
FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4 : 2003

TEST REPORT (Class II Permissive Change Report)

For

802.11b/g CPE (Access Point)

Model : ARG-CPE2615

Data Applies To : ARG-1705

Trade Name : ARGtek

Issued for

ARGtek Communication Inc.

**8F-9, No. 4, Lane 609, Sec.5, Chung Hsin Rd., San Chung City, Taipei Hsien 241,
Taiwan, R.O.C**

Issued by

**Compliance Certification Services Inc.
Hsinchu Lab.**

NO. 989-1 Wen Shan Rd., Shang Shan Village,
Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

TEL: +886-3-5921698

FAX: +886-3-5921108

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	03/14/2009	Initial Issue	All Page 15	Jason Chang

TABLE OF CONTENTS

TITLE	PAGE NO.
1. TEST REPORT CERTIFICATION.....	4
2. EUT DESCRIPTION.....	5
3. DESCRIPTION OF TEST MODES	6
4. TEST METHODOLOGY.....	6
5. FACILITIES AND ACCREDITATIONS.....	6
5.1 FACILITIES	6
5.2 EQUIPMENT.....	6
5.3 LABORATORY ACCREDITATIONS LISTINGS.....	7
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	7
6. CALIBRATION AND UNCERTAINTY.....	8
6.1 MEASURING INSTRUMENT CALIBRATION.....	8
6.2 MEASUREMENT UNCERTAINTY.....	8
7. SETUP OF EQUIPMENT UNDER TEST.....	9
8. RADIATED EMISSIONS	10
8.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS	10-13
8.1.1 WORST-CASE RADIATED EMISSION BELOW 1 GHZ	14
APPENDIX SETUP PHOTOS.....	15

1. TEST REPORT CERTIFICATION

Applicant : ARGtek Corporation
Address : No. 8, Li-shing Road VII, Science-based Industrial Park, Hsinchu, Taiwan R.O.C.
Equipment Under Test : 802.11b/g CPE (Access Point)
Model : ARG-CPE2615
Data Applies To : ARG-1705
Trade Name : ARGtek
Tested Date : March 10 ~ 14, 2009

APPLICABLE STANDARD	
STANDARD	TEST RESULT
FCC Part 15 Subpart C AND ANSI C63.4:2003	No non-compliance noted

Approved by:

Jason Chang

Jason Chang
Team Leader of Hsinchu Laboratory
Compliance Certification Services Inc.

Reviewed by:

Alan Fan

Alan Fan
Team Leader of Hsinchu Laboratory
Compliance Certification Services Inc.

WE HEREBY CERTIFY THAT: The measurements shown in the attachment were made in accordance with the procedures indicated, and the energy emitted by the equipment was found to be within the limits applicable. We assume full responsibility for the accuracy and completeness of these measurements and vouch for the qualifications of all persons taking them.

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	802.11b/g CPE (Access Point)
Model Number	ARG-CPE2615
Data Applies To	ARG-1705
Frequency Range	IEEE 802.11b/g : 2412MHz to 2462MHz
Transmit Power	IEEE 802.11b : 19.14dBm IEEE 802.11g : 16.17dBm
Channel Spacing	IEEE 802.11b/g : 5MHz
Channel Number	IEEE 802.11b/g : 11 Channels
Transmit Data Rate	IEEE 802.11b : 11, 5.5, 2, 1 Mbps IEEE 802.11g : 54, 48, 36, 24, 18, 12, 9, 6 Mbps
Type of Modulation	IEEE 802.11b : DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g : OFDM (64QAM, 16QAM, QPSK, BPSK)
Frequency Selection	by software / firmware
Antenna Type	Patch Antenna, Antenna Gain : 14dBi.
Power Source	12DC From Adapter for PoE

Remark:

1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
2. This submittal(s) (test report) is intended for FCC ID: VYXARGTEK-1000 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
3. For more details, please refer to the User's manual of the EUT.
4. This report is modified from 80825002.

