

FCC PART 15.231
MEASUREMENT AND TEST REPORT
FOR

Jiande Zhongya Electric Appliance Factory

No.45 Sanhe Road, Xin Anjiang, Jiande, Zhejiang, China

FCC ID: VVIYK50-2-FCC

Report Concerns: Original Report	Equipment Type: Remote Controller
Model: <u>YK50-2-FCC</u>	
Report No.: <u>STR09058091</u>	
Test/Witness Engineer: <u>Susan Su</u>	
Test Date: <u>2009-05-22 to 2009-05-25</u>	
Issue Date: <u>2009-06-02</u>	
Prepared By: SEM.Test Compliance Service Co., Ltd. 3/F, Jinbao Commerce Building, Xin'an Fanshen Road, Bao'an District, Shenzhen, P.R.C. (518101)	
Approved & Authorized By: _____ Jandy So / PSQ Manager	

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permission by SEM.Test Compliance Service Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
1.2 TEST STANDARDS.....	3
1.3 RELATED SUBMITTAL(S)/GRANT(S)	3
1.4 TEST METHODOLOGY	4
1.5 TEST FACILITY	4
1.6 EUT EXERCISE SOFTWARE	4
1.7 ACCESSORIES EQUIPMENT LIST AND DETAILS	4
1.8 EUT CABLE LIST AND DETAILS	4
2. SUMMARY OF TEST RESULTS	5
3. §15.203 ANTENNA REQUIREMENT	6
3.1 STANDARD APPLICABLE.....	6
3.2 TEST RESULT.....	6
4. §15.205, §15.209, §15.231 (B) RADIATED EMISSION	7
4.1 MEASUREMENT UNCERTAINTY	7
4.2 STANDARD APPLICABLE.....	7
4.3 TEST EQUIPMENT LIST AND DETAILS	8
4.4 TEST PROCEDURE.....	8
4.5 CORRECTED AMPLITUDE & MARGIN CALCULATION.....	9
4.6 ENVIRONMENTAL CONDITIONS	9
4.7 SUMMARY OF TEST RESULTS/PLOTS	9
5. §15.231(C) 20DB BANDWIDTH TESTING	12
5.1 STANDARD APPLICABLE.....	12
5.2 TEST EQUIPMENT LIST AND DETAILS	12
5.3 TEST PROCEDURE.....	12
5.4 ENVIRONMENTAL CONDITIONS	12
5.5 SUMMARY OF TEST RESULTS/PLOTS	12
6. §15.231(A) DEACTIVATION TESTING.....	14
6.1 STANDARD APPLICABLE.....	14
6.2 TEST EQUIPMENT LIST AND DETAILS	14
6.3 TEST PROCEDURE.....	14
6.4 ENVIRONMENTAL CONDITIONS	14
6.5 SUMMARY OF TEST RESULTS/PLOTS	14
7. §15.231(B) DUTY CYCLE.....	16
7.1 STANDARD APPLICABLE.....	16
7.2 TEST EQUIPMENT LIST AND DETAILS	16
7.3 TEST PROCEDURE.....	16
7.4 ENVIRONMENTAL CONDITIONS	16
7.5 SUMMARY OF TEST RESULTS/PLOTS	16

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Jiande Zhongya Electric Appliance Factory
Address of applicant: No.45 Sanhe Road, Xin Anjiang, Jiande, Zhejiang, China

Manufacturer: Jiande Zhongya Electric Appliance Factory
Address of manufacturer: No.45 Sanhe Road, Xin Anjiang, Jiande, Zhejiang, China

General Description of E.U.T

Items	Description
EUT Description:	Remote Controller
Trade Name:	/
Model No.:	YK50-2-FCC
Rated Voltage:	DC 12V
Output Power:	<0 dBm
Frequency Range:	315.15MHz
Antenna Type:	Integral Antenna
Size:	8.5X3.6X1.6 cm
Comment:	Manually Operated Device

For more information refer to the circuit diagram form and the user's manual.

