

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEMO09120708601

Email: sgs_internet_operations@sgs.com Page: 1 of 63

FCC REPORT

Application No: SZEMO091207086RF

Applicant: Realease Ltd.

Product Name: QOOQ Portable Computer **Operation Frequency:** 2.402GHz to 2.480GHz

FCC ID: VTXQQ001001

Standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247: 2008

Date of Receipt: 22 December 2009

Date of Test: 15 January to 18 March 2010

Date of Issue: 22 March 2010

Test Result : PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEMO09120708601

Page: 2 of 63

2 Contents

			Page
_	•		
2		ONTENTS	
3	TE	EST SUMMARY	3
4	GI	ENERAL INFORMATION	4
	4.1	CLIENT INFORMATION	4
	4.2	GENERAL DESCRIPTION OF E.U.T.	
	4.3	E.U.T OPERATION MODE	
	4.4	TEST FACILITY	
	4.5	TEST LOCATION	7
	4.6	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	4.7	TEST INSTRUMENTS LIST	
5	TE	EST RESULTS AND MEASUREMENT DATA	9
	5.1	ANTENNA REQUIREMENT:	9
	5.2	CONDUCTED EMISSIONS	
	5.3	CONDUCTED PEAK OUTPUT POWER	13
	5.4	20DB OCCUPY BANDWIDTH	19
	5.5	CARRIER FREQUENCIES SEPARATION	25
	5.6	HOPPING CHANNEL NUMBER	32
	5.7	DWELL TIME	
	5.8	BAND EDGE	
	5.9	RF ANTENNA CONDUCTED SPURIOUS EMISSIONS	
	5.10	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	5.11	RADIATED EMISSION	
	•	11.1 Radiated emission below 1GHz	
	•	11.2 Transmitter emission above 1GHz	
	5.	11.3 Band Edge and Restricted band (Radiated measurement)	62-63

SGS

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEMO09120708601

Page: 3 of 63

3 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Passed
AC Power Line Conducted Emission	15.207	Passed
Conducted Peak Output Power	15.247 (b)(1)	Passed
20dB Occupied Bandwidth	15.247 (a)(1)	Passed
Carrier Frequencies Separation	15.247 (a)(1)	Passed
Hopping Channel Number	15.247 (b)	Passed
Dwell Time	15.247 (a)(1)	Passed
Pseudo random Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Passed
Radiated Emission	15.205/15.209	Passed
Band Edge	15.247(d)	Passed
RF Antenna Conducted spurious emissions	15.247(d)	Passed

Remark:

Passed: The EUT complies with the essential requirements in the standard

Failed: The EUT does not comply with the essential requirements in the standard

1. The EUT had Bluetooth function and WiFi function which used the same module and antenna.

When working in Bluetooth, the EUT will not work in Wifi, and vice versa.

2. The WIFI port of the computer is not included in this report. It was already tested in other task, and you can refer to the test report 708602 for details.

Report No.: SZEMO09120708601

Page: 4 of 63

4 General Information

4.1 Client Information

Applicant:	Realease Ltd.
Address of Applicant:	Unit 1901 & 1910, 19/F, DOMINION CENTRE, NOS 43-59 QUEEN'S ROAD EAST, HONG KONG
Manufacturer:	Realease Ltd.
Address of Manufacturer:	Unit 1901 & 1910, 19/F, DOMINION CENTRE, NOS 43-59 QUEEN'S ROAD EAST, HONG KONG
Factory:	Uni-V Co. Ltd.
Address of Factory:	Building 19, Jingxiu Road, Heyi Beifang Yong fa Technical Park, Shajing Town, Bao'an District Shenzhen, China

4.2 General Description of E.U.T.

Product Name:	QOOQ Portable Computer
Trade Name:	N/A
Item No.:	QQ001001-XX where XX represents the country letter
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, Pi/4QPSK, 8DPSK
Antenna Type:	Integral
Antenna gain:	0.5dBi
Power supply:	Input: AC 100-240V 50/60Hz Output: DC 5.0V 4.0A

Report No.: SZEMO09120708601

Page: 5 of 63

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEMO09120708601

Page: 6 of 63

4.3 E.U.T Operation mode

Operating Environment:						
Temperature:	24.0 °C					
Humidity:	52 % RH					
Atmospheric Pressure:	1008 mbar					
Test mode:						
Normal operation mode:	Keep the EUT communicating with other Bluetooth device					
Transmitting mode:	Keep the EUT in transmitting mode with modulation.					

Report No.: SZEMO09120708601

Page: 7 of 63

4.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197 and C-2383 respectively.

Date of Registration: September 29, 2008. Valid until September 28, 2011.

FCC - Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 556682, June 27, 2008.

Industry Canada (IC)

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1.

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch E&E Lab
No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China
518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

No tests were sub-contracted.

4.6 Other Information Requested by the Customer

None.

4.7 Description of Support Units

Description	Manufacturer	Model No.
U-Disk	Lenovo	B201i
Earphone	Apple	N/A

Report No.: SZEMO09120708601

Page: 8 of 63

4.8 Test Instruments list

RE i	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	16-06-2009	15-06-2010	
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	12-12-2009	11-12-2010	
3	EMI Test software	AUDIX	E3	SEL0050	N/A	N/A	
4	Coaxial cable	SGS	N/A	SEL0028	18-06-2009	17-06-2010	
6	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0014	12-08-2009	11-08-2010	
7	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0005	12-08-2009	11-08-2010	
8	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	12-08-2009	11-08-2010	
9	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	18-06-2009	17-06-2010	
10	Pre-amplifier (1-18GHz)	Rohde & Schwarz	AFS42-00101 800-25-S-42	SEL0081	18-06-2009	17-06-2010	
11	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	SEL0080	18-06-2009	17-06-2010	
12	Band filter	Amindeon	82346	SEL0094	18-06-2009	17-06-2010	

Con	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)		
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	N/A	N/A		
2	LISN	ETS-LINDGREN	3816/2	SEL0021	18-06-2009	17-06-2010		
3	LISN	Schwarzbeck	NNBM 8125	SEL0119	28-07-2009	28-07-2010		
4	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	18-06-2009	17-06-2010		
5	Coaxial Cable	SGS	N/A	SEL0024	18-06-2009	17-06-2010		

RF c	RF conducted						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)	
1	Spectrum Analyzer	Rohde & Schwarz	10336/030	EMC0040	16-06-2009	15-06-2010	
2	Coaxial cable	SGS	N/A	SEL0029	18-06-2009	17-06-2010	

Report No.: SZEMO09120708601

Page: 9 of 63

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.5dBi.

Report No.: SZEMO09120708601

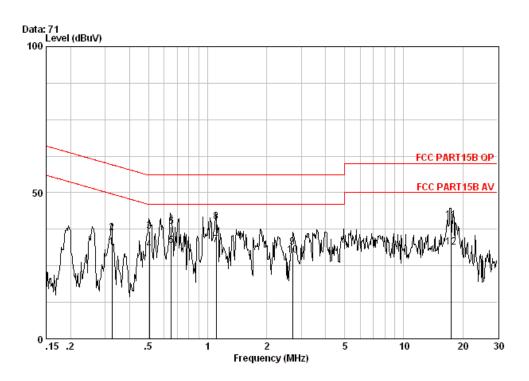
Page: 10 of 63

5.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.4: 2003			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Limit:	Francisco (AIII-)	Limit (c	dBuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5 66 to 56* 56 to 46			
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm			
Test procedure	The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). The provider a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.			
Test setup:	Reference Plane			
	AUX Equipment Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Net. Test table height=0.8m	EMI Receiver	— AC power	
Test Instruments:	Refer to section 4.7 for details			
Test mode:	Normal operation mode			
Test results:	Passed			

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

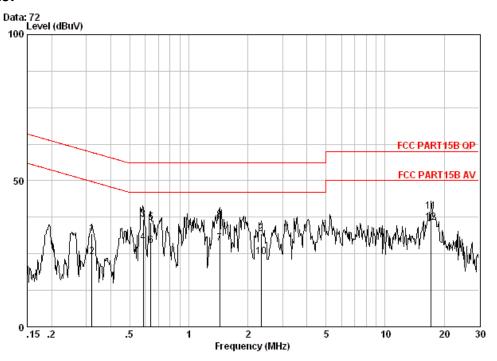
Report No.: SZEMO09120708601

Page: 11 of 63

Live line:

