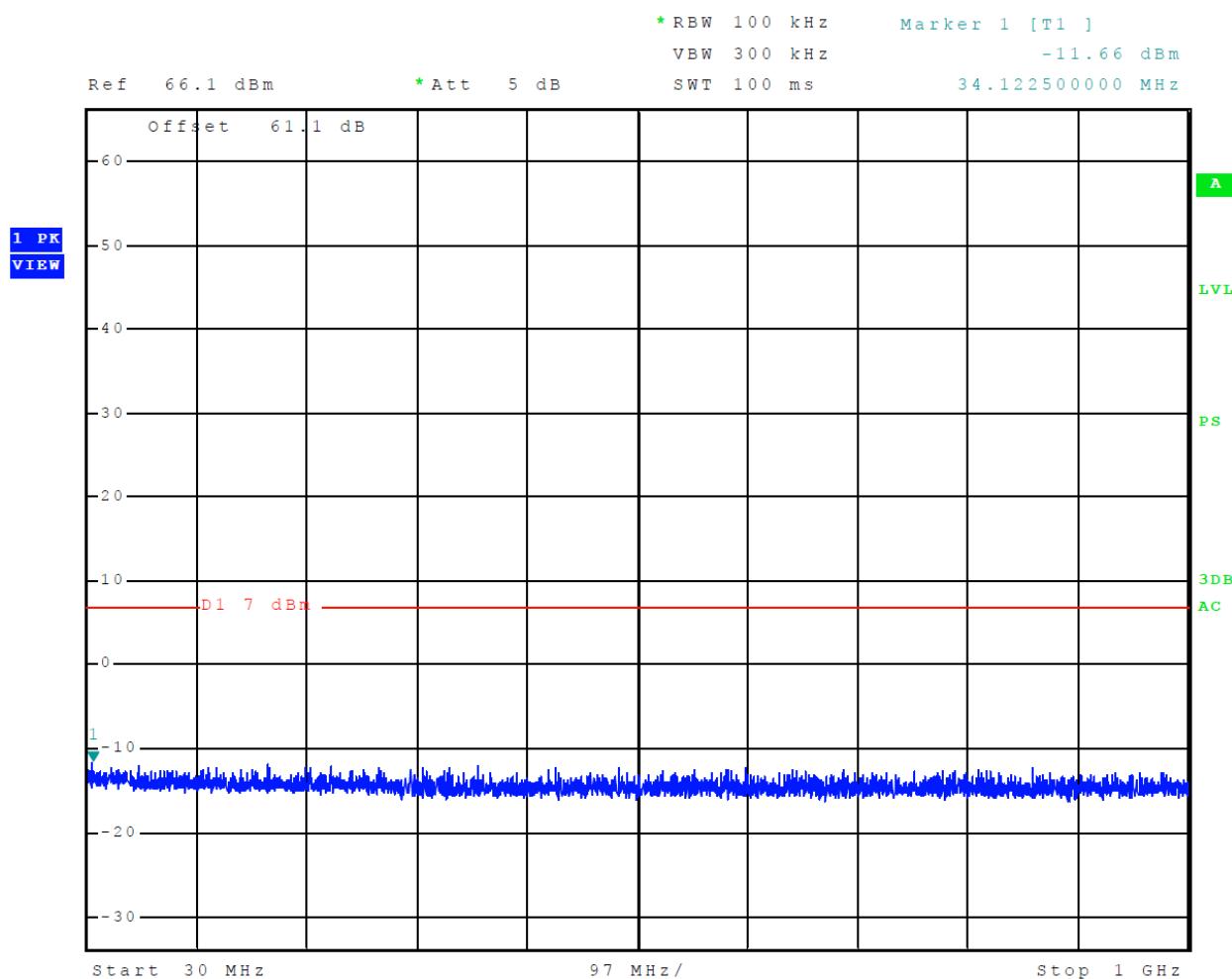
Trig Avionics Ltd.
Models: TT23 & TT23G
S/N: 6
Date: January 3, 2025
Page 22 of 42

