

TEST REPORT

BNetzA-CAB-02/21-102 Test report no.: 1-4095/22-01-05-A

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

SAGEMCOM BROADBAND SAS

250, route de l' Empereur

92848 Rueil-Malmaison Cedex / FRANCE

Phone:

Contact: Alain Cruchant

e-mail: <u>alain.cruchant@sagemcom.com</u>

Manufacturer

SAGEMCOM BROADBAND SAS

250, route de l' Empereur 92848 Rueil-Malmaison Cedex / FRANCE

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Set Top Box

Model name: DIW377 ALT US

FCC ID: VW3DIW377

Frequency: UNII bands: 5150 MHz to 5250 MHz; 5250 MHz to 5350 MHz; 5470 MHz

to 5725 MHz; 5725 MHz to 5850 MHz

Technology tested: WLAN

Radio Communications

Antenna: Two integrated antennas

Power supply: 110 V to 127 V AC by mains

Temperature range: -5°C to 45°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
p.o.	
Michael Dorongovski Lab Manager	Andreas Kurzkurt Testing Manager

Radio Communications

1 Table of contents

1	Table of	contents	2
2	General	information	2
	2.1 N	lotes and disclaimer	4
		pplication details	
	2.3 T	est laboratories sub-contracted	4
3	Test sta	ndard/s, references and accreditations	5
4	Reportii	ng statements of conformity – decision rule	6
5	Test en	vironment	7
6	Test ite	m	7
		Seneral description	
		Additional information	
_	_		
7	-	tion of the test setup	
		hielded semi anechoic chamber	
		hielded fully anechoic chamber	
		adiated measurements > 18 GHz	
		C conducted	
	7.5 C	onducted measurements with spectrum analyzer	13
8	Sequen	ce of testing	14
	8.1 S	sequence of testing radiated spurious 9 kHz to 30 MHz	14
	8.2	sequence of testing radiated spurious 30 MHz to 1 GHz	15
	8.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	16
	8.4	Sequence of testing radiated spurious above 18 GHz	17
9	Measur	ement uncertainty	18
10	Sur	nmary of measurement results	19
11	Ado	litional comments	20
12	Me	asurement results	27
	12.1	Identify worst case data rate	27
	12.2	Antenna gain	
	12.3	Duty cycle	29
	12.4	Maximum output power	30
	12.4.1	Maximum output power according to FCC requirements	30
	12.5	Power spectral density	
	12.5.1	Power spectral density according to FCC requirements	
	12.6	Minimum emission bandwidth for the band 5.725-5.85 GHz	42
	12.7	Spectrum bandwidth / 26 dB bandwidth	
	12.8	Band edge compliance radiated	
	12.9	Spurious emissions radiated below 30 MHz	75
	12.10	Spurious emissions radiated 30 MHz to 1 GHz	
	12.11	Spurious emissions radiated 1 GHz to 40 GHz	95
	12.12	Spurious emissions conducted < 30 MHz	139

13	Observations	141
14	Glossary	141
15	Document history	142
16	Accreditation Certificate - D-PL-12076-01-05	142

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2022-03-22
Date of receipt of test item: 2022-05-10
Start of test:* 2022-07-04
End of test:* 2022-08-25
Person(s) present during the test: -/-

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

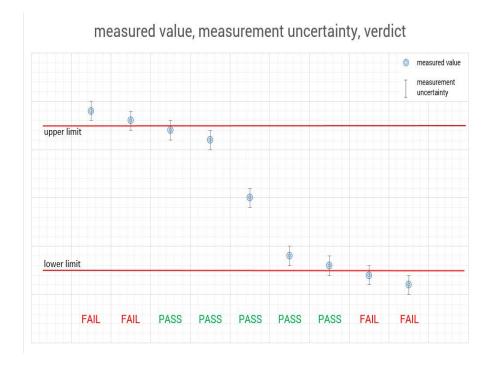
None

© CTC advanced GmbH Page 4 of 142

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
Guidance	Version	Description
KDB 789033 D02 ANSI C63.4-2014 ANSI C63.10-2013 KDB 662911 D01	v02r01 -/- -/- v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices Emissions Testing of Transmitters with Multiple Outputs in the Same Band
Accreditation	Description	n
D-PL-12076-01-05	Telecomm	unication FCC requirements dakks.de/as/ast/d/D-PL-12076-01-05e.pdf DAkkS Deutsche Akkrediterungsstelle D-PL-12076-01-05

FCC designation number: DE0002


© CTC advanced GmbH Page 5 of 142

4 Reporting statements of conformity - decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9 but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 6 of 142

5 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	21 °C during room temperature tests No testing under extreme temperature conditions required No testing under extreme temperature conditions required
Relative humidity content	:		55 %
Barometric pressure	:		Not relevant for this kind of testing
		V_{nom}	115 V AC by mains
Power supply	:	V_{max}	No testing under extreme voltage conditions required
		V_{min}	No testing under extreme voltage conditions required

6 Test item

6.1 General description

Kind of test item :	Set Top Box
Model name :	DIW377 ALT US
S/N serial number :	Rad. 622172052045 Cond. 622172052818
Hardware status :	v1
Software status :	3.1.8
Firmware status :	3.1.8
Frequency band :	UNII bands: 5150 MHz to 5250 MHz; 5250 MHz to 5350 MHz; 5470 MHz to 5725 MHz; 5725 MHz to 5850 MHz
Type of radio transmission: Use of frequency spectrum:	OFDM
Type of modulation :	(D)BPSK, (D)QPSK, 16 – QAM, 64 – QAM
Number of channels :	24 with 20 MHz channel bandwidth 11 with 40 MHz channel bandwidth 5 with 80 MHz channel bandwidth
Antenna :	Two integrated antennas
Power supply :	110 V to 127 V AC by mains
Temperature range :	-5°C to 45°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-4095/22-01-01_AnnexA

1-4095/22-01-01_AnnexB 1-4095/22-01-01_AnnexD

© CTC advanced GmbH Page 7 of 142

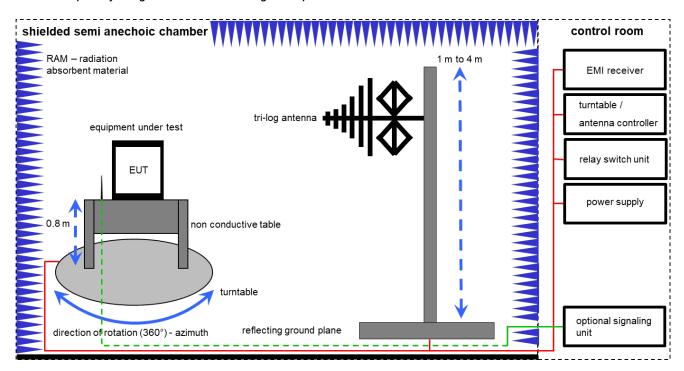
7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlk!!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 8 of 142

7.1 Shielded semi anechoic chamber

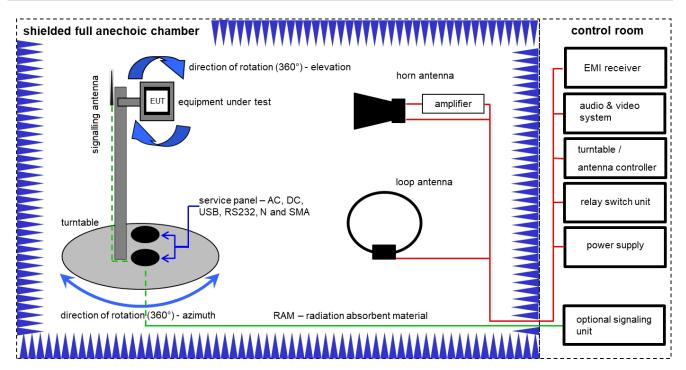
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	Batch no. 699714	300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKI!	21.04.2021	20.04.2023
7	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	20.05.2022	19.05.2023

© CTC advanced GmbH Page 9 of 142

7.2 Shielded fully anechoic chamber

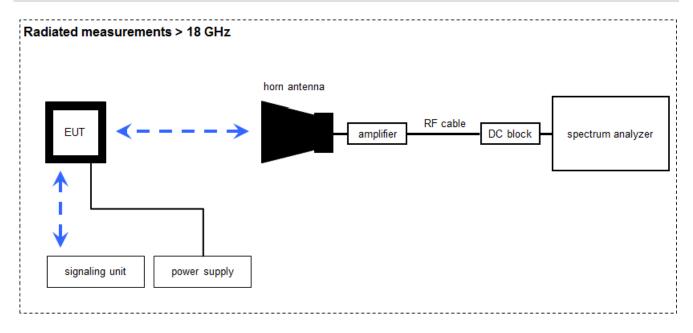
Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
2	А	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
3	А	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vlKI!	11.02.2022	29.02.2024
4	А	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2021	31.12.2022
5	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
6	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
7	А	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
8	А	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
9	А	NEXIO EMV- Software	BAT EMC V3.21.0.32	EMCO		300004682	ne	-/-	-/-
10	Α	PC	ExOne	F+W		300004703	ne	-/-	-/-
11	А	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-
12	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	01.07.2021	31.07.2023

© CTC advanced GmbH Page 10 of 142

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

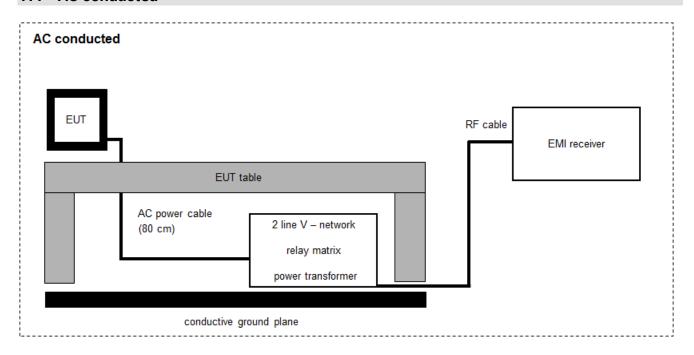
FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \text{ }\text{μV/m})$

Equipment table:


No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal analyzer	FSV40	Rohde&Schwarz	101353	300004819	k	10.12.2021	31.12.2022
2	А	Control-PC of OSP	exone Variety		060931P1302P 00109	300004869	ne	-/-	-/-
3	А	RF-Cable WLAN- Tester Vector Signal Generator	ST18/SMAm/SMAm /60	Huber & Suhner	Batch no. 606844	400001222	ev	-/-	-/-
4	Α	DC Power Supply	HMP2020	Rohde & Schwarz	102219	300005264	k	09.12.2020	08.12.2022
5	A	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-
6	А	Rack mounted PC	Precision 3930 Rack-Workstation i5-9500 CTO	Dell	J15D873	300006115	ne	-/-	-/-
7	Α	Switch matrix	RSM 004 TS	CTC advanced	001	400001578	ev	-/-	-/-
8	А	HF-Vorverstärker 0.01 - 26 GHz	HP 83006	EMCO	3104A00499	300000211	g	-/-	-/-
9	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	8205	300002442	NK!	-/-	-/-
10	В	Broadband Low Noise Amplifier 18- 50 GHz	CBL18503070-XX	CERNEX	19338	300004273	ev	-/-	-/-
11	В	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vlKI!	17.01.2022	31.01.2024

© CTC advanced GmbH Page 11 of 142

12	В	Signal- and Spectrum Analyzer	FSW50	Rohde&Schwarz	101332	300005935	k	20.01.2022	31.01.2023
		2 Hz - 50 GHz							

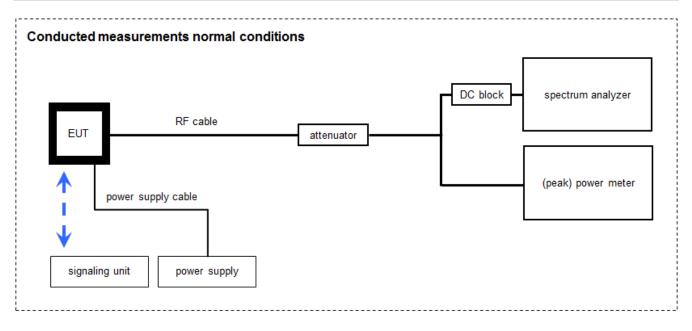
7.4 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

FS $[dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	Rohde & Schwarz	892475/017	300002209	vlKI!	14.12.2021	13.12.2023
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	09.12.2021	08.12.2022
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vlKI!	29.12.2021	28.12.2023
5	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
6	Α	PC	TecLine	F+W		300003532	ne	-/-	-/-
7	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-

© CTC advanced GmbH Page 12 of 142

7.5 Conducted measurements with spectrum analyzer

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Manufacturer Serial No.		Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	25.01.2022	31.01.2023
2	А	PC Tester R005	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A45 23	300004589	ne	-/-	-/-
3	А	RF-Cable	ST18/SMAm/SMAm Huber & Suhner Batch no. 606844 400001181 ev		-/-	-/-			
4	А	DC-Blocker 0.1-40 GHz	8141A	Inmet		400001185	ev	-/-	-/-
5	А	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10-2W44+	Mini Circuits		400001186	ev	-/-	-/-
6	А	Synchron Power Meter	SPM-4	стс	1	300005580	ev	-/-	-/-
7	А	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-

© CTC advanced GmbH Page 13 of 142

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 14 of 142

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
 angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 142

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 16 of 142

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 17 of 142

9 Measurement uncertainty

Measurement uncertainty								
Test case	Uncertainty							
Antenna gain	± 3	dB						
Power spectral density	± 1.5	66 dB						
DTS bandwidth	± 100 kHz (depends	s on the used RBW)						
Occupied bandwidth	± 100 kHz (depends	s on the used RBW)						
Maximum output power conducted	± 1.5	66 dB						
Detailed spurious emissions @ the band edge - conducted	± 1.5	66 dB						
Band edge compliance radiated	± 3	dB						
	> 3.6 GHz	± 1.56 dB						
Spurious emissions conducted	> 7 GHz	± 1.56 dB						
Spurious erifissions conducted	> 18 GHz	± 2.31 dB						
	≥ 40 GHz	± 2.97 dB						
Spurious emissions radiated below 30 MHz	± 3	dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3	dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7	7 dB						
Spurious emissions radiated above 12.75 GHz	5 dB							
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6	6 dB						

© CTC advanced GmbH Page 18 of 142

10 Summary of measurement results

×	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Title 47 Part 15	See table	2022-09-02	-/-

Test specification clause	Test case		NC	NA	NP	Remark
-/-	Output power verification (cond.)		-/	/-		Declared
-/-	Antenna gain	-/-				Declared
U-NII Part 15	Duty cycle		-,	/-		-/-
§15.407(a)	Maximum output power (conducted)	×				-/-
§15.407(a)	Power spectral density	\boxtimes				-/-
§15.407(a)	Spectrum bandwidth 26dB bandwidth	\boxtimes				-/-
§15.407(a)	Spectrum bandwidth 99% bandwidth	-/-				-/-
§15.205	Band edge compliance radiated	\boxtimes				-/-
§15.407(b)	TX spurious emissions radiated	\boxtimes				-/-
§15.209(a)	Spurious emissions radiated < 30 MHz	\boxtimes				-/-
§15.107(a) §15.207	Spurious emissions conducted emissions< 30 MHz	×				-/-
§15.407	DFS	-/-				See report 1-4095_22-01-06

Notes:

C:	Compliant	NC:	Not compliant	NA:	Not applicable	NP:	Not performed
----	-----------	-----	---------------	-----	----------------	-----	---------------

© CTC advanced GmbH Page 19 of 142

11 Additional comments

Reference documents: DFS report: 1-4095_22-01-06

DIW377 UHD ALT US - WiFi test commands_V2.docx

Operational Description - Antenna.pdf

Special test descriptions: None

Configuration descriptions: All tests were performed with both chains active. SISO modes are not

supported.

© CTC advanced GmbH Page 20 of 142

Provided channels and used power settings for all modes:

a-mode:

	U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)										
	channel number & center frequency										
channel	36	40	44	48	52	56	60	64			
f _c / MHz	5180	5200	5220	5240	5260	5280	5300	5320			
Power setting *)	54	54	54	54	55	55	55	55			

	U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency											
channel	100	104	108	112	116	120	124	128	132	136	140	
f _c / MHz	5500	5520	5540	5560	5580	5600	5620	5640	5660	5680	5700	
Power setting *)	63	63	63	63	63	63	63	63	63	63	63	

	U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency									
channel	149 153 157 161 165									
f _c / MHz	5745 5765 5785 5805 582									
Power setting *)	86	86	86	86	86					

nHT20-mode:

	U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency										
channel	36	40	44	48	52	56	60	64			
f _c / MHz	5180	5200	5220	5240	5260	5280	5300	5320			
Power setting *)											

	U-NII-2C (5470 MHz to 5725 MHz)											
channel number & center frequency												
channel	100	104	108	112	116	120	124	128	132	136	140	
f _c / MHz	5500	5520	5540	5560	5580	5600	5620	5640	5660	5680	5700	
Power setting *)	62	62	62	62	62	62	62	62	62	62	62	

	U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency									
channel	149 153 157 161 165									
f _c / MHz	5745 5765 5785 5805 5825									
Power setting *)	86	86	86	86	86					

© CTC advanced GmbH Page 21 of 142

acVHT20-mode:

	U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)							
	channel number & center frequency							
channel	36	36 40 44 48 52 56 60 64						
f _c / MHz	5180 5200 5220 5240 5260 5280 5300 5320							
Power setting *)	Power 54 54 54 56 56 56 56							

	U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency										
channel	channel 100 104 108 112 116 120 124 128 132 136 140										
f _c / MHz	5500	5520	5540	5560	5580	5600	5620	5640	5660	5680	5700
Power setting *)	Power 64 64 64 64 64 64 64 64 64 64										

	U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency						
channel	149	149 153 157 161 165					
f _c / MHz	5745	5745 5765 5785 5805 5825					
Power setting *)	Power 86 86 86 86						

axHE20-mode:

	U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)							
channel number & center frequency								
channel	36	36 40 44 48 52 56 60 64						
f _c / MHz	5180 5200 5220 5240 5260 5280 5300 5320							
Power	48	48	48	48	46	46	46	46
setting *)	40	40	40	40	40	40	40	40

	U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency										
channel	100	104	108	112	116	120	124	128	132	136	140
f _c / MHz	5500	5520	5540	5560	5580	5600	5620	5640	5660	5680	5700
Power setting *)	Power 63 63 63 63 63 63 63 63 63										

	U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency						
channel 149 153 157 161 165							
f _c / MHz	5745	5765	5785	5805	5825		
Power setting *)	Power 86 86 86 86						

© CTC advanced GmbH Page 22 of 142

nHT40-mode:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency							
channel	38	46	54	62			
f _c / MHz	5190 5230 5270 5310						
Power setting *)	Power 40 40 42 42						

	U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency						
channel	102	110	118	126	134		
f _c / MHz	5510	5550	5590	5630	5670		
Power setting *)	Power 51 51 51 51						

	U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency						
channel	151 159						
f _c / MHz	5755	5795					
Power setting *)	86						

acVHT40-mode:

	U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency						
channel	38	38 46 54 62					
f _c / MHz	5190 5230 5270 5310						
Power setting *)							

	U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency						
channel	102	102 110 118 126 134					
f _c / MHz	5510	5550	5590	5630	5670		
Power setting *)	Power 51 51 51 51						

	U-NII-3 (5725 MHz to 5850 MHz)					
channel number & center frequency						
channel	151 159					
f _c / MHz	5755	5795				
Power	86	86				
setting *)	00	60				

© CTC advanced GmbH Page 23 of 142

axHE40-mode:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency					
channel	hannel 38 46 54 62				
f _c / MHz	5190	5230	5270	5310	
Power setting *)	36	36	40	40	

U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency					
channel	102 110 118 126 134				
f _c / MHz	f _c / MHz 5510 5550 5590 5630 5670				
Power setting *)	48	48	48	48	48

U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency			
channel	151 159		
f _c / MHz	s / MHz 5755 5795		
Power setting *)	86	86	

acVHT80-mode:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency				
channel	42 58			
f _c / MHz	f _c / MHz 5210 5290			
Power	41	41		
setting *)	T!	71		

U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency				
channel	106 122			
f _c / MHz	z 5530 5610			
Power	43	43		
setting *)				

	U-NII-3 (5725 MHz to 5850 MHz)		
	channel number & center frequency		
channel	155		
f _c / MHz	5775		
Power	66		
setting *)	00		

© CTC advanced GmbH Page 24 of 142

axHE80-mode:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency				
channel	42 58			
f _c / MHz	c / MHz 5210 5290			
Power setting *)	37	40		

U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency				
channel	106 122			
f _c / MHz	z 5530 5610			
Power	46	46		
setting *)	40	40		

	U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency
channel	155
f _c / MHz	5775
Power	66
setting *)	00

*) In U-NII-1 & U-NII-2A & U-NII-2C bands the power setting have been reduced to be compliant with the radiated band edge requirement.