			Cable	LISN	Read		Limit	Over	
		Freq	Loss	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1		0.32512	0.05	-0.04	31.20	31.21	49.57	-18.37	Average
2		0.32512	0.05	-0.04	36.20	36.21	59.57	-23.37	QP
3		0.50469	0.06	-0.04	36.90	36.92	56.00	-19.08	QP
4		0.50469	0.06	-0.04	30.60	30.62	46.00	-15.38	Average
5		0.65084	0.06	-0.05	32.00	32.01	46.00	-13.99	Average
6		0.65084	0.06	-0.05	38.50	38.51	56.00	-17.49	QP
7	@	1.106	0.09	-0.05	32.00	32.03	46.00	-13.97	Average
8		1.106	0.09	-0.05	40.00	40.03	56.00	-15.97	QP
9		2.707	0.13	-0.07	31.40	31.46	56.00	-24.54	QP
10		2.707	0.13	-0.07	28.50	28.56	46.00	-17.44	Average
11		17.383	0.26	-0.57	40.80	40.49	60.00	-19.51	QP
12		17.383	0.26	-0.57	31.60	31.29	50.00	-18.71	Average

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEMO09120708601

Page: 12 of 63

Neutral line:

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.31999	0.05	-0.04	31.90	31.91	59.71	-27.79	QP
2	0.31999	0.05	-0.04	23.90	23.91	49.71	-25.79	Average
3	0.58540	0.06	-0.04	36.70	36.72	56.00	-19.28	QP
4	0.58540	0.06	-0.04	28.90	28.92	46.00	-17.08	Average
5	0.64058	0.06	-0.04	35.80	35.82	56.00	-20.18	QP
6	0.64058	0.06	-0.04	27.80	27.82	46.00	-18.18	Average
7	1.433	0.10	-0.05	28.50	28.55	46.00	-17.45	Average
8	1.433	0.10	-0.05	36.50	36.55	56.00	-19.45	QP
9	2.334	0.13	-0.07	31.80	31.86	56.00	-24.14	QP
10	2.334	0.13	-0.07	23.80	23.86	46.00	-22.14	Average
11	17.199	0.26	-0.57	39.80	39.49	60.00	-20.51	QP
12	17.199	0.26	-0.57	35.90	35.59	50.00	-14.41	Average

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEMO09120708601

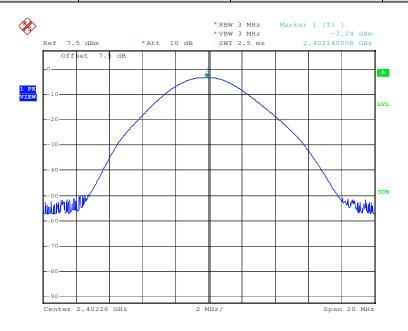
Page: 13 of 63

5.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table	
	Ground Reference Plane	
	Remark: Offset the High-Frequency cable loss 7.5dB in the spectrum analyzer.	
Test Instruments:	Refer to section 4.7 for details	
Test state:	Non-hopping transmitting with modulation.	
Test results:	Passed	

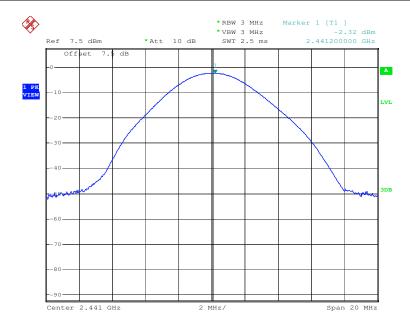
Measurement Data

GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-3.24	30.00	Pass		
Middle	-2.32	30.00	Pass		
Highest	-2.09	30.00	Pass		
	Pi/4QPSK m	ode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-1.40	30.00	Pass		
Middle	-0.12	30.00	Pass		
Highest	0.06	30.00	Pass		
	8DPSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-1.39	30.00	Pass		
Middle	-0.32	30.00	Pass		
Highest	0.04	30.00	Pass		



Report No.: SZEMO09120708601

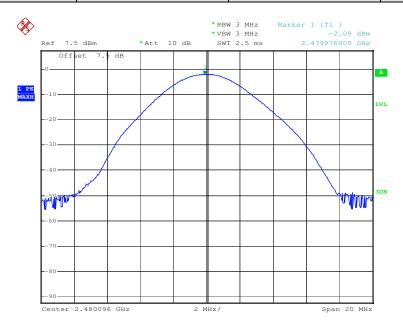
Page: 14 of 63


Test plot as follows:

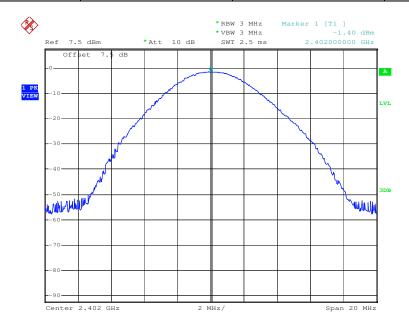
Test mode: GFSK Test channel: Lowest

Date: 2.DEC.2009 15:41:28

Test mode: GFSK Test channel: Middle


Date: 2.DEC.2009 16:02:28

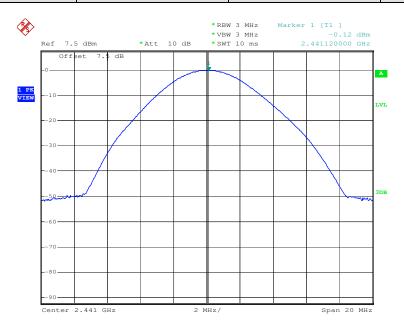
Report No.: SZEMO09120708601


Page: 15 of 63

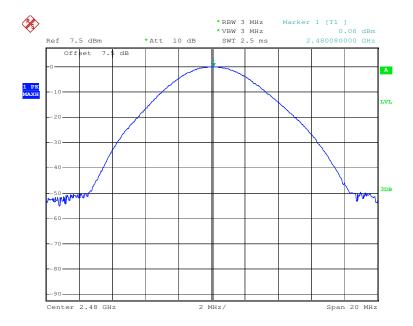
Test mode: GFSK Test channel: Highest

Date: 2.DEC.2009 16:09:49

Test mode: Pi/4QPSK Test channel: Lowest


Date: 2.DEC.2009 17:07:06

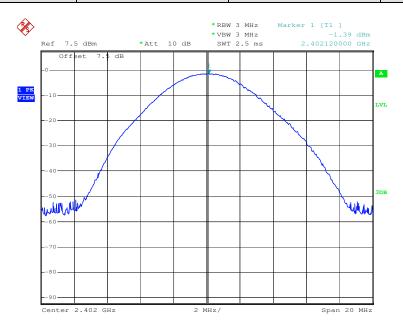
Report No.: SZEMO09120708601


Page: 16 of 63

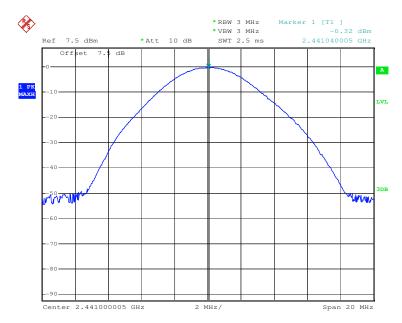
Test mode: Pi/4QPSK Test channel: Middle

Date: 2.DEC.2009 16:37:16

Test mode: Pi/4QPSK Test channel: Highest


Date: 2.DEC.2009 17:08:16

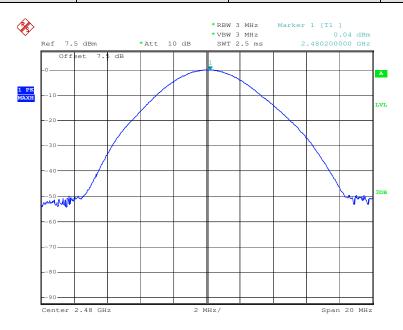
Report No.: SZEMO09120708601


Page: 17 of 63

Test mode: 8DPSK Test channel: Lowest

Date: 2.DEC.2009 17:45:45

Test mode: 8DPSK Test channel: Middle


Date: 2.DEC.2009 17:44:51

Report No.: SZEMO09120708601

Page: 18 of 63

Test mode: 8DPSK Test channel: Highest

Date: 2.DEC.2009 17:57:40

Report No.: SZEMO09120708601

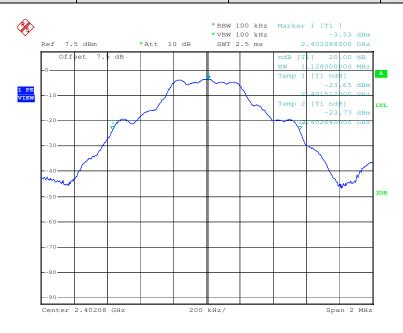
Page: 19 of 63

5.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2003 and KDB DA00-705		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
	Remark: Offset the High-Frequency cable loss 7.5dB in the spectrum analyzer		
Test Instruments:	Refer to section 4.7 for details		
Test state:	Non-hopping transmitting with modulation.		

