

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	PEGATRON CORPORATION
Applicant Address	5F, NO. 76, LIGONG ST., BEITOU DISTRICT, TAIPEI CITY 112 Taiwan
FCC ID	VUICLG8202SEC-NA
Manufacturer's company	MAINTEK COMPUTER
Manufacturer Address	233 Jinfeng Rd., Suzhou, Jiangsu, PRC

Product Name	Wireless Home Automation and Security
Brand Name	CISCO
Model No.	CLG-8202-SEC NA
Test Rule Part(s)	47 CFR FCC Part 15 Subpart C § 15.249
Test Freq. Range	902~928MHz
Received Date	May 05, 2014
Final Test Date	Jun. 03, 2014
Submission Type	Original Equipment

Statement

Test result included is only for the AFM of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.10-2009** and **47 CFR FCC Part 15 Subpart C**.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CERTIFICATE OF COMPLIANCE	1
2. SUMMARY OF THE TEST RESULT	2
3. GENERAL INFORMATION	3
3.1. Product Details.....	3
3.2. Accessories.....	3
3.3. Table for Carrier Frequencies	3
3.4. Table for Filed Antenna.....	4
3.5. Table for Test Modes.....	5
3.6. Table for Testing Locations.....	5
3.7. Table for Supporting Units	6
3.8. Test Configurations	7
4. TEST RESULT	9
4.1. AC Power Line Conducted Emissions Measurement.....	9
4.2. Field Strength of Fundamental Emissions Measurement.....	13
4.3. 20dB Spectrum Bandwidth Measurement	16
4.4. Radiated Emissions Measurement.....	18
4.5. Band Edge Emissions Measurement.....	26
4.6. Antenna Requirements	28
5. LIST OF MEASURING EQUIPMENTS	29
6. MEASUREMENT UNCERTAINTY.....	31
APPENDIX A. TEST PHOTOS	A1 ~ A5
APPENDIX B. RADIATED EMISSION CO-LOCATION REPORT	B1 ~ B3

History of This Test Report

1. CERTIFICATE OF COMPLIANCE

Product Name : Wireless Home Automation and Security
Brand Name : CISCO
Model Name : CLG-8202-SEC NA
Applicant : PEGATRON CORPORATION
Test Rule Part(s) : 47 CFR FCC Part 15 Subpart C § 15.249

Sportun International as requested by the applicant to evaluate the EMC performance of the product sample received on May 05, 2014 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

A handwritten signature in blue ink that reads "Sam Chen".

Reviewed By:

Sam Chen

SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart C				
Part	Rule Section	Description of Test	Result	Under Limit
4.1	15.207	AC Power Line Conducted Emissions	Complies	12.89 dB
4.2	15.249(a)	Field Strength of Fundamental Emissions	Complies	0.37 dB
4.3	15.215(c)	20dB Spectrum Bandwidth	Complies	-
4.4	15.249(a)/(d)	Radiated Emissions	Complies	2.28 dB
4.5	15.249(d)	Band Edge Emissions	Complies	17.13 dB
4.6	15.203	Antenna Requirements	Complies	-

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Power Type	From power adapter
Modulation	FSK/GFSK
Data Rate	38.4kbps
Frequency Range	902~928MHz
Operation Frequency Range	915.17MHz
Channel Number	1
Channel Band Width (99%)	22.80 MHz
Max. Field Strength	93.63 dBuV/m at 3m (QP)
Carrier Frequencies	Please refer to section 3.3

3.2. Accessories

Power	Brand	Model	Rating
Adapter	APD	WA-23A15FU	INPUT: 100-240V ~ 50-60Hz OUTPUT: 15V, 1.5A
Other			
Pedestal*1			

3.3. Table for Carrier Frequencies

Frequency Band	Channel No.	Frequency
902~928MHz	1	915.17 MHz

3.4. Table for Filed Antenna

Ant.	Brand Holder	Model Name	Antenna Type	Connector	Gain (dBi)
1	HL TECHNOLOGY	-	PCB Antenna	Murata	2.57
2	HL TECHNOLOGY	-	PCB Antenna	Murata	3.53
3	HL TECHNOLOGY	-	PCB Antenna	Murata	0.40
4	HL TECHNOLOGY	-	PCB Antenna	Murata	3.81

Note:

For 2.4GHz function:

For IEEE 802.11b mode (1TX/2RX)

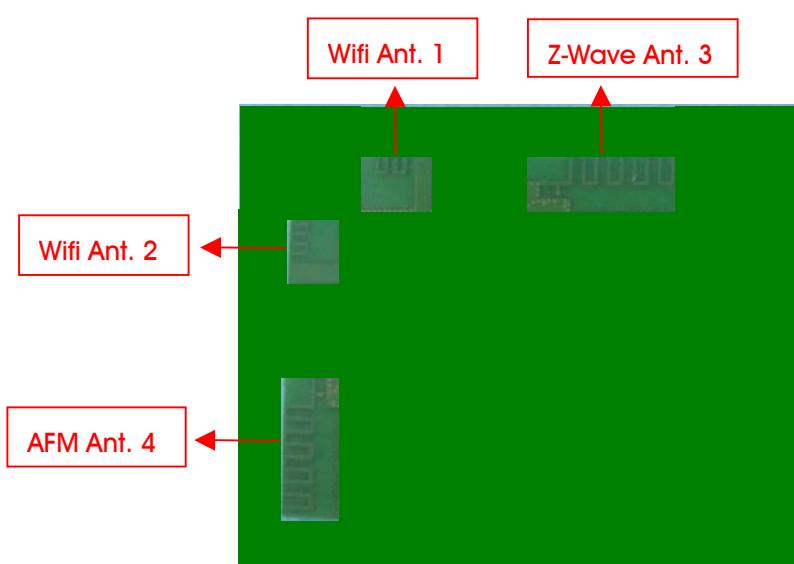
The EUT supports the Ant. 1 and Ant. 2 with TX diversity function.