The test data is gathered from a production sample, provided by the manufacturer,

1.2 Test Standards

The following report is prepared on behalf of the Jiande Zhongya Electric Appliance Factory in accordance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission/immunity, should be checked to ensure compliance has been maintained.

1.3 Related Submittal(s)/Grant(s)

No Related Submittal(s).

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions. The EUT was set to keep transmitting during the test.

1.5 Test Facility

- **FCC – Registration No.: 994117**

SEM.Test Compliance Services Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files and the Registration is 994117.

- **Industry Canada (IC) Registration No.: 7673A**

The 3m Semi-anechoic chamber of SEM.Test Compliance Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 7673A.

1.6 EUT Exercise Software

The EUT exercise program used during the testing was designed to exercise the system components. The test software, provided by the customer, is started while the whole system is running.

1.7 Accessories Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

1.8 EUT Cable List and Details

Cable Description	Length (M)	Shielded/Unshielded	With Core/Without Core
/	/	/	/

2. SUMMARY OF TEST RESULTS

Description of Test	Result
§15.203 Antenna Requirement	Compliant
§15.205 Restricted Band	Compliant
§15.207 Conducted Emission	N/A
§15.209 General Requirement	Compliant
§15.231 (a) Deactivation Testing	Compliant
§15.231 (c) 20dB Band Width Testing	Compliant
§15.231 (b) Radiated Emission	Compliant

3. §15.203 ANTENNA REQUIREMENT

3.1 Standard Applicable

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has a permanent antenna, fulfill the requirement of this section.

4. §15.205, §15.209, §15.231 (b) RADIATED EMISSION

4.1 Measurement Uncertainty

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is ± 3.0 dB.

4.2 Standard Applicable

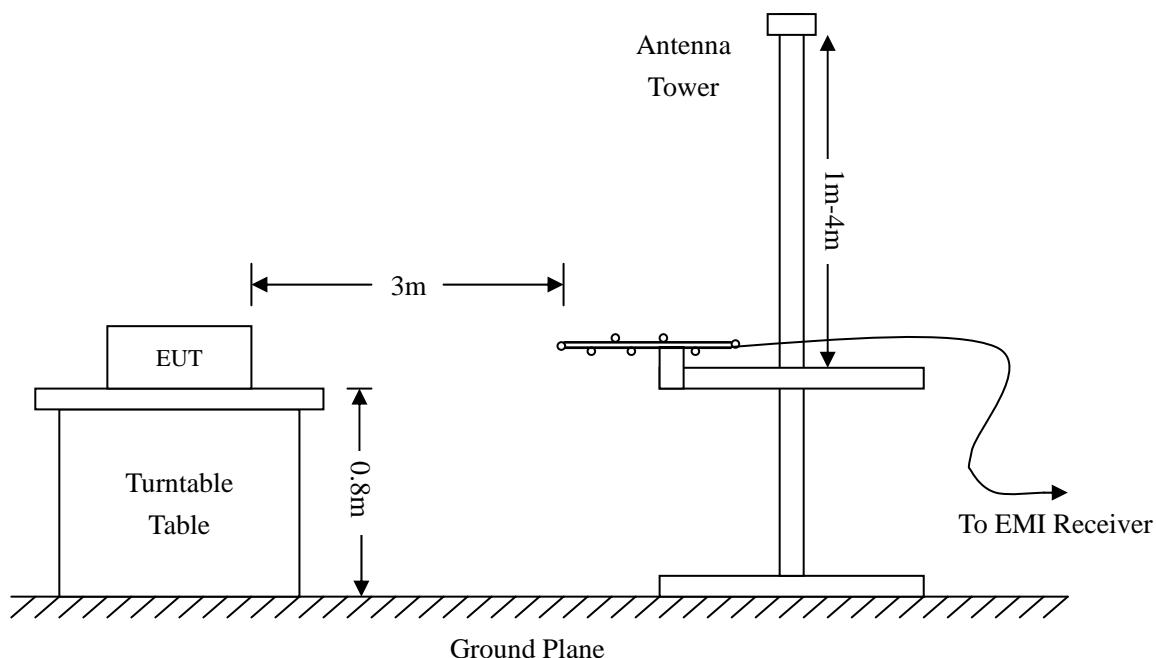
According to §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70.....	2,250.....	225
70-130.....	1,250.....	125
130-174.....	\1\ 1,250 to 3,750	\1\ 125 to 375
174-260.....	3,750.....	375
260-470.....	\1\ 3,750 to 12,500	\1\ 375 to 1,250
Above 470.....	12,500.....	1,250

\1\ Linear interpolations.