Spurious Emissions at Antenna Terminals

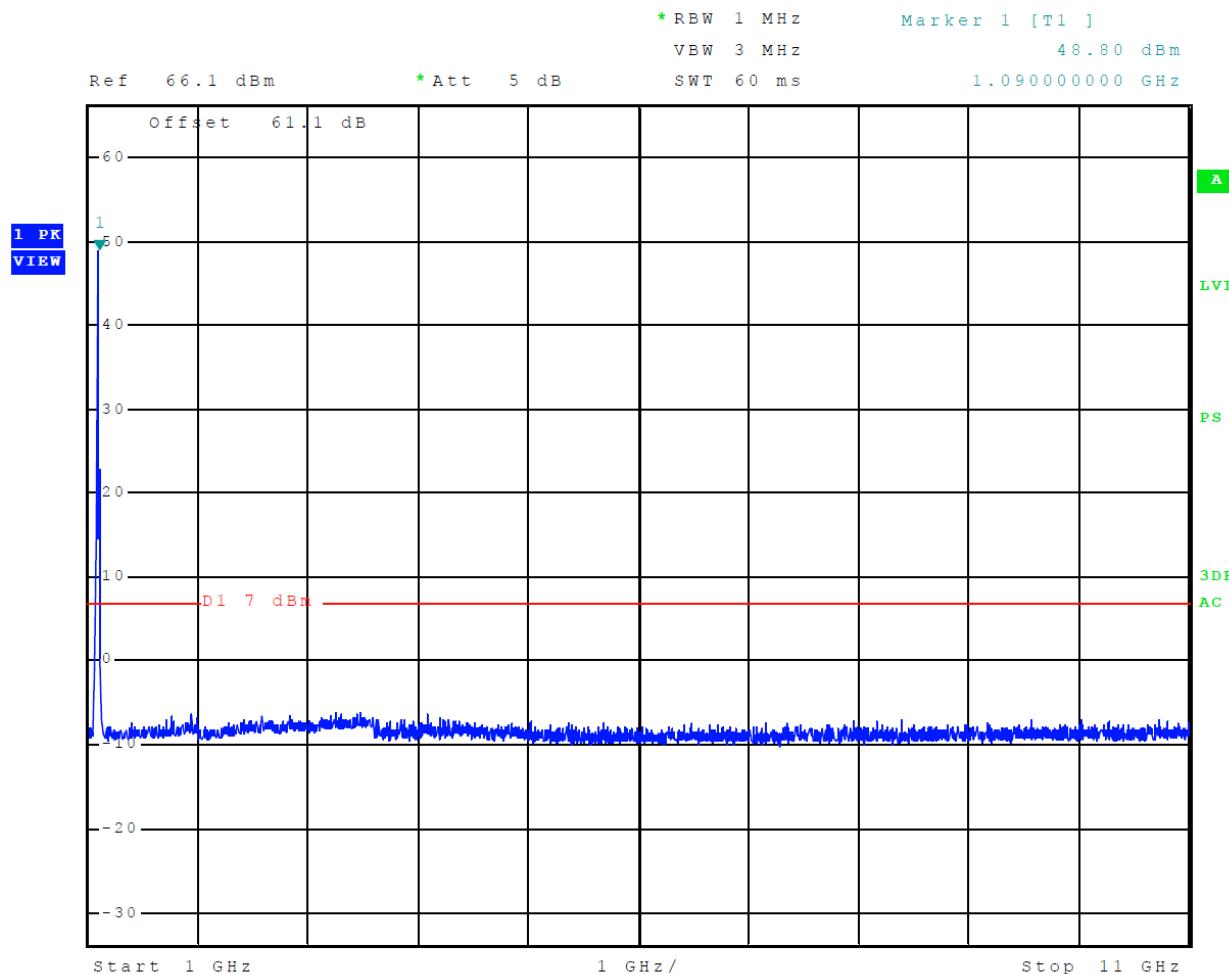

Measurements Required

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. All spurious emissions must be attenuated at least $43 + 10\log(pY)$ [pY=mean power, p denotes power expressed in watts] below the fundamental emission power level. The following equations represent the calculated attenuation level for the equipment operating with rated average output power of 2.48 W.

$$\begin{aligned}\text{Limit (dBc)} &= 43 + 10 \log(pY) \\ &= 43 + 10 \log(2.48) \\ &= 47.0 \text{ dBc}\end{aligned}$$


$$\text{Limit (dBm)} = 53.94 - 47.0 = 6.94 \text{ dBm}$$

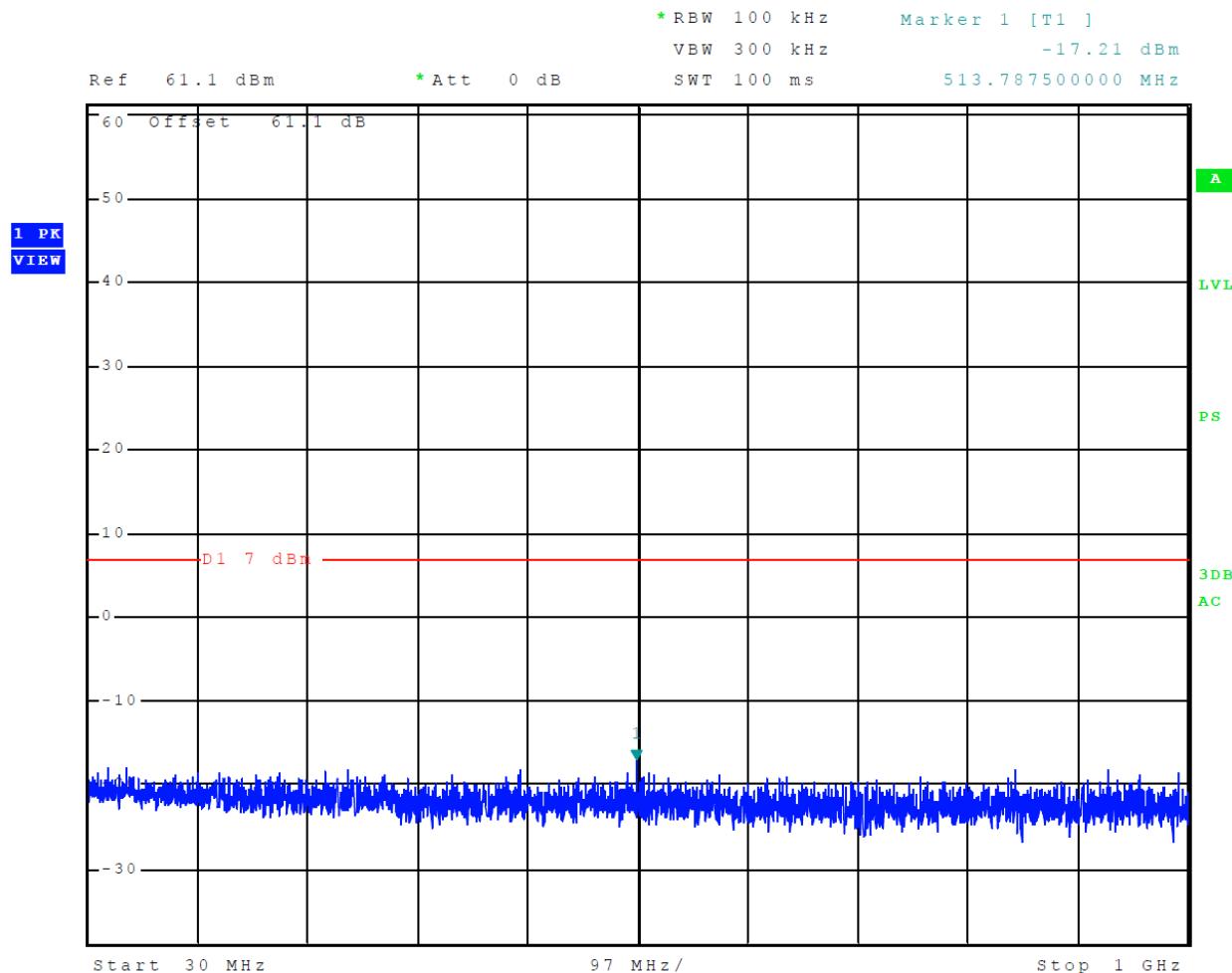
Test Arrangement



The radio frequency output was coupled to a Rohde & Schwarz ESU40 Spectrum Analyzer during antenna port conducted emissions measurements. The spectrum analyzer was used to observe the radio frequency spectrum with the transmitter operated in all normal modes. The frequency spectrum from 30 MHz to 12,000 MHz was observed and plots produced of the frequency spectrum displayed on the test equipment. Refer to figures five through twelve for plots of the spurious emissions at antenna port. Data was taken per 47CFR 2.1051, 2.1057, and applicable paragraphs of Part 87.139. There are no deviations to the specifications.