Ant. 2 generated the worst case than Ant. 1, so it is tested and recorded in the report.

Ant. 1 and Ant. 2 could receive simultaneously.

For IEEE 802.11g/n mode (2TX/2RX)

Ant. 1 and Ant. 2 can be used as transmitting/receiving antenna.


Ant. 1 and Ant. 2 could transmit/receive simultaneously.

For Z-wave function (1TX/1RX)

Only Ant. 3 can be used as transmitting/receiving antenna.

For AFM function (1TX/1RX)

Only Ant. 4 can be used as transmitting/receiving antenna.

3.5. Table for Test Modes

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Channel	Antenna
AC Power Line Conducted Emissions	CTX	-	-
Field Strength of Fundamental Emissions 20dB Spectrum Bandwidth	CTX	1	4
Radiated Emissions 30MHz ~ 1GHz	CTX	-	-
Radiated Emissions 1GHz~10 th Harmonic	CTX	1	4
Band Edge Emissions	CTX	1	4

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1. EUT standing (Wifi function + Z-wave function + AFM function)

For Radiated Emission below 1GHz test:

Mode 1. EUT standing (Wifi function + Z-wave function + AFM function)

For Radiated Emission above 1GHz test:

Mode 1. EUT standing

For Co-location MPE and Radiated Emission Co-location Test:

The EUT could be applied with 2.4GHz WLAN function, Z-wave function and AFM function; therefore Radiated Emission Co-location (please refer to Appendix B) tests are added for simultaneously transmit among 2.4GHz WLAN function, Z-wave function and AFM function.

3.6. Table for Testing Locations

Test Site Location					
Address:	No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.				
TEL:	886-3-656-9065				
FAX:	886-3-656-9085				
Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH01-CB	SAC	Hsin Chu	262045	IC 4086D	-
CO01-CB	Conduction	Hsin Chu	262045	IC 4086D	-
TH01-CB	OVEN Room	Hsin Chu	-	-	-

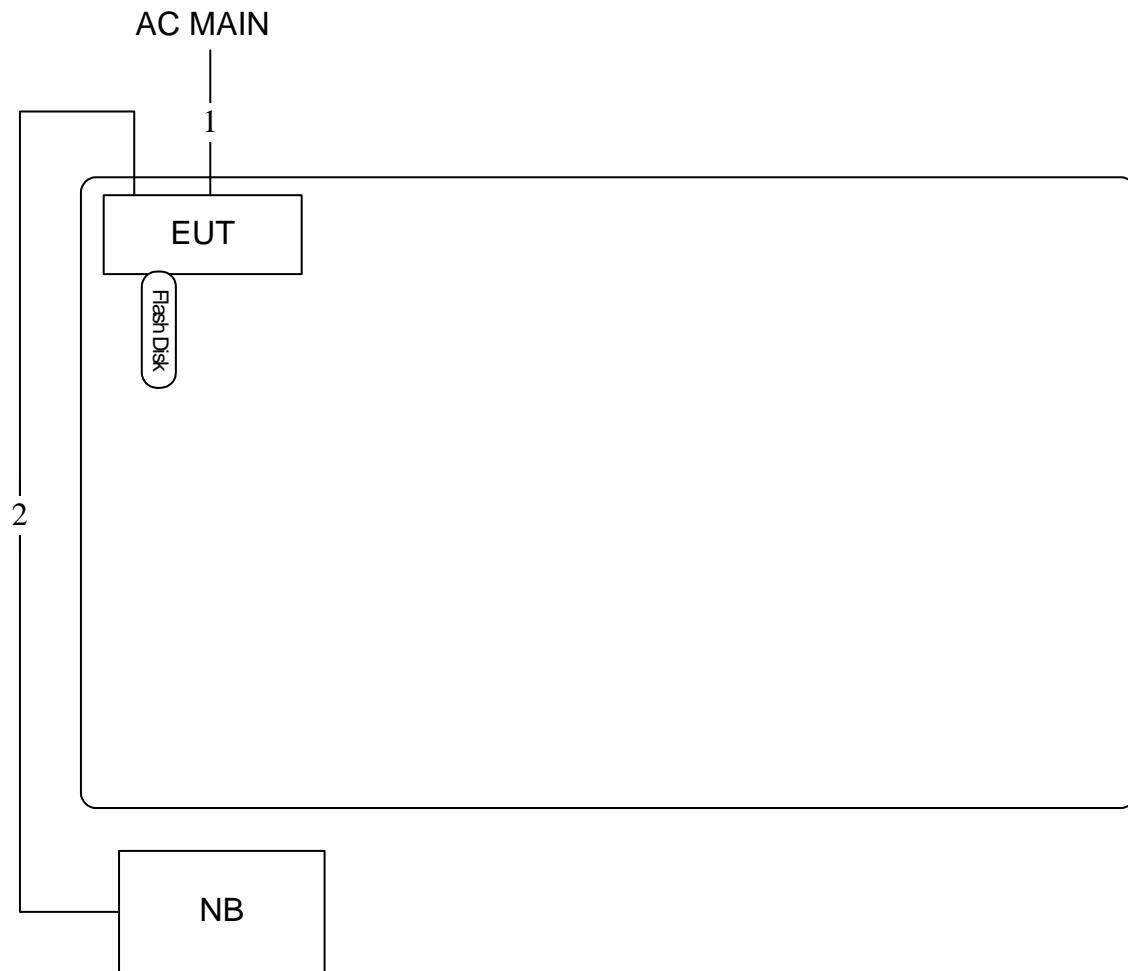
Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Supporting Units

