

FCC TEST REPORT

FCC ID : VQWWSP-001

Applicant : **Water Street Production, Inc.**
47-42, 37th Street, Long Island City, NY 11101, USA

Equipment Under Test (EUT) :

Product description : Silent Alarm Clock

Model No. : WSP-001

Standards : FCC 15 Subpart C Paragraph 15.231

Date of Test : October 22, 2007

Test Engineer : Tiger Su

Reviewed By :

PERPARED BY:
Waltek Services (Shenzhen) Co., Ltd.

8C,West Tower, Aidi Building, No.5003 Binhe Rd, Futian District, Shenzhen518045,Guangdong,
China.

Tel: 86-755-83551033

Fax: 86-755-83552400

2 Contents

	Page
1 COVER PAGE.....	1
2 CONTENTS	2
3 TEST SUMMARY.....	4
4 GENERAL INFORMATION.....	5
4.1 CLIENT INFORMATION	5
4.2 GENERAL DESCRIPTION OF E.U.T.....	5
4.3 DETAILS OF E.U.T.....	5
4.4 DESCRIPTION OF SUPPORT UNITS	5
4.5 STANDARDS APPLICABLE FOR TESTING.....	5
4.6 TEST FACILITY.....	6
4.7 TEST LOCATION.....	6
5 EQUIPMENT USED DURING TEST	7
6 CONDUCTED EMISSION TEST	8
6.1 TEST EQUIPMENT.....	8
6.2 TEST PROCEDURE	8
6.3 CONDUCTED TEST SETUP	9
6.4 EUT OPERATING CONDITION	9
6.5 CONDUCTED EMISSION LIMITS	10
6.6 CONDUCTED EMISSION TEST DATA.....	11
6.7 CONDUCTIED EMISSIONS TEST DATA	12
7 RADIATION EMISSION TEST.....	13
7.1 TEST EQUIPMENT.....	13
7.2 MEASUREMENT UNCERTAINTY.....	13
7.3 TEST PROCEDURE	13
7.4 RADIATED TEST SETUP.....	14
7.5 SPECTRUM ANALYZER SETUP.....	14
7.6 CORRECTED AMPLITUDE & MARGIN CALCULATION	15
7.7 SUMMARY OF TEST RESULTS.....	15
7.8 EUT OPERATING CONDITION	16
7.9 RADIATED EMISSIONS LIMIT.....	16
7.10 RADIATED EMISSIONS TEST RESULT.....	17
7.10.1 <i>Radiated Emission Test Data</i>	17
8 PERIODIC OPERATION.....	19
9 BAND EDGE	23
9.1 TEST PROCEDURE	23
9.2 BAND EDGE	23
9.3 BAND EDGE TEST RESULT	24
10 PHOTOGRAPHS OF TESTING.....	25
10.1 CONDUCTION EMISSION TEST SETUP	25

10.2	RADIATION EMISSION TEST VIEW FOR 30MHz-1000MHz.....	26
10.3	RADIATION EMISSION TEST VIEW FOR 1GHz-5GHz.....	26
11	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS.....	27
11.1	EUT - FRONT VIEW	27
11.2	EUT - BACK VIEW	27
11.3	PCB1-FRONT VIEW	28
11.4	PCB1-BACK VIEW.....	28
11.5	PCB2-FRONT VIEW	29
11.6	PCB2-BACK VIEW.....	29
12	FCC ID LABEL.....	30

3 Test Summary

Test	Test Requirement	Test Method	Class / Severity	Result
Radiated Emission (30MHz to 5GHz)	FCC PART 15: 2003	ANSI C63.4: 2003	Class B	PASS
Conducted Emission (150KHz to 30MHz)	FCC PART 15: 2003	ANSI C63.4: 2003	Class B	PASS

4 General Information

4.1 Client Information

Applicant:	Water Street Production, Inc.
Address:	47-42, 37th Street, Long Island City, NY 11101, USA
Manufacturer:	Water Street Production, Inc.
Address:	47-42, 37th Street, Long Island City, NY 11101, USA

4.2 General Description of E.U.T.

Product description:	Silent Alarm Clock
Model No.:	WSP-001

4.3 Details of E.U.T.

Power Supply:	DC 3V Battery or
	Adapter input: AC 120V 60Hz
	Adatper output: DC 6V 200mA

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a Silent Alarm Clock. The standards used were FCC 15 Paragraph 15.231, Paragraph 15.205, Paragraph 15.31,Paragraph 15.33, Paragraph 15.35.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- **IC – Registration No.:IC6002**

SGS-CSTC Standards Technical Services Co., Ltd ShenZhen Branch EMC Lab, EMC Laboratory has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration IC6002

- **FCC – Registration No.: 556682**

SGS-CSTC Standards Technical Services Co., Ltd.ShenZhen Branch EMC Lab, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 556682, August 04, 2005.