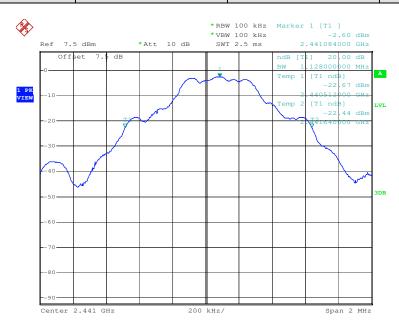
Measurement Data

Test channel	20dB Occupy Bandwidth (KHz)			
	GFSK	Pi/4QPSK	8DPSK	
Lowest	1128	1320	1348	
Middle	1128	1324	1348	
Highest	1128	1324	1348	



Report No.: SZEMO09120708601

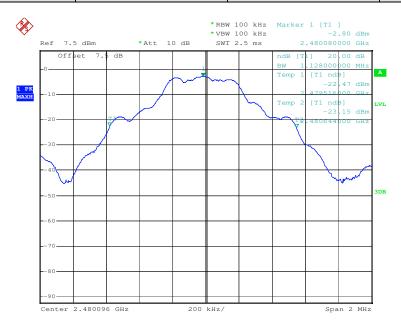
Page: 20 of 63


Test plot as follows:

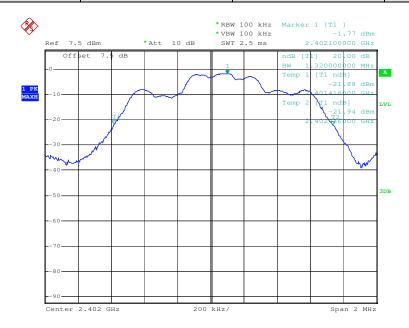
Test mode: GFSK Test channel: Lowest

Date: 2.DEC.2009 15:43:48

Test mode: GFSK Test channel: Middle


Date: 2.DEC.2009 16:03:06

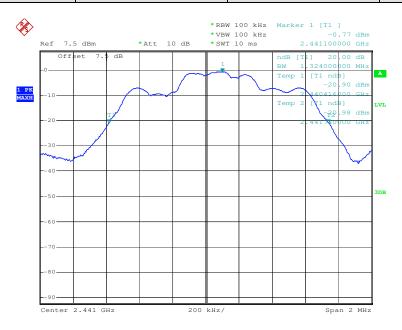
Report No.: SZEMO09120708601


Page: 21 of 63

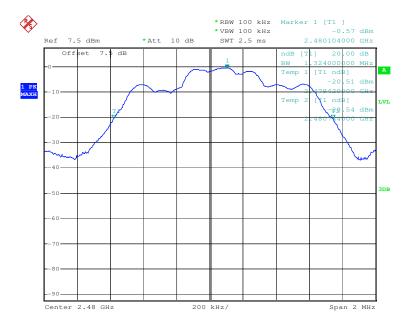
Test mode: GFSK Test channel: Highest

Date: 2.DEC.2009 16:09:16

Test mode: Pi/4QPSK Test channel: Lowest


Date: 2.DEC.2009 16:51:48

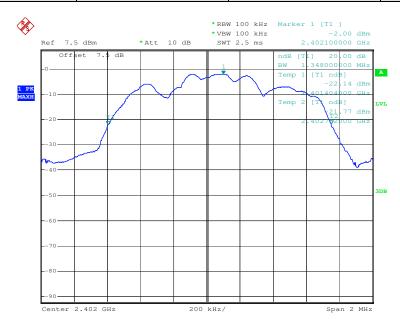
Report No.: SZEMO09120708601


Page: 22 of 63

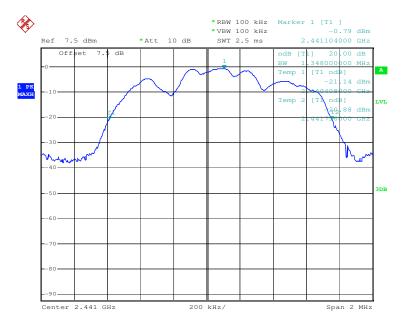
Test mode: Pi/4QPSK Test channel: Middle

Date: 2.DEC.2009 16:37:55

Test mode: Pi/4QPSK Test channel: Highest


Date: 2.DEC.2009 17:10:47

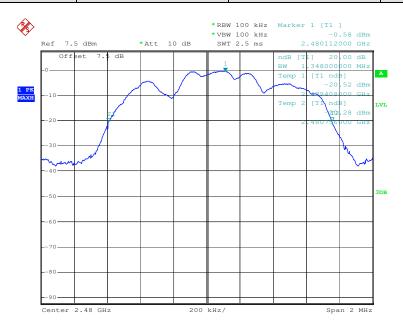
Report No.: SZEMO09120708601


Page: 23 of 63

Test mode: 8DPSK Test channel: Lowest

Date: 2.DEC.2009 17:32:54

Test mode: 8DPSK Test channel: Middle


Date: 2.DEC.2009 17:50:31

Report No.: SZEMO09120708601

Page: 24 of 63

Test mode: 8DPSK Test channel: Highest

Date: 2.DEC.2009 17:58:16

Report No.: SZEMO09120708601

Page: 25 of 63

5.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2003 and KDB DA00-705		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
	Remark:		
	Offset the High-Frequency cable loss 7.5dB in the spectrum analyzer		
Test Instruments:	Refer to section 4.7 for details		
Limit:	>=0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test state:	Hopping transmitting with modulation.		
Test results:	Passed		

Report No.: SZEMO09120708601

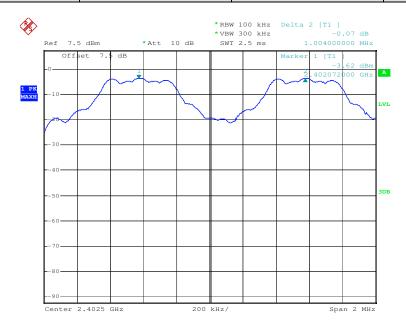
Page: 26 of 63

Measurement Data

GFSK mode				
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result	
Lowest	1004	898	Pass	
Middle	1008	898	Pass	
Highest	1008	898	Pass	
	Pi/4QPSK m	ode		
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result	
Lowest	1000	898	Pass	
Middle	1000	898	Pass	
Highest	1008	898	Pass	
	8DPSK mo	de		
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result	
Lowest	1000	898	Pass	
Middle	1008	898	Pass	
Highest	1004	898	Pass	

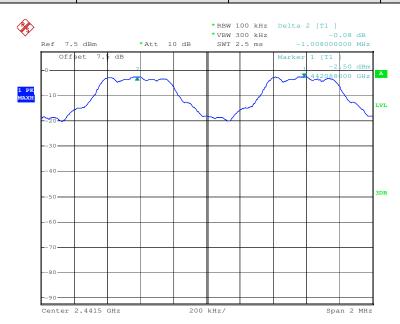
Note: According to section 5.3

Mode	20dB bandwidth (KHz) (worse case)	Limit (KHz) (Carrier Frequencies Separation)
GFSK	1128	752
PI/4QPSK	1324	882
8DPSK	1348	898



Report No.: SZEMO09120708601

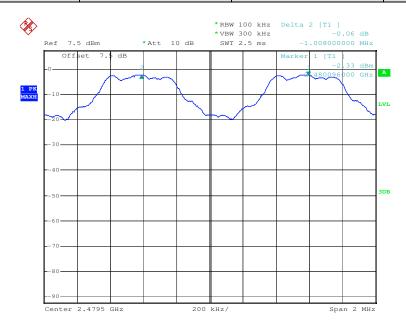
Page: 27 of 63


Test plot as follows:

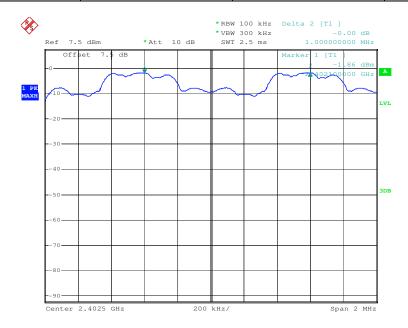
Test mode: GFSK Test channel: Lowest

Date: 2.DEC.2009 15:59:45

Test mode: GFSK Test channel: Middle


Date: 2.DEC.2009 16:07:08

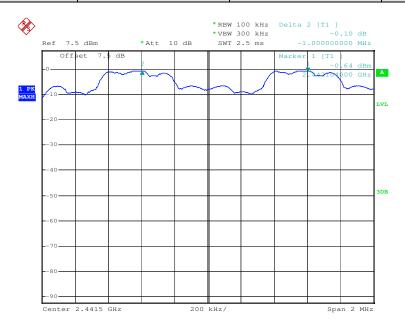
Report No.: SZEMO09120708601


Page: 28 of 63

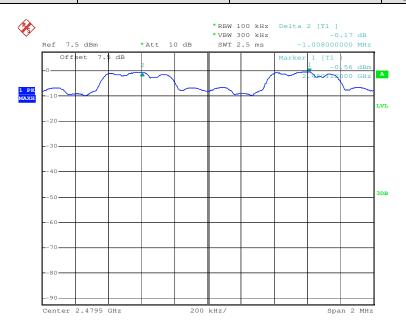
Test mode: GFSK Test channel: Highest

Date: 2.DEC.2009 16:15:32

Test mode: PI/4QPSK Test channel: Lowest


Date: 2.DEC.2009 16:44:15

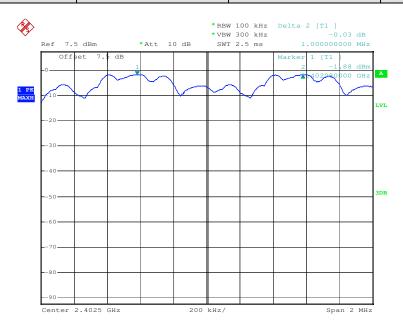
Report No.: SZEMO09120708601


Page: 29 of 63

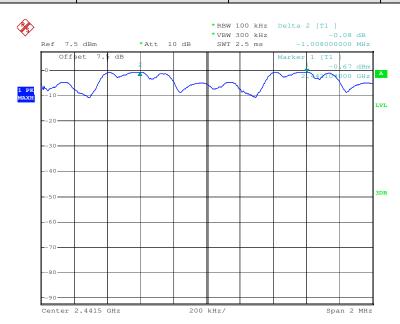
Test mode: PI/4QPSK Test channel: Middle

Date: 2.DEC.2009 16:42:12

Test mode: PI/4QPSK Test channel: Highest


Date: 2.DEC.2009 17:16:36

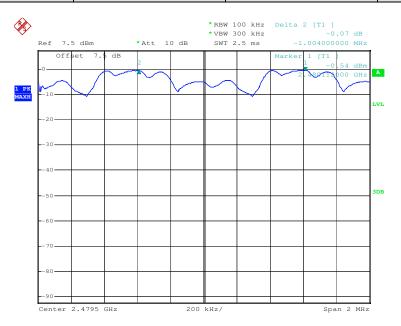
Report No.: SZEMO09120708601


Page: 30 of 63

Test mode: 8DPSK Test channel: Lowest

Date: 2.DEC.2009 17:40:52

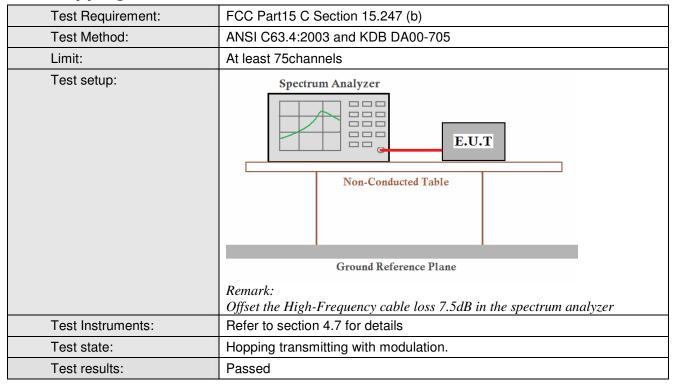
Test mode: 8DPSK Test channel: Middle


Date: 2.DEC.2009 17:53:59

Report No.: SZEMO09120708601

Page: 31 of 63

Test mode: 8DPSK Test channel: Highest


Date: 2.DEC.2009 18:02:03

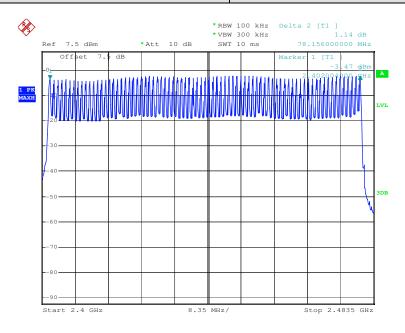
Report No.: SZEMO09120708601

Page: 32 of 63

5.6 Hopping Channel Number

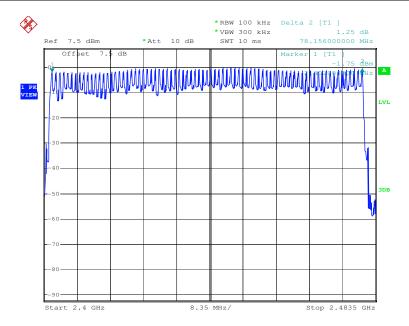
Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	75
Pi/4QPSK	79	75
8DPSK	79	75



Report No.: SZEMO09120708601

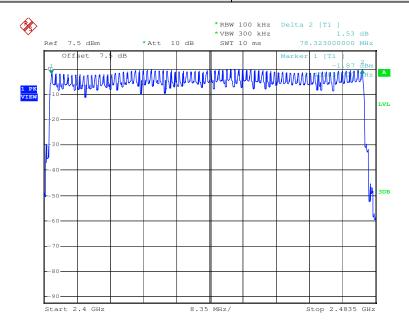
Page: 33 of 63


Test plot as follows

Test mode: GFSK

Date: 2.DEC.2009 17:22:51

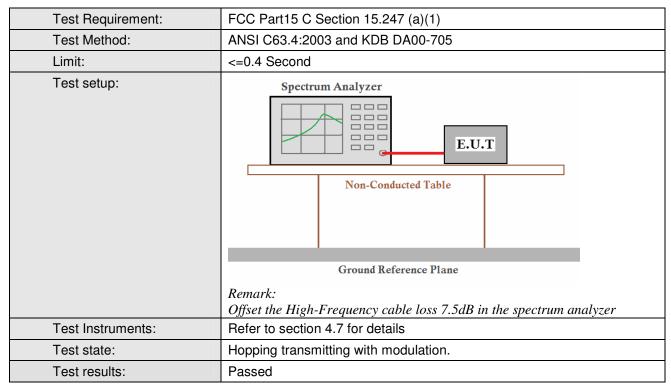
Test mode: Pi/4QPSK


Date: 2.DEC.2009 20:17:48

Report No.: SZEMO09120708601

Page: 34 of 63

Test mode: 8DPSK


Date: 2.DEC.2009 20:30:09

Report No.: SZEMO09120708601

Page: 35 of 63

5.7 Dwell Time

Measurement Data

Packet	Dwell time (second)	Limit (second)
DH1	0.169	0.4
DH3	0.288	0.4
DH5	0.324	0.4

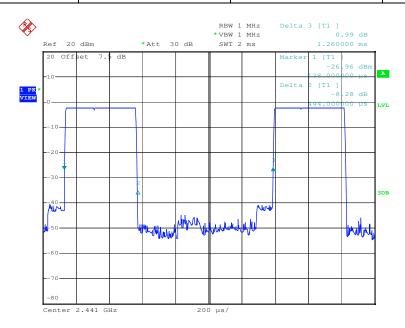
Test Result:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.44(ms)*(1600/ (2*79))*31.6=140.8ms

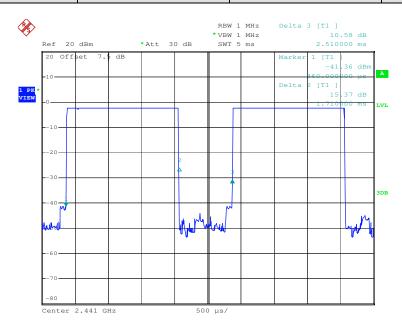
DH3 time slot=1.71(ms)*(1600/(4*79))*31.6=273.6ms