In U-NII-3 band the power settings have been reduced to make sure all emissions are within the band for the 26dB bandwidth (Maximum frequency 5850 MHz).

© CTC advanced GmbH Page 25 of 142

EUT selection:		Only one device available
		Devices selected by the customer
		Devices selected by the laboratory (Randomly)
Test mode:		No test mode available. perf is used to transmit data to a companion device
		Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit	operating mod	des:
		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
	\boxtimes	Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

© CTC advanced GmbH Page 26 of 142

12 Measurement results

12.1 Identify worst case data rate

In further tests only the identified worst case modulation scheme or bandwidth will be measured.

Results:

OFDM – mode	Modulation scheme
a – mode	6 Mbit/s
n HT20 – mode	MCS8
ac HT20 – mode	MCS0NSS2
ax HT20 – mode	HE0NSS2
n HT40 – mode	MCS8
ac HT40 – mode	MCS0NSS2
ax HT40 – mode	HE0NSS2
ac VHT80 – mode	MCS0NSS2
ax VHT80 – mode	HE0NSS2

The worst case data rates are declared by manufacturer.

© CTC advanced GmbH Page 27 of 142

12.2 Antenna gain

Description:

The antenna gain is declared by customer. Referenced information and antenna patterns can be found in "Operational Description – Antenna.pdf".

Limits:

Antenna Gain
7
6 dBi / > 6 dBi output power and power density reduction required

Results:

U-NII-1 (5150 MHz to 5250 MHz)	Peak Antenna Gain ANT 0	Peak Antenna Gain ANT 1	
Gain / dBi (declared)	1.8	1.2	
U-NII-2A (5250 MHz to 5350 MHz)	Peak Antenna Gain ANT 0	Peak Antenna Gain ANT 1	
Gain / dBi (declared)	1.8	1.2	
U-NII-2C (5470 MHz to 5725 MHz)	Peak Antenna Gain ANT 0	Peak Antenna Gain ANT 1	
Gain / dBi (declared)	2.0	0.3	

U-NII-3 (5725 MHz to 5850 MHz)	Peak Antenna Gain ANT 0	Peak Antenna Gain ANT 1
Gain / dBi (declared)	2.3	0.5

© CTC advanced GmbH Page 28 of 142

12.3 Duty cycle

Description:

The duty cycle is necessary to compute the maximum power during an actual transmission. The shown plots and values are to show an example of the measurement procedure. The real value is measured direct during the power measurement or power density measurement. The correction value is shown in each plot of these measurements.

Measurement:

Measurement parameter	
According to: KDB789033 D02, B.	
External result file(s)	1-4095_22-01-05_Annex_MR_A_1.pdf 1-4095_22-01-05_Annex_MR_A_2.pdf 1-4095_22-01-05_Annex_MR_A_3.pdf 1-4095_22-01-05_Annex_MR_A_4.pdf 1-4095_22-01-05_Annex_MR_A_5.pdf 1-4095_22-01-05_Annex_MR_A_6.pdf 1-4095_22-01-05_Annex_MR_A_7.pdf 1-4095_22-01-05_Annex_MR_A_9.pdf
Used test setup:	FCC Part 15.407 Max Output Power and PSD See chapter 7.5 – A
Measurement uncertainty:	See chapter 9

Results:

See external result files!

© CTC advanced GmbH Page 29 of 142

12.4 Maximum output power

12.4.1 Maximum output power according to FCC requirements

Description:

Measurement of the maximum output power conducted

Measurement:

Measurement parameter			
According to: KDB789033 D02, E.2.e.			
	1-4095_22-01-05_Annex_MR_A_1.pdf		
	1-4095_22-01-05_Annex_MR_A_2.pdf		
	1-4095_22-01-05_Annex_MR_A_3.pdf		
	1-4095_22-01-05_Annex_MR_A_4.pdf		
External regult file(a)	1-4095_22-01-05_Annex_MR_A_5.pdf		
External result file(s)	1-4095_22-01-05_Annex_MR_A_6.pdf		
	1-4095_22-01-05_Annex_MR_A_7.pdf		
	1-4095_22-01-05_Annex_MR_A_8.pdf		
	1-4095_22-01-05_Annex_MR_A_9.pdf		
	FCC Part 15.407 Max Output Power and PSD		
Used test setup:	See chapter 7.5 – A		
Measurement uncertainty:	See chapter 9		
Standard parts:	FCC: § 15.407 (a)		

Limits:

Limits			
Radiated output power	Conducted output power		
Band 5150 MF	Hz - 5250 MHz		
	For an outdoor access point: output power ≤ 1W/30dBm		
For an outdoor access point:	The maximum e.i.r.p. at any elevation angle above		
Conducted power + 6 dBi antenna gain	30 degrees as measured from the horizon must not exceed 125 mW (21 dBm)		
For an indoor access point:			
Conducted power + 6 dBi antenna gain	For an indoor access point output power ≤ 1W/30dBm		
For fixed point-to-point access points			
Conducted power + 23 dBi antenna gain	For fixed point-to-point access points output power ≤ 1W/30dBm		
For client devices			
Conducted power + 6 dBi antenna gain	For client devices		

© CTC advanced GmbH Page 30 of 142

(If the Antenna gain is greater than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit)	output power ≤ 250 mW/24dBm
Band 5250MH	z – 5350 MHz
Conducted power + 6 dBi antenna gain	
(Antenna gain higher than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit)	Output power ≤ lesser of 250mW or 11dBm +10logB (B is the 26 dB emission bandwidth in megahertz)
Band 5470MH	z – 5725 MHz
Conducted power + 6 dBi antenna gain (Antenna gain higher than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit)	Output power ≤ lesser of 250mW or 11dBm +10logB (B is the 26 dB emission bandwidth in megahertz)
Band 5725MH	z – 5850 MHz
Conducted power + 6 dBi antenna gain (Antenna gain higher than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit Exception: fixed point-to-point U-NII devices, no corresponding reduction in transmitter conducted power)	output power ≤ 1W/30dBm

© CTC advanced GmbH Page 31 of 142

Results: ANT1+ANT2 sum

	Maximum output power conducted [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
	19.1	18.9	19.0	
	U	J-NII-2A (5250 MHz to 5350 MHz	2)	
	Lowest channel	Middle channel	Highest channel	
а	20.2 20.3		20.0	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel Middle channel		Highest channel	
	21.4 21.8		21.1	
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Middle channel	Highest channel	
	26.6	26.7	26.4	

	Maximum output power conducted [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
	19.8	19.5	19.5	
	L	J-NII-2A (5250 MHz to 5350 MHz	2)	
	Lowest channel	Middle channel	Highest channel	
n-HT20	20.3 20.4		19.9	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel Middle channel		Highest channel	
	21.3 21.6		21.0	
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Middle channel	Highest channel	
	26.8 26.9 26.6			

	Maximum output power conducted [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel	Highest channel		
	19.7	19.5	19.5		
	Ų	J-NII-2A (5250 MHz to 5350 MHz	2)		
	Lowest channel	Middle channel	Highest channel		
ac-HT20	20.5 20.6		20.2		
	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel	Highest channel		
	21.6 22.1		21.4		
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel	Highest channel		
	26.7	26.7 26.8 26.4			

© CTC advanced GmbH Page 32 of 142

	Maximum output power conducted [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel	Highest channel		
	18.1	18.2	18.3		
	U	J-NII-2A (5250 MHz to 5350 MHz	2)		
	Lowest channel	Highest channel			
ax-HE20	19.2		18.9		
	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel	Highest channel		
	22.1 22.4		21.7		
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel	Highest channel		
	27.2	27.2 27.3 27.0			

© CTC advanced GmbH Page 33 of 142

Results: ANT1+ANT2 sum

	Maximum output power conducted [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel		Highest channel	
	16.3		16.3	
	U	I-NII-2A (5250 M	Hz to 5350 MHz	2)
	Lowest channel		Highest channel	
n HT40	17.8		17.5	
	U-NII-2C (5470 MHz to 5725 MHz)			2)
	Lowest channel	Middle	channel	Highest channel
	19.0	19.1		18.7
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel		Highest channel	
	27.6		27.6	

	Maximum output power conducted [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel		Highest channel		
	16.3		16.2		
	U	I-NII-2A (5250 M	Hz to 5350 MHz	2)	
	Lowest channel		Highest channel		
ac HT40	17.3		17.0		
	U-NII-2C (5470 MHz to 5725 MHz)			2)	
	Lowest channel	Middle channel		Highest channel	
	19.0	19.1		18.5	
	U-NII-3 (5725 MHz to 5850 MHz))	
	Lowest channel	Lowest channel		Highest channel	
	27.6		27.6		

	Maximum output power conducted [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel 15.5		Highest channel		
			15.3		
	U-NII-2A (5250 MHz to 5350 MHz)				
	Lowest channel		Highest channel		
ax HE40	17.2		17.0		
	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle	channel	Highest channel	
	18.3	18	3.2	17.7	
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel		Highest channel		
	27.3		27.2		

© CTC advanced GmbH Page 34 of 142

Results: ANT1+ANT2 sum

	Maximum output naugr conducted [dDm]			
	Maximum output power conducted [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Middle channel			
	16.8			
	U-NII-2A (5250 MHz to 5350 MHz)			
	Middle channel			
ac VHT80	18.1			
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Highest channel		
	18.2	17.8		
	U-NII-3 (5725 MHz to 5850 MHz)			
	Middle channel			
	22.3			

	Maximum output power conducted [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Middle channel			
	16.3			
	U-NII-2A (5250 MHz to 5350 MHz)			
ax HE80	Middle channel			
	18.1			
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Highest channel		
	19.1	19.0		
	U-NII-3 (5725 MHz to 5850 MHz)			
	Middle channel			
	23.3			

© CTC advanced GmbH Page 35 of 142

12.5 Power spectral density

12.5.1 Power spectral density according to FCC requirements

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

Measurement parameter				
According to: KDB789033 D02, F.				
	1-4095_22-01-05_Annex_MR_A_1.pdf			
	1-4095_22-01-05_Annex_MR_A_2.pdf			
	1-4095_22-01-05_Annex_MR_A_3.pdf			
	1-4095_22-01-05_Annex_MR_A_4.pdf			
External result file(s)	1-4095_22-01-05_Annex_MR_A_5.pdf			
External result file(s)	1-4095_22-01-05_Annex_MR_A_6.pdf			
	1-4095_22-01-05_Annex_MR_A_7.pdf			
	1-4095_22-01-05_Annex_MR_A_8.pdf			
	1-4095_22-01-05_Annex_MR_A_9.pdf			
	FCC Part 15.407 Max Output Power and PSD			
Used test setup:	See chapter 7.5 – A			
Measurement uncertainty:	See chapter 9			
Standard parts:	FCC: § 15.407 (a)			

Limits:

Power Spectral Density

Band 5150 MHz - 5250 MHz

For an outdoor access point power spectral density conducted ≤ 17 dBm in any 1 MHz band*
For an indoor access point power spectral density conducted ≤ 17 dBm in any 1 MHz band*
For fixed point-to-point access points power spectral density conducted ≤ 17 dBm in any 1 MHz band**
For client devices point power spectral density conducted ≤ 11 dBm in any 1 MHz band*

*If transmitting antennas of directional gain greater than 6 dBi are used the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

**Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

Band 5250MHz - 5350 MHz

power spectral density conducted ≤ 11 dBm in any 1 MHz band*

© CTC advanced GmbH Page 36 of 142

*If transmitting antennas of directional gain greater than 6 dBi are used the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

Band 5470MHz - 5725 MHz

power spectral density conducted ≤ 11 dBm in any 1 MHz band*

*If transmitting antennas of directional gain greater than 6 dBi are used the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

Band 5725MHz - 5850 MHz

power spectral density conducted ≤ 30 dBm in any 500 kHz band

If transmitting antennas of directional gain greater than 6 dBi are used the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

© CTC advanced GmbH Page 37 of 142

Results: ANT1+ANT2 sum

	Power spectral density (dBm/1MHz or dBm/500kHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
	8.6	7.2	7.3	
	Ų	J-NII-2A (5250 MHz to 5350 MHz	2)	
	Lowest channel	Middle channel	Highest channel	
а	8.5	8.6	9.5	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	10.9 10.1		9.4	
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel Middle channel		Highest channel	
	11.8	12.0	11.7	

	Power spectral density (dBm/1MHz or dBm/500kHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
	9.0	7.5	7.5	
	U	I-NII-2A (5250 MHz to 5350 MHz	2)	
	Lowest channel	Middle channel	Highest channel	
n-HT20	8.3	8.4	9.2	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	10.5	9.6	8.9	
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Middle channel	Highest channel	
	11.7	11.9	11.6	

	Power spectral density (dBm/1MHz or dBm/500kHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
	8.9	7.5	7.5	
	Ų	J-NII-2A (5250 MHz to 5350 MHz	2)	
	Lowest channel	Middle channel	Highest channel	
ac-HT20	8.5	8.6	9.5	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	10.9	10.0	9.4	
		U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel	
	11.7	11.8	11.4	

© CTC advanced GmbH Page 38 of 142

	Power spectral density (dBm/1MHz or dBm/500kHz)				
		U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel		
	7.4	6.0	5.9		
	U	J-NII-2A (5250 MHz to 5350 MHz	2)		
	Lowest channel	Middle channel	Highest channel		
ax-HE20	6.8	6.9	6.6		
	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel	Highest channel		
	9.8	10.1	9.4		
	Į.	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Middle channel	Highest channel		
	11.8	11.9	11.6		

© CTC advanced GmbH Page 39 of 142

Results: ANT1+ANT2 sum

	Power spectral density (dBm/1MHz or dBm/500kHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	•	Highest channel	
	2.7			1.5
	U-NII-2A (5250 MHz to 5350 MHz)		2)	
	Lowest channel		Highest channel	
n HT40	3.0	3.9		3.9
	U-NII-2C (5470 M		IHz to 5725 MHz)	
	Lowest channel	Middle	channel	Highest channel
	5.3	4.	.3	3.8
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel			Highest channel
	9.6		9.8	

	Power spectral density (dBm/1MHz or dBm/500kHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel		Highest channel	
	2.7		1.4	
	U	I-NII-2A (5250 M	Hz to 5350 MHz	2)
	Lowest channel		Highest channel	
ac HT40	2.5	3.4		3.4
	U-NII-2C (5470 M		1Hz to 5725 MHz)	
	Lowest channel	Middle	channel	Highest channel
	5.3	4.	.2	3.6
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	I		Highest channel
	9.6			9.7

	Power spectral density (dBm/1MHz or dBm/500kHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel		Highest channel		
	0.5		0.3		
	U	I-NII-2A (5250 M	Hz to 5350 MHz	Hz to 5350 MHz)	
	Lowest channel		Highest channel		
ax HE40	2.2	2.0		2.0	
	U-NII-2C (5470 M		1Hz to 5725 MHz)		
	Lowest channel	Middle	channel	Highest channel	
	3.2	3.	.2	2.7	
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	I		Highest channel	
	9.1		9.3		

© CTC advanced GmbH Page 40 of 142

Results: ANT1+ANT2 sum

	Power spectral density (dBm/1MHz or dBm/500kHz)		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Middle o	channel	
	0.	3	
	U-NII-2A (5250 M	Hz to 5350 MHz)	
	Middle channel		
ac VHT80	1.7		
	U-NII-2C (5470 MHz to 5725 MHz)		
	Lowest channel	Highest channel	
	1.7	0.1	
	U-NII-3 (5725 MHz to 5850 MHz)		
	Middle o	channel	
	1.	.6	

	Power spectral density (dBm/1MHz or dBm/500kHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Middle o	channel		
	-1	.5		
	U-NII-2A (5250 M	Hz to 5350 MHz)		
	Middle channel			
ax HE80	0.3			
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Highest channel		
	1.3	1.2		
	U-NII-3 (5725 MHz to 5850 MHz)			
	Middle o	channel		
	2.5			

© CTC advanced GmbH Page 41 of 142

12.6 Minimum emission bandwidth for the band 5.725-5.85 GHz

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement:

Measurement parameter		
According to: KDB789033 D02, C.2.		
External result file(s)	1-4095_22-01-05_Annex_MR_A_1.pdf 1-4095_22-01-05_Annex_MR_A_2.pdf 1-4095_22-01-05_Annex_MR_A_3.pdf 1-4095_22-01-05_Annex_MR_A_5.pdf 1-4095_22-01-05_Annex_MR_A_5.pdf 1-4095_22-01-05_Annex_MR_A_6.pdf 1-4095_22-01-05_Annex_MR_A_7.pdf 1-4095_22-01-05_Annex_MR_A_8.pdf 1-4095_22-01-05_Annex_MR_A_9.pdf FCC Part 15.407 & ISED Minimum Emission BW	
Used test setup:	See chapter 7.5 – A	
Measurement uncertainty:	See chapter 9	

Limits:

FCC
The minimum 6 dB bandwidth shall be at least 500 kHz.

© CTC advanced GmbH Page 42 of 142

Results:

	6 dB emission bandwidth (MHz)		
а		U-NII-3 (5725 MHz to 5850 MHz)	
	Lowest channel	Middle channel	Highest channel
Port 1	16.4	16.4	16.4
Port 2	16.4	16.4	16.4

	6 dB emission bandwidth (MHz)				
n HT20					
	Lowest channel	Middle channel	Highest channel		
Port 1	17.6	17.6	17.6		
Port 2	17.7 17.6 17.6				

6 dB emission bandwidth (MHz)					
ac HT20		U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Middle channel	Highest channel		
Port 1	17.6	17.6	17.6		
Port 2	17.6	17.6	17.6		

	6 dB emission bandwidth (MHz)				
ax HE20	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel Middle channel		Highest channel		
Port 1	18.9	18.8	18.9		
Port 2	18.8	18.7			

© CTC advanced GmbH Page 43 of 142

Results:

	6 dB emission bandwidth (MHz)		
n HT40	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Highest channel	
Port 1	36.3	36.3	
Port 2	36.3	36.3	

6 dB emission bandwidth (MHz)				
ac HT40	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Highest channel		
Port 1	36.3	36.1		
Port 2	36.3	36.3		

	6 dB emission b	andwidth (MHz)
ax HE40	U-NII-3 (5725 M	Hz to 5850 MHz)
	Lowest channel	Highest channel
Port 1	37.5	37.2
Port 2	37.7	37.0

	6 dB emission bandwidth (MHz)
ac VHT80	U-NII-3 (5725 MHz to 5850 MHz)
	Middle channel
Port 1	75.8
Port 2	76.4

	6 dB emission bandwidth (MHz)
ax HE80	U-NII-3 (5725 MHz to 5850 MHz)
	Middle channel
Port 1	77.0
Port 2	77.0

© CTC advanced GmbH Page 44 of 142

12.7 Spectrum bandwidth / 26 dB bandwidth

Description:

Measurement of the 26 dB bandwidth of the modulated signal.