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.


4.3 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	ROHDE&SCHWARZ	FSEA20	DE25181	2008-07-08	2009-07-07
Positioning Controller	C&C	CC-C-1F	N/A	2008-07-08	2009-07-07
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2008-07-08	2009-07-07
Horn Antenna	SCHWARZBECK	BBHX 9120	9120-426	2008-07-08	2009-07-07
RF Switch	EM	EMSW18	SW060023	2008-07-08	2009-07-07
Amplifier	Agilent	8447F	3113A06717	2008-07-08	2009-07-07
Coaxial Cable	SCHWARZBECK	AK9513	9513-10	2008-07-08	2009-07-07
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	25498514	2008-07-08	2009-07-07
Horn Antenna	ROHDE&SCHWARZ	HF906	100013	2008-07-08	2009-07-07
EMI Test Receiver	ROHDE&SCHWARZ	ESI26	838786/103	2008-07-08	2009-07-07

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

4.4 Test Procedure

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.205 15.231(b) and FCC Part 15.209 Limit.

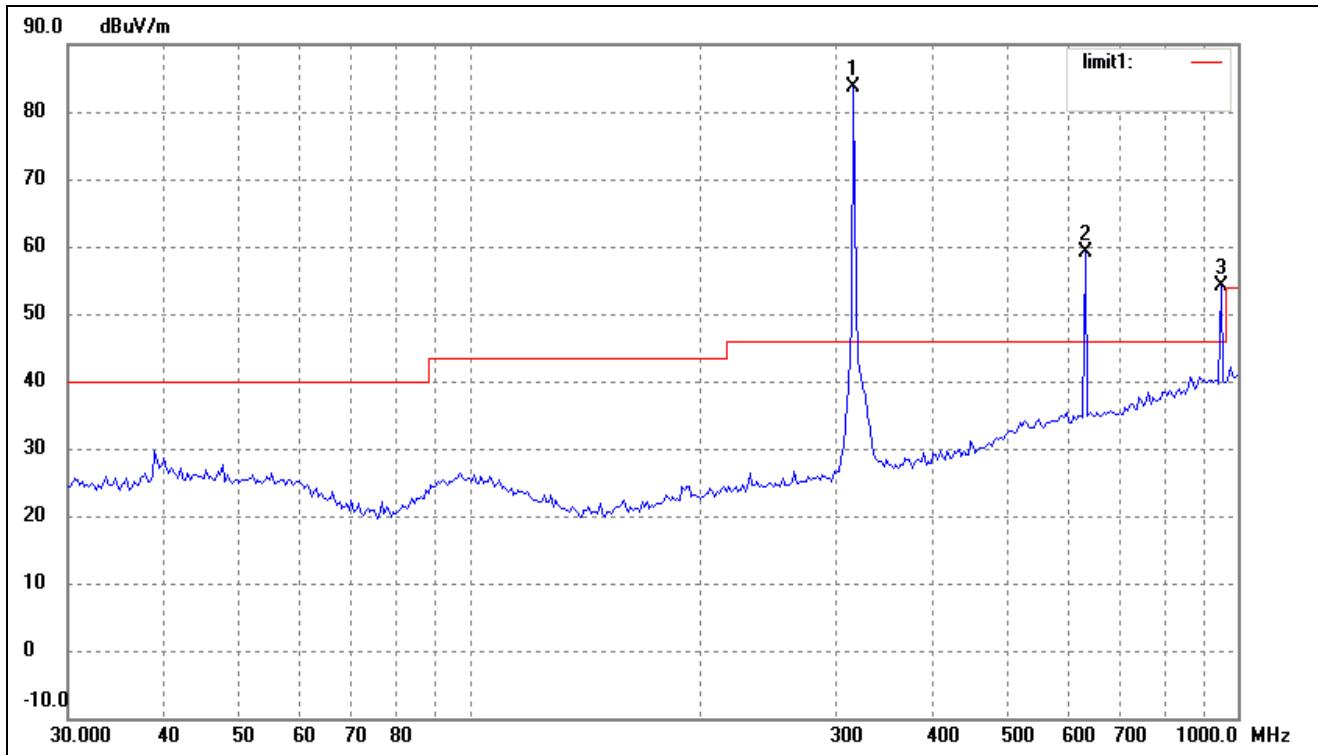
4.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Indicated Reading} + \text{Ant.Loss} + \text{Cab. Loss} - \text{Ampl.Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -6dB μ V means the emission is 6dB μ V below the maximum limit for Class B. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corr. Ampl.} - \text{FCC Part 15.231 Limit}$$

