

RF Exposure Requirements

General information:

Device category: Mobile per Part 2.1091

Environment: Uncontrolled Exposure

This device is a radar active responder that has a maximum conducted output of 4 dBm or 2.5 mW. The power is continuously variable depending on how much power is incident on the responder from the radar.

Antenna:

The manufacturer has a specific integral antenna with a gain of 11.9 dBi.

This device has provisions for operation in a fixed location.

Configuration	Antenna p/n	Type	Duty cycle	Max. Gain (dBi)
Fixed	Integral	Patch	100 %	11.9

Operating configuration and exposure conditions:

The conducted output power is 2.5 mWatts.

MPE Calculation:

The minimum separation distance is calculated as follows:

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$

Power density: $P_d(mW/cm^2) = \frac{E^2}{3770}$

The limit for a uncontrolled / general population exposure environment above 1500 MHz is 1 mW/cm².

Channel frequency: 9200 to 9300 MHz
 The conducted power output is 2.5 mWatts
 Antenna gain was taken as 11.9 dBi
 100 % duty cycle.

$$\begin{aligned}
 W &:= 0.025 \quad \text{power in Watts} & D &:= 1 \quad \text{Duty Factor in decimal \% (1=100\%)} \\
 &&& 1 \text{ for FM} \\
 &&& 0.6 \text{ for SSB} \\
 E &:= 30 \quad \text{exposure time in minutes} & U &:= 30 \quad (\text{use 6 for controlled and 30 for uncontrolled}) \\
 W_{\text{exp}} &:= W \cdot D \cdot \left(\frac{E}{U} \right) & PC &:= \left(\frac{E}{U} \right) \cdot 100 \\
 W_{\text{exp}} &= 0.025 \quad \text{Watts} & PC &= 100 \quad \% \text{ on time}
 \end{aligned}$$

$$\begin{aligned}
 P_o &:= 25 \quad \text{mWatts} & f &:= 1500 \quad \text{Frequency in MHz} \\
 dB_d &:= 09.75 \quad \text{antenna gain in dBd} & & \\
 G_1 &:= dB_d + 2.15 \quad \text{gain in dBi} & S &:= \frac{f}{1500} \quad \text{power density limit for} \\
 &&& \text{uncontrolled exposure} \\
 G_1 &= 11.9 \quad \text{dBi} & & \\
 CL &:= 0 \quad \text{dB coax loss} & S &= 1 \quad \frac{\text{mW}}{\text{cm}^2} \\
 G &:= G_1 - CL & & \text{General population} \\
 G_n &:= 10^{\frac{G}{10}} \quad \text{gain numeric} & S & \text{is 1 between 1500 and 100k MHz} \\
 &&& S \text{ is } f/1500 \text{ for 300 to 1500 MHz} \\
 &&& S \text{ is 0.2 between 30 and 300 MHz} \\
 G_n &= 15.488 & & \text{Occupational} \\
 R &:= \sqrt{\frac{(P_o \cdot G_n)}{(4 \cdot \pi \cdot S)}} & S & \text{is 1 between 30 and 300 MHz} \\
 &&& S \text{ is } f/300 \text{ between 300 and 1500 MHz} \\
 &&& S \text{ is 5 between 1500 and 100k MHz} \\
 &&& (\text{See 47 CFR 1.1310}) \\
 R &= 5.551 \quad \text{distance in centimeters} & \text{inches} &:= \frac{R}{2.54} \\
 &&& \text{inches} = 2.185 \\
 &&& ft := \frac{\text{inches}}{12} \\
 &&& ft = 0.182
 \end{aligned}$$

Conclusion:

The device complies with the MPE requirements by providing a safe separation distance of 5.6 cm between the antenna, including any radiating structure, and any persons when normally operated .