

APPLICATION FOR VERIFICATION
On Behalf of
Coencorp Consultant Corporation

Vehicle Data Unit
Model No.: VDU-915
Part No. MOD-01011-08

FCC ID: VY3-VDU-915

Prepared for : Coencorp Consultant Corporation
Address : 3705 place de Java suite 190, Brossard, J4Y0E4, Canada
Prepared by : Accurate Technology Co., Ltd.
Address : F1, Bldg. A&D, Changyuan New Material Port, Keyuan
Rd., Science & Industry Park, Nanshan District, Shenzhen
518057, P.R. China

Tel: +86-755-26503290
Fax: +86-755-26503396

Report No. : ATE20160716
Date of Test : Apr 07, 2016- Apr 24, 2016
Date of Report : Apr 25, 2016

TABLE OF CONTENTS

Description	Page
Test Report Declaration	
1. TEST RESULTS SUMMARY	4
2. GENERAL INFORMATION.....	5
2.1. Description of Device (EUT).....	5
2.2. Special Accessory and Auxiliary Equipment.....	5
2.3. Description of Test Facility	6
2.4. Measurement Uncertainty.....	6
3. POWER LINE CONDUCTED MEASUREMENT.....	7
3.1. For Power Line Conducted Emission.....	7
3.2. Power Line Conducted Emission Measurement Limits (Class B)	7
3.3. Power Line Conducted Emission Measurement Results.....	7
4. RADIATED EMISSION MEASUREMENT	8
4.1. For Radiated Emission Measurement	8
4.2. TEST CONFIGURATION.....	8
4.3. Block Diagram of Test Setup	9
4.4. Radiated Emission Limit	10
4.5. EUT Configuration on Measurement	10
4.6. Operating Condition of EUT	10
4.7. Test Procedure	10
4.8. Radiated Emission Noise Measurement Result.....	11
5. ANTENNA REQUIREMENT.....	14
5.1. The Requirement	14
5.2. Antenna Construction.....	14

Test Report Declaration

Applicant& address : Coencorp Consultant Corporation
3705 place de Java suite 190, Brossard, J4Y0E4, Canada
Manufacturer& address : Coencorp Consultant Corporation
3705 place de Java suite 190, Brossard, J4Y0E4, Canada
Product : Vehicle Data Unit
Model No. : VDU-915
Trade name : /

Measurement Procedure Used:

**FCC Rules and Regulations Part 15 Subpart C 15.207&15.209
FCC/ANSI C63.4-2014**

The device described above is tested by Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both radiated and conducted emissions. The measurement results are contained in this test report and Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Accurate Technology Co., Ltd.

Date of Test : _____ Apr 07, 2016--Apr 24, 2016
Date of Report: _____ Apr 25, 2016

Prepared by :

(Tim.zhang, Engineer)

Approved & Authorized Signer :

(Sean Liu, Manager)

1. TEST RESULTS SUMMARY

Test Items	Test Standard	Test Results
Power Line Conducted Emission	FCC Part 15.207	N/A
Radiated Emission	FCC Part 15.209	Pass

Note: The power supply mode of the module is DC 12V, According to the FCC standard requirements, conducted emission is not applicable.

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

The submitted sample is a Vehicle Data Unit. The sample is powered by DC 12V.

		Vehicle Data Unit
Frequency	:	125KHz
Number of Channels	:	1
Modulation Type	:	GFSK
Type of Antenna	:	External Antenna
Max antenna gain	:	0dBi
Power Supply	:	DC 12V

2.2. Special Accessory and Auxiliary Equipment

N/A

2.3. Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen, May 10, 2004

Listed by FCC

The Registration Number is 253065

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-1

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee for Laboratories

The Certificate Registration Number is L3193

Name of Firm : Accurate Technology Co., Ltd.