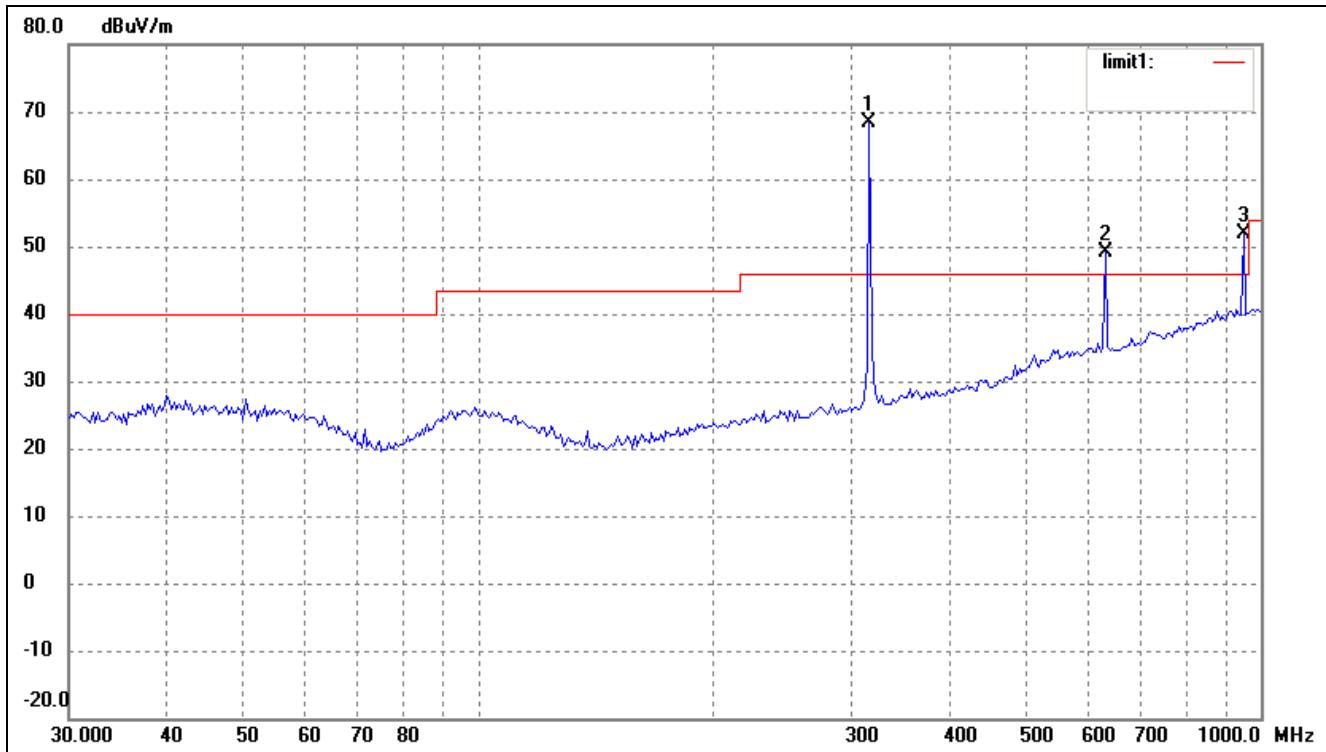

4.6 Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	1011 mbar

4.7 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.231 standards, and had the worst margin of:

-1.55 dB μ V at 315.15MHz in the Horizontal, Ave Detector polarization, 30 MHz to 5 GHz, 3Meters


Plot of Radiation Emissions Test*Horizontal:*

No.	Frequency	Reading	Corr.	Dutycycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor (dB)	Factor (dB)	dBuV/m	dBuV/m	dB	(•)	(cm)	
1	315.15	69.01	14.57	N/A	83.58	95.63	-12.05	0	100	peak
2	630.30	36.56	22.61	N/A	59.17	75.63	-16.46	163	100	peak
3	945.45	26.98	27.10	N/A	54.08	75.63	-21.55	104	100	peak
	315.15	/	/	-9.5	74.08	75.63	-1.55	55	100	Ave
	630.30	/	/	-9.5	49.67	55.63	-5.96	359	100	Ave
	945.45	/	/	-9.5	44.58	55.63	-11.05	48	100	Ave

Above 1GHz

No.	Frequency	Reading	Corr.	Dutycycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor (dB)	Factor (dB)	dBuV/m	dBuV/m	dB	(°)	(cm)	
1	1260.60	28.59	28.52	N/A	57.11	74.00	-16.89	45	100	Peak
2	1575.75	24.07	30.27	N/A	54.34	74.00	-19.66	310	100	Peak
	1260.60	/	/	-9.5	47.61	54.00	-6.39	360	100	Ave
	1575.75	/	/	-9.5	44.84	54.00	-9.16	360	100	Ave

Vertical:

No.	Frequency	Reading	Corr.	Dutycycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor (dB)	Factor (dB)	dBuV/m	dBuV/m	(dB)	(°)	(cm)	
1	315.15	53.89	14.57	N/A	68.46	95.63	-27.17	360	100	peak
2	630.30	26.40	22.61	N/A	49.01	75.63	-26.62	230	100	peak
3	945.45	24.86	27.10	N/A	51.96	75.63	-23.67	360	100	peak
	315.15	/	/	-9.5	58.96	75.63	-16.67	115	100	Ave
	630.30	/	/	-9.5	39.51	55.63	-16.12	0	100	Ave
	945.45	/	/	-9.5	42.46	55.63	-13.17	164	100	Ave

Above 1GHz

No.	Frequency	Reading	Corr.	Dutycycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor (dB)	Factor (dB)	dBuV/m	dBuV/m	dB	(°)	(cm)	
1	1260.60	28.59	28.52	N/A	55.78	74.00	-18.22	45	100	Peak
2	1575.75	24.07	30.27	N/A	53.55	74.00	-20.45	310	100	Peak
	1260.60	/	/	-9.5	46.28	54.00	-7.72	360	100	Ave
	1575.75	/	/	-9.5	44.05	54.00	-9.95	360	100	Ave

Note: The EUT was tested in all three orthogonal planes and frequency rang 30MHz to the tenth harmonics.

Emissions attenuated closely to the noise base are not reported.

The fundamental frequency is 315.15MHz, so the fundamental and spurious emissions radiated limit base on the the operating frequency 315.15MHz.

5. §15.231(c) 20dB BANDWIDTH TESTING

5.1 Standard Applicable

According to FCC 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

5.2 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date	Due. Date
Agilent	Spectrum Analyzer	E4402B	US41192821	2008-07-08	2009-07-07
EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2008-07-08	2009-07-07
ETS	Receiver Antenna	2175	57337	2008-07-08	2009-07-07
ETS	50 ohm Coaxial Cable	SUCOFLEX 104	25498514	2008-07-08	2009-07-07

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

5.3 Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna, which was connected to the spectrum analyzer with the START, and STOP frequencies set to the EUT's operation band.

5.4 Environmental Conditions

Temperature:	21° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

5.5 Summary of Test Results/Plots

Frequency MHz	20dB Bandwidth kHz	Limit kHz
315.15	61.1	787

Limit=Fundamental Frequency×0.25%=315.15×0.25%=787kHz

Test Result Pass

Refer to the attached plots.