Measurement:

Measurement parameter				
According to: KDB789033 D02, C.1.				
External result file(s)	1-4095_22-01-05_Annex_MR_A_1.pdf 1-4095_22-01-05_Annex_MR_A_2.pdf 1-4095_22-01-05_Annex_MR_A_3.pdf 1-4095_22-01-05_Annex_MR_A_4.pdf 1-4095_22-01-05_Annex_MR_A_5.pdf 1-4095_22-01-05_Annex_MR_A_6.pdf 1-4095_22-01-05_Annex_MR_A_7.pdf 1-4095_22-01-05_Annex_MR_A_8.pdf 1-4095_22-01-05_Annex_MR_A_9.pdf FCC Part 15.407 & ISED Bandwidths			
Used test setup:	see chapter 7.5 – A			
Measurement uncertainty:	See chapter 9			

Limits:

Spectrum Bandwidth - 26 dB Bandwidth

IC: Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

FCC: Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

© CTC advanced GmbH Page 45 of 142

Results:

	26 dB bandwidth (MHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.4	21.6		21.6	
	21.3	21.6		21.5	
	Lowest frequency	У	H	ighest frequency	
	5169.3			5250.9	
	5169.5			5250.9	
	U	-NII-2A (5250 M	Hz to 5350 MHz	2)	
	Lowest channel	Middle channel		Highest channel	
а	21.6	21.6		21.6	
Port 1	21.5	21.5		21.5	
Port 2	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.4	21.4		21.4	
	21.6	21.6		21.6	
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel		channel	Highest channel	
	45.0	45.0		45.0	
	44.5	44.5		44.5	
	Lowest frequency	У	H	Highest frequency	
	5722.4		5847.5		
	5722.8		5847.3		

© CTC advanced GmbH Page 46 of 142

	26 dB bandwidth (MHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.7	22.0		22.0	
	21.5	21.9		21.8	
	Lowest frequency	У	Н	lighest frequency	
	5169.2			5251.0	
	5169.4			5251.0	
	U	-NII-2A (5250 M	Hz to 5350 MHz	2)	
	Lowest channel	Middle channel		Highest channel	
n HT20	21.9	21.9		21.9	
Port 1	21.8	21.8		21.8	
Port 2	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.8	21.8		21.8	
	22.2	22.2		22.2	
		U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Middle channel		Highest channel	
	47.9	47.9		47.9	
	46.8	46.8		46.8	
	Lowest frequency	y H		Highest frequency	
	5720.8			5720.8	
	5721.5		5721.5		

© CTC advanced GmbH Page 47 of 142

	26 dB bandwidth (MHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.8	22.0		22.0	
	21.4	21.7		21.7	
	Lowest frequency	У	Н	ighest frequency	
	5169.3			5251.0	
	5169.4			5250.9	
	U	-NII-2A (5250 M	Hz to 5350 MHz	2)	
	Lowest channel	Middle channel		Highest channel	
ac HT20	21.9	21.9		21.9	
Port 1	22.8	22.8		22.8	
Port 2	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.7	21.7		21.7	
	22.8	22.8		22.8	
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle	channel	Highest channel	
	47.8	47	' .8	47.8	
	46.3	46.3		46.3	
	Lowest frequency	:y		Highest frequency	
	5721.5			5849.3	
	5721.6			5848.2	

© CTC advanced GmbH Page 48 of 142

	26 dB bandwidth (MHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.7	21.7		21.8	
	21.5	21.8		21.7	
	Lowest frequency	y	Н	ighest frequency	
	5169.3			5250.9	
	5169.3			5250.9	
	U-NII-2A (5250 MHz to 5350 MHz)				
	Lowest channel	Middle channel		Highest channel	
ax HE20	21.8	21.8		21.8	
Port 1	21.6	21.6		21.6	
Port 2	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.7	21.7		21.7	
	22.6	22.6		22.6	
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel		Highest channel	
	50.0	50.0		50.0	
	49.1	49.1		49.1	
	Lowest frequency	Lowest frequency		Highest frequency	
	5720.0			5849.8	
	5720.0		5849.2		

© CTC advanced GmbH Page 49 of 142

Results:

	26 dB bandwidth (MHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel		Highest channel		
	39.8		39.8		
	39.3		39.3		
	Lowest frequency	1	Highest frequency		
	5170.1		5170.1		
	5170.4		5170.4		
	U-NII-2A (5250 MHz to 5350 MHz))		
	Lowest channel		Highest channel		
n HT40	40.1		40.1		
Port 1	39.7		39.7		
Port 2	U-NII-2C (5470 MHz to 5725 MHz))	
	Lowest channel	Middle	channel	Highest channel	
	39.9	39).9	39.9	
	39.6		39.6		
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel			Highest channel	
	99.9			99.9	
	96.8		96.8		
	Lowest frequency		Highest frequency		
	5705.0		5844.8		
	5706.6		5842.4		

© CTC advanced GmbH Page 50 of 142

	26 dB bandwidth (MHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel		Highest channel		
	39.8		39.8		
	39.3		39.3		
	Lowest frequency	/	Highest frequency		
	5170.1		5170.1		
	5170.4		5170.4		
	U-NII-2A (5250 MHz to 5350 MHz))	
	Lowest channel		Highest channel		
ac HT40	40.4		40.4		
Port 1	39.8			39.8	
Port 2	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle	channel	Highest channel	
	39.8	39		39.8	
	39.3		39.3 39.3		
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel			Highest channel	
	100.0		100.0		
	97.2		97.2		
	Lowest frequency		Highest frequency		
	5705.0		5844.6		
	5706.6		5843.3		

© CTC advanced GmbH Page 51 of 142

	26 dB bandwidth (MHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel		Highest channel		
	40.4		40.4		
	40.1		40.1		
	Lowest frequency	/	Highest frequency		
	5169.8			5169.8	
	5170.0		5170.0		
	U-NII-2A (5250 M		1Hz to 5350 MHz)		
	Lowest channel		Highest channel		
ax HE40	40.0	40.0		40.0	
Port 1	40.2	40.2		40.2	
Port 2	U-NII-2C (5470 MHz to 5725 MHz))	
	Lowest channel	Middle	channel	Highest channel	
	40.2	40).2	40.2	
	40.0	40.0 40.0		40.0	
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel			Highest channel	
	99.9		99.9		
	97.6		97.6		
	Lowest frequency		Highest frequency		
	5705.0	5705.0		5845.0	
	5705.7		5842.5		

© CTC advanced GmbH Page 52 of 142

Results:

	26 dB bandwidth (MHz)		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Middle channel		
	81.4		
	81.2		
	Lowest frequency	Highest frequency	
	5169.2	5169.2	
	5169.6	5169.6	
	U-NII-2A (5250 MHz to 5350 MHz)		
	Middle channel		
ac VHT80	81.6		
Port 1	81.2		
Port 2	U-NII-2C (5470 MHz to 5725 MHz)		
	Lowest channel	Highest channel	
	81.8	81.8	
	81.2	81.2	
	U-NII-3 (5725 MHz to 5850 MHz)		
	Middle channel		
	104.8		
	122.0		
	Lowest frequency	Highest frequency	
	5725.4	5830.2	
	5720.2	5842.2	

© CTC advanced GmbH Page 53 of 142

	26 dB bandwidth (MHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Middle o	channel		
	81	.8		
	81	.6		
	Lowest frequency	Highest frequency		
	5169.2	5169.2		
	5169.4	5169.4		
	U-NII-2A (5250 MHz to 5350 MHz)			
	Middle channel			
ax HE80	81.8			
Port 1	81.6			
Port 2	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Highest channel		
	81.8	81.8		
	81.6	81.6		
	U-NII-3 (5725 MHz to 5850 MHz)			
	Middle channel			
	102.0			
	81.8			
	Lowest frequency	Highest frequency		
	5714.2	5816.2		
	5734.4	5816.2		

© CTC advanced GmbH Page 54 of 142

12.8 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. Measurement distance is 3m.

Measurement:

Measurement parameter			
Detector:	Peak / RMS		
Sweep time:	Auto		
Resolution bandwidth:	1 MHz		
Video bandwidth:	≥ 3 x RBW		
Span:	See plots!		
Trace mode:	Max Hold		
Test setup:	See sub clause 7.2 – A		
Measurement uncertainty:	See chapter 9		

Limits:

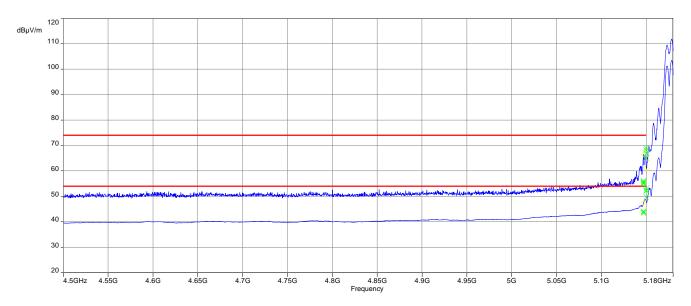
Band Edge Compliance Radiated

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

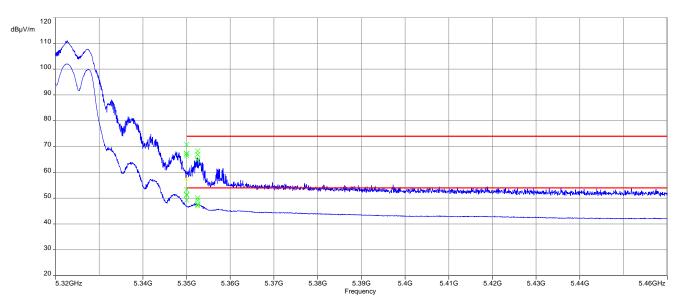
74 dBμV/m (peak) 54 dBμV/m (average)

© CTC advanced GmbH Page 55 of 142

Results:

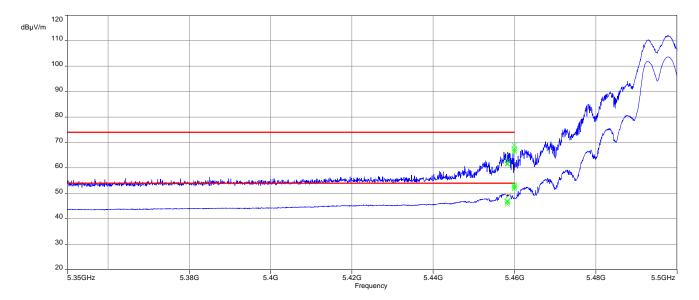

band edge compliance radiated / (dBµV / m) @ 3 m				
	lower band edge; U-NII-1;	upper band edge; U-NII-2A;	lower band edge; U-NII-2C;	
	lowest channel	highest channel	lowest channel	
a-mode	68.9 (Peak)	70.8 (Peak)	69.0 (Peak)	
	53.2 (AVG)	53.3 (AVG)	53.4 (AVG)	
n20-mode	70.4 (Peak)	69.7 (Peak)	68.5 (Peak)	
	53.0 (AVG)	53.1 (AVG)	53.1 (AVG)	
ac20-mode	69.9 (Peak)	70.2 (Peak)	69.8 (Peak)	
	53.2 (AVG)	53.5 (AVG)	53.1 (AVG)	
ax20-mode	70.4 (Peak)	70.7 (Peak)	72.6 (Peak)	
	53.8 (AVG)	53.8 (AVG)	52.5 (AVG)	
n40-mode	73.1 (Peak)	73.0 (Peak)	69.2 (Peak)	
	52.3 (AVG)	52.5 (AVG)	52.9 (AVG)	
ac40-mode	69.9 (Peak)	71.5 (Peak)	70.6 (Peak)	
	52.0 (AVG)	52.2 (AVG)	52.3 (AVG)	
ax40-mode	73.9 (Peak)	73.9 (Peak)	73.8 (Peak)	
	53.4 (AVG)	53.9 (AVG)	53.3 (AVG)	
ac80-mode	72.0 (Peak)	72.0 (Peak)	69.7 (Peak)	
	53.9 (AVG)	52.6 (AVG)	53.1 (AVG)	
ax80-mode	69.0 (Peak)	70.9 (Peak)	69.8 (Peak)	
	51.1 (AVG)	53.6 (AVG)	53.5 (AVG)	