Site Location : F1, Bldg. A&D, Changyuan New Material Port, Keyuan Rd., Science & Industry Park, Nanshan District, Shenzhen 518057, P.R. China

2.4. Measurement Uncertainty

Conducted emission expanded uncertainty : $U=2.23\text{dB}$, $k=2$

Power disturbance expanded uncertainty : $U=2.92\text{dB}$, $k=2$

Radiated emission expanded uncertainty : $U=3.08\text{dB}$, $k=2$
(9kHz-30MHz)

Radiated emission expanded uncertainty : $U=4.42\text{dB}$, $k=2$
(30MHz-1000MHz)

Radiated emission expanded uncertainty : $U=4.06\text{dB}$, $k=2$
(Above 1GHz)

3. POWER LINE CONDUCTED MEASUREMENT

3.1. For Power Line Conducted Emission

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCS30	100307	Jan. 10, 2016	1 Year
2.	L.I.S.N.	Schwarzbeck	NLSK8126	8126431	Jan. 10, 2016	1 Year
3.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100815	Jan. 10, 2016	1 Year
4.	50Ω Coaxial Switch	Anritsu Corp	MP59B	6200283933	Jan. 10, 2016	1 Year

Expanded Uncertainty: U= 2.23dB, k=2

3.2. Power Line Conducted Emission Measurement Limits (Class B)

Frequency MHz	Limits dB(µV)	
	Quasi-peak Level	Average Level
0.15—0.50	66—56*	56—46*
0.50—5.00	56	46
5.00—30.0	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.3. Power Line Conducted Emission Measurement Results