DH5 time slot=2.98(ms)*(1600/ (6*79))*31.6=317.8ms



Report No.: SZEMO09120708601

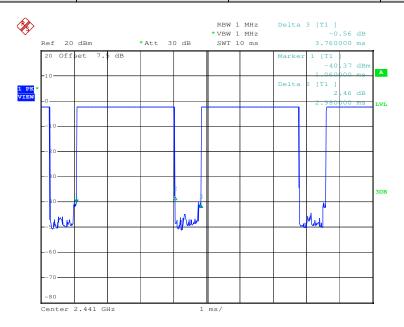
Page: 36 of 63


Test plot as follows

Test mode: GFSK Test Packet: DH1

Date: 2.DEC.2009 16:25:10

Test mode: GFSK Test Packet: DH3


Date: 2.DEC.2009 16:25:43

Report No.: SZEMO09120708601

Page: 37 of 63

Test mode: GFSK Test Packet: DH5

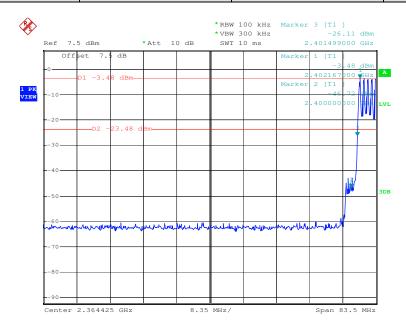
Date: 2.DEC.2009 16:26:31

Report No.: SZEMO09120708601

Page: 38 of 63

5.8 Band Edge

Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.4:2003 and KDB DA00-705							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
	Remark: Offset the High-Frequency cable loss 7.5dB in the spectrum analyzer.							
Test Instruments:	Refer to section 4.7 for details							
Test state:	Hopping transmitting with modulation.							
Test results:	Passed							



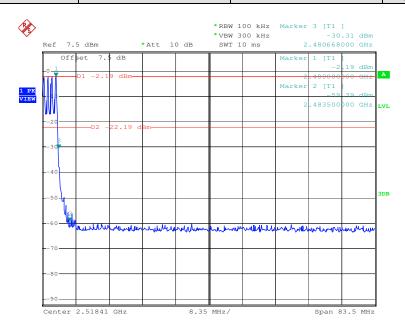
Report No.: SZEMO09120708601

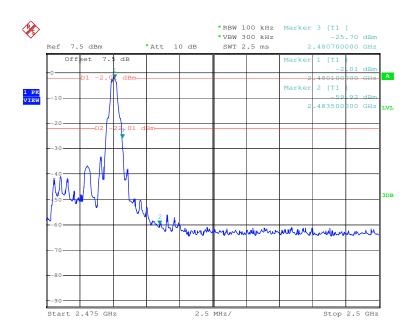
Page: 39 of 63

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Date: 2.DEC.2009 20:11:11

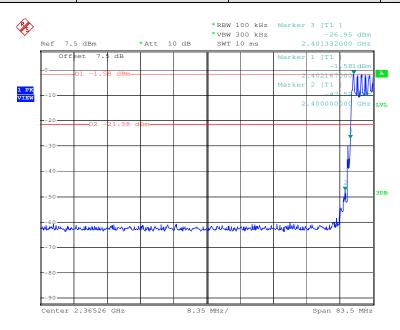

Date: 2.DEC.2009 15:53:00

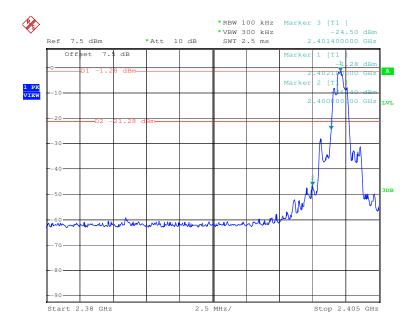

Report No.: SZEMO09120708601

Page: 40 of 63

Test mode: GFSK Test channel: Highest

Date: 2.DEC.2009 20:09:39

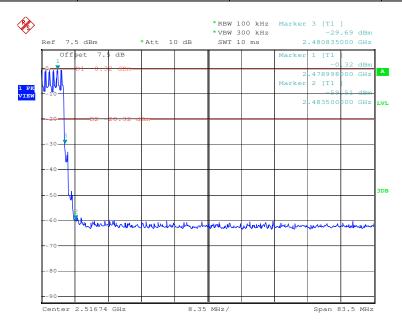

Date: 2.DEC.2009 16:11:09

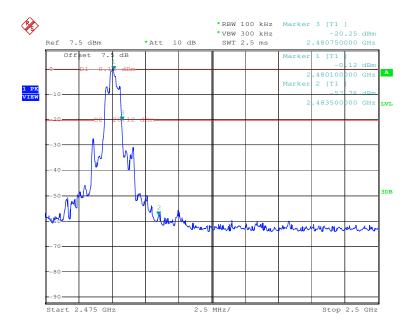

Report No.: SZEMO09120708601

Page: 41 of 63

Test mode: Pi/4QPSK Test channel: Lowest

Date: 2.DEC.2009 20:03:34

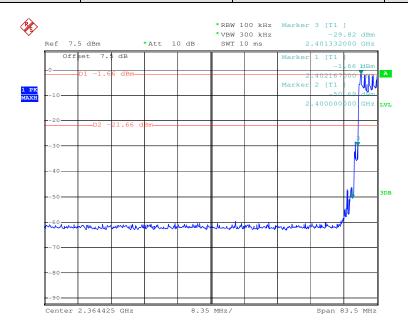

Date: 2.DEC.2009 16:56:18

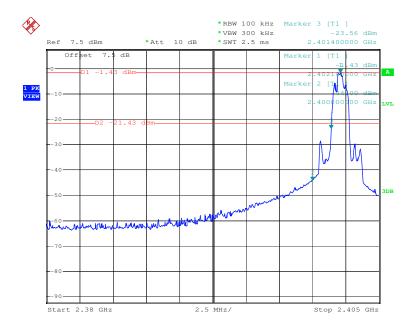

Report No.: SZEMO09120708601

Page: 42 of 63

Test mode: Pi/4QPSK Test channel: Highest

Date: 2.DEC.2009 20:01:57

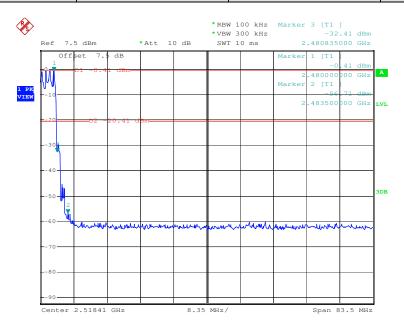

Date: 2.DEC.2009 17:12:07

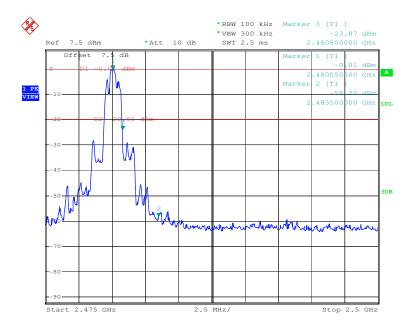

Report No.: SZEMO09120708601

Page: 43 of 63

Test mode: 8DPSK Test channel: Lowest

Date: 2.DEC.2009 20:05:12


Date: 2.DEC.2009 17:35:00


Report No.: SZEMO09120708601

Page: 44 of 63

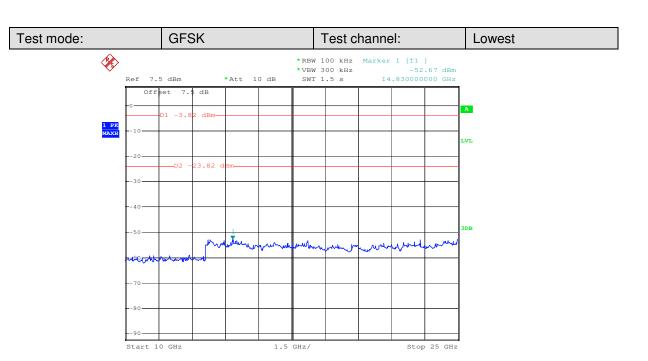
Test mode: 8DPSK Test channel: Highest

Date: 2.DEC.2009 20:07:59

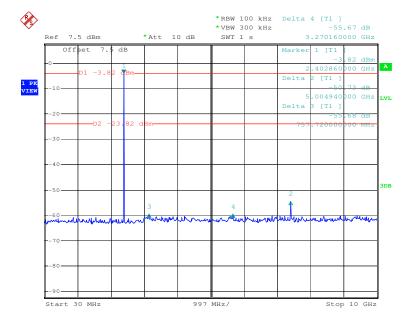
Date: 2.DEC.2009 17:59:23

Report No.: SZEMO09120708601

Page: 45 of 63


5.9 RF Antenna Conducted spurious emissions

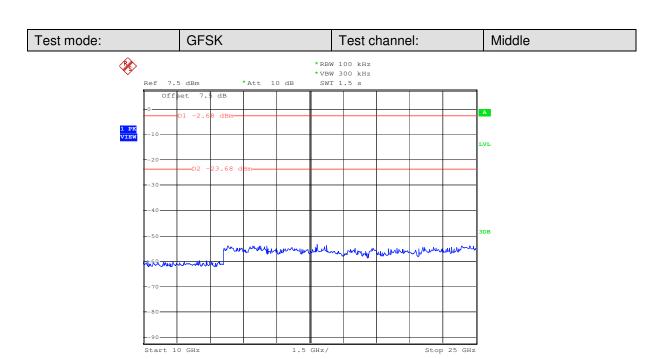
Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.4:2003 and KDB DA00-705							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 7.5dB in the spectrum analyzer.							
Test Instruments:	Refer to section 4.7 for details							
Test results:	Passed							