© CTC advanced GmbH Page 56 of 142



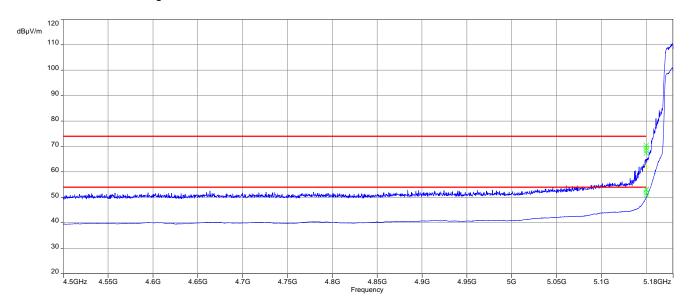
Plots: a-Mode

Plot 1: lower band edge; U-NII-1; lowest channel

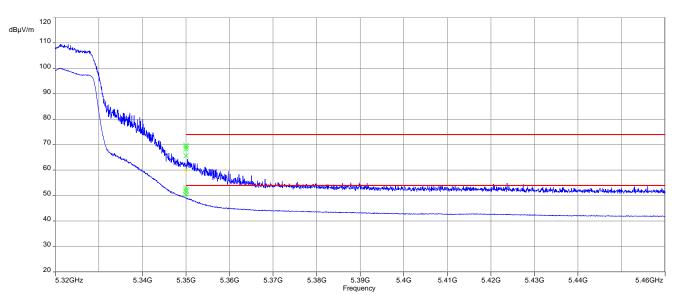

Plot 2: upper band edge; U-NII-2A; highest channel

© CTC advanced GmbH Page 57 of 142

Plot 3: lower band edge; U-NII-2C; lowest channel

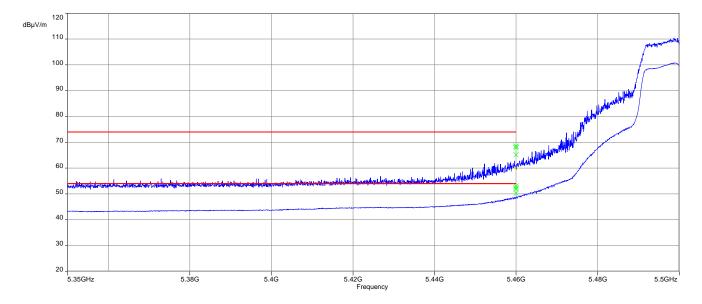


© CTC advanced GmbH Page 58 of 142



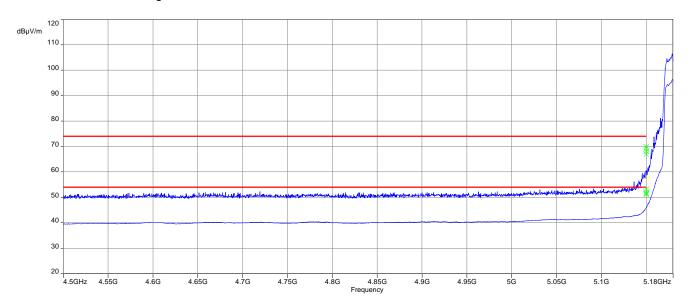
Plots: n20-Mode

Plot 4: lower band edge; U-NII-1; lowest channel

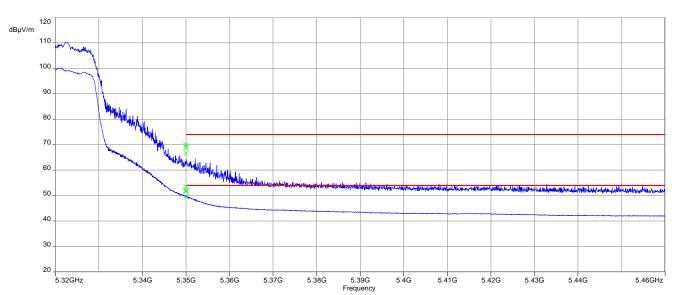

Plot 5: upper band edge; U-NII-2A; highest channel

© CTC advanced GmbH Page 59 of 142

Plot 6: lower band edge; U-NII-2C; lowest channel

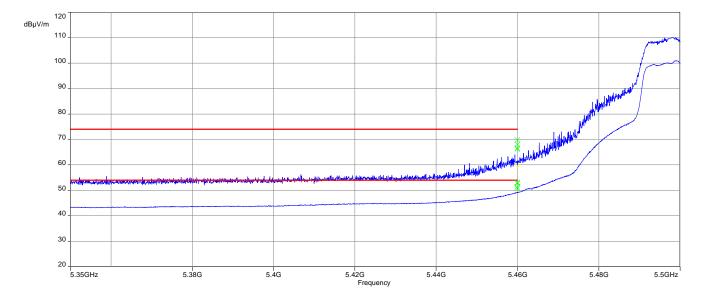


© CTC advanced GmbH Page 60 of 142



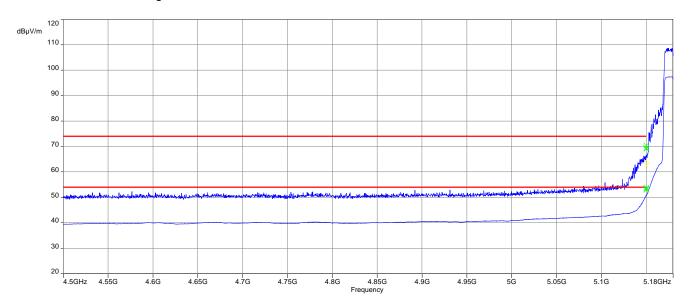
Plots: ac20-Mode

Plot 7: lower band edge; U-NII-1; lowest channel

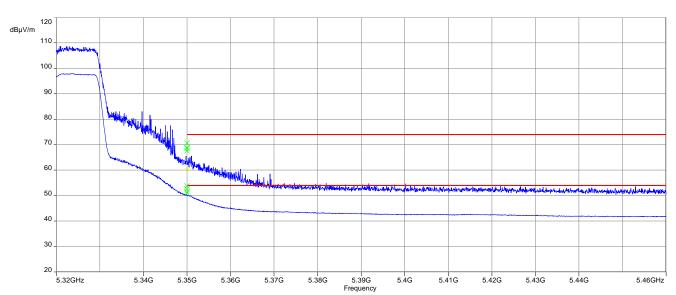

Plot 8: upper band edge; U-NII-2A; highest channel

© CTC advanced GmbH Page 61 of 142

Plot 9: lower band edge; U-NII-2C; lowest channel

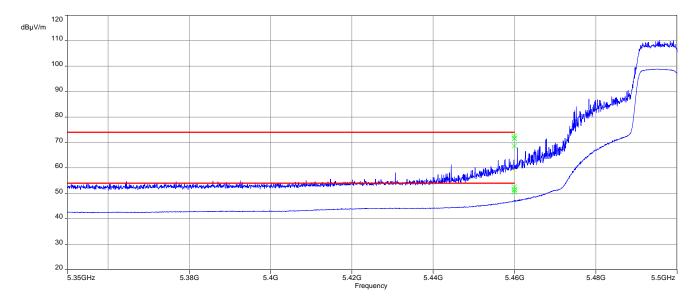


© CTC advanced GmbH Page 62 of 142



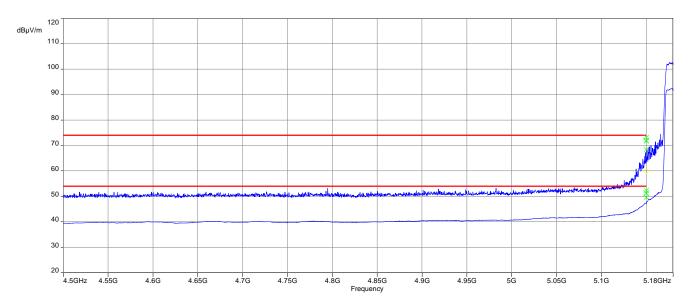
Plots: ax20-Mode

Plot 10: lower band edge; U-NII-1; lowest channel

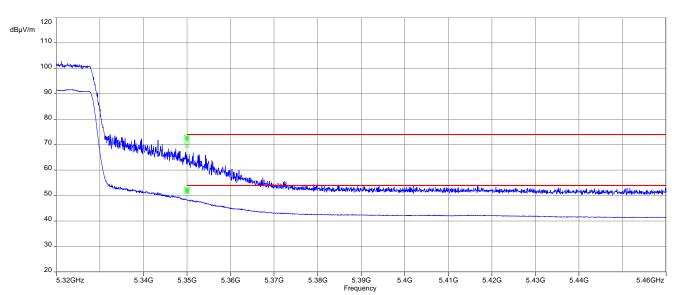

Plot 11: upper band edge; U-NII-2A; highest channel

© CTC advanced GmbH Page 63 of 142

Plot 12: lower band edge; U-NII-2C; lowest channel

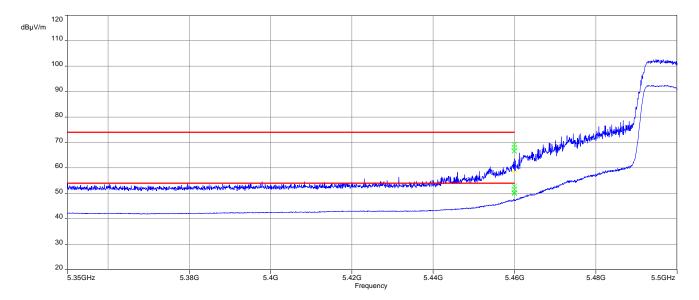


© CTC advanced GmbH Page 64 of 142



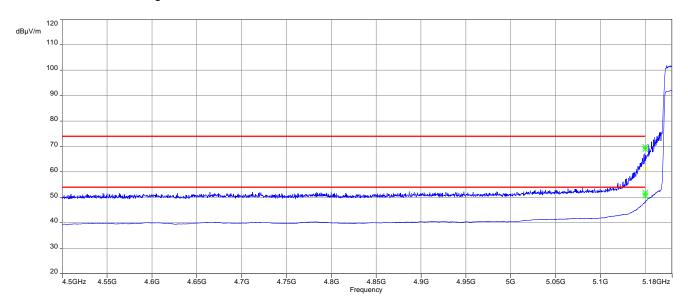
Plots: n40-Mode

Plot 13: lower band edge; U-NII-1; lowest channel

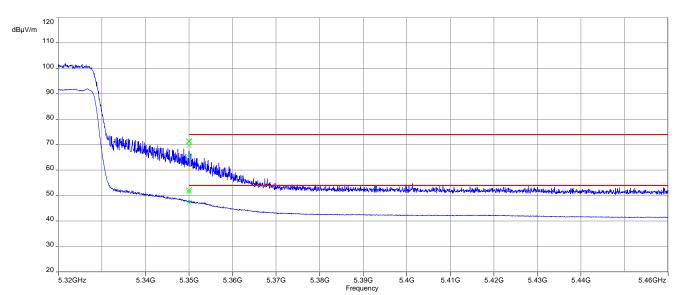

Plot 14: upper band edge; U-NII-2A; highest channel

© CTC advanced GmbH Page 65 of 142

Plot 15: lower band edge; U-NII-2C; lowest channel

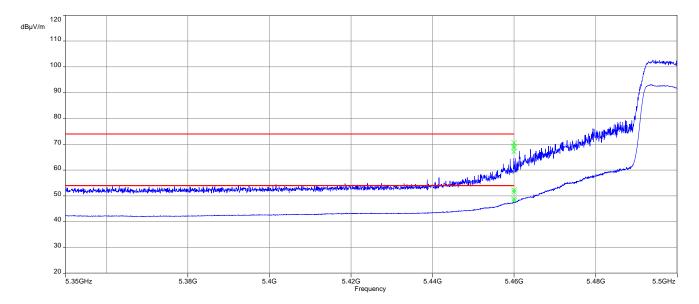


© CTC advanced GmbH Page 66 of 142



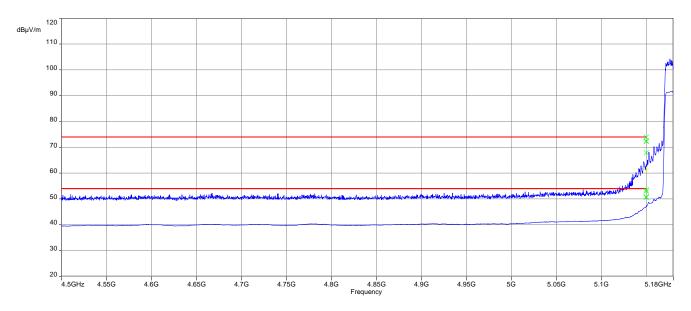
Plots: ac40-Mode

Plot 16: lower band edge; U-NII-1; lowest channel

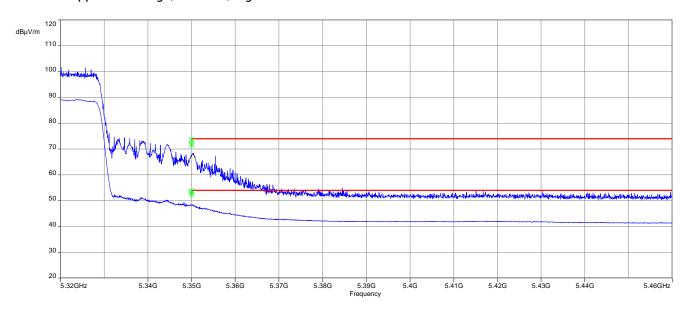

Plot 17: upper band edge; U-NII-2A; highest channel

© CTC advanced GmbH Page 67 of 142

Plot 18: lower band edge; U-NII-2C; lowest channel

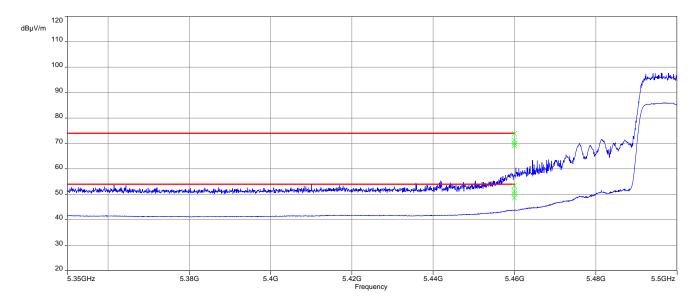


© CTC advanced GmbH Page 68 of 142



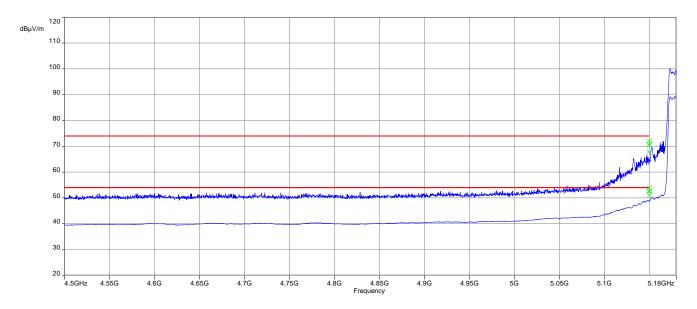
Plots: ax40-Mode

Plot 19: lower band edge; U-NII-1; lowest channel

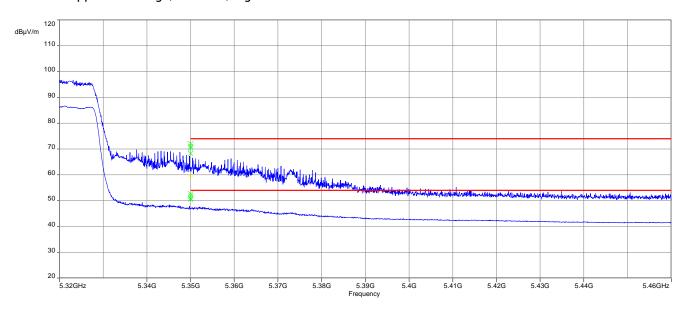

Plot 20: upper band edge; U-NII-2A; highest channel

© CTC advanced GmbH Page 69 of 142

Plot 21: lower band edge; U-NII-2C; lowest channel

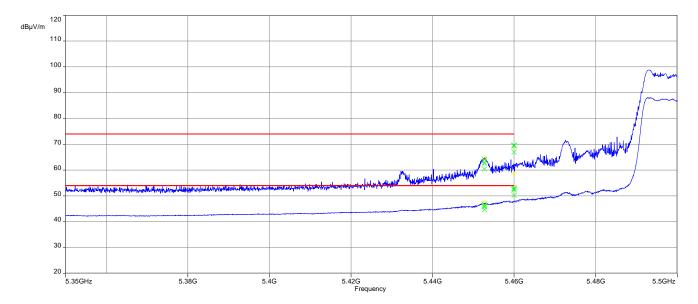


© CTC advanced GmbH Page 70 of 142



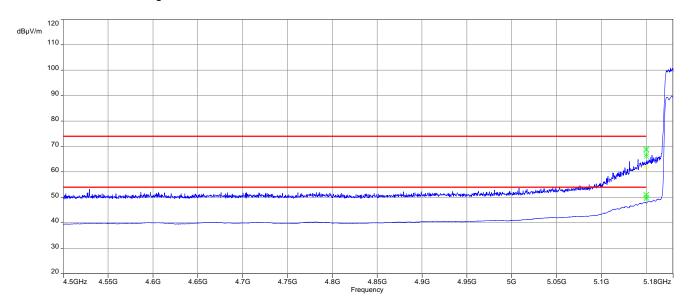
Plots: ac80-Mode

Plot 22: lower band edge; U-NII-1; lowest channel

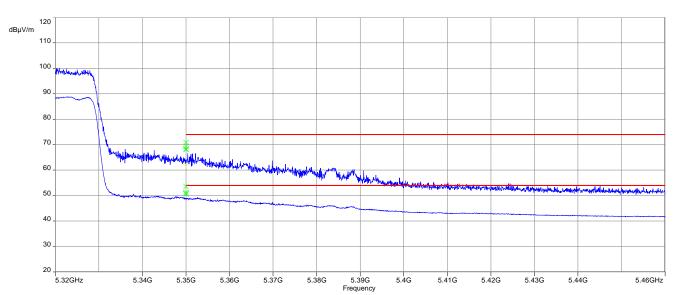

Plot 23: upper band edge; U-NII-2A; highest channel

© CTC advanced GmbH Page 71 of 142

Plot 24: lower band edge; U-NII-2C; lowest channel

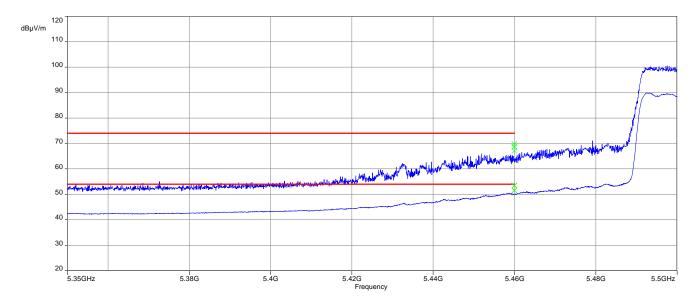


© CTC advanced GmbH Page 72 of 142



Plots: ax80-Mode

Plot 25: lower band edge; U-NII-1; lowest channel


Plot 26: upper band edge; U-NII-2A; highest channel

© CTC advanced GmbH Page 73 of 142

Plot 27: lower band edge; U-NII-2C; lowest channel

© CTC advanced GmbH Page 74 of 142

Test report no.: 1-4095/22-01-05-A

12.9 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are re-calculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

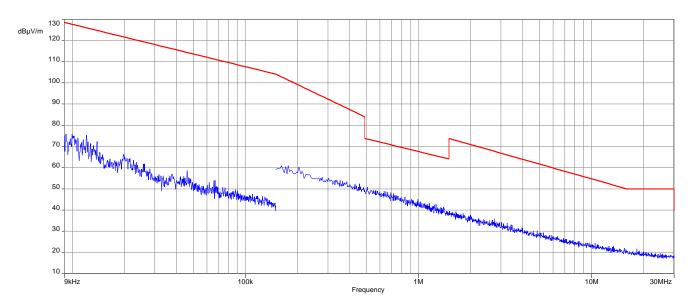
Measurement:

Measurement parameter							
Detector:	Peak / Quasi Peak						
Sweep time:	Auto						
Video bandwidth:	F < 150 kHz: 200 Hz						
Video balluwidtii.	F > 150 kHz: 9 kHz						
Resolution bandwidth:	F < 150 kHz: 1 kHz						
nesolution balluwidth.	F > 150 kHz: 100 kHz						
Span:	9 kHz to 30 MHz						
Trace mode:	Max Hold						
Test setup:	See sub clause 7.2 – A						
Measurement uncertainty:	See chapter 9						

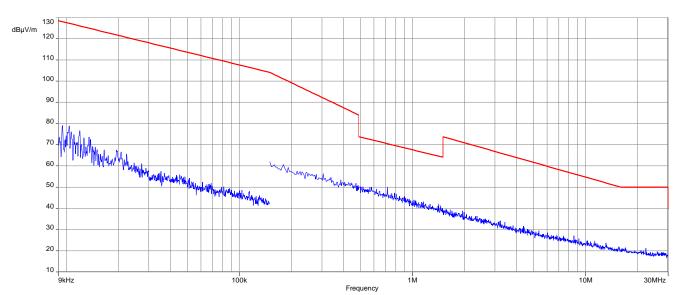
Limits:

Spurious Emissions Radiated < 30 MHz						
Frequency (MHz)	Measurement distance					
0.009 - 0.490	2400/F(kHz)	300				
0.490 - 1.705	24000/F(kHz)	30				
1.705 – 30.0	30	30				

Results:

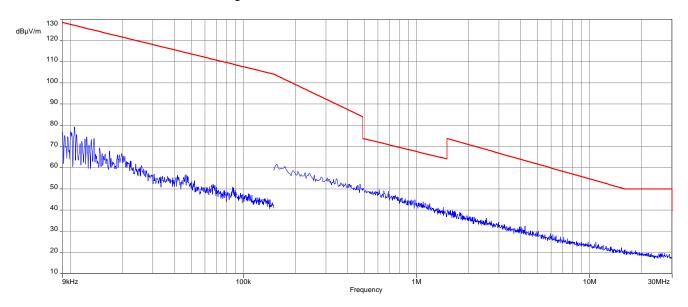

Spurious Emissions Radiated < 30 MHz [dBµV/m]							
F [MHz] Detector Level [dBµV/m]							
All detected emissions are more than 20 dB below the limit.							

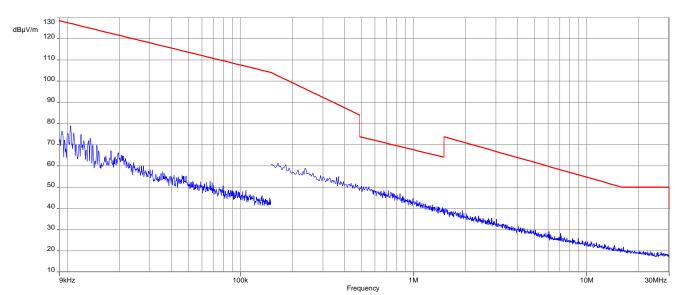
© CTC advanced GmbH Page 75 of 142



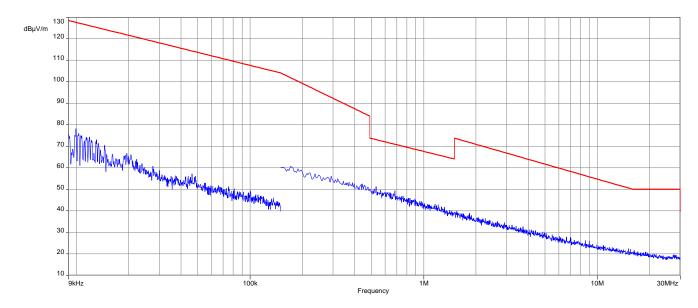
Plots: 20 MHz channel bandwidth

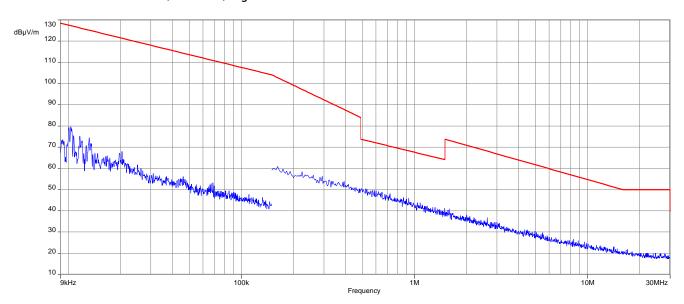
Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel


Plot 2: 9 kHz to 30 MHz, U-NII-1; middle channel

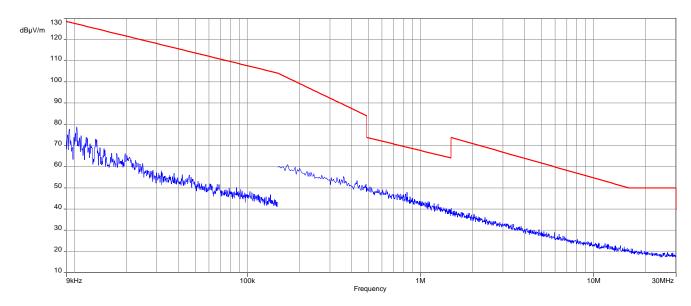

© CTC advanced GmbH Page 76 of 142

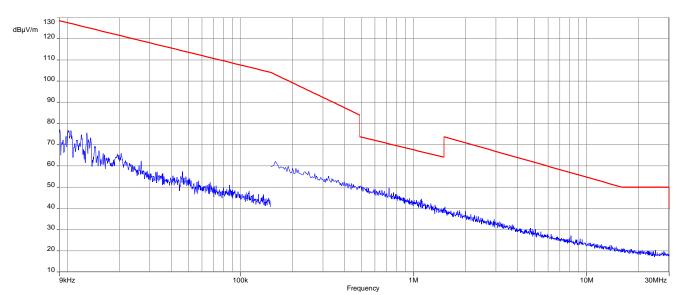
Plot 3: 9 kHz to 30 MHz, U-NII-1; highest channel


Plot 4: 9 kHz to 30 MHz, U-NII-2A; lowest channel

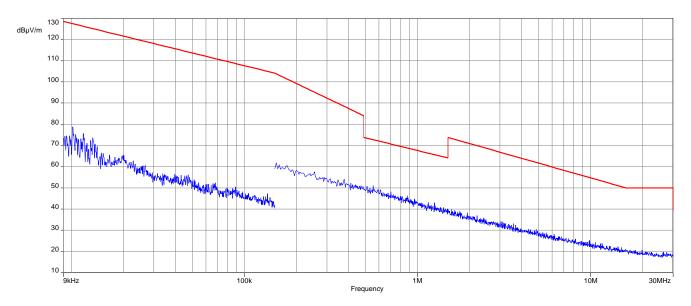

© CTC advanced GmbH Page 77 of 142

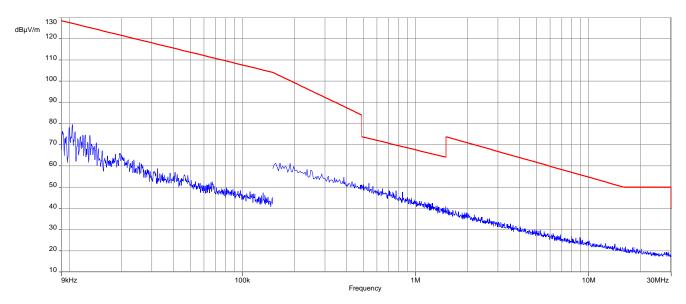
Plot 5: 9 kHz to 30 MHz, U-NII-2A; middle channel


Plot 6: 9 kHz to 30 MHz, U-NII-2A; highest channel

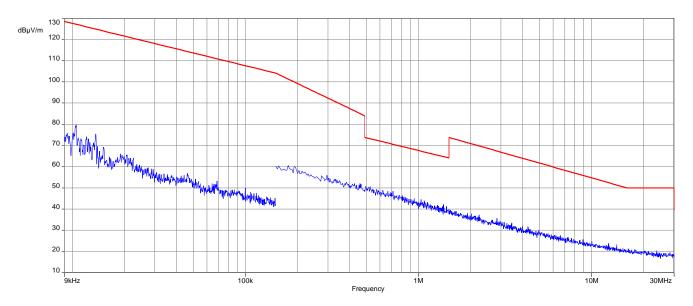

© CTC advanced GmbH Page 78 of 142

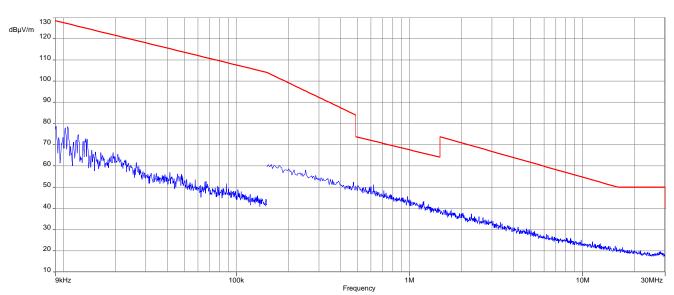
Plot 7: 9 kHz to 30 MHz, U-NII-2C; lowest channel