For Test Site No: 03CH01-CB

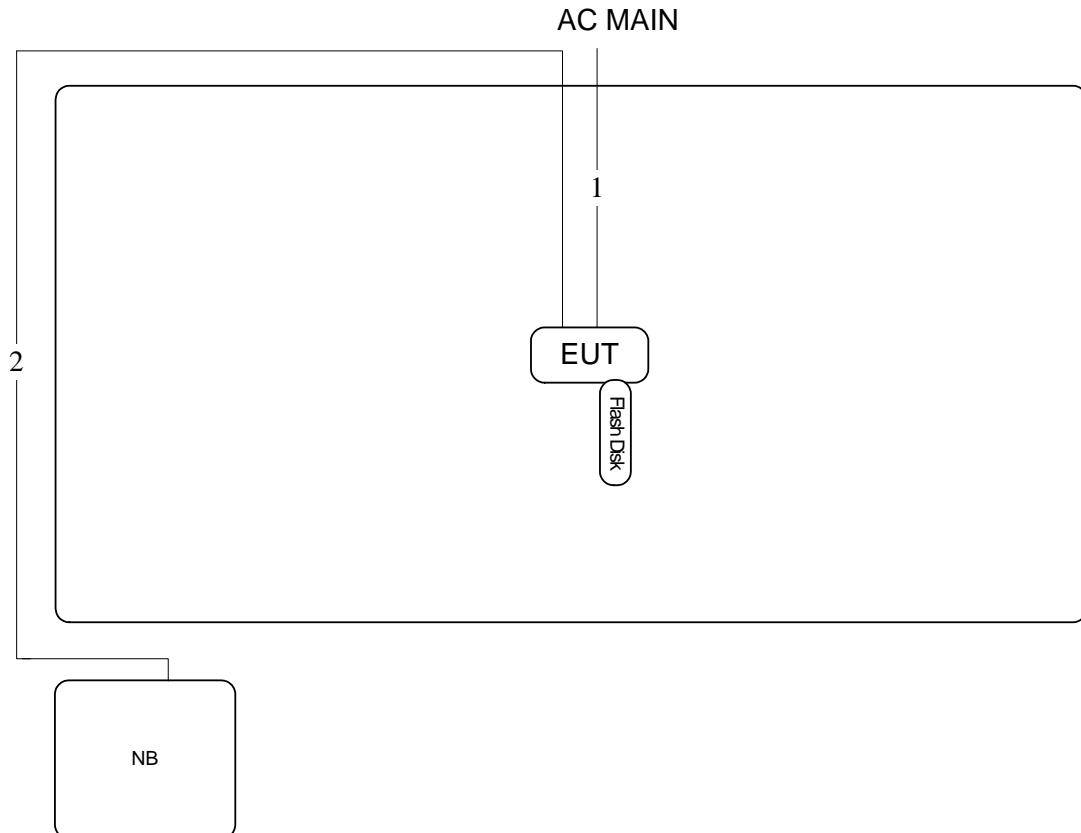
Support Unit	Brand	Model	FCC ID
Flash Disk	Silicon	D33B03	DoC
Notebook	DELL	D420	DoC

For Test Site No: CO01-CB


Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	DoC
Flash Disk	Silicon	I-Series	DoC

For Test Site No: TH01-CB

Support Unit	Brand	Model	FCC ID
Flash Disk	Silicon	D33B03	DoC
Notebook	DELL	E6220	D2A62L1989V5


3.8. Test Configurations

3.8.1. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Shielded	Length(m)
1	Power Cable	No	1.5m
2	RJ-45 Cable	No	10m

3.8.2. Radiation Emissions Test Configuration

Item	Connection	Shielded	Length(m)
1	Power Cable	No	1.5m
2	RJ-45 Cable	No	10m

4. TEST RESULT

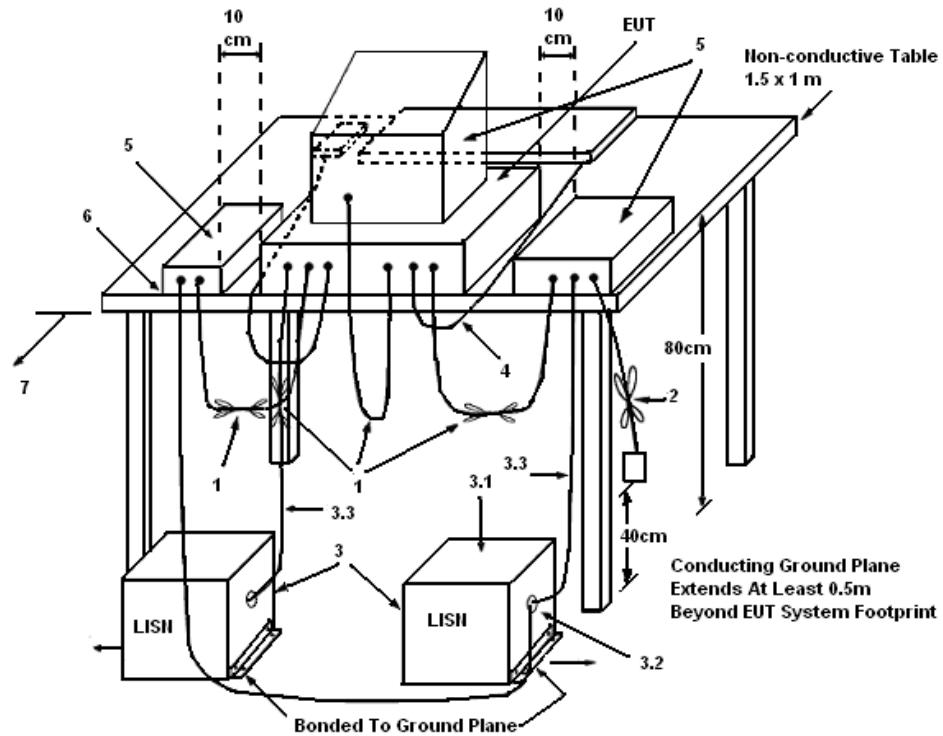
4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.3. Test Procedures