Figure 5 Spurious Emissions at Antenna Terminal (A-Mode)

Figure 6 Spurious Emissions at Antenna Terminal (A-Mode)

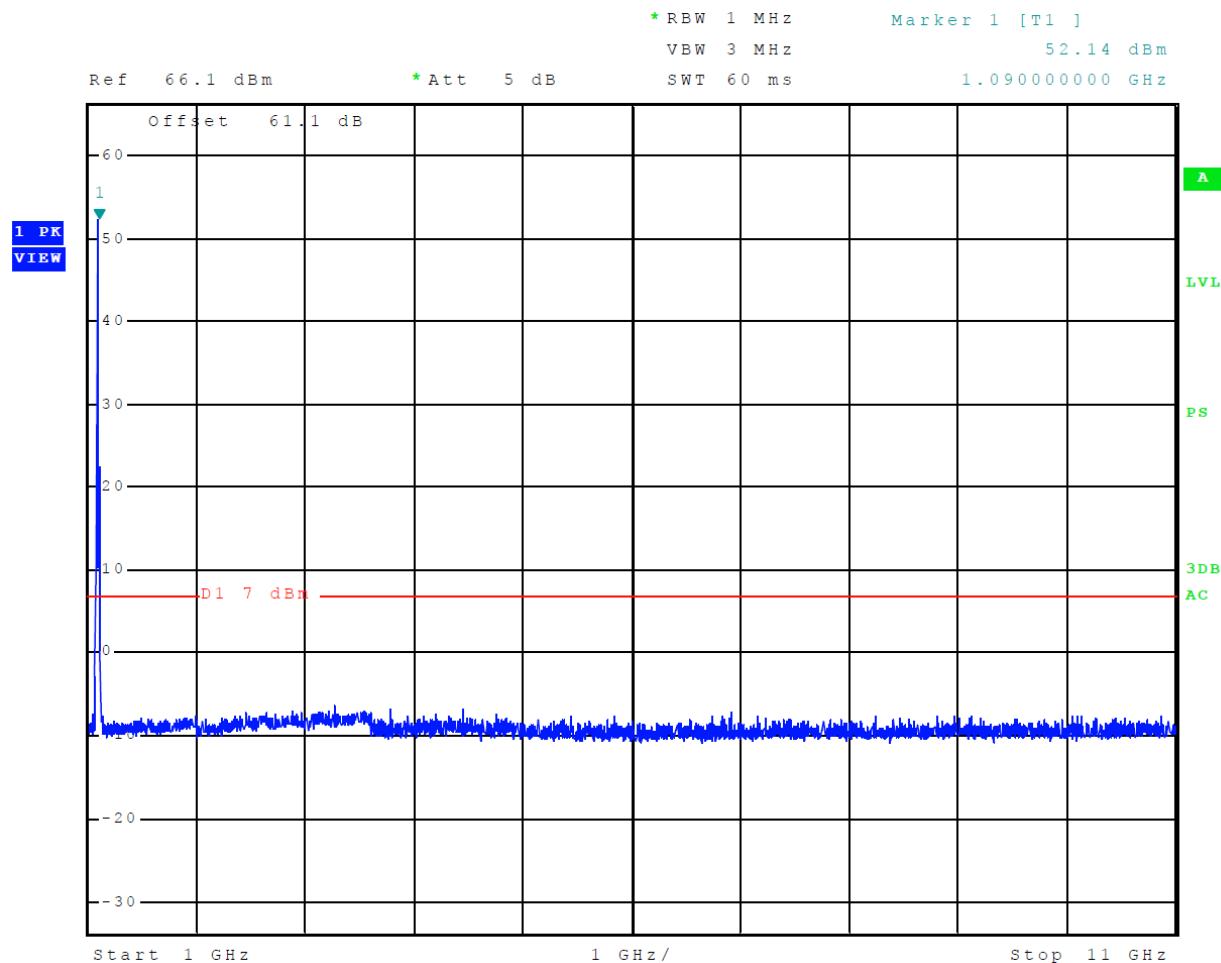


Rogers Labs, a division of The Compatibility Center LLC
 7915 Nieman Road
 Lenexa, KS 66214
 Phone/Fax: (913) 660-0666
 Revision 2

FCC ID: VZI02294
 Test: 241125
 Test to: 47CFR Parts 2 & 87
 File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
 Models: TT23 & TT23G
 S/N: 6
 Date: January 3, 2025
 Page 25 of 42

Figure 7 Spurious Emissions at Antenna Terminal (S-Mode)