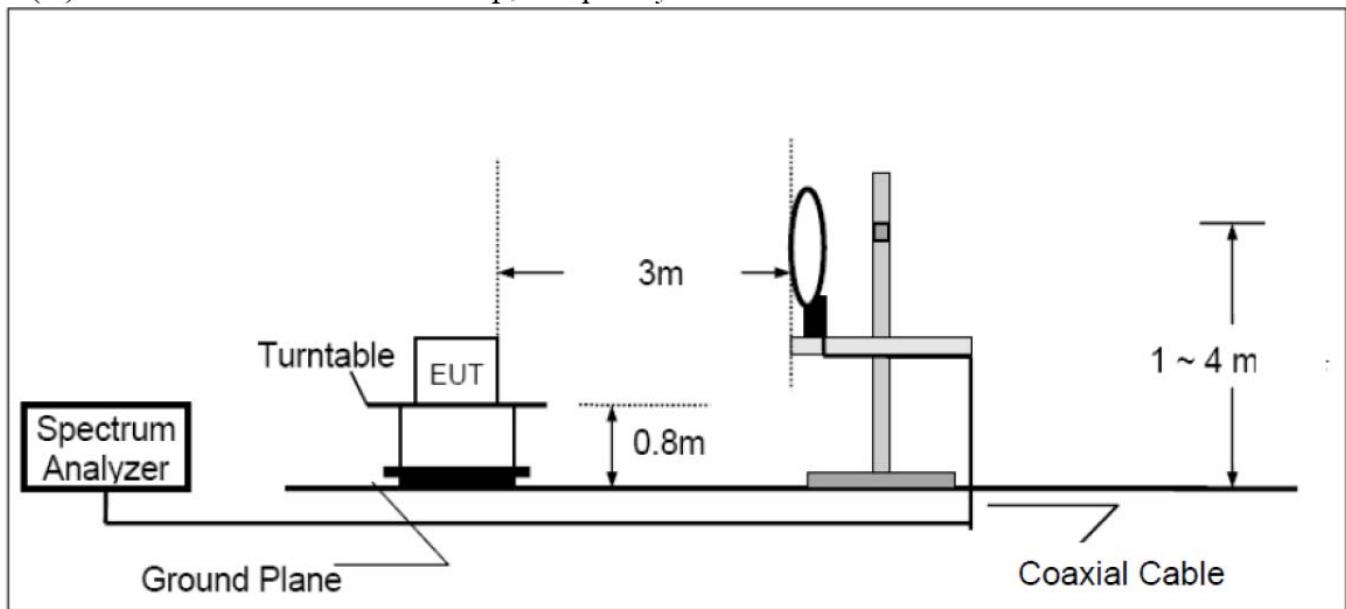
N/A

There are not any AC ports. Therefore, the test is not applicable and skipped

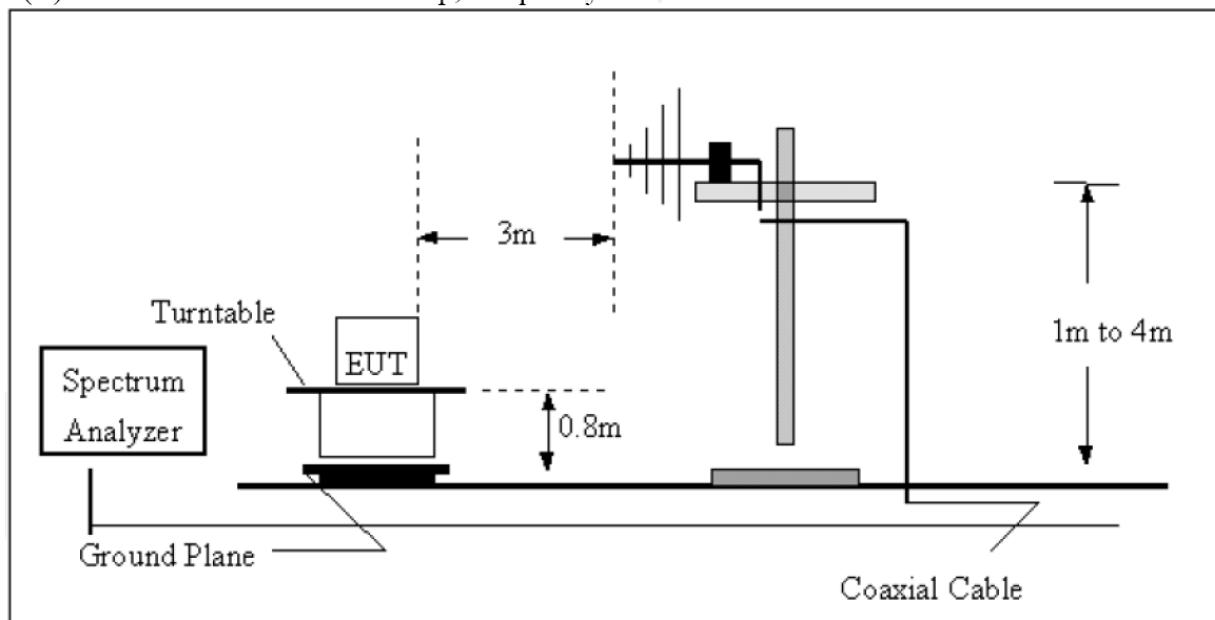
4. RADIATED EMISSION MEASUREMENT

4.1. For Radiated Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 10, 2016	1 Year
2.	Test Receiver	Rohde & Schwarz	ESCS30	100307	Jan. 10, 2016	1 Year
3.	Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 14, 2016	1 Year
4.	Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 14, 2016	1 Year
5.	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 14, 2016	1 Year
6.	50 Coaxial Switch	Anritsu Corp	MP59B	6200506474	Jan. 10, 2016	1 Year
12.	Pre-Amplifier	Rohde & Schwarz	CBLU11835 40-01	3791	Jan. 10, 2016	1 Year