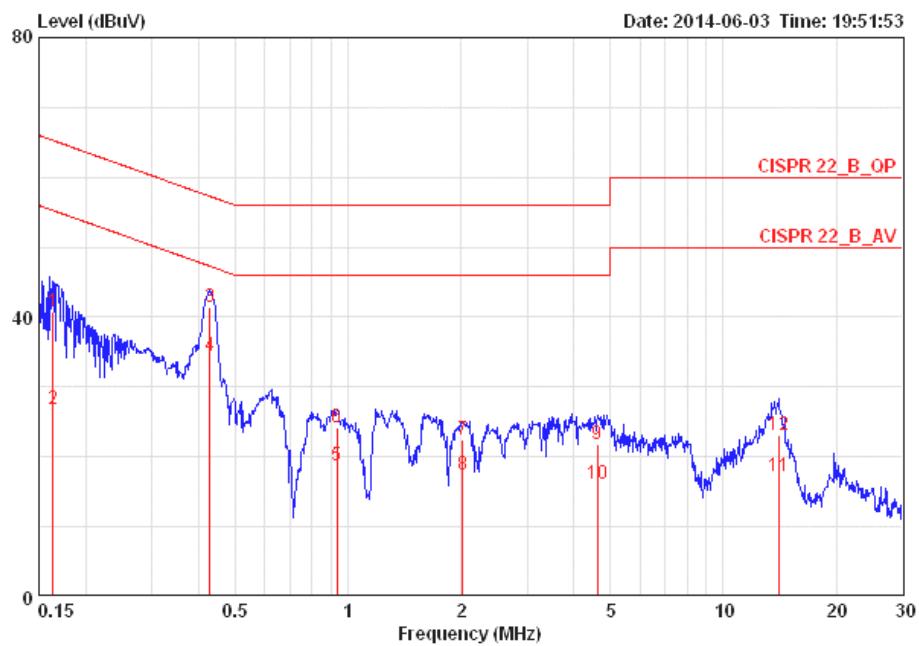
1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
4. The frequency range from 150 kHz to 30 MHz was searched.
5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

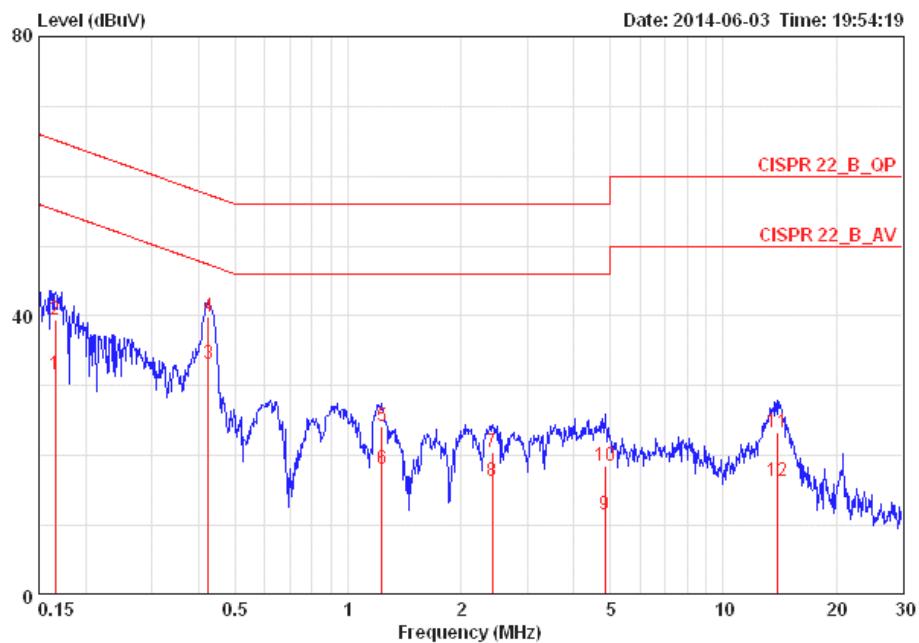
- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
 - (3.1) All other equipment powered from additional LISN(s).
 - (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
 - (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation


There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.


4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	24°C	Humidity	54%
Test Engineer	Parody Lin	Phase	Line
Configuration	CTX		

Freq	Level	Over Limit	LISN	Read	Cable		Remark	Factor
					MHz	dBuV	dB	
1	0.16327	40.87	-24.43	65.30	0.08	40.60	0.19	LINE QP 0.27
2	0.16327	26.77	-28.53	55.30	0.08	26.50	0.19	LINE AVERAGE 0.27
3	0.42825	41.36	-15.93	57.29	0.08	41.08	0.20	LINE QP 0.28
4	0.42825	34.40	-12.89	47.29	0.08	34.12	0.20	LINE AVERAGE 0.28
5	0.93314	18.75	-27.25	46.00	0.09	18.48	0.18	LINE AVERAGE 0.27
6	0.93314	24.30	-31.70	56.00	0.09	24.03	0.18	LINE QP 0.27
7	2.023	22.43	-33.57	56.00	0.12	22.08	0.23	LINE QP 0.35
8	2.023	17.38	-28.62	46.00	0.12	17.03	0.23	LINE AVERAGE 0.35
9	4.622	21.71	-34.29	56.00	0.16	21.24	0.31	LINE QP 0.47
10	4.622	16.10	-29.90	46.00	0.16	15.63	0.31	LINE AVERAGE 0.47
11	14.063	17.29	-32.71	50.00	0.30	16.59	0.40	LINE AVERAGE 0.70
12	14.063	23.15	-36.85	60.00	0.30	22.45	0.40	LINE QP 0.70

Temperature	24°C	Humidity	54%
Test Engineer	Parody Lin	Phase	Neutral
Configuration	CTX		