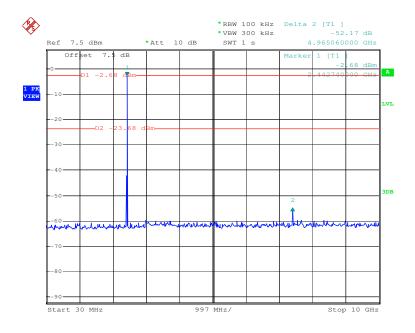
Report No.: SZEMO09120708601

Page: 46 of 63

Date: 2.DEC.2009 15:57:00



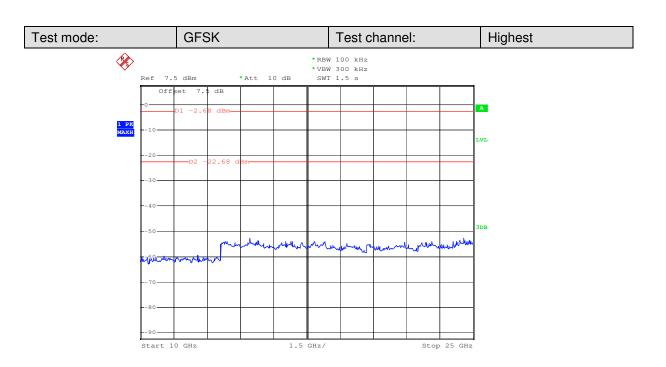
Date: 2.DEC.2009 15:55:45



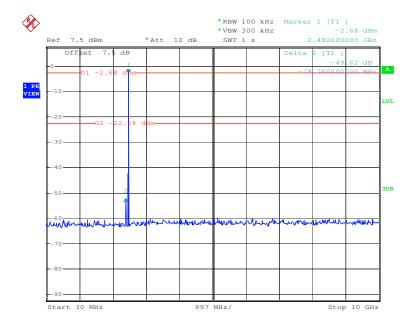
Report No.: SZEMO09120708601

Page: 47 of 63

Date: 2.DEC.2009 16:05:09



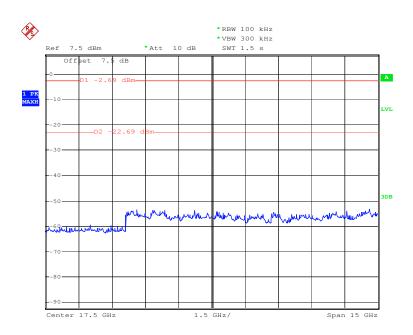
Date: 2.DEC.2009 16:04:34

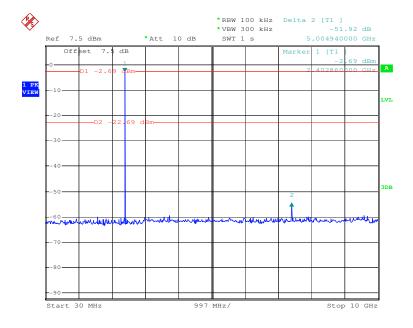


Report No.: SZEMO09120708601

Page: 48 of 63

Date: 2.DEC.2009 16:13:17

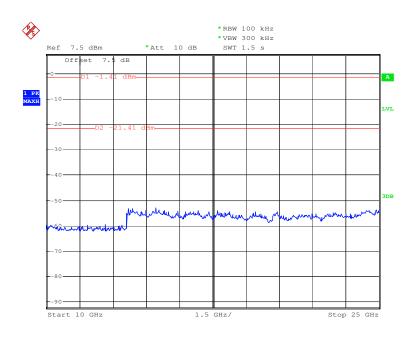

Date: 2.DEC.2009 16:12:45

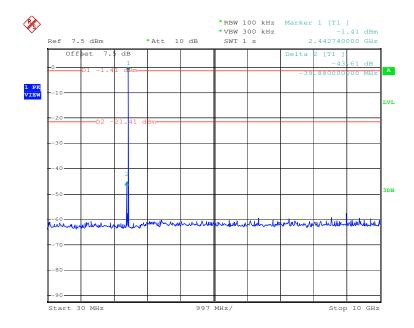

Report No.: SZEMO09120708601

Page: 49 of 63

Test mode: Pi/4QPSK Test channel: Lowest

Date: 2.DEC.2009 18:10:48

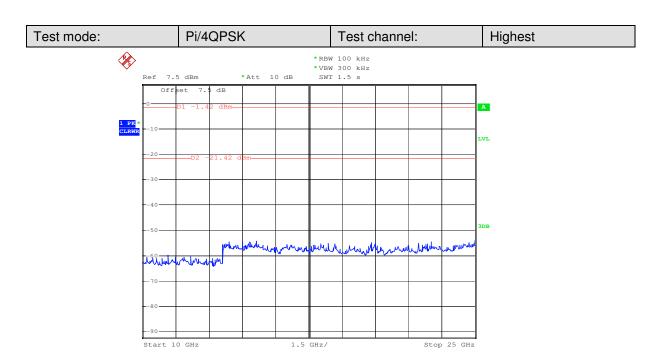

Date: 2.DEC.2009 17:00:20


Report No.: SZEMO09120708601

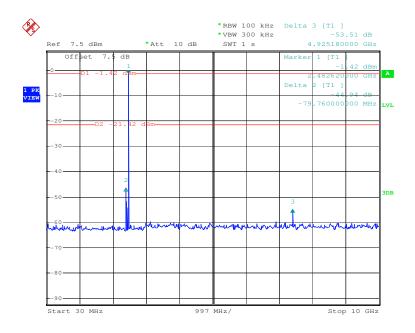
Page: 50 of 63

Test mode: Pi/4QPSK Test channel: Middle

Date: 2.DEC.2009 16:40:03



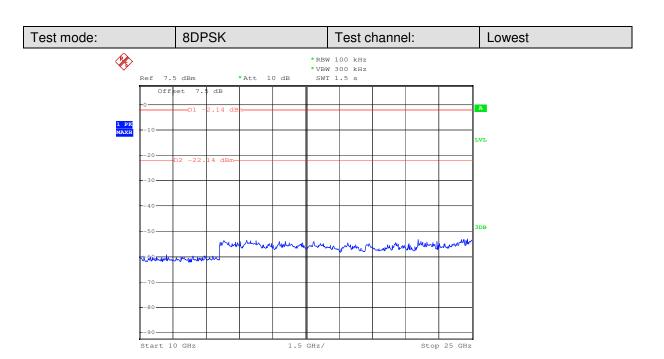
Date: 2.DEC.2009 16:39:31



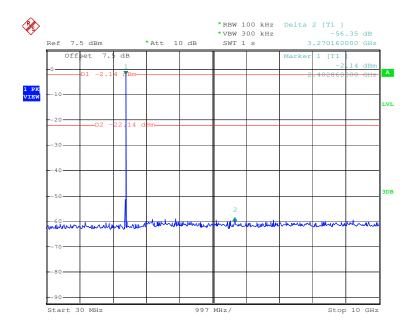
Report No.: SZEMO09120708601

Page: 51 of 63

Date: 2.DEC.2009 17:13:49



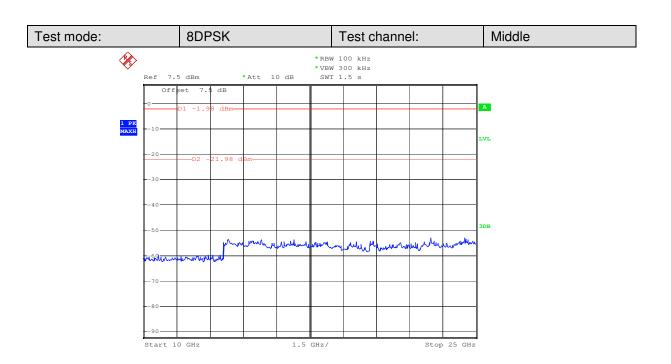
Date: 2.DEC.2009 17:13:19



Report No.: SZEMO09120708601

Page: 52 of 63

Date: 2.DEC.2009 17:38:43



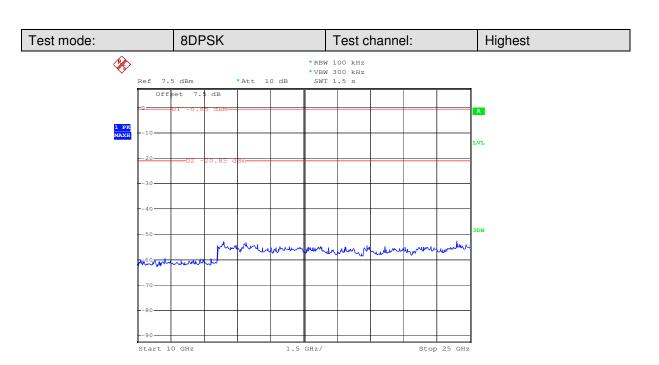
Date: 2.DEC.2009 17:37:10



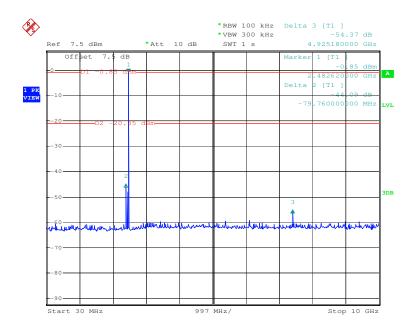
Report No.: SZEMO09120708601

Page: 53 of 63

Date: 2.DEC.2009 17:52:24



Date: 2.DEC.2009 17:51:59



Report No.: SZEMO09120708601

Page: 54 of 63

Date: 2.DEC.2009 18:00:43

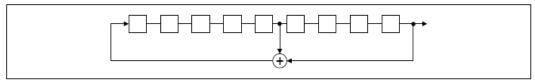
Date: 2.DEC.2009 18:00:18

Report No.: SZEMO09120708601

Page: 55 of 63

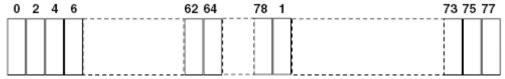
5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

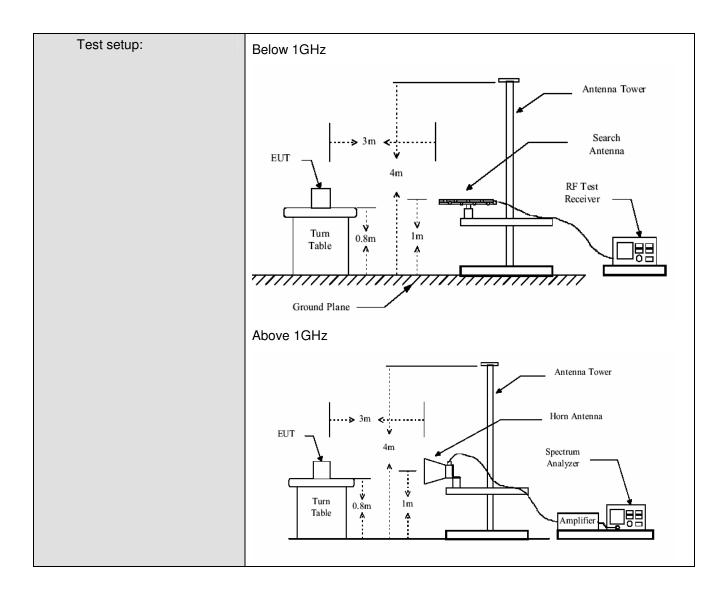
An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: SZEMO09120708601

Page: 56 of 63


5.11 Radiated Emission

Test Requirement:	FCC Part15 C S	Section 15.209	, 15.205 and	d 15.247(d)					
Test Method:	ANSI C63.4: 2003								
Test Frequency Range:	30MHz to 25GH	30MHz to 25GHz							
Test site:	Measurement D	Distance: 3m (S	Semi-Anecho	ic Chambe	r)				
Receiver setup:									
	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
Limit		Peak	1MHz	10Hz	Average Value				
Limit:	Freque	encv	Limit (dBuV/	/m @3m)	Remark				
	30MHz-8		40.0		Quasi-peak Value				
	88MHz-21		43.5		Quasi-peak Value				
	216MHz-9	60MHz	46.0)	Quasi-peak Value				
	960MHz-	1GHz	54.0)	Quasi-peak Value				
	Above 1	GHz	54.0		Average Value				
			74.0		Peak Value 0.8 meters above				
Test Procedure:	the ground rotated 360 radiation. b. The EUT was antenna, whatower. c. The antennal ground to depress and the measure degrees to see a see and the meters and degrees to see a see	at a 3 meter se degrees to de as set 3 meter nich was mour a height is varietermine the mand vertical polement. Ispected emission the rotatable the rotatable the antennation of the maximal ceiver system wandwidth with ion level of the ecified, then tes would be reported and a second of the ecified and a seco	emi-anechoice termine the pass away from the don the to the don't have a seen to pass to pass as to pass to pa	camber. Toosition of the interference of a varial meter to foue of the fiethe antennation heights fined from 0 was arranto heights fined from 0 was a stopped a se the emisone by one	he table was he highest ence-receiving able-height antenna ur meters above the eld strength. Both a are set to make ged to its worst rom 1 meter to 4 degrees to 360				
Test mode:	Non-hopping tra Pre-scan the E the worst case i	UT in GFSK,	Pi/4QPSK ar	nd 8DPSK	modes and find out				
				adapter in	charge mode is the				
Test Instruments:	Refer to section	4.7 for details							
Test results:	Passed								

Report No.: SZEMO09120708601

Page: 57 of 63

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEMO09120708601

Page: 58 of 63

5.11.1 Radiated emission below 1GHz

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
38.730	0.60	11.60	28.10	47.96	32.06	40.00	-7.94	Vertical
68.800	0.80	6.94	28.01	51.36	31.09	40.00	-8.91	Vertical
265.710	1.75	12.63	26.85	46.47	34.00	46.00	-12.00	Vertical
346.220	2.05	15.31	27.06	43.97	34.27	46.00	-11.73	Vertical
612.000	2.73	20.12	27.58	41.90	37.17	46.00	-8.83	Vertical
744.890	3.04	21.68	27.12	41.08	38.68	46.00	-7.32	Vertical
67.830	0.80	6.96	28.01	46.94	26.69	40.00	-13.31	Horizontal
239.520	1.62	11.99	26.96	46.06	32.71	46.00	-13.29	Horizontal
253.100	1.69	12.38	26.90	46.44	33.61	46.00	-12.39	Horizontal
266.000	1.75	12.63	26.85	56.80	44.33	46.00	-1.67	Horizontal
284.140	1.83	13.21	26.78	50.22	38.48	46.00	-7.52	Horizontal
668.260	2.84	21.24	27.38	39.35	36.05	46.00	-9.95	Horizontal

Remark: the data above is tested with QP detector mode.

Report No.: SZEMO09120708601

Page: 59 of 63

5.11.2 Transmitter emission above 1GHz

Test mode:	Test mode: G		Test	Test channel:		Remar	k:	Peak
		T -		· · · · · · · · · · · · · · · · · · ·	T	1	I	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2316.000	6.00	29.74	39.83	50.31	46.22	74.00	-27.78	Vertical
4513.250	8.96	33.85	39.88	47.89	50.82	74.00	-23.18	Vertical
6252.250	14.45	36.14	41.65	47.68	56.62	74.00	-17.38	Vertical
8919.500	13.35	37.79	37.40	46.10	59.84	74.00	-14.16	Vertical
10482.250	14.48	38.20	36.39	44.68	60.97	74.00	-13.03	Vertical
12174.250	18.03	39.21	39.27	44.35	62.32	74.00	-11.68	Vertical
2327.75	6.02	29.76	39.75	45.8	41.83	74	-32.17	Horizontal
3902.25	7.89	32.99	39.76	46.54	47.66	74.00	-26.34	Horizontal
5206.50	11.73	34.79	41.19	47.18	52.51	74.00	-21.49	Horizontal
6945.50	13.69	37.05	40.86	47.18	57.06	74.00	-16.94	Horizontal
8919.50	13.35	37.79	37.40	45.60	59.34	74.00	-14.66	Horizontal
10482.25	14.48	38.20	36.39	44.87	61.16	74.00	-12.84	Horizontal

Test mode:		GFSK	Test	channel:	Lowest Remark:		k:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
2386.5	6.28	29.98	39.03	32.72	29.95	54	-24.05	Vertical
2891.75	6.28	31.58	39.48	45.15	43.53	54.00	-10.47	Vertical
3784.75	7.49	32.86	40.11	35.93	36.17	54.00	-17.83	Vertical
5183.00	11.56	34.75	41.19	34.97	40.09	54.00	-13.91	Vertical
6452.00	14.07	36.41	41.42	34.82	43.88	54.00	-10.12	Vertical
10129.75	14.34	38.12	37.25	32.69	47.90	54.00	-6.10	Vertical
2327.75	6.02	29.76	39.75	32.76	28.79	54.00	-25.21	Horizontal
3185.50	7.08	32.15	39.48	38.98	38.73	54.00	-15.27	Horizontal
4160.75	8.37	33.34	40.63	40.69	41.77	54.00	-12.23	Horizontal
5735.25	12.89	35.47	42.00	35.34	41.70	54.00	-12.30	Horizontal
7227.50	13.30	37.24	40.88	32.25	41.91	54.00	-12.09	Horizontal
11751.25	15.73	38.89	38.74	30.55	46.43	54.00	-7.57	Horizontal