6. §15.231(a) DEACTIVATION TESTING

6.1 Standard Applicable

According to FCC 15.231 (a)(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

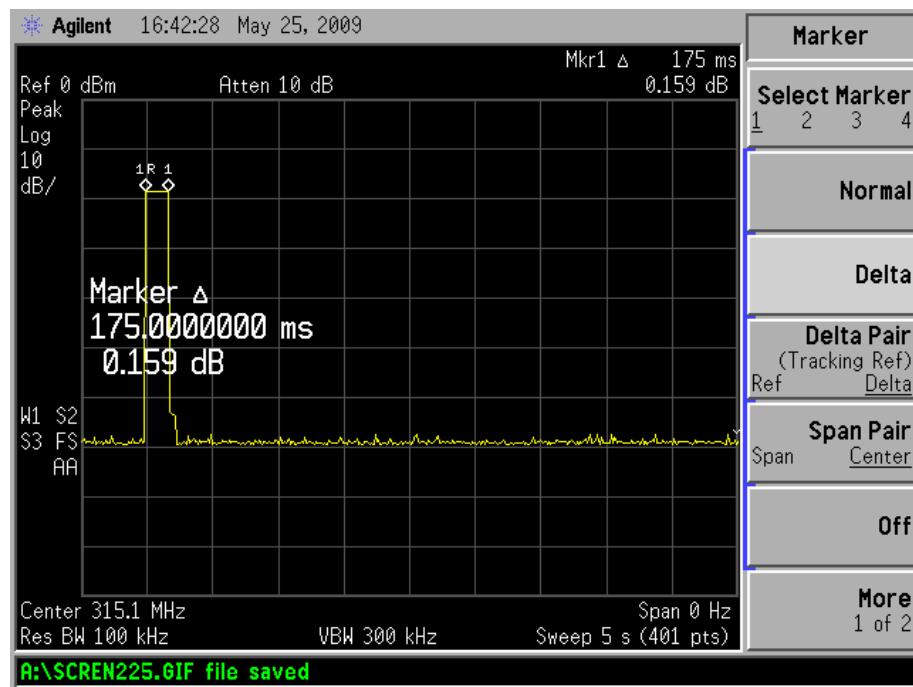
6.2 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date	Due. Date
Agilent	Spectrum Analyzer	E4402B	US41192821	2008-07-08	2009-07-07
EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2008-07-08	2009-07-07
Receiver Antenna	ETS	2175	57337	2008-07-08	2009-07-07
50 ohm Coaxial Cable	ETS	SUCOFLEX 104	25498514	2008-07-08	2009-07-07

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

6.3 Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.94MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.


6.4 Environmental Conditions

Temperature:	20° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

6.5 Summary of Test Results/Plots

Refer to the attached plots.

The transmission time <5s

Result: Pass

7. §15.231(b) Duty Cycle

7.1 Standard Applicable

According to FCC 15.231 (b)(2) and 15.35 (c), For pulse operation transmitter, the averaging pulsed emissions are calculated by peak value of measured emission plus duty cycle factor.

7.2 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date	Due. Date
Agilent	Spectrum Analyzer	E4402B	US41192821	2008-07-08	2009-07-07
EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2008-07-08	2009-07-07
Receiver Antenna	ETS	2175	57337	2008-07-08	2009-07-07
50 ohm Coaxial Cable	ETS	SUCOFLEX 104	25498514	2008-07-08	2009-07-07