Freq	Level	Over Limit	LISN Line	Factor	Read Level	Cable		Remark	Factor	
						dBuV	dB			
MHz	dBuV	dB	dBuV	dB	dBuV	dB	dB		dB	
1	0.16589	31.58	-23.59	55.16	0.08	31.31	0.19	NEUTRAL	AVERAGE	0.27
2	0.16589	39.50	-25.67	65.16	0.08	39.23	0.19	NEUTRAL	QP	0.27
3	0.42373	33.04	-14.33	47.37	0.09	32.75	0.20	NEUTRAL	AVERAGE	0.29
4	0.42373	39.86	-17.51	57.37	0.09	39.57	0.20	NEUTRAL	QP	0.29
5	1.229	24.28	-31.72	56.00	0.10	23.97	0.21	NEUTRAL	QP	0.31
6	1.229	18.11	-27.89	46.00	0.10	17.80	0.21	NEUTRAL	AVERAGE	0.31
7	2.422	20.55	-35.45	56.00	0.13	20.18	0.24	NEUTRAL	QP	0.37
8	2.422	16.25	-29.75	46.00	0.13	15.88	0.24	NEUTRAL	AVERAGE	0.37
9	4.848	11.45	-34.55	46.00	0.17	10.96	0.32	NEUTRAL	AVERAGE	0.49
10	4.848	18.60	-37.40	56.00	0.17	18.11	0.32	NEUTRAL	QP	0.49
11	13.915	23.22	-36.78	60.00	0.30	22.52	0.40	NEUTRAL	QP	0.70
12	13.915	16.26	-33.74	50.00	0.30	15.56	0.40	NEUTRAL	AVERAGE	0.70

Note:

Level = Read Level + LISN Factor + Cable Loss

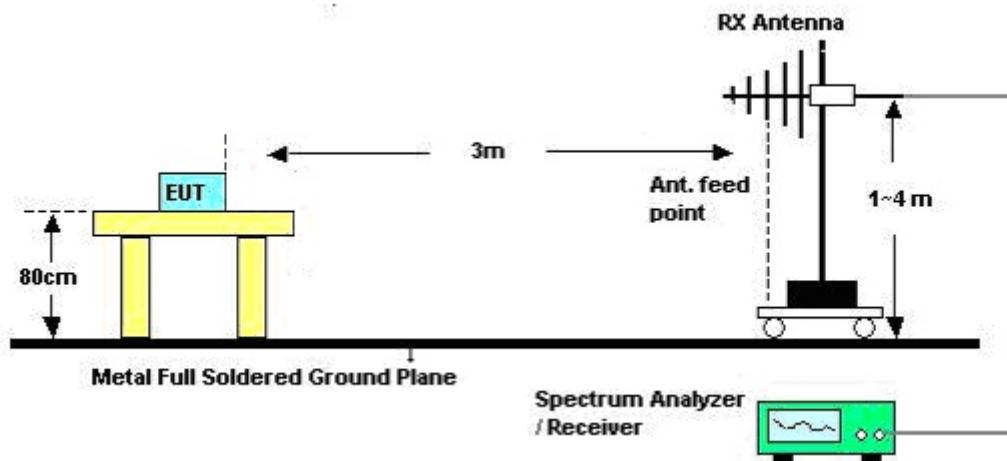
4.2. Field Strength of Fundamental Emissions Measurement

4.2.1. Limit

The field strength of fundamental emissions within these bands specified at a distance of 3 meters (measurement instrumentation employing an average detector) shall comply with the following table.

Frequency Band (MHz)	Fundamental Emissions Limit (dBuV/m) at 3m
902~928	94 (QP)

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Power Meter Parameter	Setting
RBW	100 kHz
VBW	300 kHz
Detector	QP
Trace	Max Hold
Sweep Time	Auto

4.2.3. Test Procedures

1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. For Fundamental emissions, use 100kHz VBW and 300kHz RBW for QP reading in spectrum analyzer.
6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of Field Strength of Fundamental Emissions

Temperature	26°C	Humidity	62%
Test Engineer	YC Chen	Configurations	Channel 1
Test Date	May 31, 2014		

Channel 1

Freq	Level	Limit		Over Limit	Read Level	Cable	Antenna	Preamp	A/Pos	T/Pos	Pol/Phase	Remark
		Line	dB			Loss	Factor	Factor	cm	deg		
1	915.18	93.74	114.00	-20.26	100.25	3.99	20.68	31.18	101	87	VERTICAL	Peak
2	915.18	93.63	94.00	-0.37	100.14	3.99	20.68	31.18	101	87	VERTICAL	QP

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

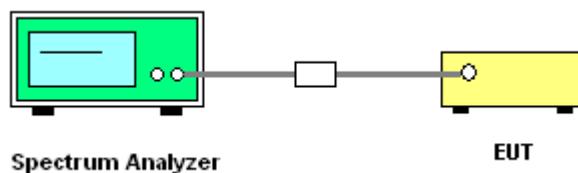
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4.3. 20dB Spectrum Bandwidth Measurement

4.3.1. Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (902~928MHz).

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 20dB Bandwidth
RBW	100 kHz
VBW	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.3.3. Test Procedures

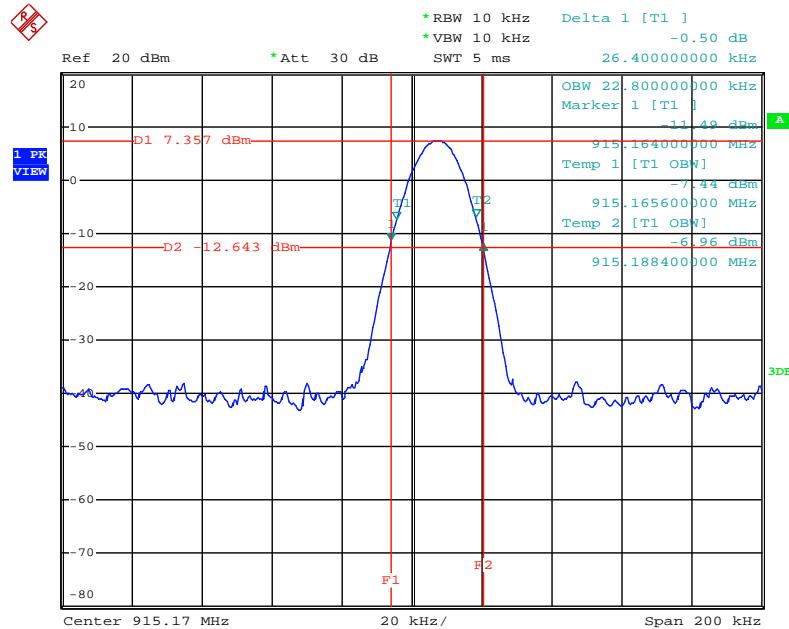
1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
2. The resolution bandwidth of 100 kHz and the video bandwidth of 100 kHz were used.
3. Measured the spectrum width with power higher than 6dB below carrier.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test