Plot 8: 9 kHz to 30 MHz, U-NII-2C; middle channel


© CTC advanced GmbH Page 79 of 142

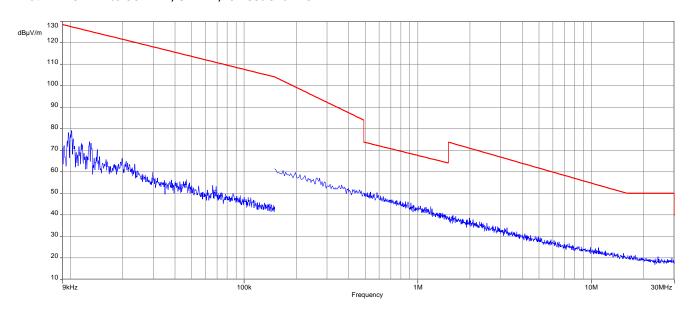
Plot 9: 9 kHz to 30 MHz, U-NII-2C; highest channel


Plot 10: 9 kHz to 30 MHz, U-NII-3; lowest channel

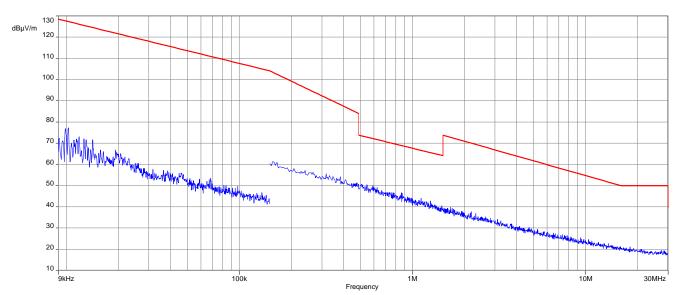

© CTC advanced GmbH Page 80 of 142

Plot 11: 9 kHz to 30 MHz, U-NII-3; middle channel

Plot 12: 9 kHz to 30 MHz, U-NII-3; highest channel

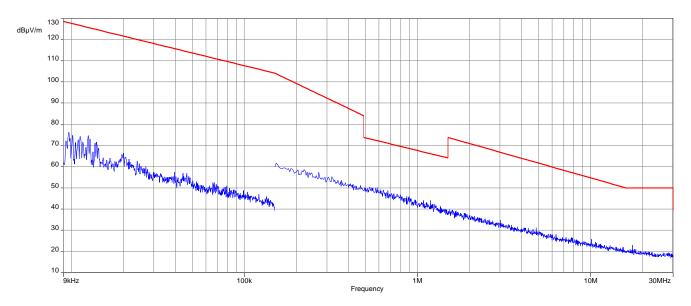


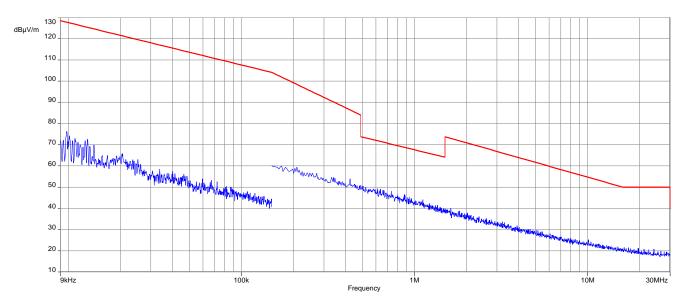
© CTC advanced GmbH Page 81 of 142



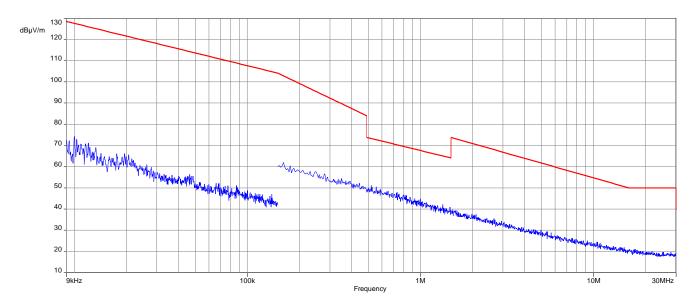
Plots: 40 MHz channel bandwidth

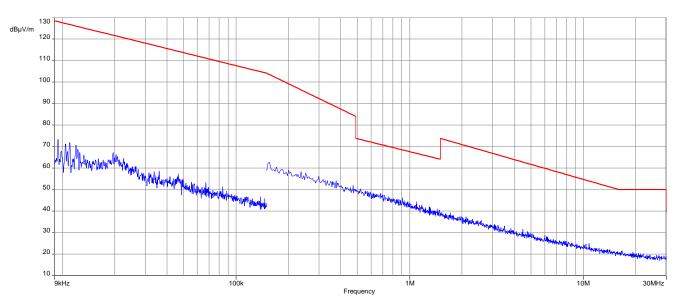
Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel


Plot 2: 9 kHz to 30 MHz, U-NII-1; highest channel

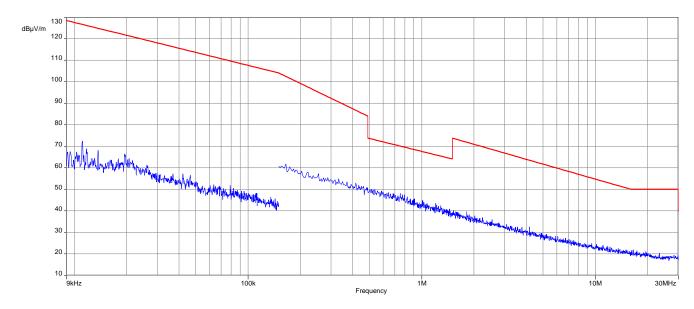

© CTC advanced GmbH Page 82 of 142

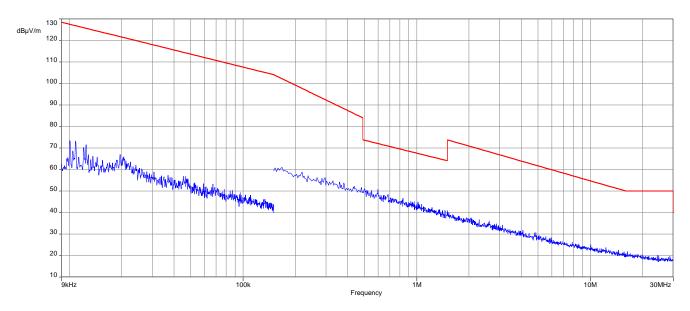
Plot 3: 9 kHz to 30 MHz, U-NII-2A; lowest channel


Plot 4: 9 kHz to 30 MHz, U-NII-2A; highest channel

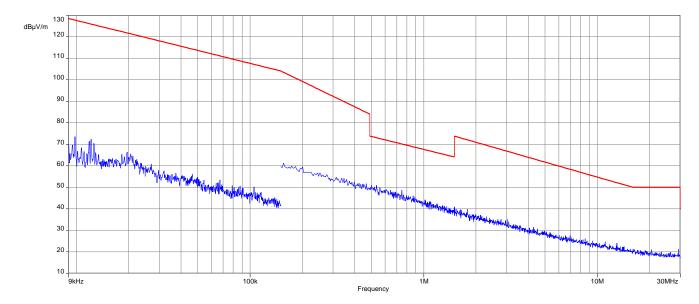

© CTC advanced GmbH Page 83 of 142

Plot 5: 9 kHz to 30 MHz, U-NII-2C; lowest channel


Plot 6: 9 kHz to 30 MHz, U-NII-2C; middle channel

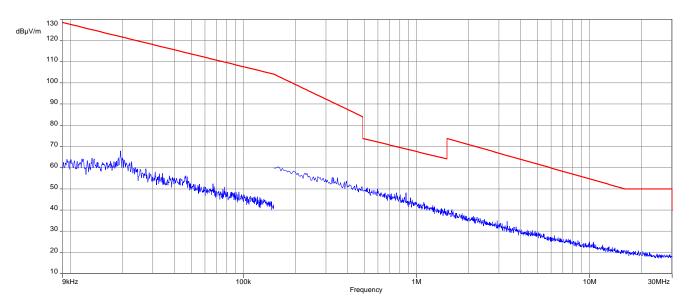

© CTC advanced GmbH Page 84 of 142

Plot 7: 9 kHz to 30 MHz, U-NII-2C; highest channel

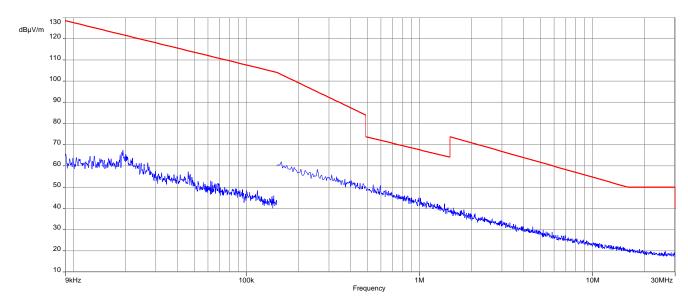

Plot 8: 9 kHz to 30 MHz, U-NII-3; lowest channel

© CTC advanced GmbH Page 85 of 142

Plot 9: 9 kHz to 30 MHz, U-NII-3; highest channel

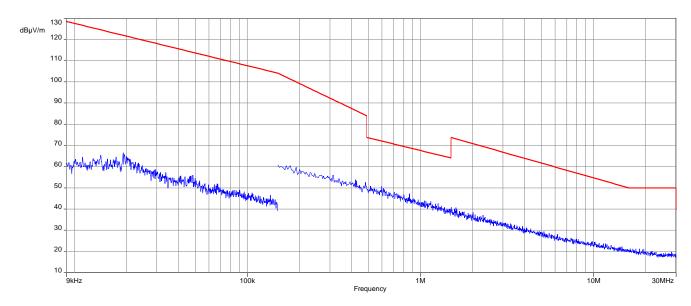


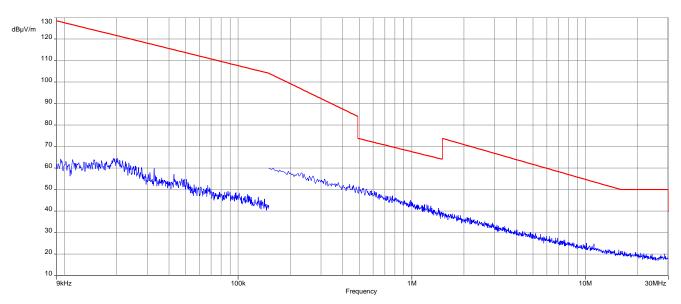
© CTC advanced GmbH Page 86 of 142



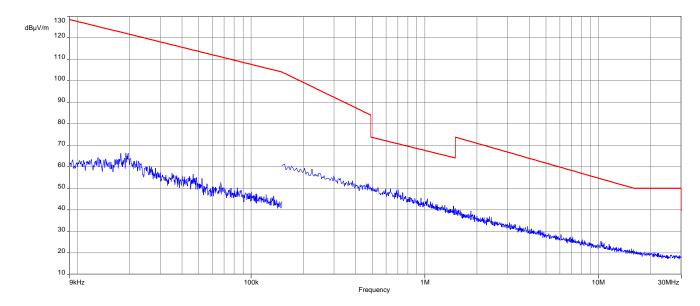
Plots: 80 MHz channel bandwidth

Plot 1: 9 kHz to 30 MHz, U-NII-1; middle channel


Plot 2: 9 kHz to 30 MHz, U-NII-2A; middle channel


© CTC advanced GmbH Page 87 of 142

Plot 3: 9 kHz to 30 MHz, U-NII-2C; lowest channel


Plot 4: 9 kHz to 30 MHz, U-NII-2C; highest channel

© CTC advanced GmbH Page 88 of 142

Plot 5: 9 kHz to 30 MHz, U-NII-3; middle channel

© CTC advanced GmbH Page 89 of 142

Test report no.: 1-4095/22-01-05-A

12.10 Spurious emissions radiated 30 MHz to 1 GHz

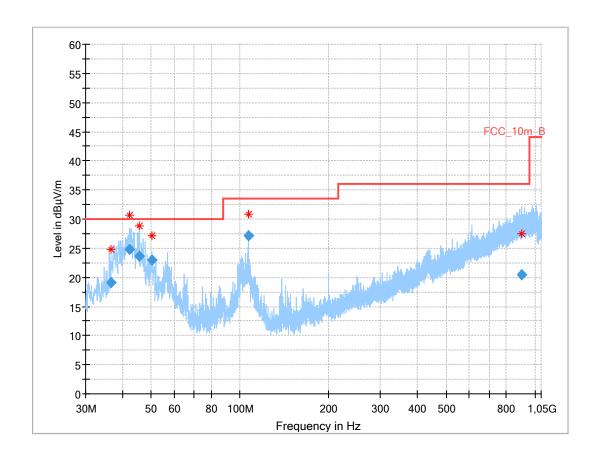
Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

Measurement:

Measurement parameter					
Detector:	Quasi Peak				
Sweep time:	Auto				
Resolution bandwidth:	120 kHz				
Video bandwidth:	500 kHz				
Span:	30 MHz to 1 GHz				
Test setup:	See sub clause 7.1 – A				
Measurement uncertainty:	See chapter 9				

Limits:

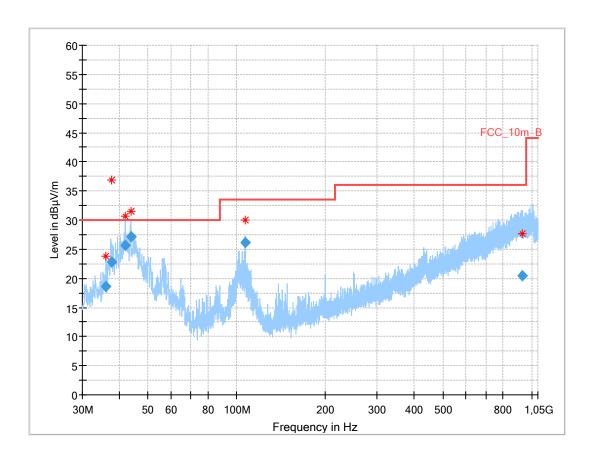

TX Spurious Emissions Radiated							
§15.209							
Frequency (MHz) Field Strength (dBµV/m) Measurement distance							
30 - 88	30.0	10					
88 – 216	33.5	10					
216 – 960	36.0	10					
Above 960	54.0	3					
§15.407							
Outside the restricted bands! -27 dBm / MHz							

© CTC advanced GmbH Page 90 of 142

Plots: 20 MHz channel bandwidth a-mode, valid for all bands and channels of a-mode

Plot 1: 30 MHz to 1 GHz; vertical & horizontal polarization

Results:

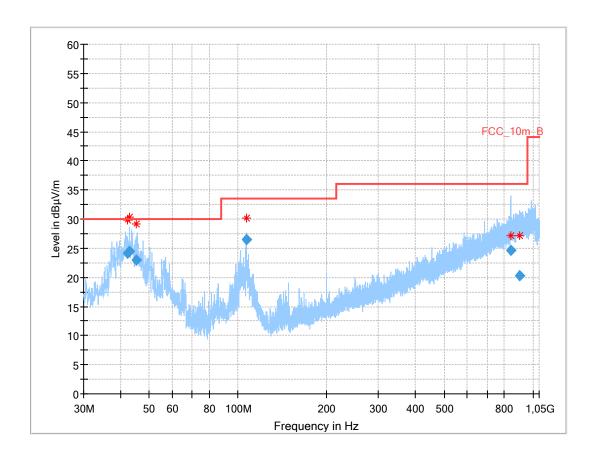

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.650	19.10	30.0	10.9	1000	120.0	112.0	٧	254	15
42.100	24.78	30.0	5.2	1000	120.0	151.0	٧	90	16
45.761	23.60	30.0	6.4	1000	120.0	220.0	٧	309	16
50.460	22.90	30.0	7.1	1000	120.0	100.0	٧	67	16
106.682	27.09	33.5	6.4	1000	120.0	107.0	٧	326	14
902.574	20.51	36.0	15.5	1000	120.0	248.0	٧	0	26

© CTC advanced GmbH Page 91 of 142

Plots: 20 MHz channel bandwidth n20-mode, valid for all bands and channels of 20 MHz modes

Plot 2: 30 MHz to 1 GHz; vertical & horizontal polarization

Results:

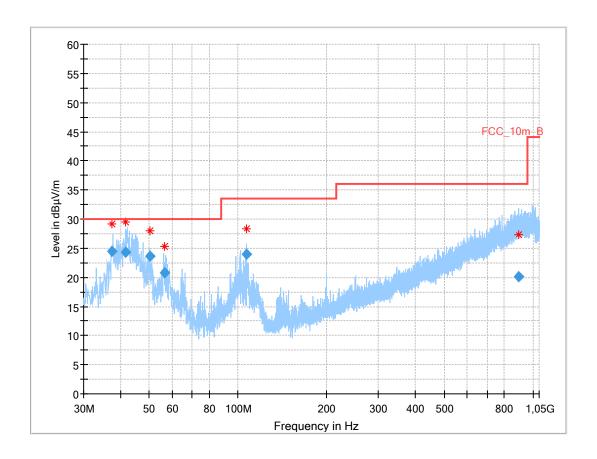

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.125	18.57	30.0	11.4	1000	120.0	285.0	٧	308	14
37.775	22.79	30.0	7.2	1000	120.0	173.0	٧	307	15
42.063	25.66	30.0	4.3	1000	120.0	104.0	٧	-39	16
43.798	27.08	30.0	2.9	1000	120.0	100.0	٧	337	16
106.692	26.22	33.5	7.3	1000	120.0	106.0	٧	309	14
931.589	20.53	36.0	15.5	1000	120.0	167.0	Н	180	26

© CTC advanced GmbH Page 92 of 142

Plots: 40 MHz channel bandwidth n40-mode, valid for all bands and channels of 40 MHz modes

Plot 1: 30 MHz to 1 GHz; vertical & horizontal polarization

Results:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
42.117	24.16	30.0	5.8	1000	120.0	120.0	٧	258	16
42.907	24.45	30.0	5.6	1000	120.0	200.0	٧	225	16
45.246	22.94	30.0	7.1	1000	120.0	200.0	٧	29	16
106.688	26.56	33.5	6.9	1000	120.0	106.0	٧	278	14
839.785	24.72	36.0	11.3	1000	120.0	200.0	٧	225	24
902.324	20.30	36.0	15.7	1000	120.0	297.0	٧	266	26

© CTC advanced GmbH Page 93 of 142

Plots: 80 MHz channel bandwidth, valid for all bands and channels of 80 MHz modes

Plot 1: 30 MHz to 1 GHz; vertical & horizontal polarization

Results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
37.526	24.44	30.0	5.6	1000	120.0	112.0	٧	207	15
41.600	24.29	30.0	5.7	1000	120.0	109.0	٧	250	16
50.450	23.68	30.0	6.3	1000	120.0	123.0	٧	309	16
56.553	20.78	30.0	9.2	1000	120.0	159.0	٧	206	16
106.701	24.05	33.5	9.5	1000	120.0	282.0	٧	313	14
892.023	20.18	36.0	15.8	1000	120.0	400.0	Н	87	25

© CTC advanced GmbH Page 94 of 142

Test report no.: 1-4095/22-01-05-A

12.11 Spurious emissions radiated 1 GHz to 40 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations from 1 GHz to 40 GHz.

Measurement:

Measurement parameter	
	Quasi Peak below 1 GHz
Detector:	(alternative Peak)
	Peak above 1 GHz / RMS
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Span:	1 GHz to 40 GHz
Transmada	Max Hold / Average with 100 counts + 20 log (1 / X)
Trace mode:	for duty cycle lower than 100 %
Test setup:	See sub clause 7.2 – A
τε ει ει το ει	See sub clause 7.3 – A+B
Measurement uncertainty:	See chapter 9

Limits:

TX Spurious Emissions Radiated							
§15.209							
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance					
Above 960	54.0	3					
	§15.407						
Outside the restricted bands! -27 dBm / MHz							

Note: The 26GHz to 40GHz plots are valid for more than one channel and are partly identical.

© CTC advanced GmbH Page 95 of 142

Results: 20 MHz channel bandwidth

	TX Spurious Emissions Radiated [dBµV/m] / dBm									
	U-NII-1 (5150 MHz to 5250 MHz)									
L	owest chanr	nel	М	iddle chanr	el	Hi	Highest channel			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
15540	Peak	60.0	15606	Peak	59.8	15724	Peak	60.1		
15540	AVG	50.6	15606	AVG	49.4		AVG	50.7		
For emissions above 18 GHz			For emissions above 18 GHz			For emissions above 18 GHz				
please take look at the plots.			please ta	ake look at t	he plots.	please take look at the plots.				