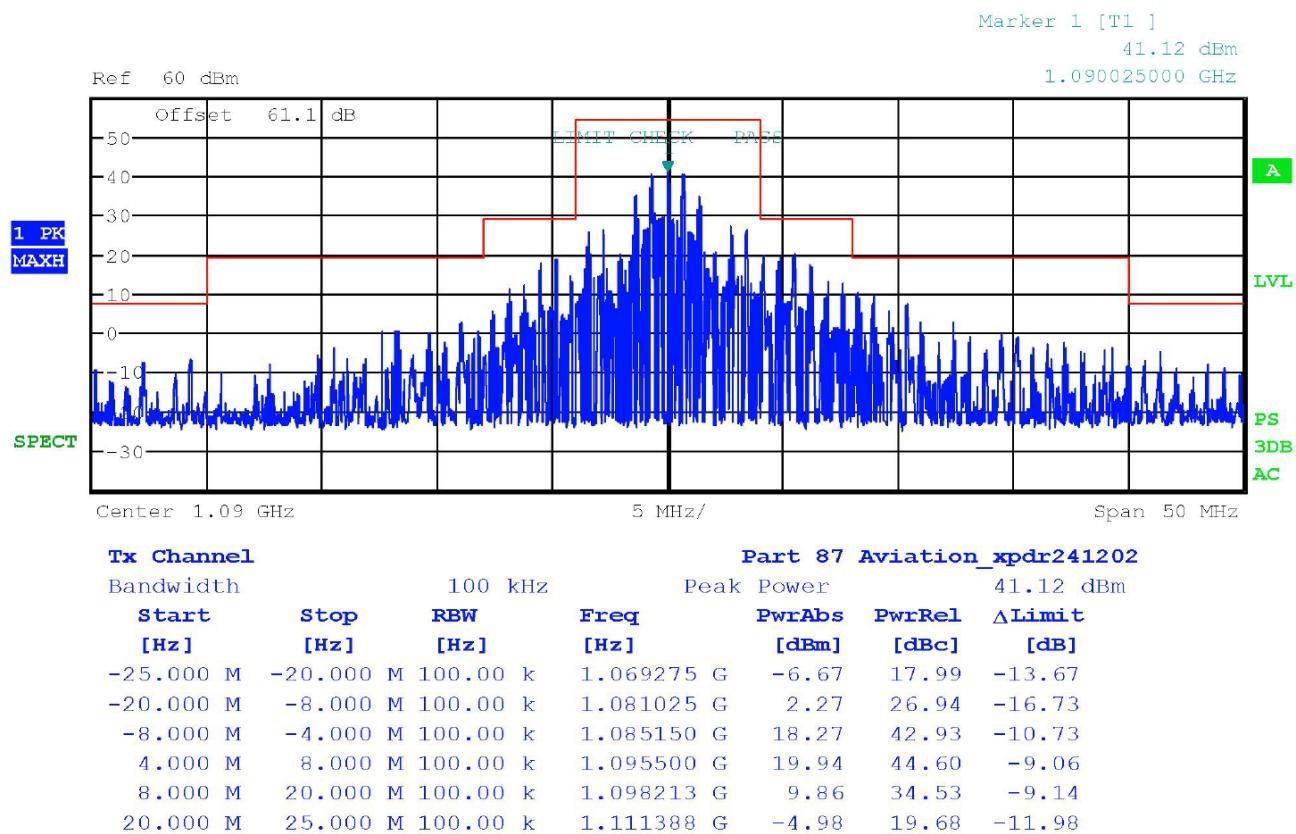


Rogers Labs, a division of The Compatibility Center LLC
 7915 Nieman Road
 Lenexa, KS 66214
 Phone/Fax: (913) 660-0666
 Revision 2

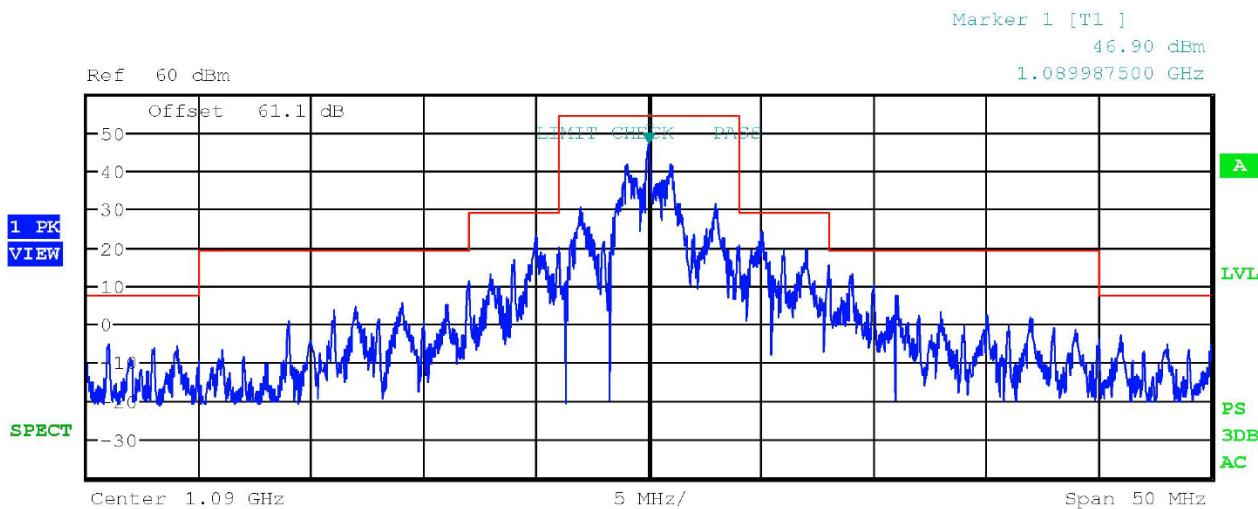
FCC ID: VZI02294
 Test: 241125
 Test to: 47CFR Parts 2 & 87
 File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
 Models: TT23 & TT23G
 S/N: 6
 Date: January 3, 2025
 Page 26 of 42

Figure 8 Spurious Emissions at Antenna Terminal (S-Mode)



Rogers Labs, a division of The Compatibility Center LLC
 7915 Nieman Road
 Lenexa, KS 66214
 Phone/Fax: (913) 660-0666
 Revision 2


FCC ID: VZI02294
 Test: 241125
 Test to: 47CFR Parts 2 & 87
 File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
 Models: TT23 & TT23G
 S/N: 6
 Date: January 3, 2025
 Page 27 of 42

Figure 9 Emissions Mask (Mode-A)

Figure 10 Emissions Mask (Mode-S)

Tx Channel

Bandwidth				100 kHz	Peak Power	46.90 dBm
Start [Hz]	Stop [Hz]	RBW [Hz]	Freq [Hz]	PwrAbs [dBm]	PwrRel [dBc]	ΔLimit [dB]
-25.000 M	-20.000 M	100.00 k	1.065988 G	-5.51	-16.73	-12.51
-20.000 M	-8.000 M	100.00 k	1.081988 G	10.76	-0.46	-8.24
-8.000 M	-4.000 M	100.00 k	1.084975 G	22.72	11.50	-6.28
4.000 M	8.000 M	100.00 k	1.095025 G	23.95	12.73	-5.05
8.000 M	20.000 M	100.00 k	1.098013 G	15.06	3.85	-3.94
20.000 M	25.000 M	100.00 k	1.110975 G	-3.07	-14.28	-10.07

All spurious emissions must be attenuated at least $43 + 10\log(pY)$ [pY=mean power] below the fundamental emission power level. The following equations represent the calculated attenuation levels for the equipment.