Expanded Uncertainty (9kHz-30MHz): U=3.08dB, k=2

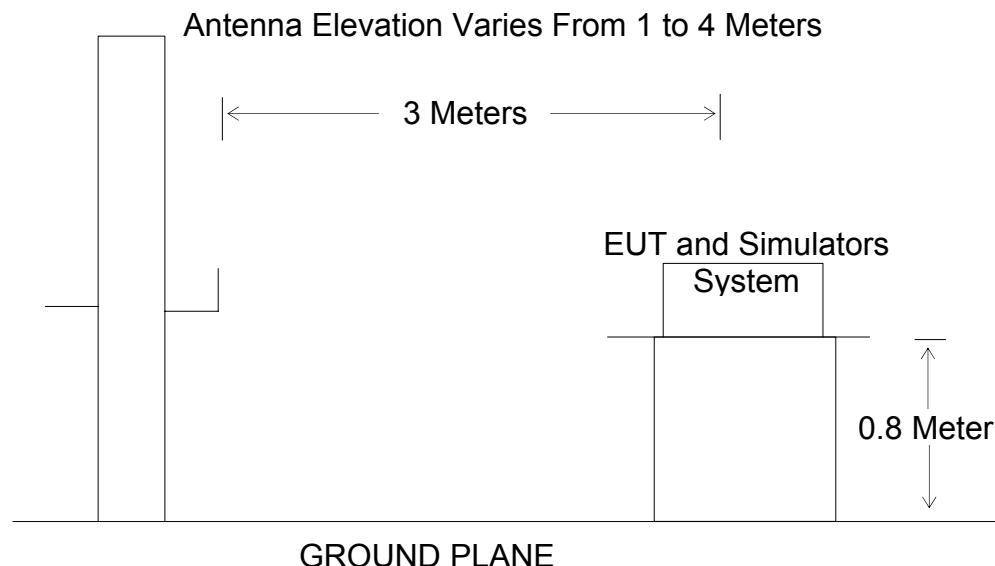
Expanded Uncertainty (30MHz-1000MHz): U=4.42dB, k=2


Expanded Uncertainty (Above 1GHz): U=4.06dB, k=2

4.2. TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency below 30MHz

(B) Radiated Emission Test Set-Up, Frequency 30-1000MHz


4.3. Block Diagram of Test Setup

4.3.1. Block diagram of connection between the EUT and simulators

(EUT: Vehicle Data Unit)

4.3.2. Anechoic Chamber Test Setup Diagram

4.4.Radiated Emission Limit

Frequency (MHz)	Field Strength Limitation		Field Strength Limitation at 3m Measurement Dist	
	(uV/m)	Dist	(uV/m)	(dBuV/m)
0.009 – 0.490	2400 / F(KHz)	300m	10000 * 2400/F(KHz)	20log 2400/F(KHz) + 80
0.490 – 1.705	24000 / F(KHz)	30m	100 * 24000/F(KHz)	20log 24000/F(KHz) + 40
1.705 – 30.00	30	30m	100* 30	20log 30 + 40
30.0 – 88.0	100	3m	100	20log 100
88.0 – 216.0	150	3m	150	20log 150
216.0 – 960.0	200	3m	200	20log 200
Above 960.0	500	3m	500	20log 500

Limit: $2400/135=17.78\text{uV/m}@300\text{m}$

Distance Correction Factor=40log(test distance/specific distance)

4.5.EUT Configuration on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.6.Operating Condition of EUT

4.6.1.Setup the EUT and simulator as shown as Section 4.2.

4.6.2.Turn on the power of all equipment.

4.6.3.Let the EUT work in test mode and measure it.

4.7.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2014 on radiated emission measurement.

From 9kHz to 30MHz at distance 3m The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

From 30MHz to 1000MHz at distance 3m The measuring antenna height varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for both vertical and horizontal antenna polarization.

The final measurement will be performed with an EMI Receiver set to Quasi Peak detector for the frequency bands 9kHz to 90kHz and 110 to 490 kHz where an average detector will be used according to Section 15.209(d)(2).

