

FCC Test Report

FCC ID : VQK-F02J
Equipment : Mobile Phone
Model No. : F-02J
Brand Name : FUJITSU
Applicant : FUJITSU LIMITED
Address : 1-1, Kamikodanaka 4-chome, Nakahara-ku,
Kawasaki 211-8588, Japan
Standard : 47 CFR FCC Part 22 Subpart H
Received Date : May 25, 2016
Tested Date : Jun. 25 ~ Jun. 29, 2016

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information.....	5
1.2	Local Support Equipment List.....	7
1.3	Test Setup Chart.....	7
1.4	The Equipment List	8
1.5	Test Standards	9
1.6	Measurement Uncertainty	9
2	TEST CONFIGURATION.....	10
2.1	Testing Condition and Location Information.....	10
2.2	The Worst Test Modes and Channel Details.....	10
3	TEST RESULTS.....	11
3.1	Effective Radiated Power	11
3.2	Radiated Emissions	14
3.3	Conducted Emissions	18
3.4	Band Edge.....	20
3.5	Occupied Bandwidth and 26dBc Bandwidth	22
3.6	Peak to Average Ratio	24
3.7	Frequency Stability.....	26
4	TEST LABORATORY INFORMATION	28

Release Record

Report No.	Version	Description	Issued Date
FG652501	Rev. 01	Initial issue	Jul. 12, 2016

Summary of Test Results

FCC Rules	Test Items	Measured	Result
2.1046 / 22.913(a)(2)	Effective Radiated Power	Power[dBm]: 20.25	Pass
2.1053 / 22.917(a)	Radiated Emissions	Meet the requirement of limit	Pass
2.1051 / 22.917(a)	Conducted Emissions	Meet the requirement of limit	Pass
2.1051 / 22.917(a)	Band Edge	Meet the requirement of limit	Pass
2.1049	Occupied Bandwidth	Meet the requirement of limit	Pass
-	Peak to average ratio	Meet the requirement of limit	Pass
2.1055 / 22.355	Frequency Stability	Meet the requirement of limit	Pass

1 General Description

1.1 Information

1.1.1 Product Details

Product Name	Mobile Phone
Brand Name	FUJITSU
Model Name	F-02J
IMEI Code	358094070020574 / 358094070024139
H/W Version	v2.1.0
S/W Version	R015.1

1.1.2 Specification of the Equipment under Test (EUT)

Operating Frequency	WCDMA Band V: 826.4 MHz ~ 846.6 MHz
Modulation	WCDMA / HSDPA / HSUPA: QPSK (uplink)
3GPP Release Version	R5 / R6
UE Category	10 / 6

1.1.3 Maximum ERP, Frequency Tolerance and Emission Designator

System	Modulation	Maximum ERP(W)	Frequency Tolerance (ppm)	Emission Designator
WCDMA850	QPSK	0.106	0.016	4M18F9W