2.2 DESCRIPTION OF CLASS II CHABNGE

The major change filed under this application are :

CPE-2615 Outdoor AP Revise Description

1. Increasing capacitor of DC power path from 1000uF/25V to 2200uF/25V.

The manufacturer has made partial changes on the EUT. After evaluating by CCS, the change will not influence the RF test at all. Therefore, we only perform Radiated Emission Re-evaluation under 1GHz

3. DESCRIPTION OF TEST MODES

The EUT had been tested under operating condition.

1. For fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power and power spectral density of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

2. There are three channels have been tested as following :

Channel	Frequency (MHz)
Low	2412
Middle	2437
High	2462

IEEE 802.11b : 11Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11g : 6 Mbps data rate (worst case) were chosen for full testing.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4:2003 and FCC CRF 47 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Rm.258, Bldg.17, NO.195 , Sec. 4, Chung Hsing Rd., Chu-Tung Chen. Hsin-Chu, Taiwan 310 R.O.C.

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4:2003 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 0240 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: 90585 and 90584).

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	 90585, 90584
Japan	VCCI	3/10 meter Open Area Test Sites to perform conducted/radiated measurements	 R-1229/1189 C-1250/1294
Taiwan	TAF	FCC Method-47 CFR Part 15 Subpart C,D,E CISPR 11, FCC METHOD-47 CFR Part 18, EN 55011, CNS 13803, CISPR 13, CNS 13439, FCC Method-47 CFR Part 15 Subpart B, CISPR 14-1, EN 55014-1, CNS 13783-1, EN 55015, CNS 14115, CISPR 22, EN 55022, VCCI CNS 13438, EN 61000-4-2/3/4/5/6/8/11	 Testing Laboratory 0240
Taiwan	BSMI	CNS 13803, CNS 13438, CNS 13439, CNS 13783-1, CNS 14115	 SL2-IS-E-0002 SL2-IN-E-0002 SL2-A1-E-0002 SL2-R1-E-0002 SL2-R2-E-0002 SL2-L1-E-0002

* No part of this report may be used to claim or imply product endorsement by TAF or any agency of the US Government.

6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 1000 MHz	+/- 3.2 dB
Radiated Emission, 1 to 26.5 GHz	+/- 3.2 dB
Power Line Conducted Emission	+/- 2.1 dB

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

7. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	PC	HP	Hp pavilion t222d	TWL33001TS	DoC
2	Notebook PC	Compaq	N800V	5Y33KSQZM0W41YR	DoC

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

1. Setup all computers like the setup diagram.
2. Build up a connection between EUT and PC.
3. Notebook ping IP to EUT.
4. Start test.

8. RADIATED EMISSIONS

8.1 TRANSMITTER RADIATED SUPURIOUS EMISSIONS

LIMITS

§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

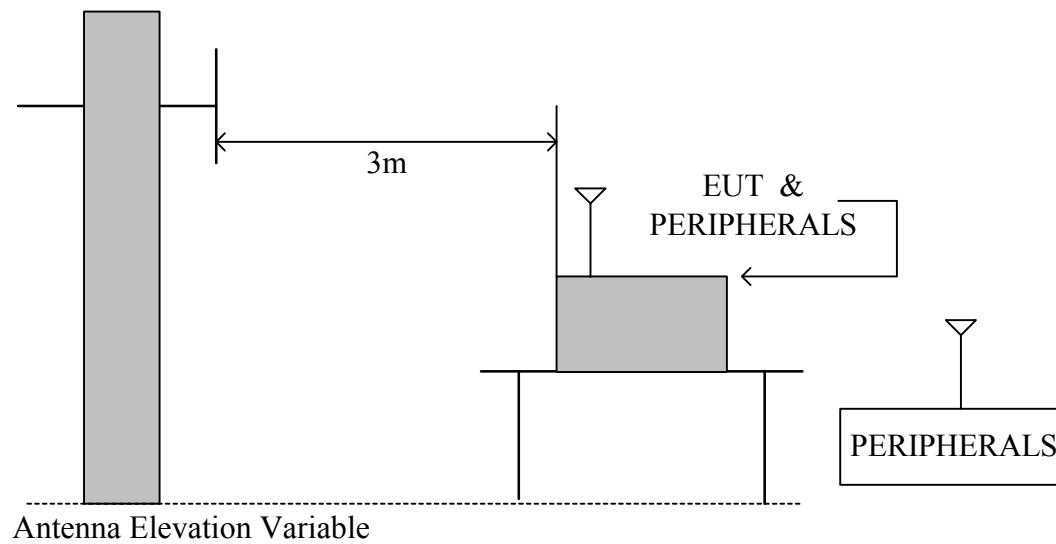
§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g, Sections 15.231 and 15.241.