The final level, expressed in dB μ V/m, is arrived at by taking the reading from the EMI receiver(Level dB μ V) and adding the antenna correction factor and cable loss factor(Factor dB) to it. This result then has to be compared with the relevant FCC limit. The resolution bandwidth during the measurement is as follows:

9kHz – 150kHz: ResBW:200Hz
150kHz – 30MHz: ResBW:9kHz

The bandwidth of the EMI test receiver (R&S ESCS30) is set at 120kHz from 30MHz to 1000MHz.

4.8.Radiated Emission Noise Measurement Result

PASS.

From 9kHz to 30MHz

Frequency (MHz)	Quasi Peak (dB μ V/m)	Azimuth	Polarity (H/V)	Height (cm)	Factors (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
0.125	104.26	153	H	236	-56.36	125.7	-21.44
1.21	68.02	36	H	210	-55.15	105.9	-37.88
2.59	35.48	205	H	225	-54.28	49.5	-14.02
0.125	89.99	185	V	158	-56.36	125.7	-35.71
2.66	32.05	352	V	169	-54.27	49.5	-17.45
3.56	39.63	15	V	151	-53.42	49.5	-9.87

Part 15 Section 15.31(f)(2) (9kHz-30MHz)

Limit at 3m=Limit at 300m-40*log(3(m)/300(m))

Limit at 3m=Limit at 30m-40*log(3(m)/30(m))

From 30MHz to 1000MHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg.A,Changyuan New Material Port Keyuan Rd,
Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 2# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Job No.: Star #1962