The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of 20dB Spectrum Bandwidth

Temperature	20°C	Humidity	53%
Test Engineer	Wen Chao	Configurations	Channel 1

Frequency	20dB BW (MHz)	99% OBW (MHz)	Frequency range (MHz) $f_L > 902\text{MHz}$	Frequency range (MHz) $f_H < 928\text{MHz}$	Test Result
915.17 MHz	26.40	22.80	915.1640	915.1904	Complies

20 dB/99% Bandwidth Plot on 915.17 MHz

Date: 3.JUN.2014 12:07:14

4.4. Radiated Emissions Measurement

4.4.1. Limit

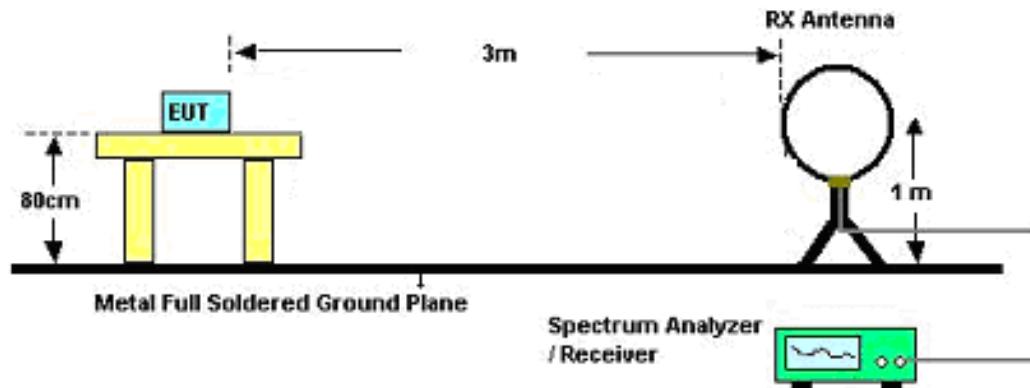
Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

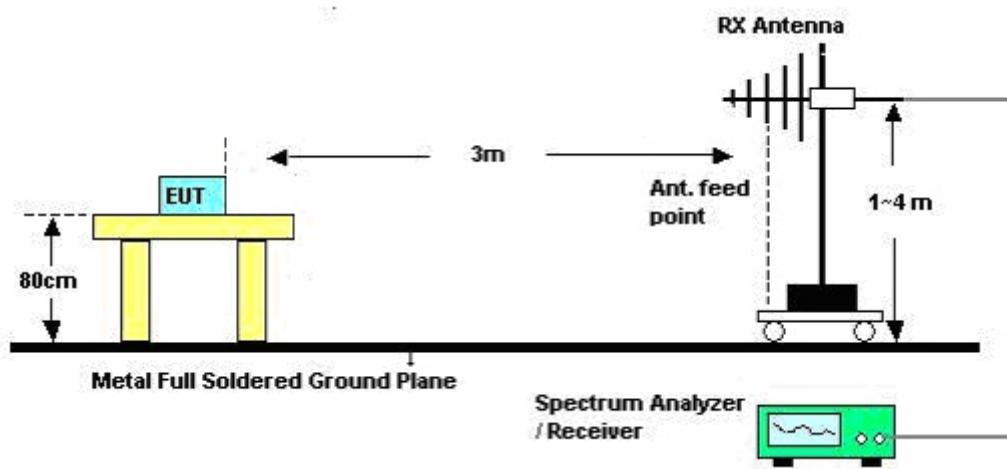
4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer and receiver.

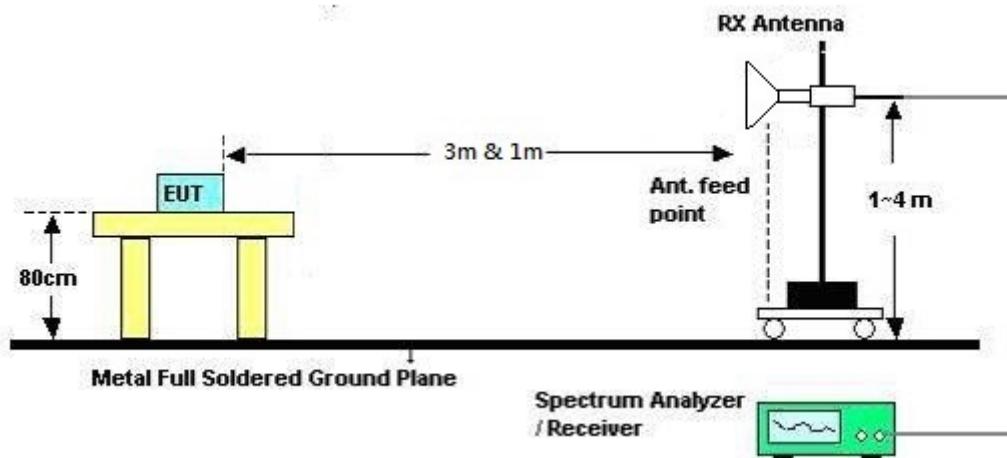
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100kHz/300kHz for Peak


Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

4.4.3. Test Procedures


1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

4.4.4. Test Setup Layout


For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

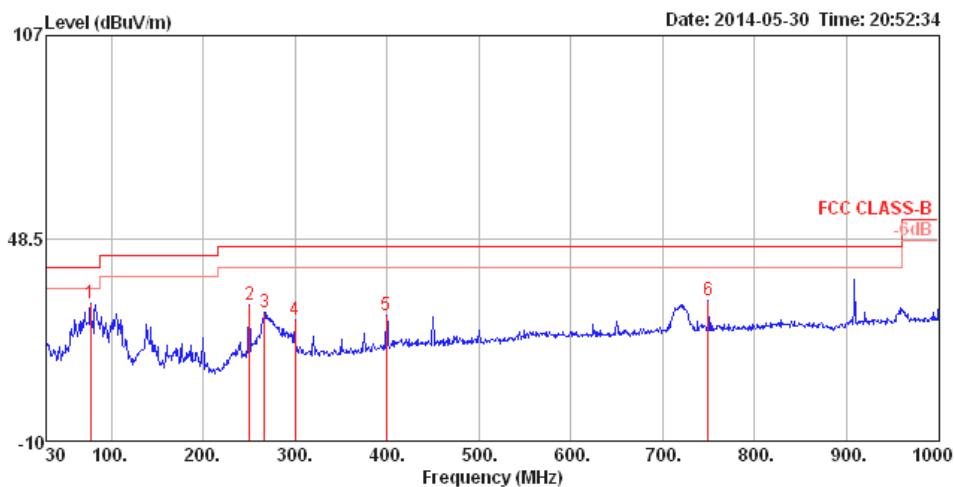
4.4.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	26°C	Humidity	62%
Test Engineer	YC Chen	Configurations	CTX
Test Date	May 30, 2014		

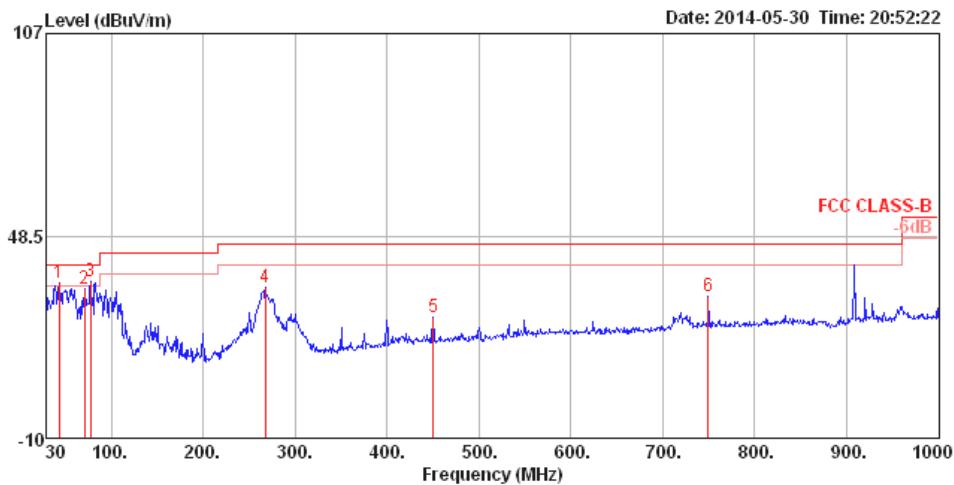
Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Limit Line (dBuV)	Remark
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


4.4.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	26°C	Humidity	62%
Test Engineer	YC Chen	Configurations	CTX

Horizontal

Freq	Level	Limit		Over	Read	Cable	Antenna	Preamp	A/Pos	T/Pos	Pol/Phase	Remark
		Line	Limit									
MHz	dBuV/m	dBuV/m	dB	dB	dBuV	dB	dB/m	dB	cm	deg		
1	77.53	29.63	40.00	-10.37	53.77	1.03	6.53	31.70	200	266	HORIZONTAL	Peak
2	250.19	29.38	46.00	-16.62	47.06	1.90	11.91	31.49	125	126	HORIZONTAL	Peak
3	266.68	27.06	46.00	-18.94	44.11	1.97	12.53	31.55	100	149	HORIZONTAL	Peak
4	299.66	24.93	46.00	-21.07	41.20	2.13	13.02	31.42	100	124	HORIZONTAL	Peak
5	399.57	26.15	46.00	-19.85	39.26	2.49	15.86	31.46	100	46	HORIZONTAL	Peak
6	749.74	30.68	46.00	-15.32	38.83	3.53	19.69	31.37	125	156	HORIZONTAL	Peak

Vertical

Freq	Level	Limit	Over	Read	Cable			Antenna	Preamp	A/Pos	T/Pos	Pol/Phase	Remark
					Line	Limit	Level						
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg				
1	43.58	34.70	40.00	-5.30	55.51	0.78	10.25	31.84	125	125	VERTICAL	Peak	
2	70.74	33.35	40.00	-6.65	58.73	1.00	5.39	31.77	125	324	VERTICAL	Peak	
3	77.53	35.16	40.00	-4.84	59.30	1.03	6.53	31.70	125	2	VERTICAL	Peak	
4	267.65	33.53	46.00	-12.47	50.63	1.98	12.47	31.55	200	150	VERTICAL	Peak	
5	450.01	25.08	46.00	-20.92	37.42	2.65	16.20	31.19	125	110	VERTICAL	Peak	
6	749.74	30.82	46.00	-15.18	38.97	3.53	19.69	31.37	100	2	VERTICAL	Peak	

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.4.9. Results for Radiated Emissions (1GHz~10th Harmonic)

Temperature	26°C	Humidity	62%
Test Engineer	YC Chen	Configurations	Channel 1
Test Date	May 31. 2014		

Horizontal

Freq	Level	Limit		Over Limit	Read Level	Cable		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB			cm	deg		
1	7321.43	49.60	54.00	-4.40	40.76	7.06	37.13	35.35	131	215	HORIZONTAL	Average	
2	7321.47	54.30	74.00	-19.70	45.46	7.06	37.13	35.35	131	215	HORIZONTAL	Peak	
3	8236.61	44.92	54.00	-9.08	36.89	7.28	37.20	36.45	100	174	HORIZONTAL	Average	
4	8236.69	52.35	74.00	-21.65	44.32	7.28	37.20	36.45	100	174	HORIZONTAL	Peak	