§ 15.209 (b) In the emission table above, the tighter limit applies at the band edges.


TEST EQUIPMENT

The following test equipment is utilized in making the measurements contained in this report.

Manufacturer or Type	Model No.	Serial No.	Date of Calibration	Calibration Period	Remark
CHASE BILOG ANTENNA	CBL6112B	2817	December 21, 2008	1 Year	FINAL
R/S SPECTRUM ANALYZER	FSEK30	835253/002	October 25, 2008	1 Year	FINAL
AGILENT SPECTRUM ANALYZER	E4446A	MY433601.32	June 24, 2008	1 Year	FINAL
R/S EMI TEST RECEIVER	ESCS30	835418/008	October 16, 2008	1 Year	FINAL
OPEN SITE	-----	No.2	May 07, 2008	1 Year	FINAL
MIYAZAKI N TYPE COAXIAL CABLE	8D-FB	02	May 16, 2008	1 Year	FINAL
Horn Antenna	AH-118	10089	October 18, 2008	1 Year	FINAL
Horn Antenna	AH-840	03077	December 25, 2008	1 Year	FINAL
Agilent Pre-amplifier	8449B	3008A01471	December 20, 2008	1 Year	FINAL
HP Amplifier	8447D	2944A10052	December 24, 2008	1 Year	FINAL
HP High pass filter	84300/80038	002	CAL. ON USE	1 Year	FINAL
HP High pass filter	84300/80039	003	CAL. ON USE	1 Year	FINAL

TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from below 1GHz.

TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. While measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. While measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Note :

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

No non-compliance noted

8.1.1 WORST-CASE RADIATED EMISSION BELOW 1 GHz

Product Name	802.11b/g CPE (Access Point)	Test Date	2009/03/11
Model	ARG-CPE2615	Test By	Mimic Yang
Test Mode	Normal operating	TEMP & Humidity	23°C, 53%

Horizontal						
Frequency (MHz)	Reading (dBuV)	Correction Factor(dB/m)	Result (dBuV/m)	Limit (dB μ V/m)	Margin (dB)	Remark
81.73	51.79	-15.76	36.03	40.00	-3.97	Peak
93.05	53.37	-14.88	38.49	43.50	-5.01	Peak
275.73	45.68	-8.95	36.73	46.00	-9.27	Peak
440.63	41.72	-5.78	35.94	46.00	-10.06	Peak
479.43	41.59	-4.70	36.88	46.00	-9.12	Peak
539.25	43.25	-3.10	40.15	46.00	-5.85	QP
755.88	36.78	-0.25	36.53	46.00	-9.47	Peak

Vertical						
Frequency (MHz)	Reading (dBuV)	Correction Factor(dB/m)	Result (dBuV/m)	Limit (dB μ V/m)	Margin (dB)	Remark
39.70	43.24	-7.67	35.57	40.00	-4.43	QP
65.57	51.34	-14.82	36.52	40.00	-3.48	QP
81.73	53.56	-15.76	37.80	40.00	-2.20	QP
89.82	54.86	-15.57	39.29	43.50	-4.21	QP
105.98	52.32	-12.00	40.32	43.50	-3.18	Peak
175.50	49.83	-10.94	38.89	43.50	-4.61	Peak
540.87	41.82	-3.07	38.75	46.00	-7.25	Peak

Remark:

1. Correction Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB).
2. Emission level (dB μ V/m) = Correction Factor (dB) + Meter Reading (dB μ V).
3. Margin value = Emission level – Limit value.