Polarization: Horizontal

Standard: FCC Class B 3M Radiated

Power Source: DC 12V

Test item: Radiation Test

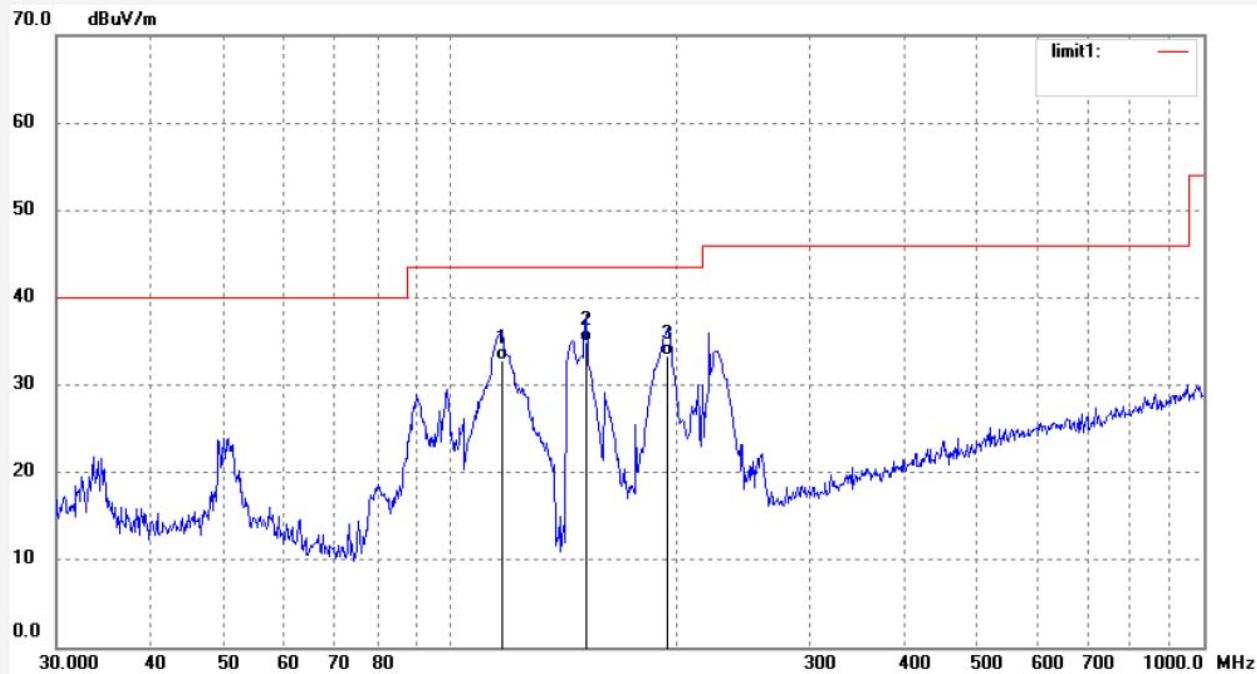
Date: 16/04/09/

Temp.(C)/Hum.(%) 23 C / 48 %

Time: 10/16/18

EUT: Vehicle Data Unit

Engineer Signature: Star


Mode: TX 125KHz

Distance: 3m

Model: VDU-915

Manufacturer: COENCORP

Note: Report No:ATE20160716

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	117.2687	45.89	-13.16	32.73	43.50	-10.77	QP			
2	151.5567	50.01	-15.14	34.87	43.50	-8.63	QP			
3	194.4985	45.78	-12.49	33.29	43.50	-10.21	QP			