4.7 Test Location

All Emissions tests were performed at:-

No.1 Workshop,M-10,Middle Section,Science&Technology Park,ShenZhen,China518057

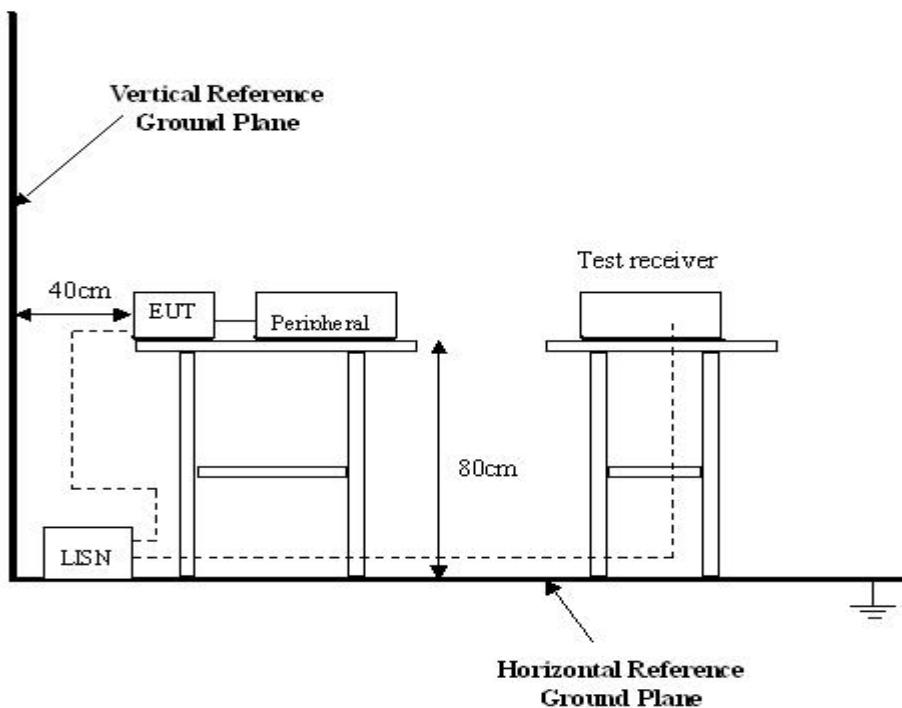
5 Equipment Used during Test

Conducted Emission Test						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due date
1	CE Variac	GZ Debao Factory	TS/DGC ₂ -5	N/A	N/A	N/A
2	LISN	ROHDE & SCHWARZ	ENV216	N/A	18-11-2006	17-11-2007
3	Shielding Room	Frankonia	12 x 4 x 4 m ³	N/A	N/A	N/A
4	EMI Receiver	ROHDE & SCHWARZ	ESCS30	830245/009	18-11-2006	17-11-2007
5	Coaxial Cable	SOLID	2m	N/A	18-11-2006	17-11-2007
Radiated Emission Test						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due date
1	3m Semi- Anechoic Chamber	Albatross Projects	9X6X6	N/A	18-11-2006	17-11-2007
2	EMI Test Receiver	ROHDE & SCHWARZ	ESCS30	830245/009	18-11-2006	17-11-2007
3	EMI Test Software	ROHDE & SCHWARZ	ES-K1	N/A	N/A	N/A
4	Coaxial cable	Solid	N/A	N/A	18-11-2006	17-11-2007
5	Bilog Antenna	Chase	CBL6112B	2591	18-11-2006	17-11-2007
6	Horn Antenna	ROHDE & SCHWARZ	HF906	100014	18-11-2006	17-11-2007
Common Used Equipment						
Item	Test Equipment	Manufacturer	Model No.	Series No.	Cal. Date	Due date
1	Temperature, Humidity & Barometer	OREGON SCIENTIFIC	BA-888	EMC0001 to EMC0004	18-11-2006	17-11-2007
2	DMM	FLUKE	73	70681569 or 70671122	18-11-2006	17-11-2007

6 Conducted Emission Test

Product Name:	Silent Alarm Clock
Test Requirement:	FCC Part15 Paragraph 15.207
Test Method:	Based on FCC Part15 Paragraph 15.207
Test Date:	October 22, 2007
Frequency Range:	150kHz to 30MHz
Class:	Class B
Detector:	Peak for pre-scan (9kHz Resolution Bandwidth) Quasi-Peak & Average if maximised peak within 6dB of Average Limit

6.1 Test Equipment


Please refer to Section 5 this report.

6.2 Test Procedure

1. The EUT was tested according to ANSI C63.4: 2003. The frequency spectrum from 150kHz to 30MHz was investigated.
2. The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.3 Conducted Test Setup


The conducted emission tests were performed using the setup accordance with the ANSI C63.4: 2003, The specification used in this report was the FCC Part15 Paragraph 15.207 limits.

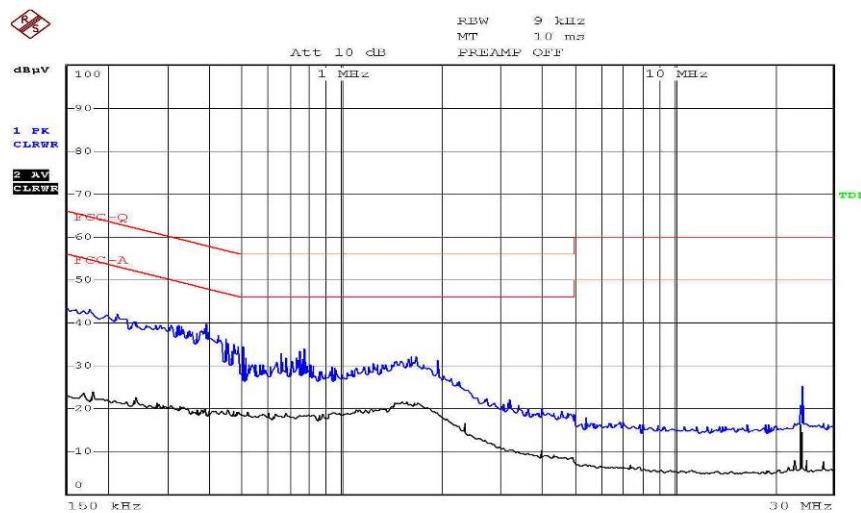
6.4 EUT Operating Condition

Operating condition is according to ANSI C63.4: 2003.

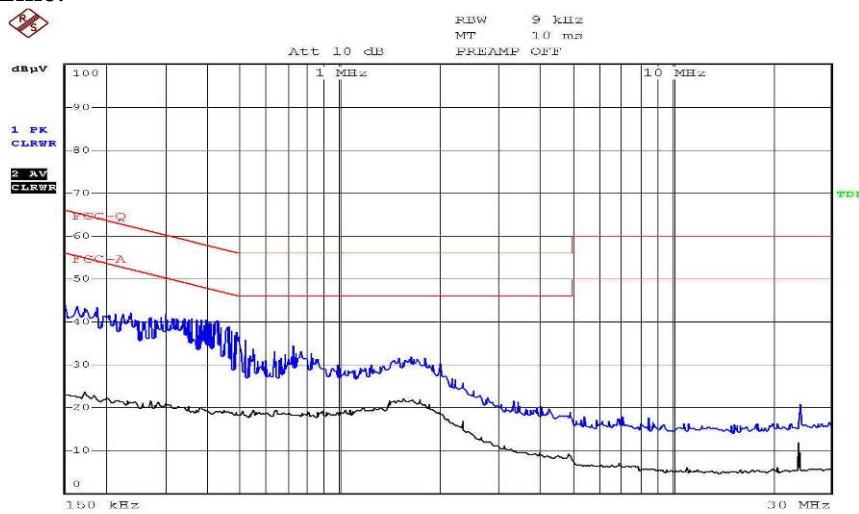
- A. Setup the EUT and simulators as shown on follow.
- B. Enable RF signal and confirm EUT active.
- C. Modulate output capacity of EUT up to specification.

6.5 Conducted Emission Limits

66-56 dB μ V/m between 0.15MHz & 0.5MHz


56 dB μ V/m between 0.5MHz & 5MHz

60 dB μ V/m between 5MHz & 30MHz


Note: In the above limits, the tighter limit applies at the band edges.

6.6 Conducted Emission Test Data

Live Line:

Neutral Line:

6.7 Conductied Emissions Test Data

Freq. MHz	Line	QP Reading dBuV	Limit dBuV	Margin dB	AV Reading dBuV	Limit dBuV	Margin dB
0.150	Live	43.92	66.00	22.08	23.35	56.00	32.65
0.392	Live	40.00	58.07	18.07	20.00	48.07	28.07
0.150	Neutral	43.55	66.00	22.45	23.00	56.00	33.00
0.245	Neutral	42.21	61.95	19.74	22.93	51.95	29.02

7 Radiation Emission Test

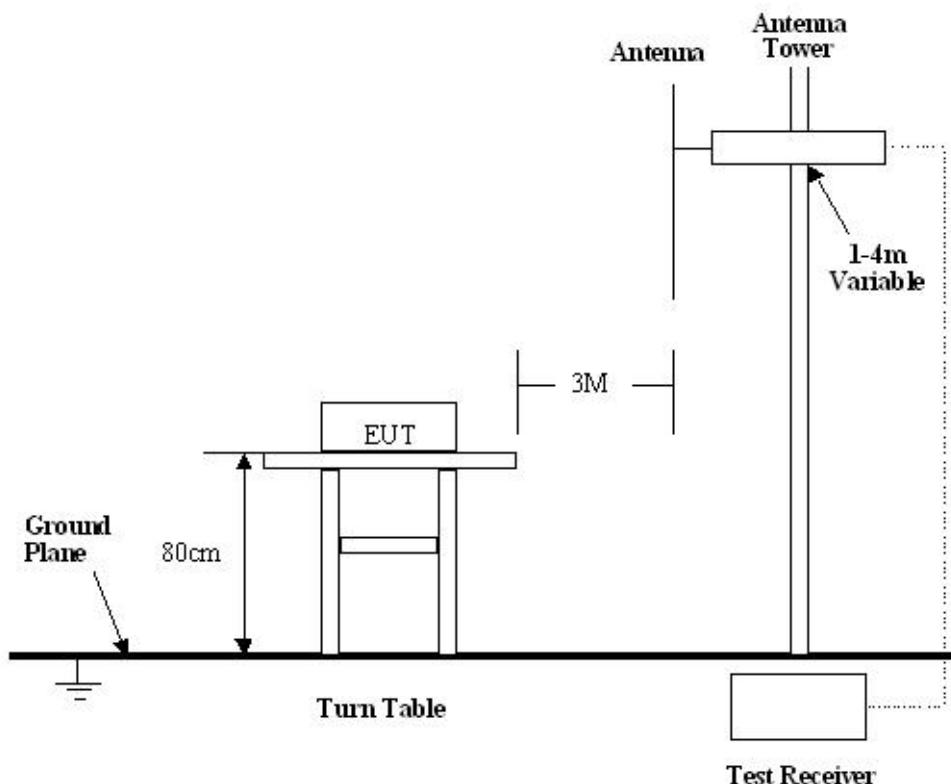
Product Name:	Silent Alarm Clock
Test Requirement:	FCC Part15 Paragraph 15.231
Test Method:	Based on FCC Part15 Paragraph 15.33
Test Date:	October 22, 2007
Frequency Range:	30MHz to 5GHz
Measurement Distance:	3m
Detector:	Peak for pre-scan (120kHz resolution bandwidth) Quasi-Peak if maximised peak within 6dB of limit

7.1 Test Equipment

Please refer to Section 5 this report.

7.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.


Based on ANSI C63.4: 2003, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at SGS EMC Lab is +4.0 dB.

7.3 Test Procedure

1. For the radiated emissions test, since the EUT does not have a power source, there was no connection to AC outlets.
2. Maximizing procedure was performed on the six (6) highest emissions to ensure EUT is compliant with all installation combinations.
3. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB μ V of specification limits), and are distinguished with a "Qp" in the data table.
4. The EUT was under normal mode during the final qualification test and the configuration was used to represent the worst case results.

7.4 Radiated Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003, The specification used in this report was the FCC Part15 Paragraph 15.231, Paragraph 15.209 limits.

7.5 Spectrum Analyzer Setup

According to FCC Part15 Paragraph 15.231 Rules, the system was tested to 5000 MHz.

Start Frequency	30 MHz
Stop Frequency	5000 MHz
Sweep Speed	Auto
IF Bandwidth	100 kHz
Video Bandwidth	1 MHz
Quasi-Peak Adapter Bandwidth	120 kHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

7.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Indicated Reading} + \text{Antenna Factor} + \text{Cable Factor} - \text{Amplifier Gain}$$

The “**Margin**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7\text{dB}\mu\text{V}$ means the emission is $7\text{dB}\mu\text{V}$ below the maximum limit for Class B. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corr. Ampl.} - \text{Class B Limit}$$

7.7 Summary of Test Results

According to the data in section 7.10, the EUT complied with the FCC Part15 Paragraph 15.231 standards.

7.8 EUT Operating Condition

Same as section 6.4 of this report.

7.9 Radiated Emissions Limit

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70.....	1,000.....	100
70-130.....	500.....	50
130-174.....	500 to 1,500 \1\..	50 to 150 \1\
174-260.....	1,500.....	150
260-470.....	1,500 to 5,000 \1\	150 to 500 \1\
Above 470.....	5,000.....	500

7.10 Radiated Emissions Test Result

Formula of conversion factors: the field strength at 3m was established by adding The meter reading of the spectrum analyser (which is set to read in units of dBuV) To the antenna correction factor supplied by the antenna manufacturer. The antenna Correction factors are stated in terms of dB. The gain of the pressleter was accounted For in the spectrum analyser meter reading.

Example:

Freq(MHz) Meter Reading +ACF=FS
33 20dBuV+10.36dB=30.36dBuV/m @3m

7.10.1 Radiated Emission Test Data

Test Item:	Radiated Emission Test Data
Test Voltage:	AC 120V
Test Mode:	TX On
Temperature:	24 °C
Humidity:	52%RH
Test Result:	PASS

Frequency (MHz)	Antenna Polarization	Emission Level (dBuV/m)	FCC 15 Subpart C Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Turntable Angle (°)
315.00	Vertical	53.52	67.66	14.14	1.5	90
315.00	Horizontal	51.01	67.66	16.65	1.5	180
630.00	Vertical	34.46	46.00	11.54	1.2	90
945.00	Vertical	41.22	46.00	4.78	2.0	90
1260.00	Vertical	45.53	54.00	8.47	1.8	45
1575.00	Vertical	43.28	54.00	7.33	2.0	60
1890.00	Vertical	42.55	54.00	11.45	2.0	60
2205.00	Vertical	43.71	54.00	10.29	2.0	60
2520.00	Vertical	44.26	54.00	9.74	2.0	60
2835.00	Vertical	44.58	54.00	9.42	2.0	60
3150.00	Vertical	45.10	54.00	8.9	2.0	60
630.00	Horizontal	33.59	46.00	12.41	1.5	180
945.00	Horizontal	41.75	46.00	4.25	1.6	60
1260.00	Horizontal	45.22	54.00	8.78	2.0	45
1575.00	Horizontal	42.21	54.00	11.79	2.0	90
1890.00	Horizontal	41.69	54.00	12.31	2.0	45
2205.00	Horizontal	42.88	54.00	11.12	2.0	120
2520.00	Horizontal	43.29	54.00	10.71	2.0	180
2835.00	Horizontal	43.77	54.00	10.23	2.0	100
3150.00	Horizontal	44.52	54.00	9.48	2.0	60

Where F is the frequency in MHz, The formulas for calculating the maximum permitted fundamental field strengths are as follows:

- (1). For the band 130-174MHz,uV/m at 3 meters=22.72727(F)-2454.545;
- (2). For the band 260-470MHz,uV/m at 3 meters=16.6667(F)-2833.3333.

Sample calculation of limit @ 315MHz

$$16.6667 (315) - 2833.3333 = 2416.6772 \text{ uV/m}$$

$$20\log(2416.6772) = 67.66 \text{ dBuV/m limit @ 315MHz}$$

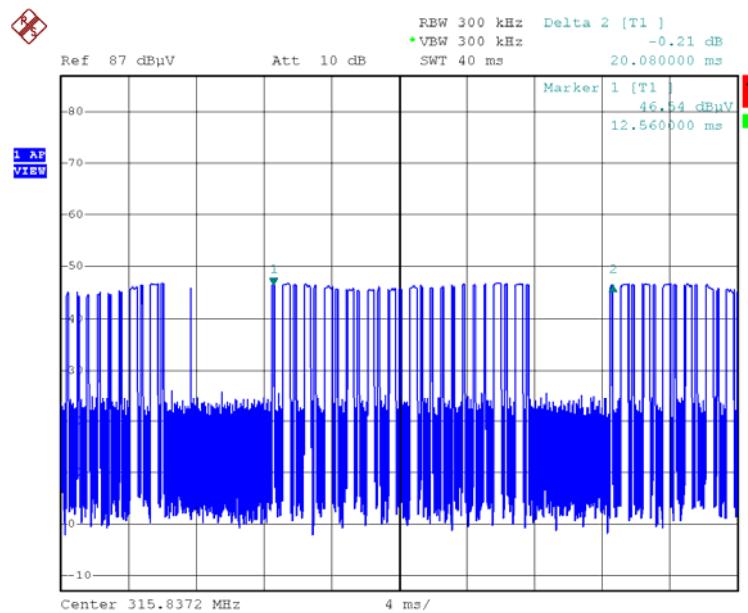
8 Periodic Operation

The duty cycle was determined by the following equation:

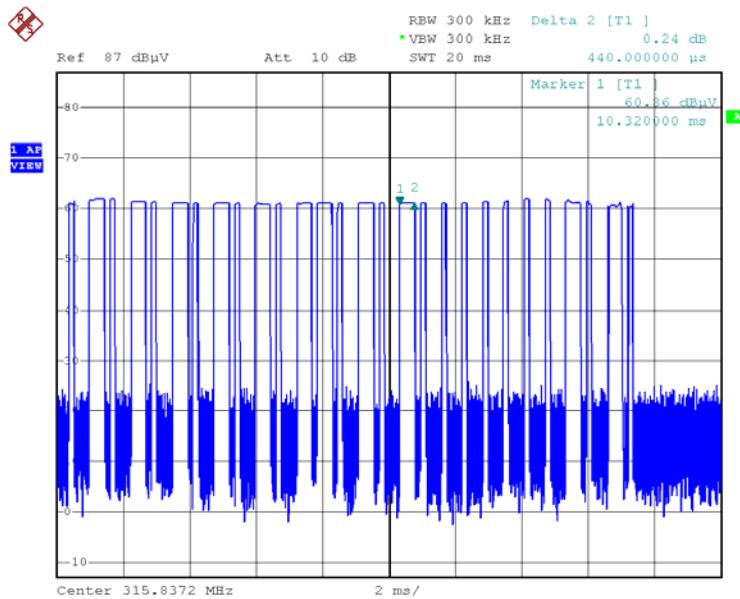
To calculate the actual field intensity, The duty cycle correction factor in decibel is needed for later use and can be obtained from following conversion

Duty Cycle(%)=

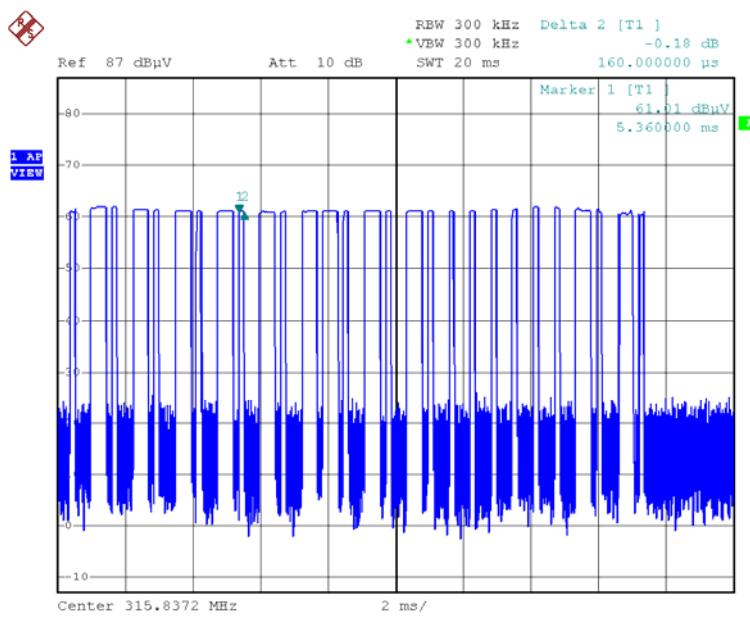
Total On interval in a complete pulse train/ Length of a complete pulse train * %

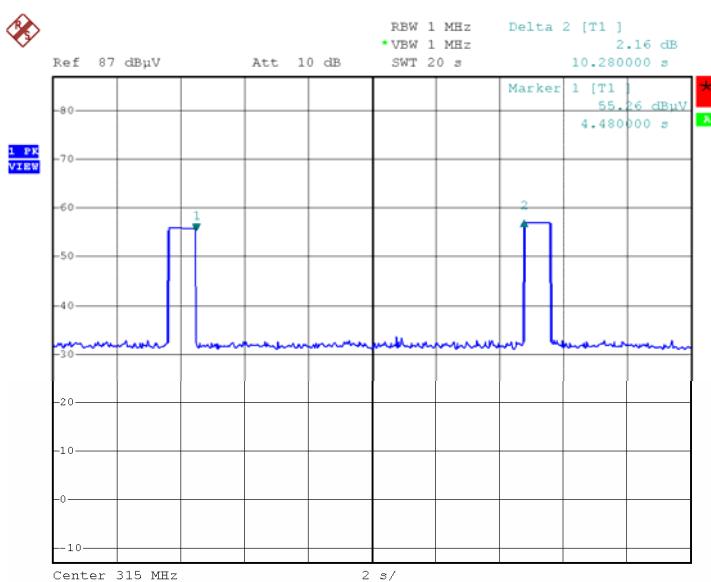
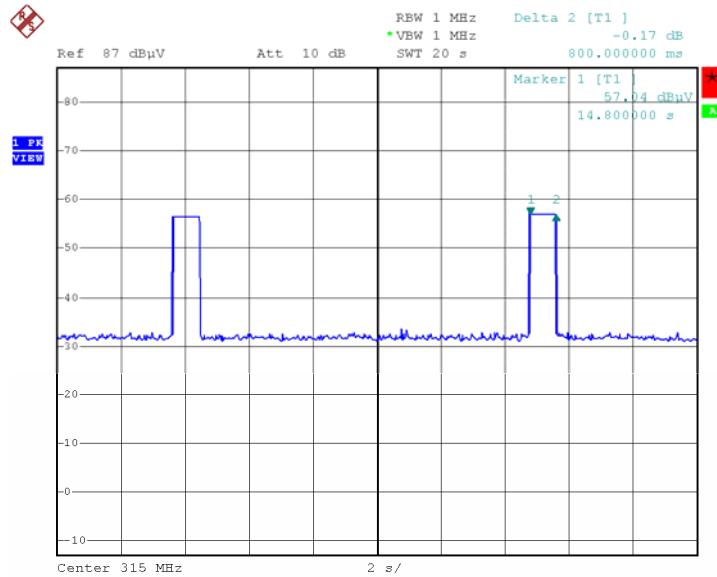

Duty Cycle Correction Factor(dB)=20 * Log10(Duty Cycle(%))

Pulse Train	Number of Pulse	T(ms)	Total Time(ms)
Long Pulse	9	0.44	3.96 msec
Short Pulse	16	0.16	2.56 msec


Total On interval in a complete pulse train	6.52 msec
Length of a complete pulse train	20.08 msec
Duty Cycle(%)	32.47%
Duty Cycle Correction Factor(dB)	9.77

Refer to the duty cycle plot (as below), This device does meet the FCC requirement.


Length of a complete pulse train:

Long Pulse:

Short Pulse:

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

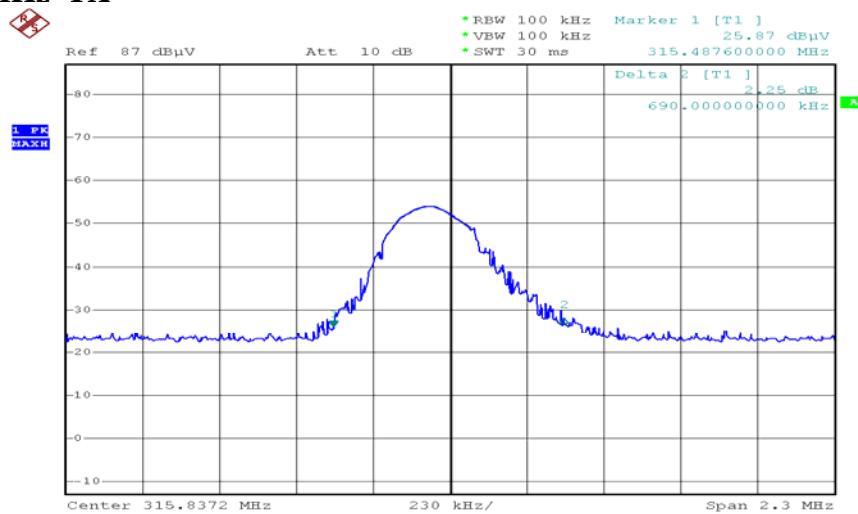
This device meets the requirement of FCC Part 15.231

9 Band Edge

Test Requirement:	FCC Part15 C
Test Method:	Based on FCC Part15 Paragraph 15.231
Test Date:	October 22, 2007
Test mode:	TX On
Temperature:	24 °C
Humidity:	52%RH

9.1 Test Procedure

1. The EUT, peripherals were put on the turntable which table size is 1mX1.5m, table high 0.8m. All set up is according to ANSI C63.4: 2003.
2. The bandwidth of the fundamental frequency was measure by spectrum analyser with 100KHz RBW and 100KHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power 20dB.


9.2 Band Edge

Requirements: The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Frequency (MHz)	Bandwidth Emission (KHz)	Limit (KHz)	Result
315.00	690	787	Pass

9.3 Band Edge Test Result

315MHz TX

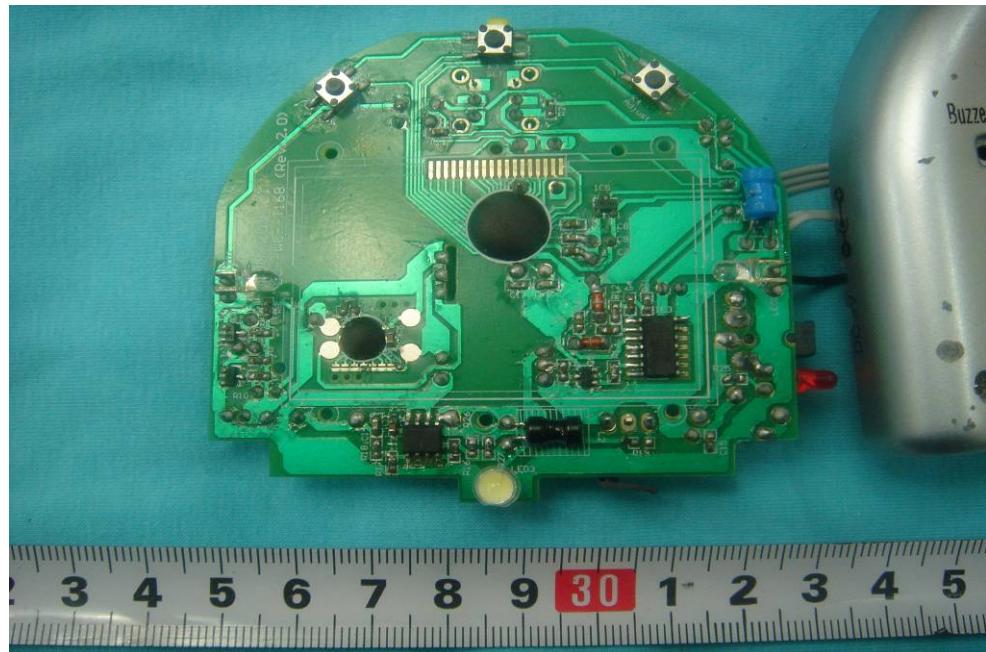
10 Photographs of Testing

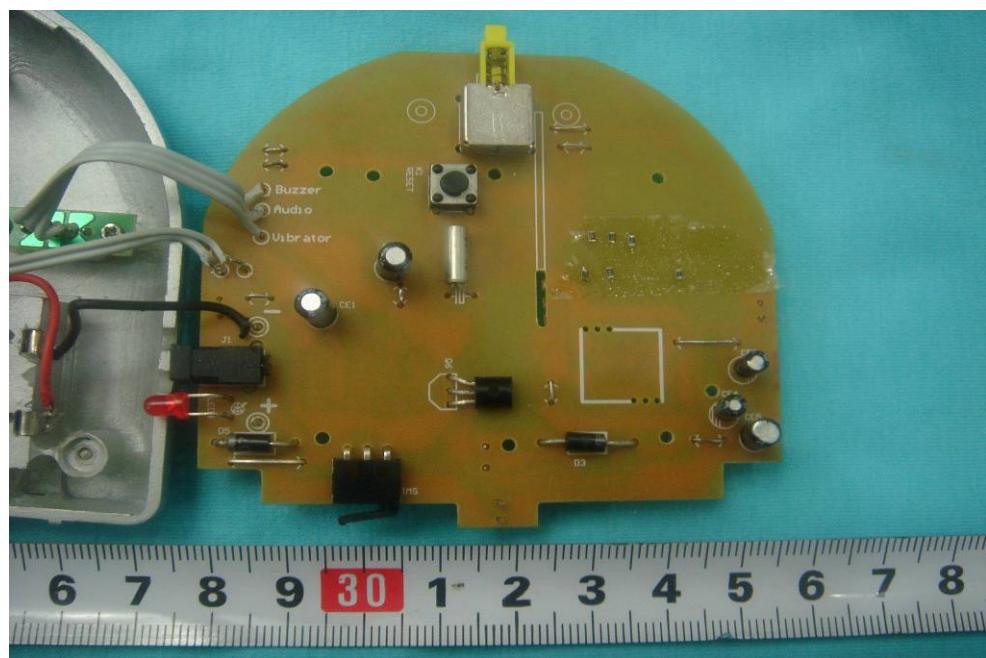
10.1 Conduction Emission Test Setup

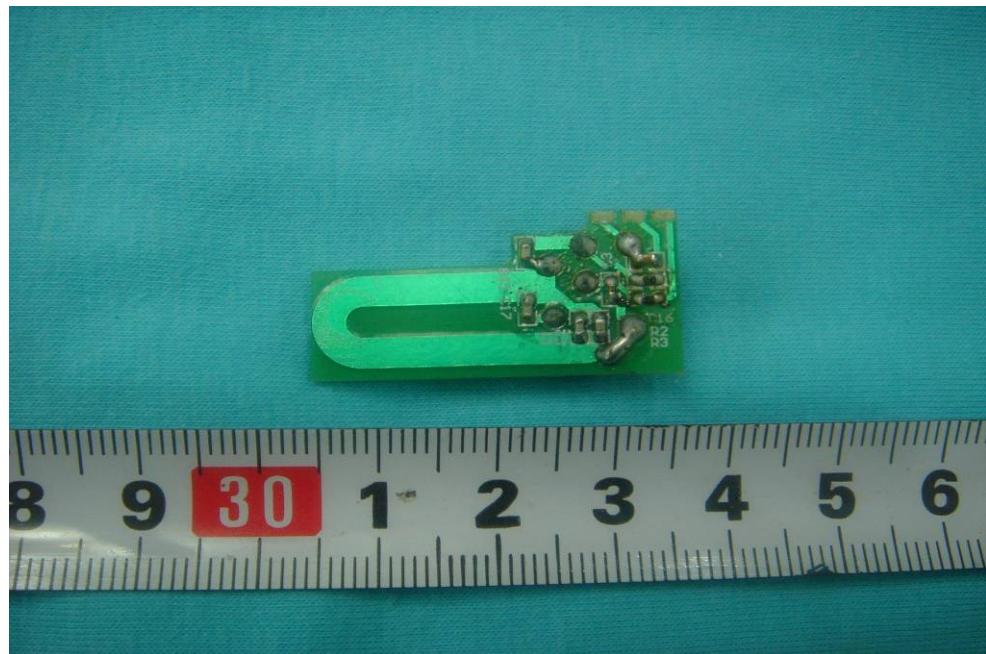
10.2 Radiation Emission Test View For 30MHz-1000MHz

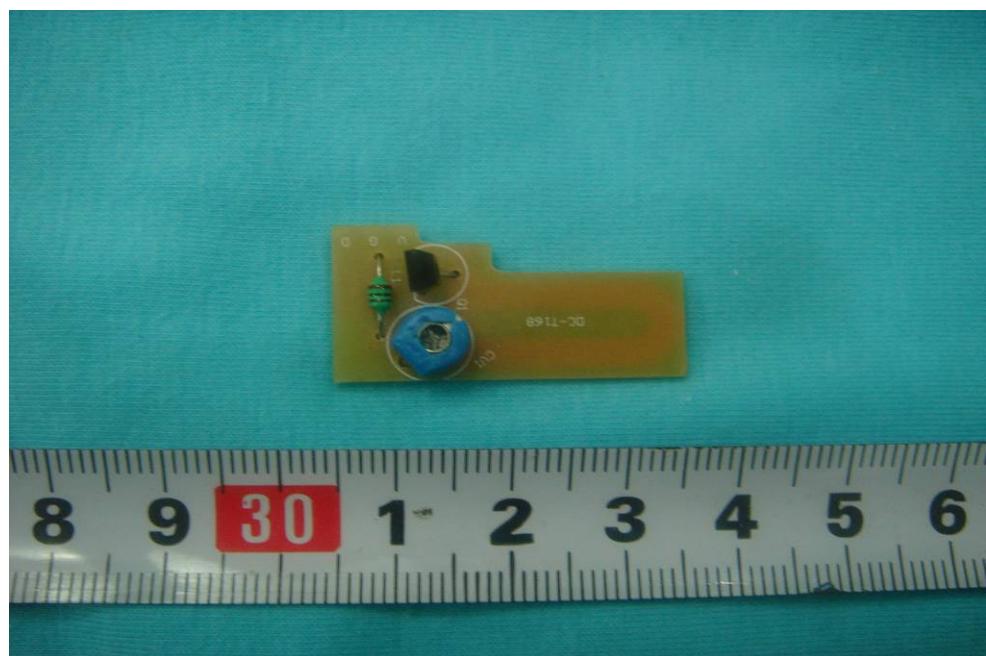
10.3 Radiation Emission Test View For 1GHz-5GHz

11 Photographs - Constructional Details


11.1 EUT - Front View


11.2 EUT - Back View


11.3 PCB1-Front View


11.4 PCB1-Back View

11.5 PCB2-Front View

11.6 PCB2-Back View

12 FCC ID Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation

The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Proposed Label Location on EUT
EUT Bottom View/proposed FCC Mark Location