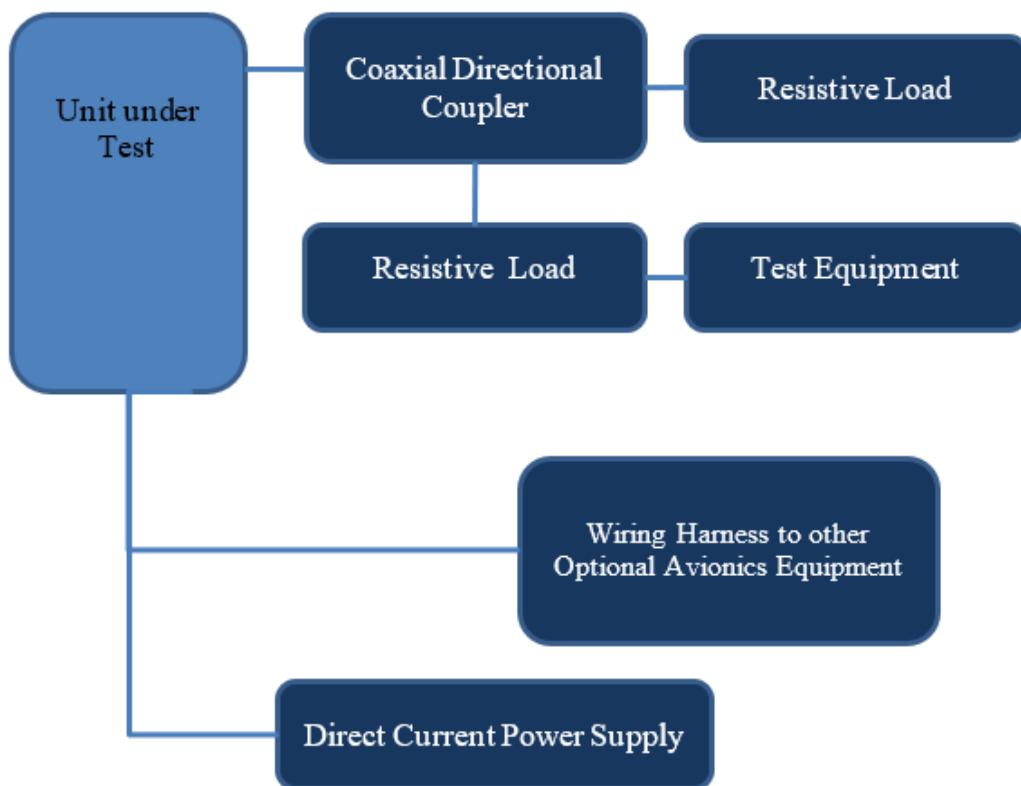
Spurious Emissions Limit shall be attenuated at least 47.0 dB below fundamental carrier (dBc).

$$\begin{aligned}
 \text{Limit (dBc)} &= 43 + 10 \log(P_0) \\
 &= 43 + 10 \log(2.48) \\
 &= 47.0 \text{ dBc}
 \end{aligned}$$

Table 3 Spurious Emissions at Antenna Terminal Results Mode-A

Channel MHz	Spurious Freq. (MHz)	Measured Level (dBm)	Level Below Carrier (dBc)
1090.00	2180.0	-47.69	101.6
	3270.0	-47.90	101.8
	4360.0	-45.98	99.9
	5450.0	-43.24	97.1
	6540.0	-46.97	100.8
	7630.0	-48.10	102.0
	8720.0	-48.00	101.9
	9810.0	-48.07	101.9
	10900.0	-46.94	100.8

Table 4 Spurious Emissions at Antenna Terminal Results Mode-S


Channel MHz	Spurious Freq. (MHz)	Measured Level (dBm)	Level Below Carrier (dBc)
1090.00	2180.0	-44.09	98.0
	3270.0	-48.16	102.1
	4360.0	-46.66	100.6
	5450.0	-39.75	93.7
	6540.0	-47.74	101.7
	7630.0	-48.32	102.3
	8720.0	-47.79	101.7
	9810.0	-47.70	101.6
	10900.0	-46.86	100.8

Field Strength of Spurious Radiation (Unwanted Emissions)

Measurements Required

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. The sample offered for testing utilized interfacing with laptop computer to provide operational control with all functions of the transmitter.

Test Arrangement

The test setup was assembled in a screen room for preliminary screening. The transmitter was placed on a supporting platform 0.8 meters above the ground plane and at a distance of 1 meter from the receive antenna, plots were taken of the general radiated emissions. Final radiated emission testing was performed with the transmitter placed on a supporting turntable platform 0.8 meters above the ground plane at a distance of 3 meters from the Field Strength Measuring

(FSM) antenna. The EUT was operational and radiating into a 50Ω load during testing. The receiving antenna was raised and lowered from 1-meter to 4-meter in height to obtain the maximum reading of spurious radiation from the EUT, cabinet, and interface cabling. The turntable was rotated through 360 degrees to locate the position registering the highest amplitude of emission. The frequency spectrum was then searched for spurious emissions generated from the transmitter, interface cabling, and test setup. The amplitude of each spurious emission was maximized by raising and lowering the FSM antenna, and rotating the turntable before final data was recorded. The frequency spectrum from 9 kHz to 11 GHz was investigated during radiated emissions testing. A loop antenna was used for measuring frequencies from 9 kHz to 30 MHz, a Biconilog antenna was used for frequency measurements of 30 to 1000 MHz. Double-ridge horns were used for measuring frequencies above 1000 MHz. Emission levels were measured and recorded from the spectrum analyzer in $\text{dB}\mu\text{V}$. Data was taken at the 3 meter Semi-Anechoic Chamber (SAC). The transmitter was then removed and replaced with a substitution antenna, amplification as required, and signal generator. The signal from the generator was then adjusted such that the amplitude received was the same as that previously recorded for each frequency. This step was repeated for both horizontal and vertical polarizations. The power in dBm required to produce the desired signal level was then recorded from the signal generator. The power in dBm was then calculated by reducing the previous readings by the gain in the substitution antenna.

All spurious emissions must be attenuated at least $43 + 10\log(pY)$ [pY =mean power, p denotes power expressed in watts] below the fundamental emission power level. The following equation represents the calculated attenuation levels for the equipment.

$$\begin{aligned}\text{Limit (dBc)} &= 43 + 10 \log(pY) \\ &= 43 + 10 \log(2.48) \\ &= 47.0 \text{ dBc}\end{aligned}$$

Requirement based on average output power 33.9 dBm , spurious emissions must be less than 47.0 dBc which equates to an absolute level of -13.1 dBm .