	TX Spurious Emissions Radiated [dBµV/m] / dBm								
	U-NII-2A (5250 MHz to 5350 MHz)								
Lowest channel			Middle channel			Highest channel			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
1.5700	Peak	61.7	15046	Peak	59.9	15960	Peak	61.2	
15780	AVG	51.7	15846	AVG	49.5		AVG	51.9	
For emissions above 18 GHz		For emissions above 18 GHz			For emissions above 18 GHz				
please take look at the plots.		please take look at the plots.			please take look at the plots.				

	TX Spurious Emissions Radiated [dBµV/m] / dBm								
	U-NII-2C (5470 MHz to 5725 MHz)								
	Lowest chann	el	М	iddle chann	el	Hi	ghest chanr	nel	
F [MHz]	Detector	Level	F [MHz]	Detector	Level	F [MHz]	Detector	Level	
r [ivinz]	Detector	[dBµV/m]	r [iviriz]	Detector	[dBµV/m]	r [iviriz]	Detector	[dBµV/m]	
11000	Peak	52.5	11200	Peak	57.1	11400	Peak	57.9	
11000	AVG	43.6	11200	AVG	47.7		AVG	48.9	
16500	Peak	72.0	16800	Peak	67.8	17100	Peak	56.5	
10000	AVG	60.6	10000	AVG	56.7	17100	AVG	68.0	
For emissions above 18 GHz		For emissions above 18 GHz			For emissions above 18 GHz				
please take look at the plots.			please take look at the plots.			please take look at the plots.			

	TX Spurious Emissions Radiated [dBµV/m] / dBm								
	U-NII-3 (5725 MHz to 5850 MHz)								
L	owest chanr	nel	М	iddle chann	el	Hi	ghest chanr	nel	
F [MHz]	Detector	Level [dBµV/m]	F [MHz] Detector Level [dBµV/m]		F [MHz]	Detector	Level [dBµV/m]		
11488	Peak	60.1	11570	Peak	60.8	11652	Peak	60.9	
11466	AVG	52.2	11572	AVG	52.3		AVG	52.4	
17230	Peak	68.3	17355	Peak	68.6	17475	Peak	68.6	
17230	AVG 57.6		17333	AVG	57.2	17475	AVG	57.6	
For emissions above 18 GHz		For emissions above 18 GHz			For emissions above 18 GHz				
please t	ake look at t	the plots.	please take look at the plots.			please take look at the plots.			

© CTC advanced GmbH Page 96 of 142

Results: 40 MHz channel bandwidth

	TX Spurious Emissions Radiated [dBμV/m] / dBm							
	U-NII-1 (5150 MHz to 5250 MHz)							
	Lowest channel		Highest channel					
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]			
15500	Peak	59.3	15680	Peak	56.9			
15580	AVG	50.7	13000	AVG	48.6			
For emissions above 18 GHz please take look at the			For emissions above 18 GHz please take look at the					
	plots.			plots.				

	TX Spurious Emissions Radiated [dBµV/m] / dBm							
			U-NII-2A (5250 MHz to 5350 MHz)					
Lowest channel				Hi	Highest channel			
F [MHz]	Detector	Level [dBµV/m]		F [MHz]	Detector	Level [dBµV/m]		
15000	Peak	57.4		15026	Peak	56.0		
15800	AVG	49.5		15936	AVG	47.6		
For emissions above 18 GHz		e 18 GHz		For emis	ssions above	e 18 GHz		
please t	ake look at t	he plots.		please t	ake look at t	he plots.		

	TX Spurious Emissions Radiated [dBμV/m] / dBm							
	U-NII-2C (5470 MHz to 5725 MHz)							
L	owest chanr	nel	Middle channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
-/-	Peak	-/-	11172	Peak	51.9	11338	Peak	55.7
-/-	AVG	-/-	11172	AVG	42.3		AVG	46.5
For emissions above 18 GHz please take look at the plots.		For emissions above 18 GHz please take look at the plots.				ssions above ake look at t		

	TX Spurious Emissions Radiated [dBµV/m] / dBm						
	U-NII-3 (5725 MHz to 5850 MHz)						
Lowest channel				Hi	ighest chanr	nel	
F [MHz]	Detector	Level [dBµV/m]		F [MHz]	Detector	Level [dBµV/m]	
11498	Peak	54.8		11590	Peak	52.5	
11490	AVG	45.6		11390	AVG	61.2	
For emissions above 18 GHz		e 18 GHz		For emis	ssions above	e 18 GHz	
please t	ake look at t	he plots.		please t	ake look at t	he plots.	

© CTC advanced GmbH Page 97 of 142

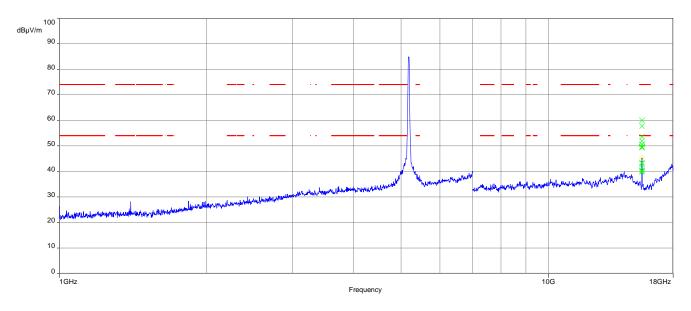
Test report no.: 1-4095/22-01-05-A

Results: 80 MHz channel bandwidth

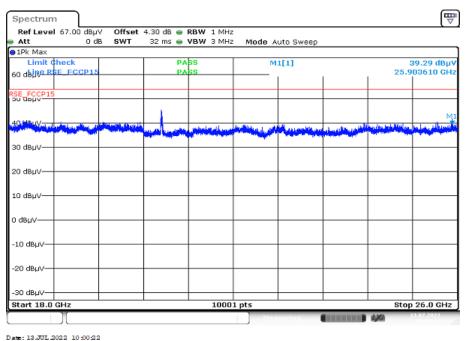
TX Spurious Emissions Radiated [dBμV/m] / dBm						
U-NII-1 (5150 MHz to 5250 MHz)						
Middle channel						
F [MHz]	Detector	Level [dBµV/m]				
15610	Peak	54.8				
15618	AVG	45.1				
For emissions above 18 GHz please take look at the plots.						

TX Spurious Emissions Radiated [dBµV/m] / dBm						
	U-NII-2A (5250 MHz to 5350 MHz)					
Middle channel						
F [MHz]	Detector	Level [dBµV/m]				
,	Peak	-/-				
-/	AVG	-/-				
For emissions above 18 GHz please take look at the plots.						

TX Spurious Emissions Radiated [dBμV/m] / dBm						
U-NII-2C (5470 MHz to 5725 MHz)						
Lowest channel			Highest channel			
,	Peak	-/-	11000	Peak	50.4	
-/-	AVG	-/-	11238	AVG	39.1	
For emissions above 18 GHz please take look at the			For emissions above 18 GHz please take look at the			
plots.			plots.			


TX Spurious Emissions Radiated [dBμV/m] / dBm						
U-NII-3 (5725 MHz to 5850 MHz)						
Middle channel						
F [MHz]	F [MHz] Detector Level [dBµV/m]					
11570	Peak	53.1				
11570	AVG	43.0				
For emissions above 18 GHz please take look at the plots.						

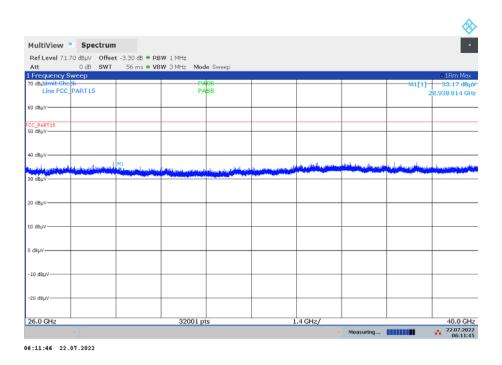
© CTC advanced GmbH Page 98 of 142



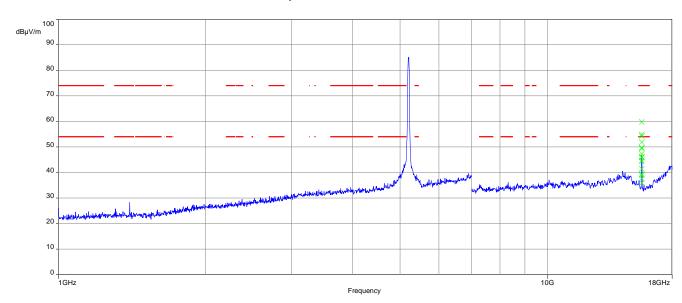
Plots: 20 MHz channel bandwidth

Plot 1: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; lowest channel

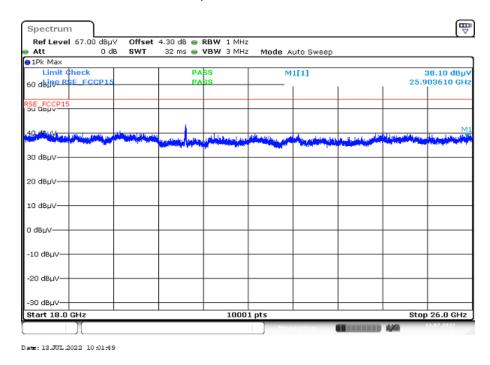
Plot 2: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; lowest channel



242.203022022 203022


© CTC advanced GmbH Page 99 of 142

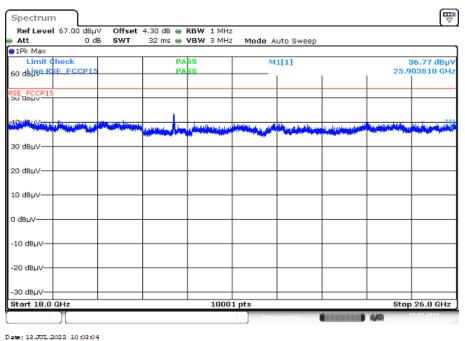
Plot 3: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; lowest channel


Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; middle channel

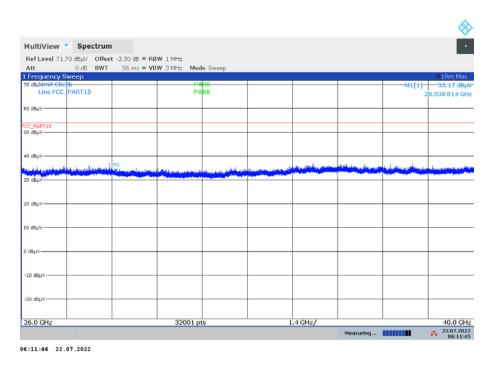

© CTC advanced GmbH Page 100 of 142

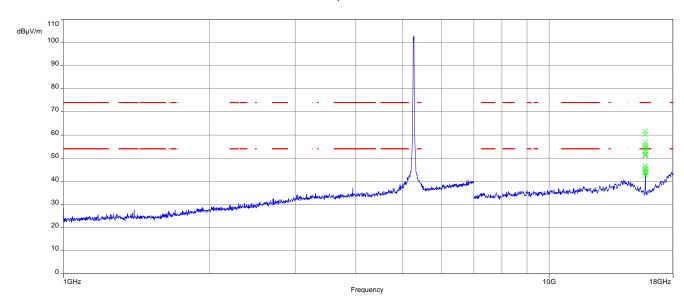
Plot 5: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; middle channel

Plot 6: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; middle channel

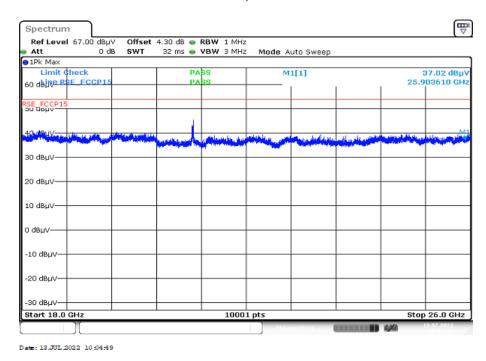

© CTC advanced GmbH Page 101 of 142

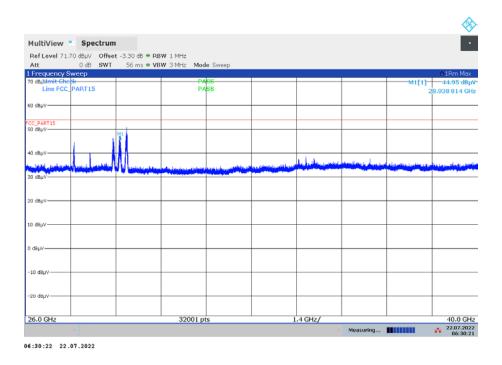
Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel


Plot 8: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; highest channel

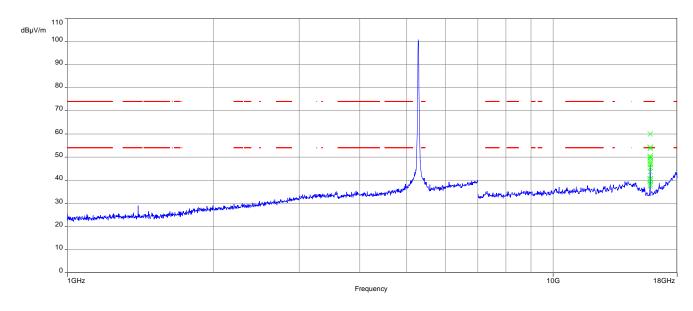

© CTC advanced GmbH Page 102 of 142

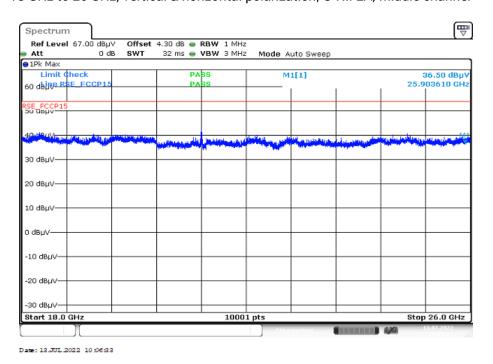
Plot 9: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; highest channel


Plot 10: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel

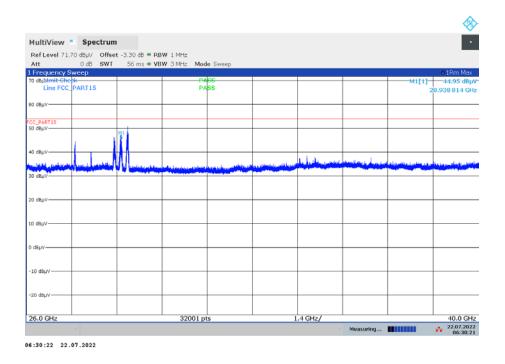

© CTC advanced GmbH Page 103 of 142

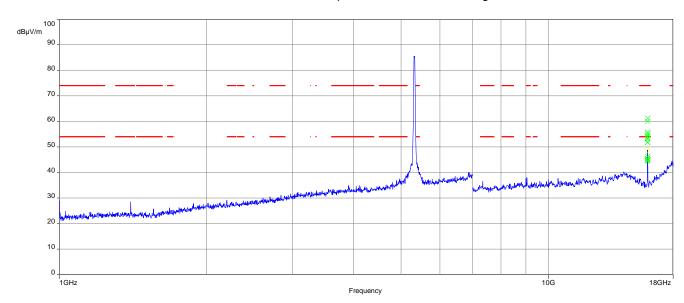
Plot 11: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel


Plot 12: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel

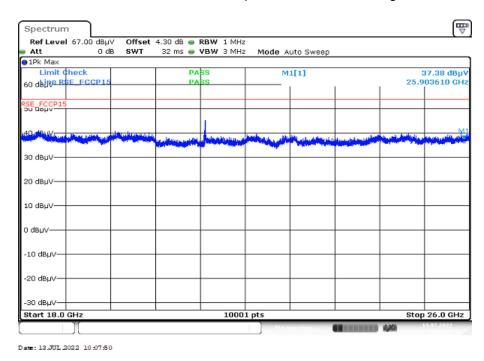

© CTC advanced GmbH Page 104 of 142

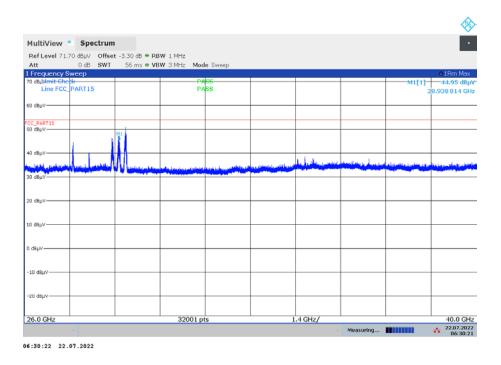
Plot 13: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; middle channel


Plot 14: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2A; middle channel

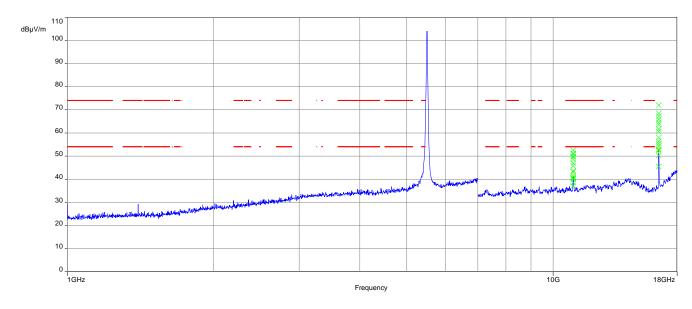

© CTC advanced GmbH Page 105 of 142

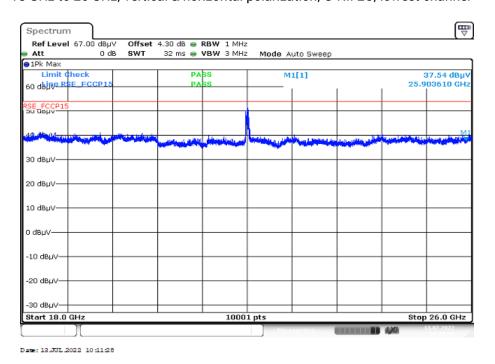
Plot 15: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2A; middle channel


Plot 16: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; highest channel

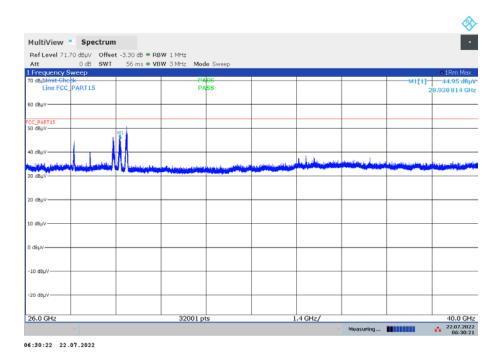

© CTC advanced GmbH Page 106 of 142

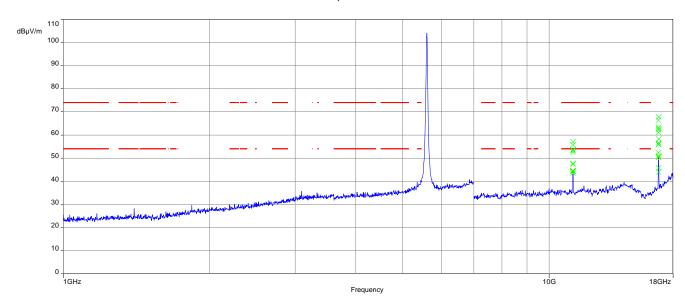
Plot 17: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2A; highest channel


Plot 18: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2A; highest channel

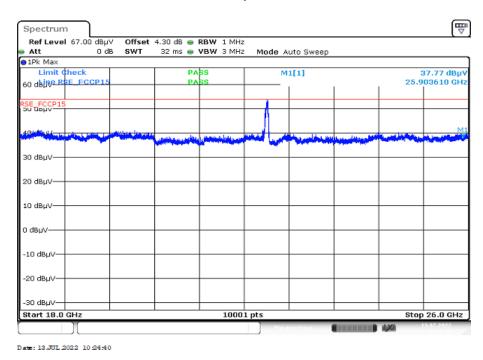

© CTC advanced GmbH Page 107 of 142

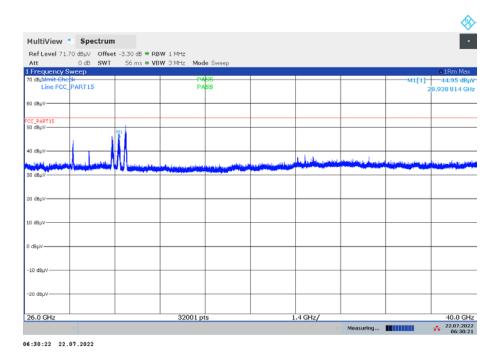
Plot 19: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel


Plot 20: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel

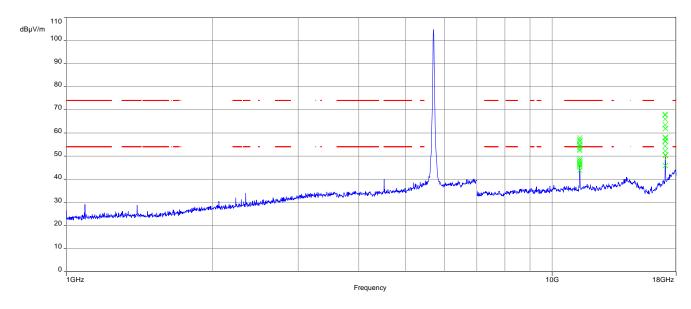

© CTC advanced GmbH Page 108 of 142

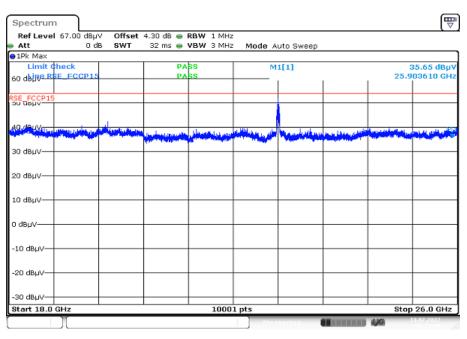
Plot 21: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel


Plot 22: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; middle channel


© CTC advanced GmbH Page 109 of 142

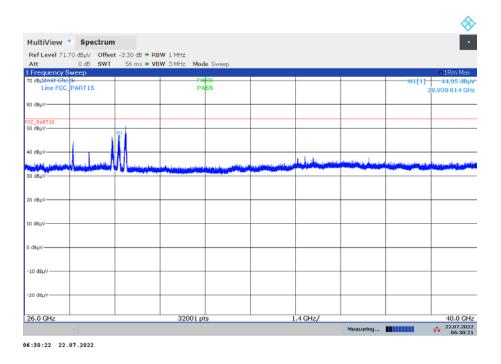
Plot 23: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2C; middle channel


Plot 24: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; middle channel


© CTC advanced GmbH Page 110 of 142

Plot 25: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel

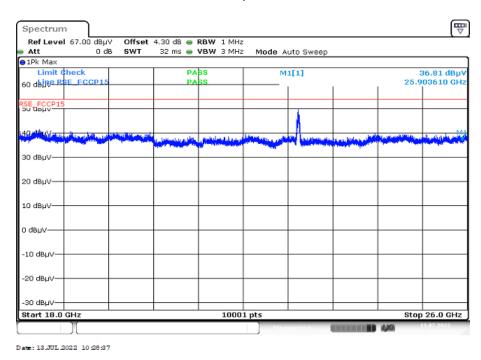
Plot 26: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2C; highest channel

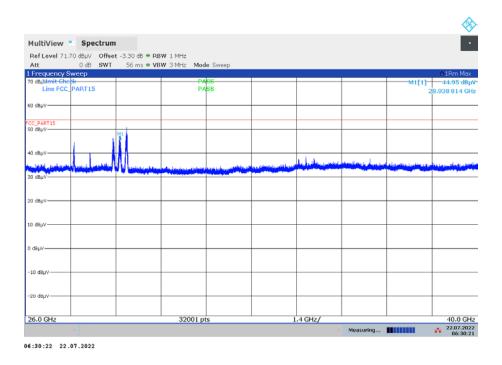


Date: 13.JUL 2022 10:26:01

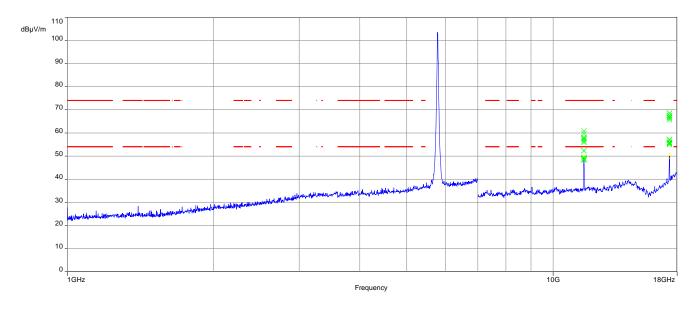
© CTC advanced GmbH Page 111 of 142

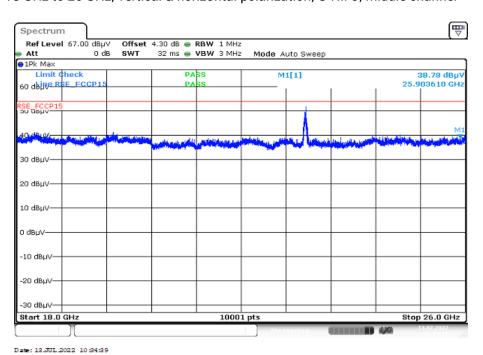
Plot 27: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; highest channel


Plot 28: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

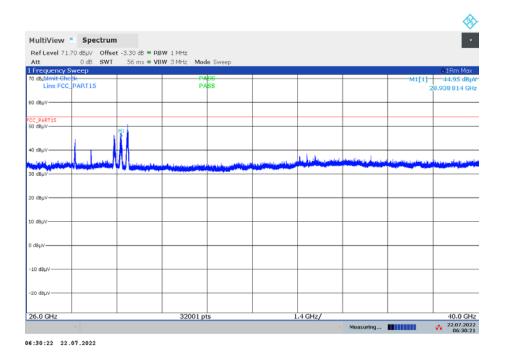

© CTC advanced GmbH Page 112 of 142

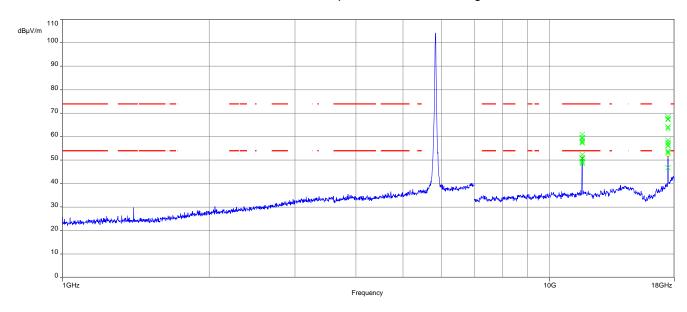
Plot 29: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; lowest channel


Plot 30: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

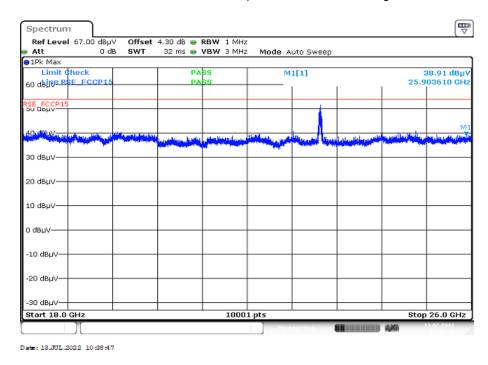

© CTC advanced GmbH Page 113 of 142

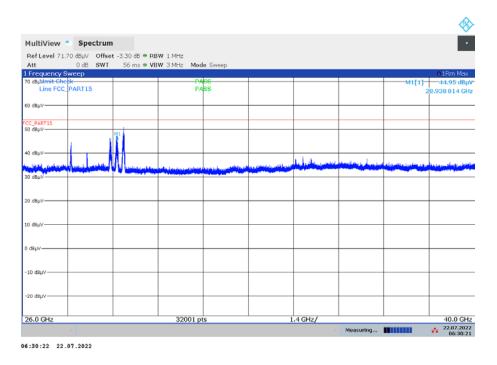
Plot 31: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; middle channel


Plot 32: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; middle channel


© CTC advanced GmbH Page 114 of 142

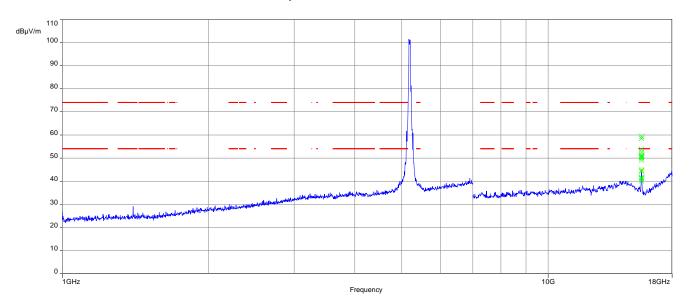
Plot 33: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; middle channel


Plot 34: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel

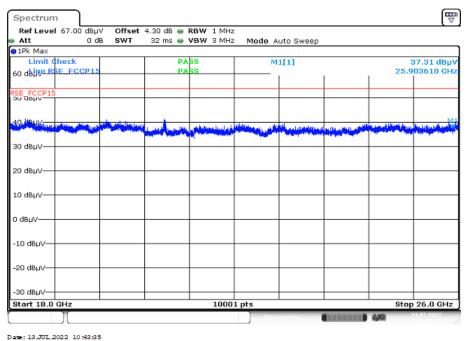

© CTC advanced GmbH Page 115 of 142

Plot 35: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; highest channel

Plot 36: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; highest channel

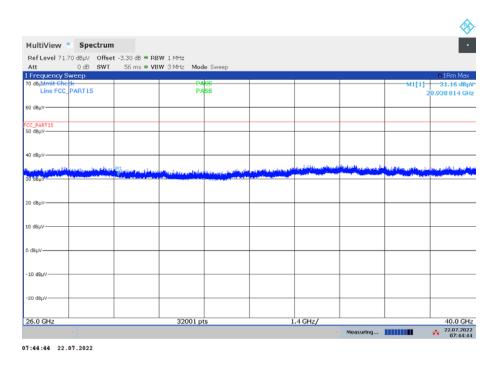


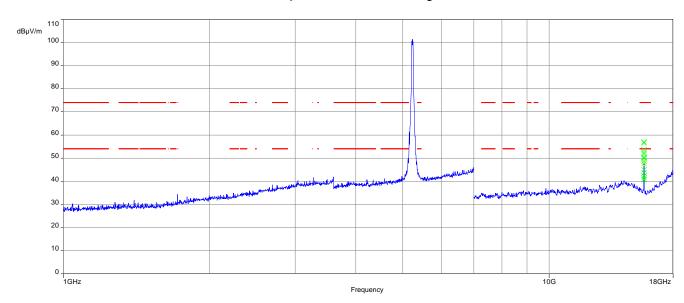
© CTC advanced GmbH Page 116 of 142



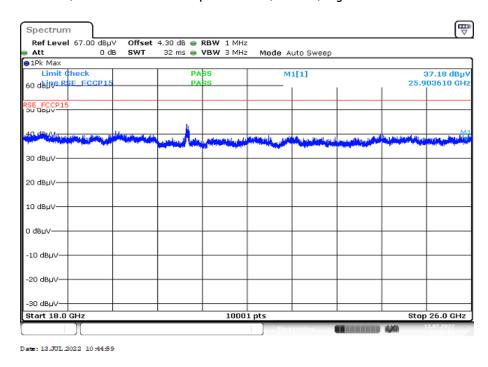
Plots: 40 MHz channel bandwidth

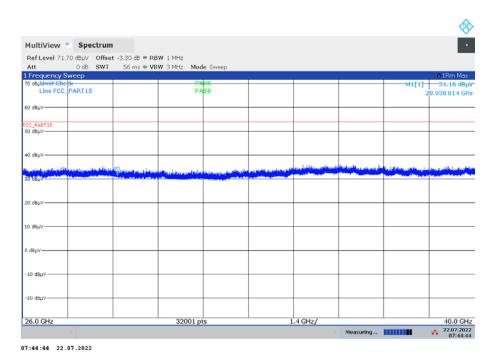
Plot 1: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; lowest channel


Plot 2: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; lowest channel

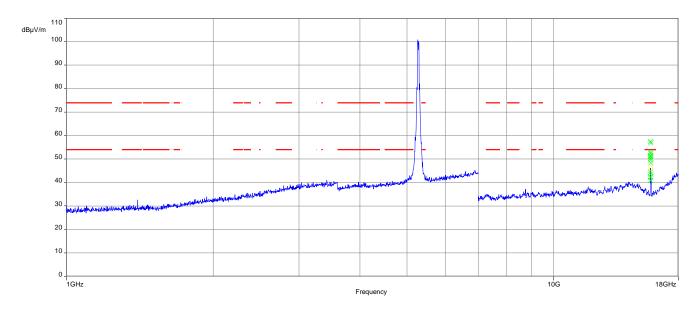

© CTC advanced GmbH Page 117 of 142

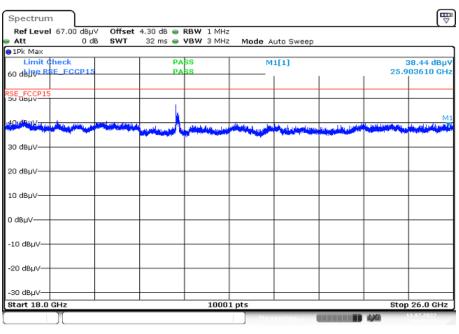
Plot 3: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; lowest channel


Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel


© CTC advanced GmbH Page 118 of 142

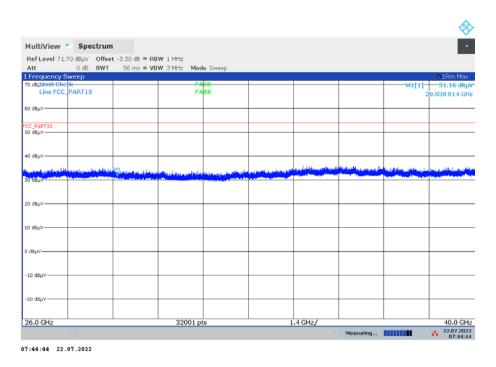
Plot 5: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; highest channel


Plot 6: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; highest channel

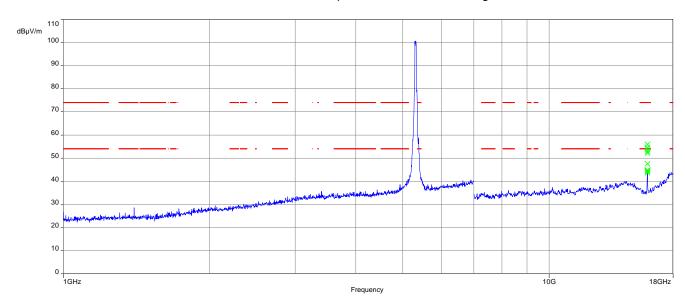

© CTC advanced GmbH Page 119 of 142

Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel

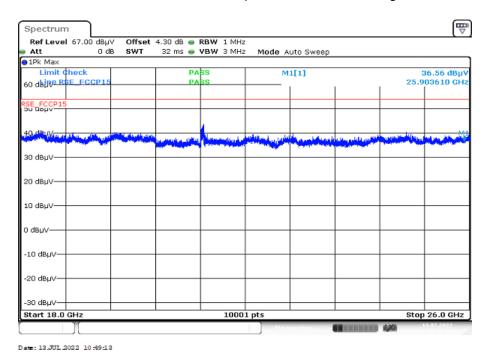
Plot 8: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel

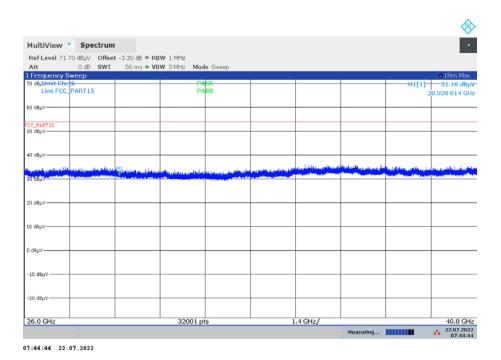


Date: 13.JUL 2022 10:47:26

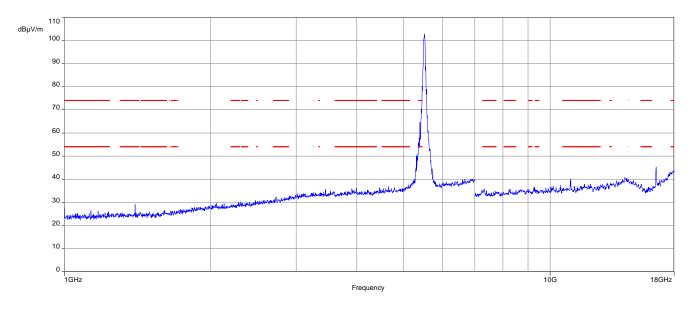

© CTC advanced GmbH Page 120 of 142

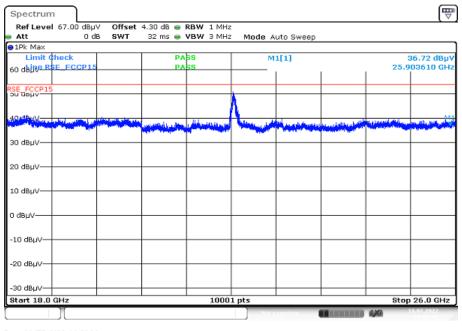
Plot 9: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel


Plot 10: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; highest channel


© CTC advanced GmbH Page 121 of 142

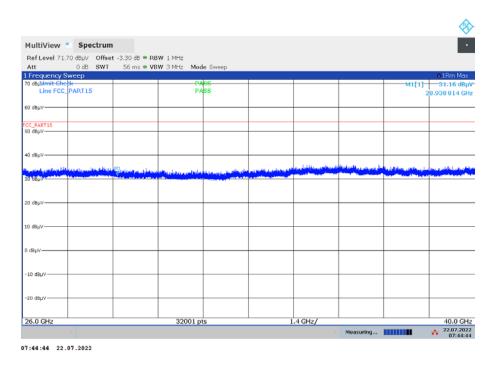
Plot 11: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2A; highest channel


Plot 12: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2A; highest channel

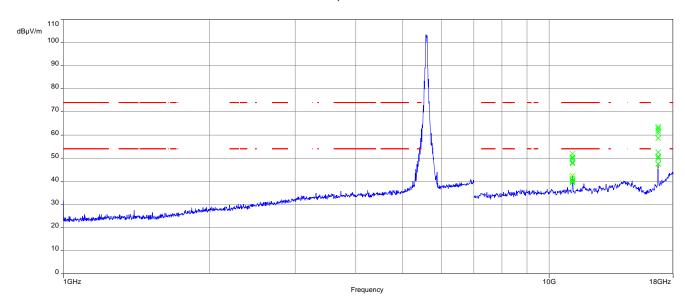

© CTC advanced GmbH Page 122 of 142

Plot 13: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel

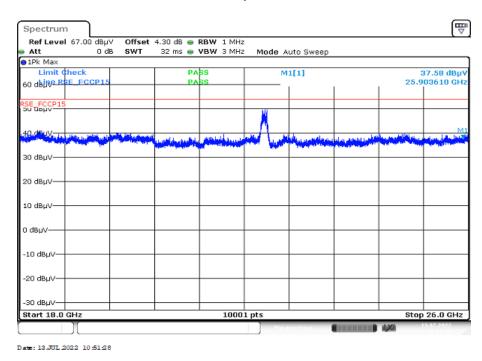
Plot 14: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel

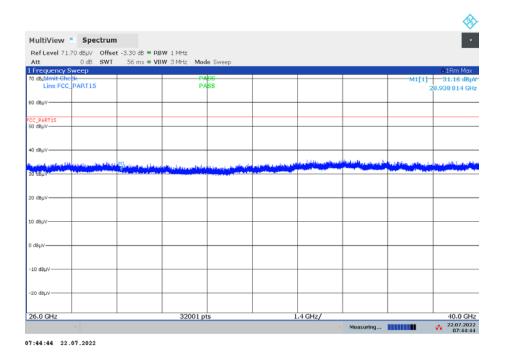


© CTC advanced GmbH Page 123 of 142

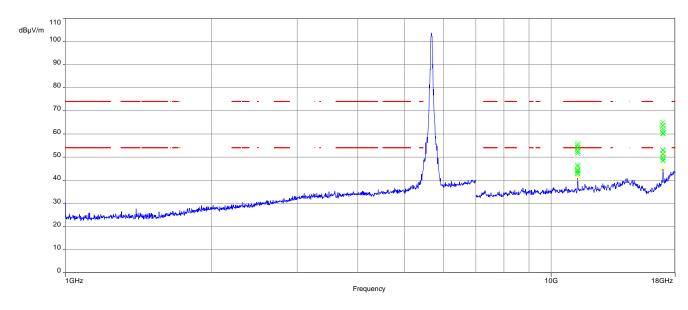

Date: 13.JUL 2022 10:50:26

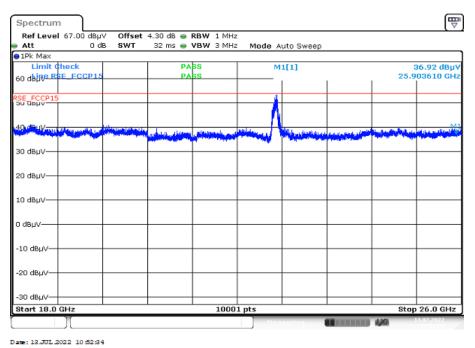
Plot 15: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel


Plot 16: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; middle channel

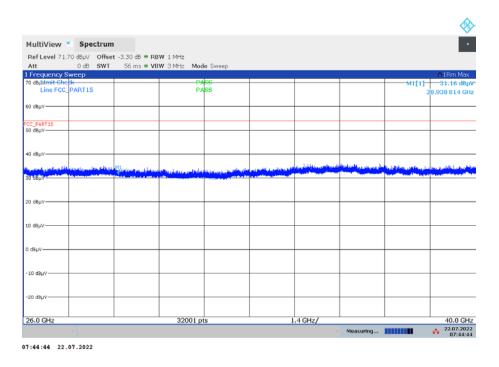

© CTC advanced GmbH Page 124 of 142

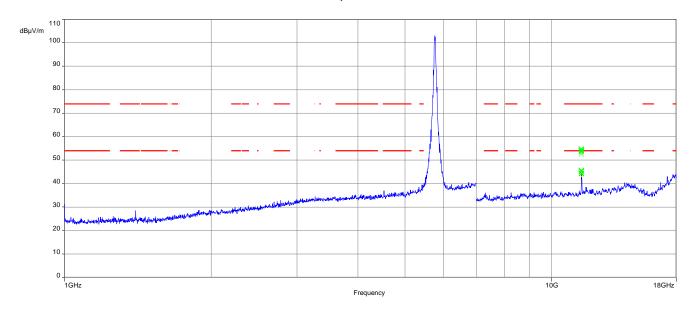
Plot 17: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2C; middle channel


Plot 18: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; middle channel

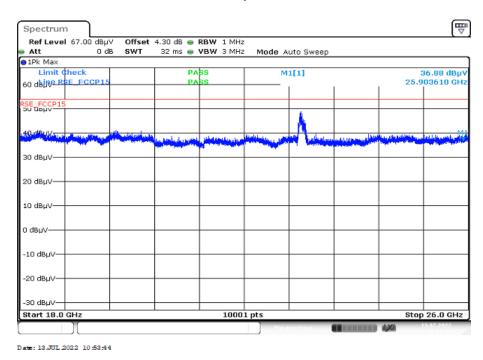

© CTC advanced GmbH Page 125 of 142

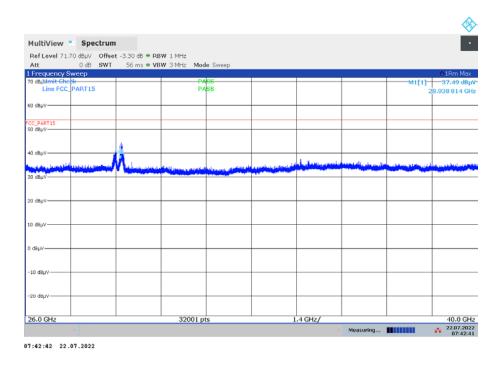
Plot 19: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel


Plot 20: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2C; highest channel

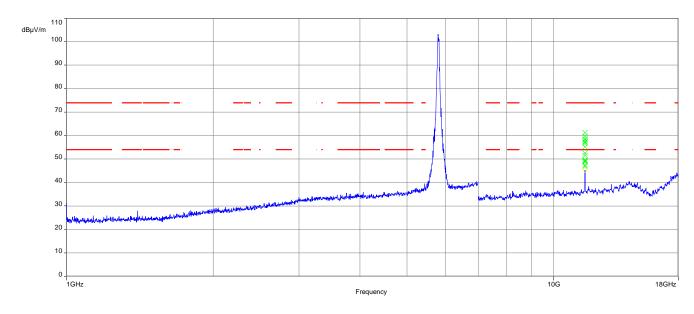

© CTC advanced GmbH Page 126 of 142

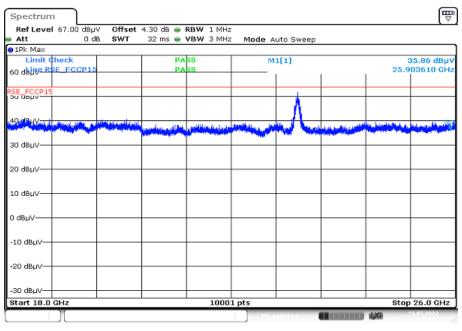
Plot 21: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; highest channel


Plot 22: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel


© CTC advanced GmbH Page 127 of 142

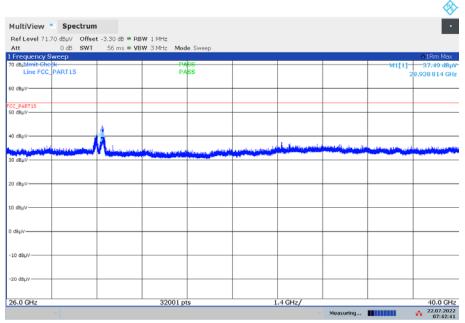
Plot 23: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; lowest channel


Plot 24: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; lowest channel


© CTC advanced GmbH Page 128 of 142

Plot 25: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel

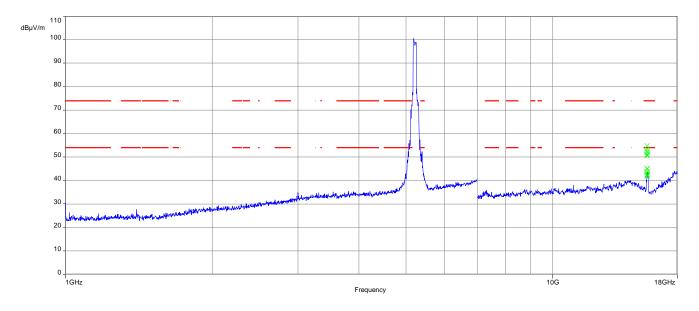
Plot 26: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; highest channel



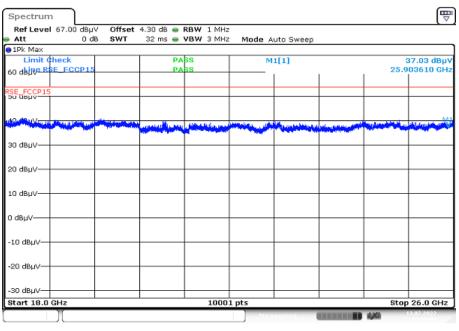
Date: 13.JUL 2022 10:54:47

© CTC advanced GmbH Page 129 of 142

Plot 27: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; highest channel


07:42:42 22.07.2022

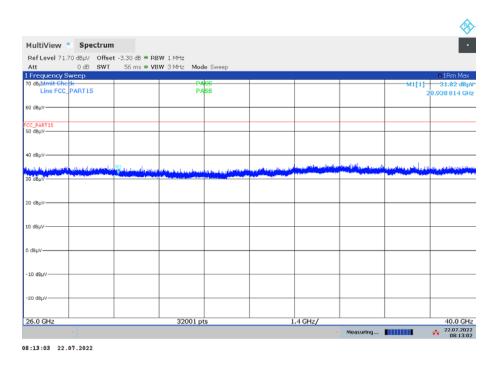
© CTC advanced GmbH Page 130 of 142



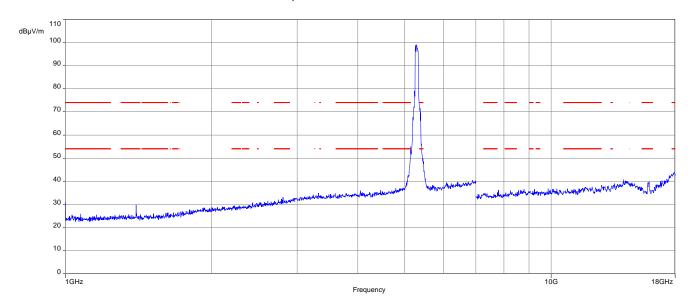
Plots: 80 MHz channel bandwidth

Plot 1: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; middle channel

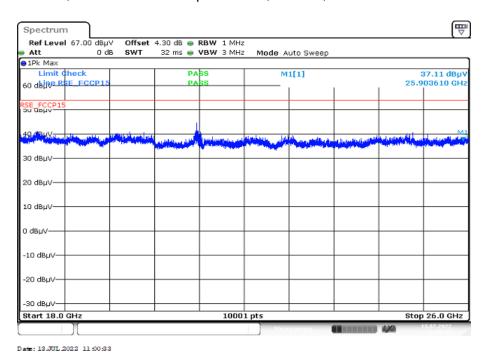
Plot 2: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; middle channel

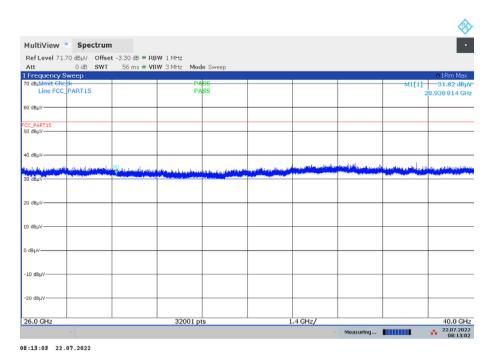


Date: 13.JUL 2022 10:59:01

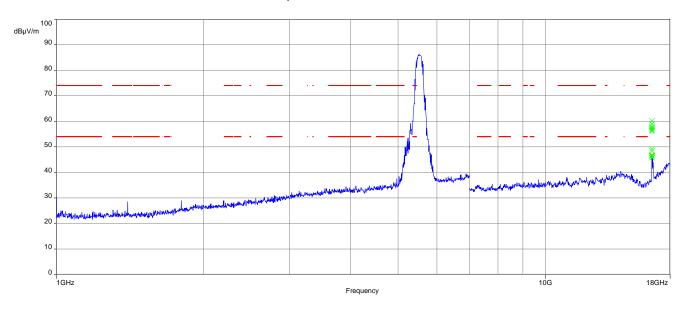

© CTC advanced GmbH Page 131 of 142

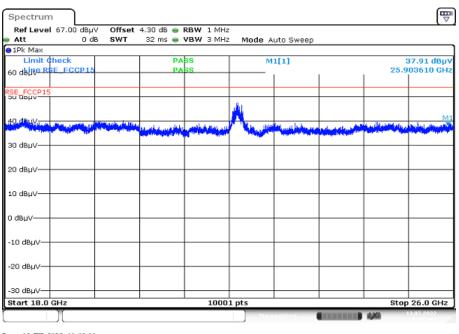
Plot 3: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; middle channel


Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; middle channel


© CTC advanced GmbH Page 132 of 142

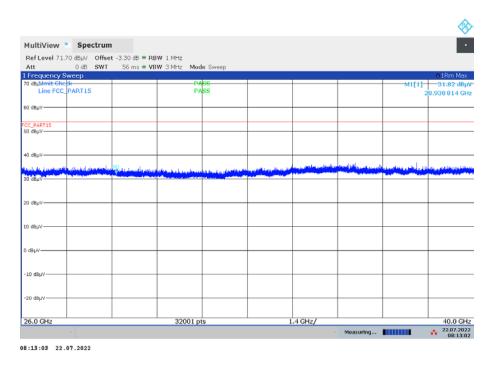
Plot 5: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2A; middle channel


Plot 6: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2A; middle channel

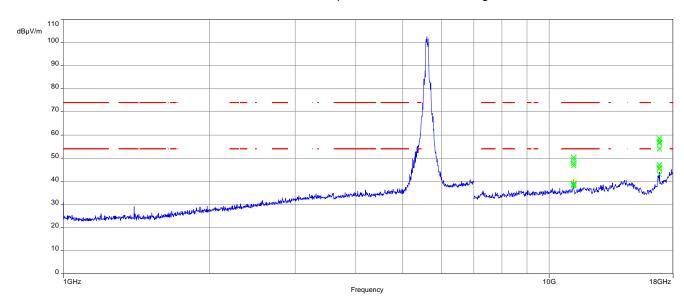

© CTC advanced GmbH Page 133 of 142

Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel

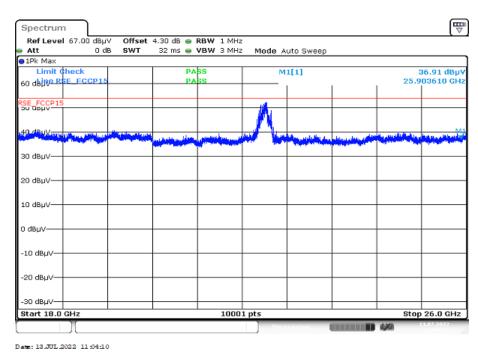
Plot 8: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel

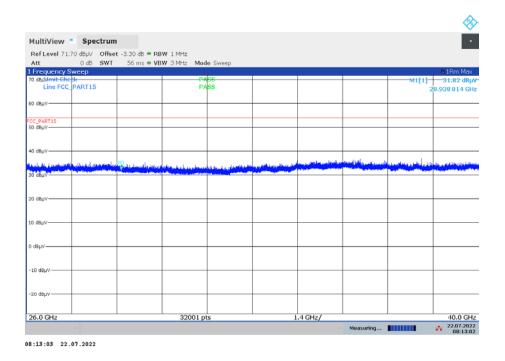


Date: 13.JUL 2022 11:03:01

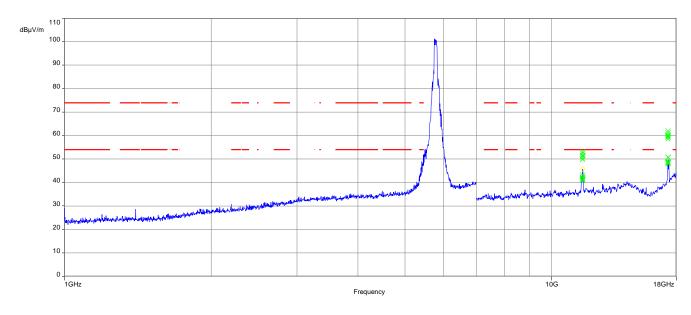

© CTC advanced GmbH Page 134 of 142

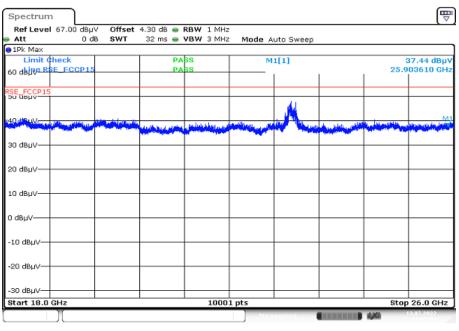
Plot 9: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel


Plot 10: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel


© CTC advanced GmbH Page 135 of 142

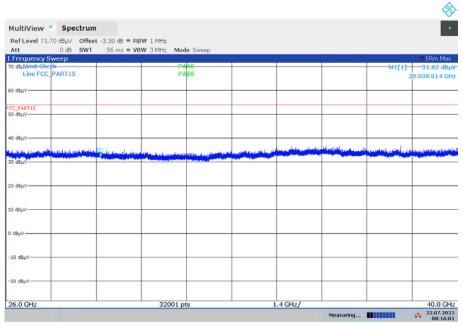
Plot 11: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2C; highest channel


Plot 12: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; highest channel


© CTC advanced GmbH Page 136 of 142

Plot 13: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; middle channel

Plot 14: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; middle channel



Date: 13.JUL 2022 11:05:23

© CTC advanced GmbH Page 137 of 142

Plot 15: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; middle channel

08:16:01 22.07.20

© CTC advanced GmbH Page 138 of 142

Test report no.: 1-4095/22-01-05-A

12.12 Spurious emissions conducted < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to middle channel. If critical peaks are found the lowest channel and the highest channel will be measured too. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

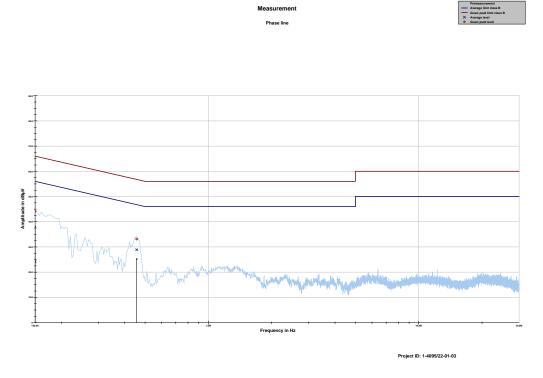
Measurement parameter		
Detector:	Peak - Quasi Peak / Average	
Sweep time:	Auto	
Video bandwidth:	9 kHz	
Resolution bandwidth:	100 kHz	
Span:	150 kHz to 30 MHz	
Trace mode:	Max Hold	
Test setup:	See sub clause 7.4 – A	
Measurement uncertainty:	See chapter 9	

Limits:

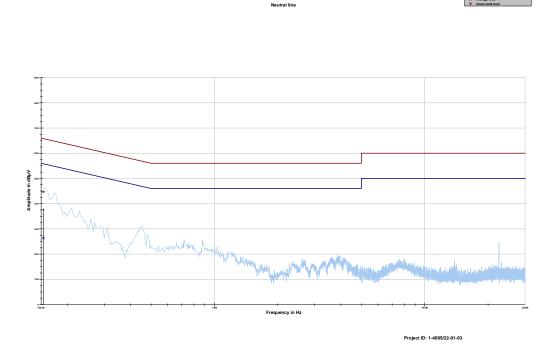
Spurious Emissions Conducted < 30 MHz			
Frequency (MHz)	Quasi-Peak (dBµV/m)	Average (dBµV/m)	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 – 5	56	46	
5 – 30.0	60	50	

^{*}Decreases with the logarithm of the frequency

Results:


Spurious Emissions Conducted < 30 MHz [dBµV/m]			
F [MHz]	Detector	Level [dBµV/m]	
All detected emissions are more than 20 dB below the limit.			

© CTC advanced GmbH Page 139 of 142



Plots:

Plot 1: 150 kHz to 30 MHz, phase line

Plot 2: 150 kHz to 30 MHz, neutral line

© CTC advanced GmbH Page 140 of 142

Test report no.: 1-4095/22-01-05-A

13 Observations

No observations except those reported with the single test cases have been made.

14 Glossary

FUT	F
EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
OC	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing

© CTC advanced GmbH Page 141 of 142

Test report no.: 1-4095/22-01-05-A

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-08-31
А	Added antenna gain reference	2022-09-02

16 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europe-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig Bundesallee 100 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleat. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS.
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by ordy Dysl-ne, 1918-18 Egner Head of Dissiple. The certificate logether with its enex reflects the stotus of the time of the date of asset. The current stotus of the scope of occreditation can be found in the distribution of accredited bodies of Deutsche Alkrediberungsstelle GmbM. https://www.ddsdx.do/en/content/occredited-bodies-ddsks.	The accreditation was granted pursuant to the Act on the Accreditation Body (AkáSselleG) of 31.July 2009 (feederal Law Gazette J. 26.25) and the Regulation (EL) no 76.50 cost of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Linol. 12.38 of 9 July 2008, p. 30). DAKS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Formul (AF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.lec.org IAF: www.lec.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf