

SK TECH CO., LTD.

Page 1 of 13

Certificate of Compliance

Test Report No.:	SKTTRT-071019-027		
KOLAS NO.:	KT191		
Applicant:	S&T Daewoo Co., Ltd.		
Applicant Address:	5, Songjeong-ri, Cholma-myon, Kijang-gun, Busan, Korea		
Manufacturer:	S&T Daewoo Co., Ltd.		
Manufacturer Address:	5, Songjeong-ri, Cholma-myon, Kijang-gun, Busan, Korea		
Device Under Test:	Control unit A-RKE & ATAS		
FCC ID: IC:	VQQ-RK960NAR 7313A-RK960NAR	Model No.:	RK960NAR
Receipt No.:	SKTEU07-0967	Date of receipt:	September 20, 2007
Date of Issue:	October 19, 2007		
Location of Testing:	SK TECH CO., LTD. 820-2, Wolmoon-Ri, Wabu-Up, Namyangju-Si, Kyunggi-Do, Korea		
Test Procedure:	ANSI C63.4 / 2003		
Test Specification:	FCC Part 15 Rules, RSS-210 Issue 7		
Equipment Class: IC Equipment Category:	CYY - Communications Receiver used w/Pt 15 Transmitter RSS-210 Issue 7: Category I Equipment(Licence-exempt receivers)		
Test Result:	The above-mentioned device has been tested and passed.		
Tested & Reported by: Seong-Baek, Ko	Approved by: Jong-Soo, Yoon		
	2007. 10. 19		2007. 10. 19
Signature	Date	Signature	Date
Other Aspects:			
Abbreviations:	• OK, Pass = passed • Fail = failed • N/A = not applicable		

☞

- The above test certificate is the accredited test results by Korea Laboratory Accreditation Scheme, which signed the ILAC-MRA.
- This test report is not permitted to copy partly without our permission.
- This test result is dependent on only equipment to be used.
- This test result is based on a single evaluation of one sample of the above mentioned.
- We certify that this test report has been based on the measurement standards that is traceable to the national or International standards.

>> CONTENTS <<

1. GENERAL	3
2. TEST SITE	3
2.1 Location	3
2.2 List of Test and Measurement Instruments	4
2.3 Test Date	4
2.4 Test Environment	4
3. DESCRIPTION OF THE EQUIPMENT UNDER TEST	5
3.1 Rating and Physical Characteristics	5
3.2 Equipment Modifications	5
3.3 Submitted Documents	5
4. MEASUREMENT CONDITIONS	6
4.1 Description of test configuration	6
4.2 List of Peripherals	6
4.3 Type of Used Cables	6
4.4 Uncertainty	6
5. TEST AND MEASUREMENTS	7
 5.1 RADIATED EMISSIONS	7
5.1.1 Regulation	7
5.1.2 Test Procedure	8
5.1.3 Test Results	9
Table 1: Measured values of the field strength	9
 5.2 CONDUCTED EMISSIONS	10
5.2.1 Regulation	10
5.2.2 Test Procedure	11
5.2.3 Test Results	12
Table 2: Measured values of the conducted emissions	12
Figure 1: Plot of the Conducted Emissions	13

SK TECH CO., LTD.

Page 3 of 13

1. GENERAL

These tests were performed using the test procedure outlined in ANSI C63.4, 2003 for unintentional radiators, and in accordance with the limits set forth in FCC Part 15.109.

The EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards.

We attest to the accuracy of data. All measurements reported herein were performed by SK TECH CO., LTD. and were made under Chief Engineer's supervision.

We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. TEST SITE

SK TECH CO., LTD.

2.1 Location

820-2, Wolmoon-Ri, Wabu-Up, Namyangju-Si, Kyunggi-Do, Korea

(FCC Registered Test Site Number: 90752)

This test site is in compliance with ISO/IEC 17025 for general requirements for the competence of testing and calibration laboratories.

This laboratory is recognized as a Conformity Assessment Body(CAB) for CAB's Designation Number: **KR0007** by FCC, is accredited by NVLAP for NVLAP Lab. Code: **200220-0**, DATech for DAR-Registration No.: **DAT-P-076/97-01** and KOLAS for Accreditation No. : **KT191**.

2.2 List of Test and Measurement Instruments

No.	Description	Manufacturer	Model #	Serial #	Calibrated until	Used
1	Spectrum Analyzer	Agilent	E4405B	US40520856	2008.07.23	<input type="checkbox"/>
2	EMC Spectrum Analyzer	Agilent	E7405A	US40240203	2008.02.02	<input checked="" type="checkbox"/>
3	EMI Test Receiver	Rohde&Schwarz	ESIB40	100277	2008.07.23	<input checked="" type="checkbox"/>
4	EMI Test Receiver	Rohde&Schwarz	ESVS10	825120/008	2008.07.24	<input type="checkbox"/>
5	EMI Test Receiver	Rohde&Schwarz	ESHS10	862970/019	2008.07.24	<input type="checkbox"/>
6	Artificial Mains Network	Rohde&Schwarz	ESH2-Z5	834549/011	2008.07.25	<input type="checkbox"/>
7	Pre-amplifier	HP	8447F	3113A05153	2008.02.23	<input checked="" type="checkbox"/>
8	Pre-amplifier	MITEQ	AFS44	1116321	2008.03.07	<input checked="" type="checkbox"/>
9	Pre-amplifier	MITEQ	AFS44	1116322	2008.02.06	<input type="checkbox"/>
10	Power Meter	Agilent	E4417A	MY45100426	2008.07.24	<input type="checkbox"/>
11	Power Sensor	Agilent	E9327A	MY44420696	2008.07.24	<input type="checkbox"/>
12	Attenuator (10dB)	HP	8491B	38067	2008.07.25	<input checked="" type="checkbox"/>
13	Oscilloscope	Agilent	54820A	US40240160	2008.03.06	<input type="checkbox"/>
14	Diode detector	Agilent	8473C	1882A03173	2008.02.06	<input type="checkbox"/>
15	High Pass Filter	Wainwright	WHKX3.0/18G	8	2008.07.25	<input type="checkbox"/>
16	VHF Precision Dipole Antenna (TX/RX)	Schwarzbeck	VHAP	1014 / 1015	2007.11.27	<input type="checkbox"/>
17	UHF Precision Dipole Antenna (TX/RX)	Schwarzbeck	UHAP	989 / 990	2007.11.27	<input type="checkbox"/>
18	Loop Antenna	Schwarzbeck	HFH2-Z2	863048/019	2007.12.01	<input type="checkbox"/>
19	TRILOG Broadband Antenna	Schwarzbeck	VULB9160	3141	2008.05.29	<input checked="" type="checkbox"/>
20	Horn Antenna	AH Systems	SAS-200/571	304	N/A	<input type="checkbox"/>
21	Horn Antenna	EMCO	3115	00040723	2008.03.15	<input checked="" type="checkbox"/>
22	Horn Antenna	EMCO	3115	00056768	2008.07.24	<input type="checkbox"/>
23	Vector Signal Generator	Agilent	E4438C	MY42080359	2008.07.25	<input type="checkbox"/>
24	PSG analog signal generator	Agilent	E8257D-520	MY45141255	2008.07.25	<input type="checkbox"/>
25	DC Power Supply	HP	6622A	3448A03950	2008.07.23	<input type="checkbox"/>
26	DC Power Supply	HP	6268B	2542A-07856	2008.07.23	<input type="checkbox"/>
27	Digital Multimeter	HP	HP3458A	2328A14389	2008.03.07	<input type="checkbox"/>
28	PCS Interface	HP	83236B	3711J00881	2008.03.09	<input type="checkbox"/>
29	CDMA Mobile Test Set	HP	8924C	US35360253	2008.03.09	<input type="checkbox"/>
30	Hygro/Thermo Graph	SATO	PC-5000TRH-II	-	2008.04.09	<input checked="" type="checkbox"/>
31	Temperature/Humidity Chamber	All Three	ATM-50M	20030425	2008.03.06	<input type="checkbox"/>
32	Temperature/Humidity Chamber	DAEJIN	DJ-THC02	06071	2008.03.07	<input type="checkbox"/>

2.3 Test Date

Date of Application: September 20, 2007

Date of Test: October 15, 2007 ~ October 15, 2007

2.4 Test Environment

See each test item's description.

3. DESCRIPTION OF THE EQUIPMENT UNDER TEST

The EUT is a receiver installed in vehicles as a car alarm system. The product specification described herein was obtained from the product data sheet or user's manual.

3.1 Rating and Physical Characteristics

	Remote Keyless Entry System	
	Receiver	Transmitter * ¹
Model Name	RK960NAR	RK960NAT
Type	-	NTP: Non Transponder
	-	WTP: With Transponder
	HB: Hatch Back	-
	NB: Notch Back	-
Power Source	DC 12 V from the vehicle	DC 3 V, Lithium battery
Consumption current	standby: Max. 5 mA	standby: Max. 1 uA
		operating: Max. 10 mA
Local Oscillator	10.17813 MHz	9.84375 MHz
Operating frequency	315 MHz	
Type of modulation	-	FSK
Output power	-	Under 75 dBuV/m(@ 3 m)
Antenna	Internal Herical antenna	PCB Pattern Antenna
Sensitivity	-100 dBm(Min.)	-

*¹: The test report for the transmitter should be separately issued with FCC ID: VQQ-RK960NAT, IC: 7313A-RK960NAT.

3.2 Equipment Modifications

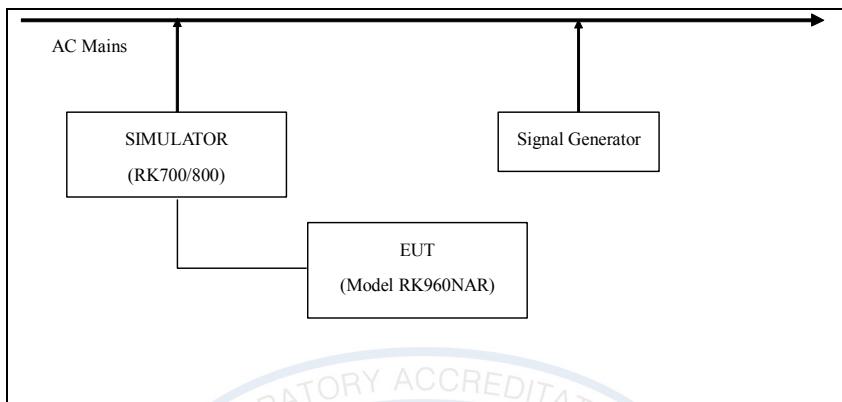
None.

3.3 Submitted Documents

Block diagram

Schematic diagram

Part List


User manual

4. MEASUREMENT CONDITIONS

4.1 Description of test configuration

The EUT was connected to the SIMULATOR that can be used to supply 12V DC power and verify the states of EUT's operation. The measurements were taken in continuous receiving mode and a signal generator transmitted the continuous signal at the operating frequency of EUT.

4.2 List of Peripherals

Equipment Type	Manufacture	Model	S/N
SIMULATOR	Supplied by the applicant	RK700/800	-
Signal Generator	Agilent	E8257D-520	MY45141255

4.3 Type of Used Cables

START		END		Cable Spec.	
Name	I/O Port	Name	I/O Port	Length	Shield
EUT	Connector (26 PIN)	SIMULATOR	I/O	1.2 m	Unshielded
SIMULATOR	AC Input	AC mains	-	1.8 m	Unshielded

4.4 Uncertainty

Measurement Item	Combined Standard Uncertainty U_c	Expanded Uncertainty $U = KU_c (K = 2)$
Radiated disturbance	± 2.30 dB	± 4.60 dB
Conducted disturbance	± 1.47 dB	± 2.94 dB

5. TEST AND MEASUREMENTS

Summary of Test Results

Requirement	CFR Section	RSS Standards	Report Section	Test Result
Radiated Emission – Field Strength	15.109(a)	RSS-Gen, 7.2.3	5.1	PASS
Conducted Emissions	15.107(a)	RSS-Gen, 7.2.2	5.2	N/A**

** Not required, the EUT is only battery powered.

5.1 RADIATED EMISSIONS

5.1.1 Regulation

FCC 47CFR15 – 15.209(a) - Radiated emission limits

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Field strength (uV/m @ 3m)	Field strength (dBuV/m @ 3m)
30 – 88	100	40.0
88 – 216	150	43.5
216 – 960	200	46.0
Above 960	500	54.0

RSS-Gen, Issue 2 – 7.2.3 Receiver Spurious Emissions (Radiated)

Receiver radiated spurious emissions in each polarization (vertical and horizontal polarization) shall not exceed the limits in Table 1. The resolution bandwidth of the spectrum analyser shall be 100 kHz for measuring spurious emissions below 1 GHz, and 1 MHz for above 1 GHz. Alternatively, a CISPR quasi-peak detector may be used for measurement below 1 GHz.

Frequency (MHz)	Field strength uV/m at 3 metres (watts, EIRP)	
	Transmitter	Receiver
30 – 88	100 (3 nW)	100 (3 nW)
88 – 216	150 (6.8 nW)	150 (6.8 nW)
216 – 960	200 (12 nW)	200 (12 nW)
Above 960	500 (75 nW)	500 (75 nW)

* Use quasi-peak below 1000 MHz and averaging meter above 1000 MHz.

* The lower limit shall apply at the transition frequencies.

5.1.2 Test Procedure

1. Preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an anechoic chamber at a distance of 3 meters.
2. The EUT was placed on the top of the 0.8 meter high, 1 × 1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360 °.
3. The antenna polarization was also changed from vertical to horizontal. The spectrum analyzer was scanned from 30 to 1000 MHz using the Bi-Log antenna. Above 1 GHz, linearly polarized double ridge horn antenna was used.
4. To obtain the final test data, the EUT was arranged on a turntable situated on a 4 × 4 meter at the Open Area Test Site. The EUT was tested at a 3 meter test distance.
5. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
6. The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was operated in transmitting mode.

5.1.3 Test Results:

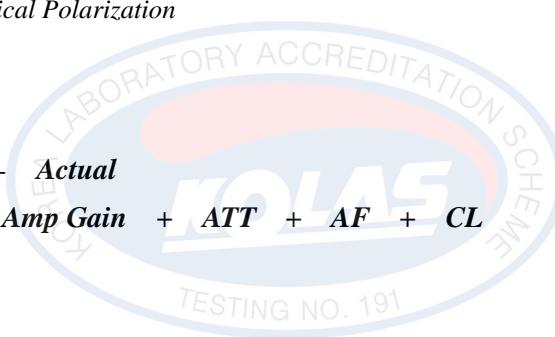
PASS

Table 1: Measured values of the Field strength

Frequency [MHz]	Receiver Bandwidth [kHz]	Pol. [V/H]	Antenna Height [m]	Reading [dB(μV)]	Amp Gain [dB]	ATT [dB]	AF [dB/m]	CL [dB]	Actual [dB(μV/m)]	Limit [dB(μV/m)]	Margin [dB]
Receiver type HB											
630	120	H	1.0	39.90	28.5	0.0	19.4	2.3	33.1	46	12.9
Receiver type NB											
630	120	H	1.0	40.64	28.5	0.0	19.4	2.3	33.9	46	12.1

Note

1. H = Horizontal, V = Vertical Polarization


2. AF = Antenna Factor

3. CL = Cable Loss

4. ATT = Attenuator

$$\text{Margin (dB)} = \text{Limit} - \text{Actual}$$

$$\text{Actual} = \text{Reading} - \text{Amp Gain} + \text{ATT} + \text{AF} + \text{CL}$$

5.2 CONDUCTED EMISSIONS

5.2.1 Regulation

FCC 47CFR15 – 15.107(a) Conducted limits.

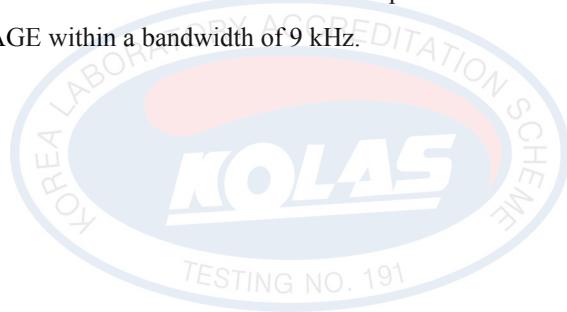
Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15 – 0.5	66 to 56 *	56 to 46 *
0.5 – 5	56	46
5 – 30	60	50

** Decreases with the logarithm of the frequency.

RSS-Gen, Issue 7 – 7.2.2 AC Power Lines Conducted Emissions


Except when the requirements applicable to a given device state otherwise, for any licence-exempt radiocommunication device equipped to operate from the public utility AC power supply, either directly or indirectly, the radio frequency voltage that is conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in Table 2. the tighter limit applies at the frequency range boundaries.

The conducted emissions shall be measured with a 50 ohm/50 microhenry line impedance stabilization network.

Frequency range(MHz)	Conducted limit(dBuV)	
	Quasi-peak	Average
0.15 – 0.5	66 to 56 *	56 to 46 *
0.5 – 5	56	46
5 – 30	60	50

5.2.2 Test Procedure

1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu\text{H}$ LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 MHz to 30 MHz.
5. The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASI-PEAK and AVERAGE within a bandwidth of 9 kHz.

SK TECH CO., LTD.

Page 12 of 13

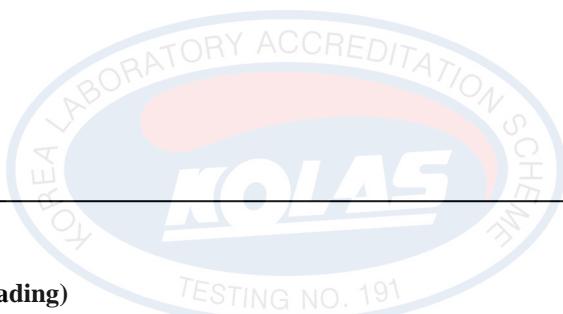
5.2.3 Test Results:

N/A

Table 2: Measured values of the Conducted Emissions

Margin (dB) = Limit – Actual

[Actual = Reading + CF + CL]


- 1. Remark “---” means the level is undetectable or the Quasi-peak value is lower than the limit of Average.
- 2. CF/CL = Correction Factor and Cable Loss
- 3. Qp = Quasi-peak, Ave = Average value

NOTE: The frequency range was scanned from 150 kHz to 30 MHz. All emissions not reported were more than 20 dB below the specified limit.

SK TECH CO., LTD.*Page 13 of 13***Figure 1. Plot of the Conducted Emissions**

Line – PE (Quasi-Peak reading)

N/A

Neutral – PE (Quasi-Peak reading)

N/A