Job No.: Star #1963

Polarization: Vertical

Standard: FCC Class B 3M Radiated

Power Source: DC 12V

Test item: Radiation Test

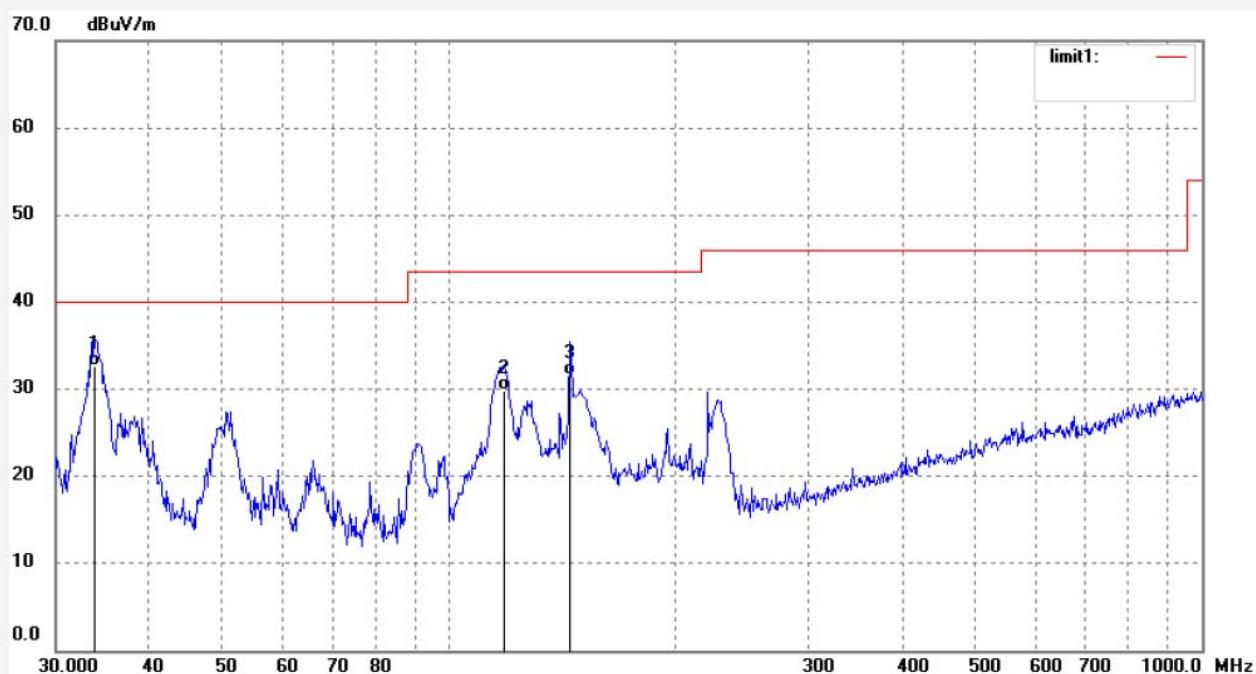
Date: 16/04/09/

Temp.(C)/Hum.(%) 23 C / 48 %

Time: 10/18/20

EUT: Vehicle Data Unit

Engineer Signature: Star


Mode: TX 125KHz

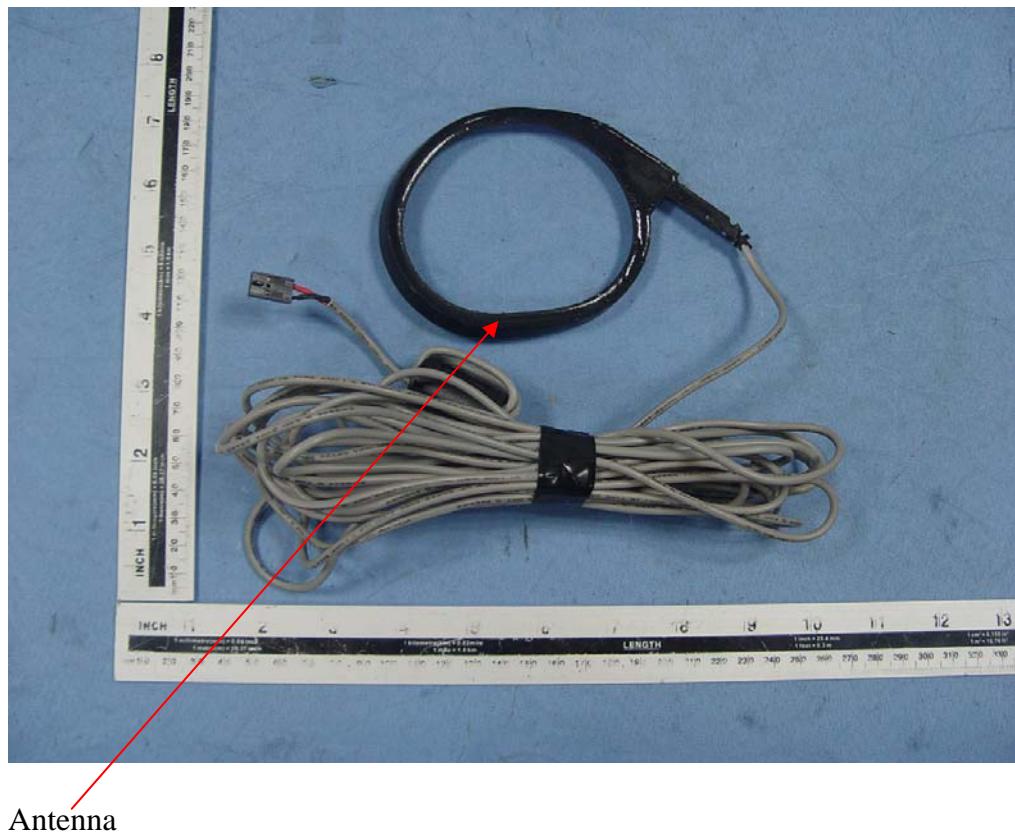
Distance: 3m

Model: VDU-915

Manufacturer: COENCORP

Note: Report No:ATE20160716

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	33.8067	43.01	-10.30	32.71	40.00	-7.29	QP			
2	118.5114	43.06	-13.14	29.92	43.50	-13.58	QP			
3	144.7899	46.78	-15.23	31.55	43.50	-11.95	QP			


5. ANTENNA REQUIREMENT

5.1. The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.2. Antenna Construction

The module must contain a permanently attached antenna, or contain a unique antenna connector, and be marketed and operated only with specific antenna(s), per Sections 15.203, 15.204(b), 15.204(c), 15.212(a), 2.929(b); The Antenna gain of EUT is 0.0dBi. Therefore, the equipment complies with the antenna requirement.