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

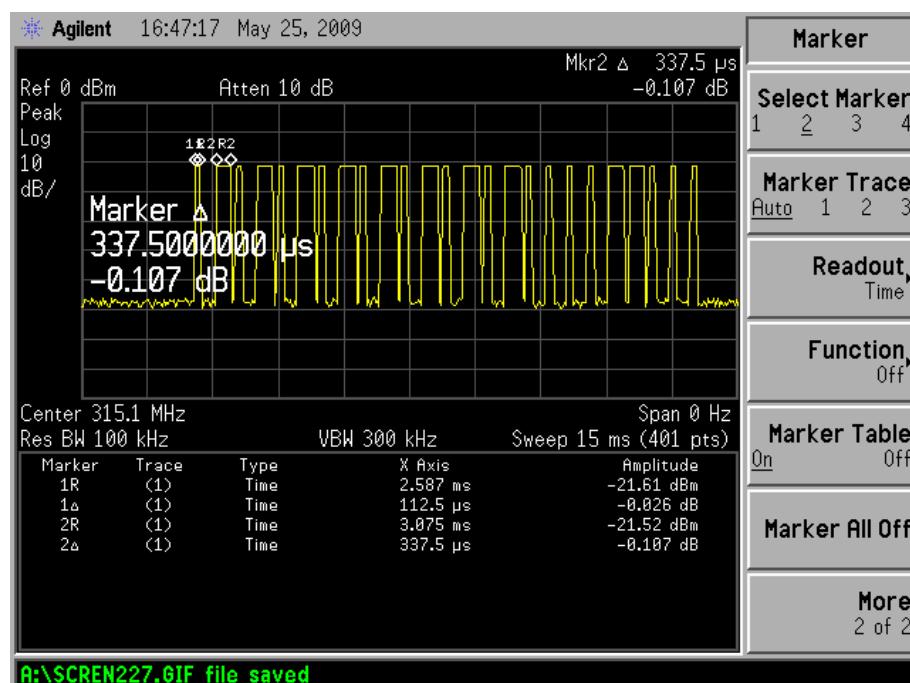
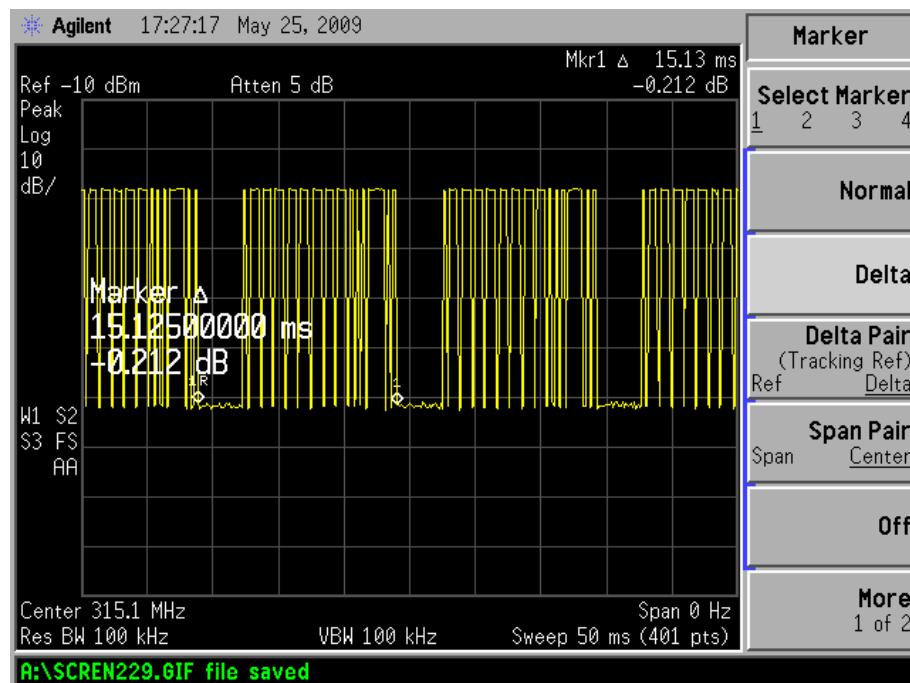
7.3 Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 315.15MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

7.4 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

7.5 Summary of Test Results/Plots



$T_p = 15.125\text{ms}$

$Ton = Ton1 * Number + Ton2 * Number = 5.0625\text{ms}$

$\text{Duty Cycle} = Ton / T_p * 100\% = 33.47\%$

$\text{Factor} = 20 * \text{Log} (Ton/T_p) = -9.5 \text{ dB}$

Refer to the attached plots.

***** END OF REPORT *****