Rogers Labs, a division of The Compatibility Center LLC
7915 Nieman Road
Lenexa, KS 66214
Phone/Fax: (913) 660-0666
Revision 2

FCC ID: VZI02294
Test: 241125
Test to: 47CFR Parts 2 & 87
File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
Models: TT23 & TT23G
S/N: 6
Date: January 3, 2025
Page 32 of 42

Table 5 General Spurious Radiated Emission Results

Frequency	Amplitude of Emission (dB μ V)		Signal Level to dipole required to Reproduce(dBm)		Emission level below carrier (dBc)		Limit (dBc)	
	MHz	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	
30.0	26.1			-69.1		103.0		47.0
80.0	26.2			-69.0		102.9		47.0
100.0	25.9			-69.3		103.2		47.0
109.2	27.1			-68.1		102.0		47.0
150.0	28.7			-66.5		100.4		47.0
978.8	34.2			-61.0		94.9		47.0
62.7		28.2		-67.1		101.0		47.0
80.0		29.0		-66.2		100.1		47.0
100.0		24.2		-71.0		104.9		47.0
108.7		29.7		-65.5		99.4		47.0
150.0		23.2		-72.0		105.9		47.0
999.9		24.0		-71.2		105.1		47.0

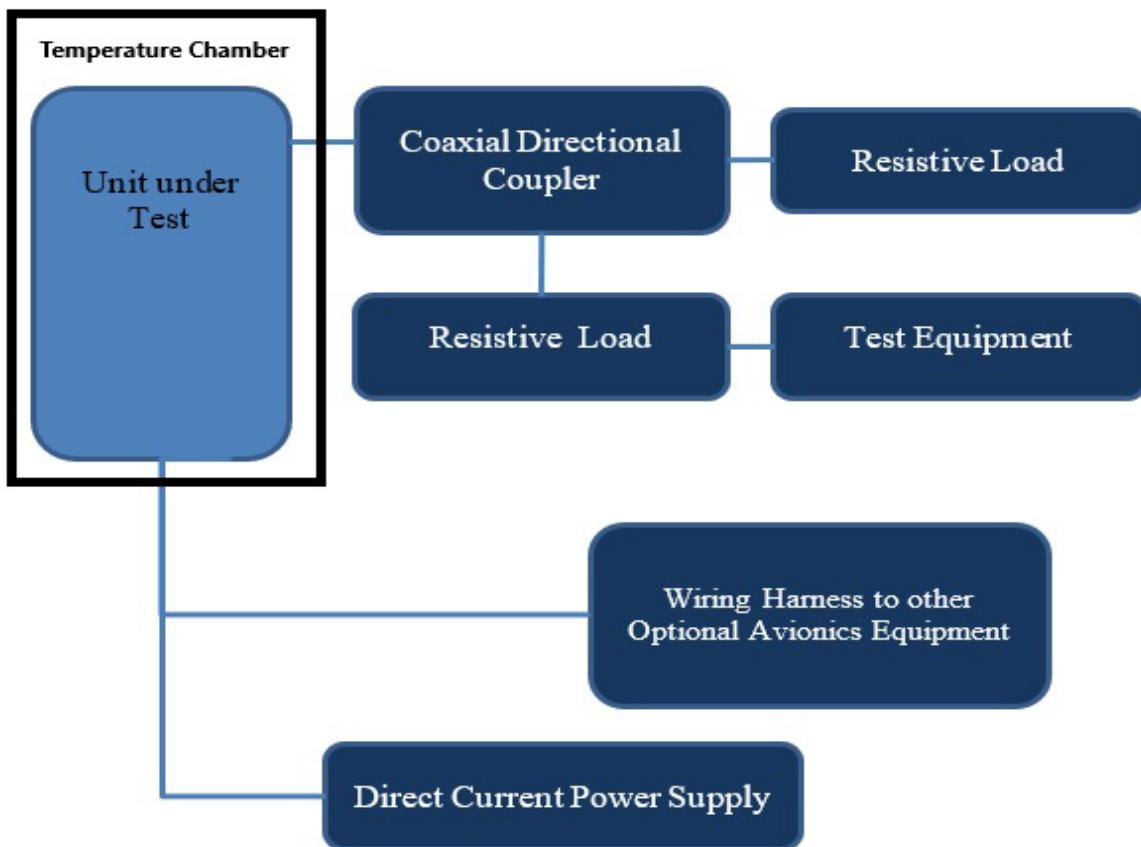
Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequencies below 1000 MHz. Peak and Average amplitude emissions are recorded above for frequencies above 1000 MHz.

Table 6 Spurious Radiated Emission Results Harmonics

Frequency	Amplitude of Emission (dB μ V)		Signal Level to dipole required to Reproduce(dBm)		Emission level below carrier (dBc)		Limit (dBc)
	MHz	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
2180.0	40.5	40.9	-54.73	-54.33	88.6	88.2	47.0
3270.0	48.2	52.9	-47.03	-42.33	80.9	76.2	47.0
4360.0	47.9	49.8	-47.33	-45.43	81.2	79.3	47.0
5450.0	60.2	54.9	-35.03	-40.33	68.9	74.2	47.0
6540.0	54.9	55.5	-40.33	-39.73	74.2	73.6	47.0
7630.0	56.0	57.4	-39.23	-37.83	73.1	71.7	47.0
8720.0	58.3	58.3	-36.93	-36.93	70.8	70.8	47.0
9810.0	61.9	61.9	-33.33	-33.33	67.2	67.2	47.0
10900.0	64.2	64.2	-31.03	-31.03	64.9	64.9	47.0

The EUT demonstrated compliance with specifications of 47CFR Paragraph 2.1053, 2.1057, and 87.139. There are no deviations to the specifications. There are no deviations or exceptions to the specifications.

Frequency Stability


Measurements Required

The frequency stability shall be measured with variations of ambient temperature from -30° to +50° centigrade. Measurements shall be made at the extremes of the temperature range and at intervals of not more than 10° centigrade through the range. A period sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. In addition to temperature stability, the frequency stability shall be measured with variation of primary supply voltage as follows:

- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value.

(2) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

Test Arrangement

The measurement procedure outlined below shall be followed.

Step 1: The transmitter shall be installed in an environmental test chamber whose temperature is controllable. Provision shall be made to measure the frequency of the transmitter.

Step 2: With the transmitter inoperative (power switched “OFF”), the temperature of the test chamber shall be adjusted to +25°C. After a temperature stabilization period of one hour at +25°C, the transmitter shall be switched “ON” with standard test voltage applied.

Step 3: The carrier shall be keyed “ON”, and the transmitter shall be operated at full radio frequency power output at the duty cycle, for which it is rated, for duration of at least 5 minutes. The radio frequency carrier frequency shall be monitored, and measurements shall be recorded.

Step 4: The test procedures outlined in Steps 2 and 3, shall be repeated after stabilizing the transmitter at the environmental temperatures specified, -30°C to +50°C in 10-degree increments.

The frequency stability was measured with variations in the power supply voltage from 85 to 115 percent of the nominal value. The frequency was measured and the variation in parts per million calculated. Data was taken per 47CFR Paragraphs 2.1055 and applicable paragraphs of part 87.133.

Table 7 Frequency Stability vs. Temperature Results

Frequency 1090 MHz	Frequency Stability Vs. Temperature Ambient Frequency (1090.033000 MHz)								
	-30	-20	-10	0	+10	+20	+30	+40	+50
Temperature °C	-30	-20	-10	0	+10	+20	+30	+40	+50
Change (Hz)	0	0	-8,000	-8,000	0	0	0	0	0
PPM	0.000	0.000	-7.339	-7.339	0.000	0.000	0.000	0.000	0.000
Limit (PPM)	1000	1000	1000	1000	1000	1000	1000	1000	1000

Table 8 Frequency Stability vs. Input Power Supply Voltage Results

Frequency 1089.974 MHz	Frequency Stability Vs. Voltage Variation 28.0 volts nominal; Results in Hz change		
	23.8	28.0	32.2
Change (kHz)	-8000	0	0
PPM	-7.339	0	0
Limit (PPM)	1000	1000	1000

The EUT demonstrated compliance with specifications of 47CFR Paragraph 2.1055 and applicable Parts of 87.133(a). There are no deviations or exceptions to the specifications.

Rogers Labs, a division of The Compatibility Center LLC
7915 Nieman Road FCC ID: VZI02294
Lenexa, KS 66214 Test: 241125
Phone/Fax: (913) 660-0666 Test to: 47CFR Parts 2 & 87
Revision 2 File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
Models: TT23 & TT23G
S/N: 6
Date: January 3, 2025
Page 37 of 42

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Test Equipment
- Annex C Certificate of Accreditation

Rogers Labs, a division of The Compatibility Center LLC
7915 Nieman Road FCC ID: VZI02294
Lenexa, KS 66214 Test: 241125
Phone/Fax: (913) 660-0666 Test to: 47CFR Parts 2 & 87
Revision 2 File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
Models: TT23 & TT23G
S/N: 6
Date: January 3, 2025
Page 38 of 42

Annex A Measurement Uncertainty Calculations

The measurement uncertainty was calculated for all measurements listed in this test report according To CISPR 16-4. Result of measurement uncertainty calculations are recorded below. Component and process variability of production devices similar to those tested may result in additional deviations. The manufacturer has the sole responsibility of continued compliance.

Measurement	Expanded Measurement Uncertainty $U_{(lab)}$
3 Meter Horizontal 0.009-1000 MHz Measurements	4.16
3 Meter Vertical 0.009-1000 MHz Measurements	4.33
3 Meter Measurements 1-18 GHz	5.46
3 Meter Measurements 18-40 GHz	5.16
10 Meter Horizontal Measurements 0.009-1000 MHz	4.15
10 Meter Vertical Measurements 0.009-1000 MHz	4.32
AC Line Conducted	1.75
Antenna Port Conducted power	1.17
Frequency Stability	1.00E-11
Temperature	1.6°C
Humidity	3%

Annex B Test Equipment

<u>Equipment</u>	<u>Manufacturer</u>	<u>Model (SN)</u>	<u>Band</u>	<u>Cal Date(m/d/y)</u>	<u>Due</u>
<input checked="" type="checkbox"/> LISN	FCC	FCC-LISN-50-25-10(1PA) (160611)	.15-30MHz	3/25/2024	3/25/2025
<input type="checkbox"/> LISN: Fischer Custom Communications Model: FCC-LISN-50-16-2-08				3/25/2024	3/25/2025
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(L10M)(303073)9kHz-40 GHz	9/16/2024	9/16/2025	
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(1.5M)(303069)9kHz-40 GHz	9/16/2024	9/16/2025	
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(1.5M)(303070)9kHz-40 GHz	9/16/2024	9/16/2025	
<input checked="" type="checkbox"/> Cable	Belden	RG-58 (L1-CAT3-11509)	9kHz-30 MHz	9/16/2024	9/16/2025
<input type="checkbox"/> Cable	Belden	RG-58 (L2-CAT3-11509)	9kHz-30 MHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Antenna	Com Power	AL-130 (121055)	.001-30 MHz	9/16/2024	9/16/2025
<input type="checkbox"/> Antenna:	EMCO	6509	.001-30 MHz	9/16/2024	9/16/2026
<input checked="" type="checkbox"/> Antenna	ARA	BCD-235-B (169)	20-350MHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Antenna	Sunol	JB-6 (A100709)	30-1000 MHz	9/16/2024	9/16/2025
<input type="checkbox"/> Antenna	ETS-Lindgren	3147 (40582)	200-1000MHz	9/16/2024	9/16/2026
<input checked="" type="checkbox"/> Antenna	ETS-Lindgren	3117 (200389)	1-18 GHz	3/25/2024	3/25/2026
<input checked="" type="checkbox"/> Antenna	Com Power	AH-118 (10110)	1-18 GHz	9/16/2024	9/16/2026
<input checked="" type="checkbox"/> Antenna	Com Power	AH-1840 (101046)	18-40 GHz	3/27/2023	3/27/2025
<input checked="" type="checkbox"/> Analyzer	Rohde & Schwarz	ESU40 (100108)	20Hz-40GHz	7/8/2024	7/8/2025
<input checked="" type="checkbox"/> Analyzer	Rohde & Schwarz	ESW44 (101534)	20Hz-44GHz	1/26/2024	1/26/2025
<input type="checkbox"/> Analyzer	Rohde & Schwarz	FS-Z60, 90, 140, and 220	40GHz-220GHz	12/22/2017	12/22/2027
<input type="checkbox"/> Amplifier	Com-Power	PA-010 (171003)	100Hz-30MHz	9/16/2024	9/16/2025
<input type="checkbox"/> Amplifier	Com-Power	CPPA-102 (01254)	1-1000 MHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Amplifier	Com-Power	PAM-118A (551014)	0.5-18 GHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Amplifier	Com-Power	PAM-840A (461328)	18-40 GHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Pwr Sensor	Rohde & Schwarz	NRP33T	0.05-33 GHz	9/26/2023	9/26/2025
<input checked="" type="checkbox"/> Power meter	Agilent	N1911A with N1921A	0.05-40 GHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> Generator	Rohde & Schwarz	SMB100A6 (100150)	20Hz-6 GHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> Generator	Rohde & Schwarz	SMBV100A6 (260771)	20Hz-6 GHz	3/25/2024	3/25/2025
<input type="checkbox"/> RF Filter	Micro-Tronics	BRC50722 (009).9G notch	30-18000 MHz	3/25/2024	3/25/2025
<input type="checkbox"/> RF Filter	Micro-Tronics	HPM50114 (017)1.5G HPF	30-18000 MHz	3/25/2024	3/25/2025
<input type="checkbox"/> RF Filter	Micro-Tronics	HPM50117 (063) 3G HPF	30-18000 MHz	3/25/2024	3/25/2025
<input type="checkbox"/> RF Filter	Micro-Tronics	HPM50105 (059) 6G HPF	30-18000 MHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> RF Filter	Micro-Tronics	BRM50702 (172) 2G notch	30-18000 MHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> RF Filter	Micro-Tronics	BRC50703 (G102) 5G notch	30-18000 MHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> RF Filter	Micro-Tronics	BRC50705 (024) 5G notch	30-18000 MHz	3/25/2024	3/25/2025
<input type="checkbox"/> Attenuator	Fairview	SA6NFNF100W-40 (1625)	30-18000 MHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> Attenuator	Mini-Circuits	VAT-3W2+ (1436)	30-6000 MHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> Attenuator	Mini-Circuits	VAT-3W2+ (1445)	30-6000 MHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> Attenuator	Mini-Circuits	VAT-3W2+ (1735)	30-6000 MHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> Attenuator	Mini-Circuits	VAT-6W2+ (1438)	30-6000 MHz	3/25/2024	3/25/2025
<input type="checkbox"/> Attenuator	Mini-Circuits	VAT-6W2+ (1736)	30-6000 MHz	3/25/2024	3/25/2025

Rogers Labs, a division of The Compatibility Center LLC
 7915 Nieman Road
 Lenexa, KS 66214
 Phone/Fax: (913) 660-0666
 Revision 2

FCC ID: VZI02294
 Test: 241125
 Test to: 47CFR Parts 2 & 87
 File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
 Models: TT23 & TT23G
 S/N: 6
 Date: January 3, 2025
 Page 40 of 42

<u>Equipment</u>	<u>Manufacturer</u>	<u>Model (SN)</u>	<u>Band</u>	<u>Cal Date(m/d/y)</u>	<u>Due</u>
<input type="checkbox"/> Frequency Counter: Leader		LDC-825 (8060153)		3/28/2023	3/28/2025
<input type="checkbox"/> ISN	Com-Power	Model ISN T-8 (600111)		3/25/2024	3/25/2025
<input type="checkbox"/> LISN	Compliance Design	FCC-LISN-2.Mod.cd,(126)	.15-30MHz	9/16/2024	9/16/2025
<input type="checkbox"/> LISN:	Com-Power	Model LI-220A		9/16/2024	9/16/2026
<input checked="" type="checkbox"/> LISN:	Com-Power	Model LI-550C		9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(1.5M)(303072)	9kHz-40 GHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(L1M)(281183)	9kHz-40 GHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(L4M)(281184)	9kHz-40 GHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(L10M)(317546)	9kHz-40 GHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Cable	Time Microwave	4M-750HF290-750 (L4M)	9kHz-24 GHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Cable	Mini-Circuits	KBL-2M-LOW+ (23090329)	9kHz-40 GHz	3/25/2024	3/25/2025
<input type="checkbox"/> RF Filter	Micro-Tronics	BRC17663 (001)	9.3-9.5 notch 30-1800 MHz	3/28/2023	3/28/2025
<input type="checkbox"/> RF Filter	Micro-Tronics	BRC19565 (001)	9.2-9.6 notch 30-1800 MHz	3/28/2023	3/28/2025
<input checked="" type="checkbox"/> Analyzer	HP	8562A (3051A05950)	9kHz-125GHz	3/25/2024	3/25/2025
<input type="checkbox"/> Wave Form Generator Keysight		33500B (MY57400128)		3/25/2024	3/25/2025
<input type="checkbox"/> Antenna:	Solar	9229-1 & 9230-1		2/10/2024	2/10/2025
<input type="checkbox"/> CDN:	Com-Power	Model CDN325E		10/11/2022	10/11/2024
<input type="checkbox"/> Oscilloscope Scope: Tektronix		MDO 4104		2/10/2024	2/10/2025
<input type="checkbox"/> EMC Transient Generator HVT		TR 3000		2/10/2024	2/10/2025
<input type="checkbox"/> AC Power Source (Ametech, California Instruments)				2/10/2024	2/10/2025
<input checked="" type="checkbox"/> Field Intensity Meter: EFM-018				2/10/2024	2/10/2025
<input checked="" type="checkbox"/> ESD Simulator: MZ-15				2/10/2024	2/10/2025
<input checked="" type="checkbox"/> Weather station Davis		6152 (A70927D44N)		7/11/2024	7/11/2025
<input type="checkbox"/> Injection Clamp Luthi Model EM101				not required	
<input type="checkbox"/> R.F. Power Amp ACS 230-50W				not required	
<input type="checkbox"/> R.F. Power Amp EIN Model: A301				not required	
<input type="checkbox"/> R.F. Power Amp A.R. Model: 10W 1010M7				not required	
<input type="checkbox"/> R.F. Power Amp A.R. Model: 50U1000				not required	
<input checked="" type="checkbox"/> Temperature Chamber				not required	
<input checked="" type="checkbox"/> Shielded Room				not required	

Annex C Certificate of Accreditation

United States Department of Commerce
National Institute of Standards and Technology

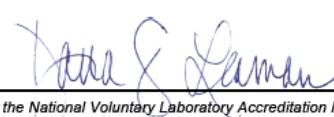
Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 200087-0

Rogers Labs, a division of The Compatibility Center LLC
Lenexa, KS

*is accredited by the National Voluntary Laboratory Accreditation Program for specific services,
listed on the Scope of Accreditation, for:*

Electromagnetic Compatibility & Telecommunications


*This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality
management system (refer to joint ISO-ILAC-IAF Communiqué dated January 2009).*

2024-03-18 through 2025-03-31

Effective Dates

For the National Voluntary Laboratory Accreditation Program

Rogers Labs, a division of The Compatibility Center LLC
7915 Nieman Road
Lenexa, KS 66214
Phone/Fax: (913) 660-0666
Revision 2

FCC ID: VZI02294
Test: 241125
Test to: 47CFR Parts 2 & 87
File: Trig TT23 TstRpt 241125 r2

Trig Avionics Ltd.
Models: TT23 & TT23G
S/N: 6
Date: January 3, 2025
Page 42 of 42