Report No.: SZEMO09120708601

Page: 60 of 63

Test mode:		GFSK	Test	channel:	Middle	Remar	k:	Peak
		1		1				T1
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
2163.25	5.54	29.16	39.01	45.02	40.71	74.00	-33.29	Vertical
3138.50	7.31	32.09	39.71	47.09	46.78	74.00	-27.22	Vertical
4454.50	8.92	33.77	40.30	47.48	49.87	74.00	-24.13	Vertical
5594.25	12.72	35.30	42.02	48.29	54.29	74.00	-19.71	Vertical
7791.50	14.18	37.58	39.61	45.62	57.77	74.00	-16.23	Vertical
10482.25	14.48	38.20	36.39	44.88	61.17	74.00	-12.83	Vertical
1693.25	5.06	27.70	39.89	49.07	41.94	74.00	-32.06	Horizontal
2997.50	6.68	31.90	38.96	48.60	48.22	74.00	-25.78	Horizontal
4278.25	8.72	33.52	40.02	46.59	48.81	74.00	-25.19	Horizontal
6252.25	14.45	36.14	41.65	47.41	56.35	74.00	-17.65	Horizontal
8590.50	13.11	37.76	37.94	45.26	58.19	74.00	-15.81	Horizontal
10470.50	14.48	38.20	36.39	44.73	61.02	74.00	-12.98	Horizontal

Test mode:		GFSK	Test	channel:	Middle	Remar	rk:	Average
				_				
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
1775.50	5.52	27.94	38.94	42.26	36.78	54.00	-17.22	Vertical
3115.00	7.46	32.06	39.86	41.86	41.52	54.00	-12.48	Vertical
3679.00	7.61	32.75	39.51	43.20	44.05	54.00	-9.95	Vertical
5500.25	12.36	35.18	41.75	40.61	46.40	54.00	-7.60	Vertical
7932.50	13.24	37.67	39.91	35.09	46.09	54.00	-7.91	Vertical
9988.75	14.32	38.09	37.62	33.51	48.30	54.00	-5.70	Vertical
1787.25	5.59	27.96	38.80	46.40	41.15	54.00	-12.85	Horizontal
3126.75	7.41	32.07	39.81	38.71	38.38	54.00	-15.62	Horizontal
4090.25	8.09	33.23	40.24	40.25	41.33	54.00	-12.67	Horizontal
5923.25	13.07	35.70	41.96	36.32	43.13	54.00	-10.87	Horizontal
6875.00	13.58	36.95	40.52	36.60	46.61	54.00	-7.39	Horizontal
9612.75	13.39	37.99	37.56	34.06	47.88	54.00	-6.12	Horizontal

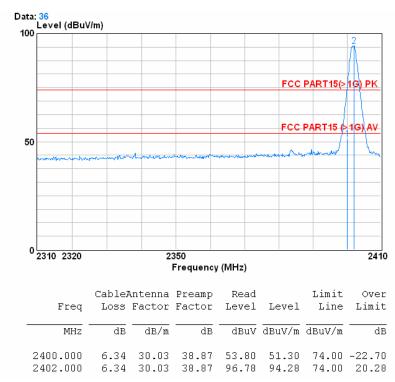
Report No.: SZEMO09120708601

Page: 61 of 63

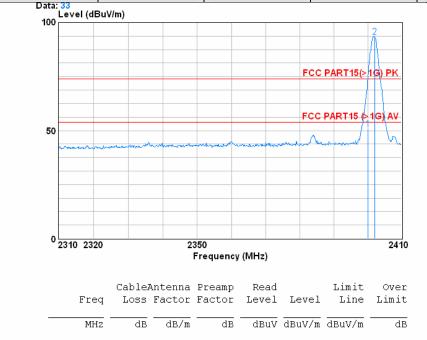
Test mode:		GFSK	Test	channel:	Highest	Remar	k:	Peak
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBμV/m)	Over limit (dB)	Polarization
2997.50	6.68	31.90	38.96	49.33	48.95	74.00	-25.05	Vertical
3679.00	7.61	32.75	39.51	47.26	48.11	74.00	-25.89	Vertical
4466.25	8.90	33.79	40.07	48.81	51.43	74.00	-22.57	Vertical
5394.50	11.93	35.04	41.45	48.21	53.73	74.00	-20.27	Vertical
6193.50	14.47	36.07	41.71	48.00	56.83	74.00	-17.17	Vertical
9448.25	13.79	37.94	37.46	46.55	60.82	74.00	-13.18	Vertical
1787.25	5.59	27.96	38.80	46.57	41.32	74.00	-32.68	Horizontal
3702.50	7.40	32.78	39.14	47.58	48.62	74.00	-25.38	Horizontal
5359.25	11.90	35.00	41.36	47.67	53.21	74.00	-20.79	Horizontal
6863.25	13.55	36.93	40.44	47.40	57.44	74.00	-16.56	Horizontal
9342.50	13.73	37.91	37.85	46.48	60.27	74.00	-13.73	Horizontal
10435.25	14.26	38.18	36.54	45.51	61.41	74.00	-12.59	Horizontal

Test mode:		GFSK	Test	channel:	Highest	Remai	k:	Average
		_			•	•		
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
1587.50	5.08	27.40	38.94	46.09	39.63	54.00	-14.37	Vertical
3338.25	7.02	32.34	39.39	40.59	40.56	54.00	-13.44	Vertical
3984.50	8.06	33.08	40.70	39.66	40.10	54.00	-13.90	Vertical
4983.25	10.67	34.48	41.15	39.86	43.86	54.00	-10.14	Vertical
6687.00	13.29	36.71	40.65	32.24	41.59	54.00	-12.41	Vertical
10599.75	14.91	38.22	36.57	30.60	47.16	54.00	-6.84	Vertical
1787.25	5.59	27.96	38.80	43.57	38.32	54.00	-15.68	Horizontal
2915.25	6.34	31.66	39.43	39.34	37.91	54.00	-16.09	Horizontal
3961.00	8.01	33.05	40.43	40.43	41.06	54.00	-12.94	Horizontal
6099.50	13.87	35.95	41.79	35.53	43.56	54.00	-10.44	Horizontal
7321.50	12.91	37.31	40.40	36.27	46.09	54.00	-7.91	Horizontal
10129.75	14.34	38.12	37.25	32.75	47.96	54.00	-6.04	Horizontal

Remark: The disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.


2 @

Report No.: SZEMO09120708601


Page: 62 of 63

5.11.3 Band Edge and Restricted band (Radiated measurement)

Test mode: GFSK Test channel: Lowest Polarization: Horizontal

38.87

38.87

53.21

96.01

50.71

93.51

74.00 -23.29

74.00 19.51

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

30.03

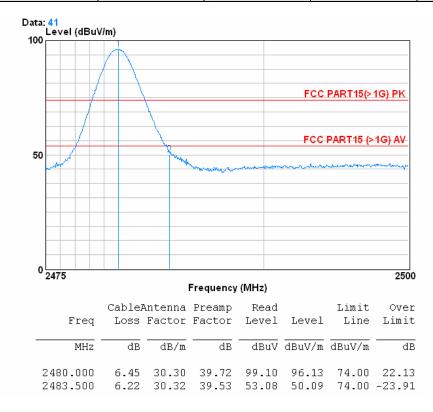
30.03

2400.000

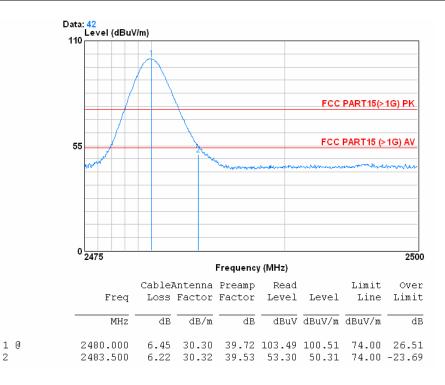
2402.000

6.34

6.34


1 @

2


Report No.: SZEMO09120708601

Page: 63 of 63

Test mode:	GFSK	Test channel:	Highest	Polarization:	Horizontal
------------	------	---------------	---------	---------------	------------