Vertical

Freq	Level	Limit		Over Limit	Read Level	Cable		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB			cm	deg		
1	7321.41	56.26	74.00	-17.74	47.42	7.06	37.13	35.35	100	135	VERTICAL	Peak	
2	7321.43	51.72	54.00	-2.28	42.88	7.06	37.13	35.35	100	135	VERTICAL	Average	
3	8236.42	52.80	74.00	-21.20	44.77	7.28	37.20	36.45	139	133	VERTICAL	Peak	
4	8236.63	45.59	54.00	-8.41	37.56	7.28	37.20	36.45	139	133	VERTICAL	Average	

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.5. Band Edge Emissions Measurement

4.5.1. Limit

Band edge emissions radiated outside of the specified frequency bands shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	RBW 120kHz for QP
RBW / VBW (Emission in non-restricted band)	100kHz/300kHz for Peak

4.5.3. Test Procedures

1. The test procedure is the same as section 4.4.3, only the frequency range investigated is limited to 2MHz around bandedges.
2. In case the emission is fail due to the used RBW/VBW is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

4.5.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.4.4.

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.5.7. Test Result of Band Edge and Fundamental Emissions

Temperature	26°C	Humidity	62%
Test Engineer	YC Chen	Configurations	Channel 1
Test Date	May 31. 2014		

Channel 1

Freq	Level	Limit		Over Limit	Read Level	Cable		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB						
1	901.76	25.23	46.00	-20.77	31.82	3.97	20.65	31.21	101	87	VERTICAL	QP	
2	915.18	93.73			100.24	3.99	20.68	31.18	101	87	VERTICAL	Peak	
3	915.21	93.49			100.00	3.99	20.68	31.18	101	87	VERTICAL	Average	
4	928.54	28.87	46.00	-17.13	35.27	4.03	20.72	31.15	101	87	VERTICAL	QP	

Item 2, 3 are the fundamental frequency at 915.17 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6. Antenna Requirements

4.6.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.6.2. Antenna Connector Construction

Please refer to section 3.4 in this test report, antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100355	9 kHz ~ 2.75 GHz	Apr. 23, 2014	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150 kHz ~ 100 MHz	Nov. 23, 2013	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Nov. 11, 2013	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150 kHz ~ 30 MHz	Dec. 04, 2013	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	N.C.R.	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112B	2928	30MHz ~ 2GHz	Dec. 27, 2013	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 01, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 12, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Dec. 16, 2013	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100019	9kHz~40GHz	Dec. 02, 2013	Radiation (03CH01-CB)
EMI Test Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8GHz	Dec. 12, 2013	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R.	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO 2000	N/A	1 m - 4 m	N.C.R.	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9kHz~40GHz	Nov. 29, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	2 Way	0120A02056002D	2GHz ~ 18GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	3 Way	MDC2366	2GHz ~ 18GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	4 Way	0120A04056002D	2GHz ~ 18GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)

RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
---------------	-------	---------------	---	------------------	---------------	---------------------

Note: Calibration Interval of instruments listed above is one year.

“*” Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

6. MEASUREMENT UNCERTAINTY

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Contribution	Uncertainty of x_i			$u(x_i)$
	Value	Unit	Probability Distribution k	
Receiver reading	0.026	dB	normal(k=2)	0.013
Cable loss	0.002	dB	normal(k=2)	0.001
AMN/LISN specification	1.200	dB	normal(k=2)	0.600
Mismatch				
Receiver VSWR 1=	-0.080	dB	U-shaped	0.060
AMN/LISN VSWR 2=				
Combined standard uncertainty $U_c(y)$				1.2
Measuring uncertainty for a level of confidence of 95% $U=2U_c(y)$				2.4

Uncertainty of Radiated Emission Measurement (30MHz ~ 1,000MHz)

Contribution	Uncertainty of x_i			$u(x_i)$
	Value	Unit	Probability Distribution k	
Receiver reading	± 0.173	dB	k=1	0.086
Cable loss	± 0.174	dB	k=2	0.087
Antenna gain	± 0.169	dB	k=2	0.084
Site imperfection	± 0.433	dB	Triangular	0.214
Pre-amplifier gain	± 0.366	dB	k=2	0.183
Transmitter antenna	± 1.200	dB	Rectangular	0.600
Signal generator	± 0.461	dB	Rectangular	0.231
Mismatch	± 0.080	dB	U-shape	0.040
Spectrum analyzer	± 0.500	dB	Rectangular	0.250
Combined standard uncertainty $U_c(y)$				1.778
Measuring uncertainty for a level of confidence of 95% $U=2U_c(y)$				3.555

Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)

Contribution	Uncertainty of x_i			$u(x_i)$
	Value	Unit	Probability Distribution k	
Receiver reading	±0.191	dB	k=1	0.095
Cable loss	±0.169	dB	k=2	0.084
Antenna gain	±0.191	dB	k=2	0.096
Site imperfection	±0.582	dB	Triangular	0.291
Pre-amplifier gain	±0.304	dB	k=2	0.152
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty $U_c(y)$				1.839
Measuring uncertainty for a level of confidence of 95% $U=2U_c(y)$				3.678

Uncertainty of Conducted Emission Measurement

Contribution	Uncertainty of x_i			$u(x_i)$
	Value	Unit	Probability Distribution k	
Cable loss	±0.038	dB	k=2	0.019
Attenuator	±0.047	dB	k=2	0.024
Power Meter specification	±0.300	dB	Triangular	0.150
Power Sensor specification	±0.300	dB	Rectangular	0.150
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty $U_c(y)$				0.863
Measuring uncertainty for a level of confidence of 95% $U=2U_c(y)$				1.726