

No. 1 Workshop, M-10, Middle Section, Science & Technology Park,
District Shenzhen, China 518057

Telephone: +86 (0) 755 2601 2053
Fax: +86 (0) 755 2671 0594
Email: sgs_internet_operations@sgs.com

Report No.: SZEMO09080507102
Page: 1 of 3

RF Exposure Evaluation declaration

Application No.: SZEMO090805071RF

Applicant/ Manufacturer: King Champion Industries Ltd.

Address of Applicant: Flat B, 12/F., Yeung Yiu Chung (No.8) Ind. Bldg., 20 Wang Hoi Road Kowloon Bay Hong Kong

Address of Manufacturer: Same as applicant

FCC ID: VSAPX6000I00002

Fundamental Carrier Frequency : 2.412GHz to 2.462GHz

Equipment Under Test (EUT):

Name: Internet Radio

Model No.: PX-60i

Date of Receipt: 28 August 2009

Date of Test: 01 to 16 September 2009

Date of Issue: 17 September 2009

Test Result :	PASS*
----------------------	--------------

* In the configuration tested, the EUT complied with the standards specified above.

Robinson Lo
Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

2 RF Exposure Evaluation

2.1 Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time (Minutes)
(A) Limits for Occupational/ Control Exposures				
300-1500	--	--	F/300	6
1500-100,000	--	--	5	6
300-1500	--	--	F/1500	6
1500-100,000	--	--	1	300

F= Frequency in MHz

Friis Formula

Friis transmission formula: $P_d = (P_{out} \cdot G) / (4 \cdot \pi \cdot r^2)$

Where

P_d = power density in mW/cm²

P_{out} = output power to antenna in mW

G = gain of antenna in linear scale

π = 3.1416

r = distance between observation point and center of the radiator in cm

P_d is the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

2.2 Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°C and 78% RH.

2.3 Test Result of RF Exposure Evaluation

Product : Wireless Headphone

Test Item : RF Exposure Evaluation

Test Site : No.3 OATS

Antenna Gain : 0dBi

Gain of antenna in linear scale: The maximum Gain measured in fully anechoic chamber is 1dBi in linear scale.

802.11b

Output Power Into Antenna & RF Exposure Evaluation Distance:

Channel	Frequency (MHz)	Output Power to Antenna (mW)	G (antenna in linear scale)	Power Density at R = 20 cm (mW/cm ²)
1	2412	103.75	1.0	0.020
6	2437	75.16	1.0	0.015
11	2462	43.15	1.0	0.008

The distance r (4th column) calculated from the Fries transmission formula is far shorter than 20 cm separation requirement.

802.11g

Output Power Into Antenna & RF Exposure Evaluation Distance:

Channel	Frequency (MHz)	Output Power to Antenna (mW)	G (antenna in linear scale)	Power Density at R = 20 cm (mW/cm ²)
1	2412	79.25	1.0	0.016
6	2437	55.34	1.0	0.011
11	2462	35.08	1.0	0.007

The distance r (4th column) calculated from the Fries transmission formula is far shorter than 20 cm separation requirement.