1.1.4 Antenna Details

Ant. No.	Type	Connector	Antenna Gain (dBi)
1	$\lambda/4$ Monopole	No	-2.0

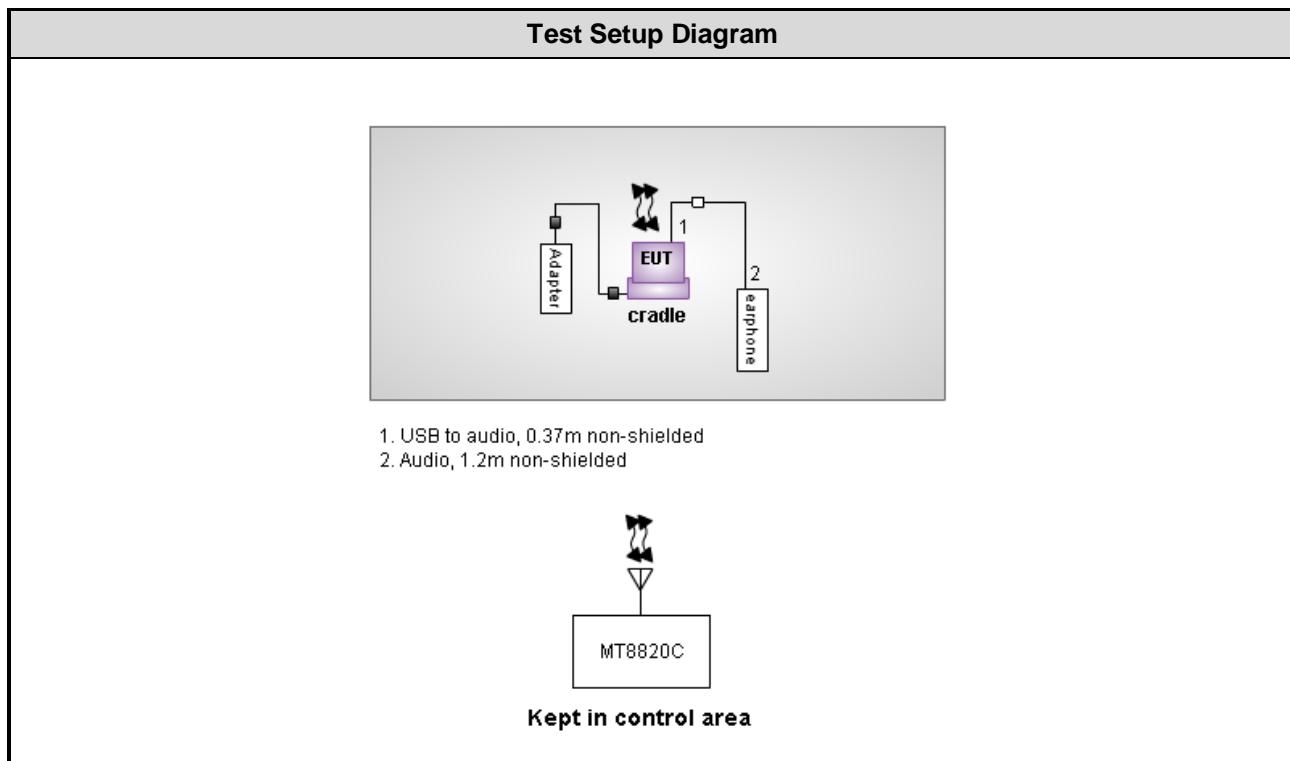
1.1.5 EUT Operational Condition

Supply Voltage	5.0Vdc from AC adapter 3.8Vdc from Battery		
Operational Voltage	<input checked="" type="checkbox"/> Vnom (3.9 V)	<input checked="" type="checkbox"/> Vmax (4.29 V)	<input checked="" type="checkbox"/> Vmin (3.51 V)
Operational Climatic	<input checked="" type="checkbox"/> Tnom (20°C)	<input checked="" type="checkbox"/> Tmax (55°C)	<input checked="" type="checkbox"/> Tmin (-30°C)

1.1.6 Accessories

No.	Equipment	Description
1	Battery	Brand Name: NTT docomo Model Name: F33 Power Rating: 3.8Vdc, 1500mAh, 5.7Wh
2	Cradle	Brand Name: NTT docomo Model Name: F49 Input/Output Rating: 5Vdc, 1.5A

1.1.7 Operating Channel List


WCDMA		
	Channel	Frequency (MHz)
Low	4132	826.4
Middle	4182	836.4
High	4233	846.6

1.2 Local Support Equipment List

Support Equipment List						
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)
1	Earphone	APPLE	MD827FE/A	6	---	1.2m non-shielded w/o core
2	Earphone adapter	NTT docomo	Earphone adapter 02	---	---	0.37m non-shielded w/o core
3	Adapter	NTT docomo	AC Adapter 04	---	---	Remarks: I/P: 100-240Vac, 0.22A, 50-60Hz, 0.4A O/P: 5.0Vdc, 1.8A Power line: 1m, non-shielded with 2 cores

Note: No.2 & No. 3 are provided by applicant.

1.3 Test Setup Chart

1.4 The Equipment List

Test Item	Radiated Emission				
Test Site	966 chamber 2 / (03CH02-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101499	Dec. 17, 2015	Dec. 16, 2016
Receiver	R&S	ESR3	101657	Jan. 12, 2016	Jan. 11, 2017
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-523	Nov. 09, 2015	Nov. 08, 2016
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1095	Oct. 07, 2015	Oct. 06, 2016
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 04, 2015	Nov. 03, 2016
Preamplifier	Burgeon	BPA-530	100218	Nov. 03, 2015	Nov. 02, 2016
Preamplifier	Agilent	83017A	MY39501309	Sep. 22, 2015	Sep. 21, 2016
Preamplifier	EMC	EMC184045B	980192	Sep. 01, 2015	Aug. 31, 2016
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16140/4	Dec. 10, 2015	Dec. 09, 2016
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16018/4	Dec. 10, 2015	Dec. 09, 2016
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16015/4	Dec. 10, 2015	Dec. 09, 2016
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-003	Dec. 10, 2015	Dec. 09, 2016
LF cable 10M	EMCC	CFD400-E	CFD400-001	Dec. 10, 2015	Dec. 09, 2016
Measurement Software	AUDIX	e3	6.120210g	NA	NA
Measurement Software	AUDIX	e3	6.120210g	NA	NA

Note: Calibration Interval of instruments listed above is one year.

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Feb. 17, 2016	Feb. 16, 2017
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Nov. 27, 2015	Nov. 26, 2016
Power Meter	Anritsu	ML2495A	1241002	Sep. 21, 2015	Sep. 20, 2016
Power Sensor	Anritsu	MA2411B	1207366	Sep. 21, 2015	Sep. 20, 2016
Radio Communication Analyzer	Anritsu	MT8820C	6201240341	Mar. 28, 2016	Mar. 27, 2017
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA

Note: Calibration Interval of instruments listed above is one year.

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards.

47 CFR FCC Part 22 Subpart H

ANSI C63.4-2014

ANSI/TIA-603-D 2010

FCC KDB 971168 D01 Power Meas License Digital Systems v02r02

FCC KDB 412172 D01 Determining ERP and EIRP v01r01

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2).

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.134 Hz
Conducted power	±0.808 dB
Frequency error	±34.134 Hz
Conducted emission	±2.670 dB
Radiated emission ≤ 1GHz	±3.87 dB
Radiated emission > 1GHz	±5.60 dB
Temperature	±0.6 °C

2 Test Configuration

2.1 Testing Condition and Location Information

Test Item	Test Site	Ambient Condition	Tested By
Radiated Emissions	03CH02-WS	22°C / 63%	Felix Sung
RF Conducted	TH01-WS	22°C / 64%	Alex Huang

➤ FCC site registration No.: 181692

➤ IC site registration No.: 10807A-2

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Channel
Effective Radiated Power	WCDMA	4132, 4182, 4233
Radiated Emissions ≤ 1GHz	WCDMA	4182
Radiated Emissions > 1GHz	WCDMA	4132, 4182, 4233
Conducted Emissions	WCDMA	4132, 4182, 4233
Band Edge	WCDMA	4132, 4233
Occupied Bandwidth	WCDMA	4132, 4182, 4233
Peak to average ratio	WCDMA	4132, 4182, 4233
Frequency Stability	WCDMA	4183

NOTE:

1. Adapter and cradle mode had been covered during the pretest and found that **cradle mode** was the worst case and was selected for final test

3 Test Results

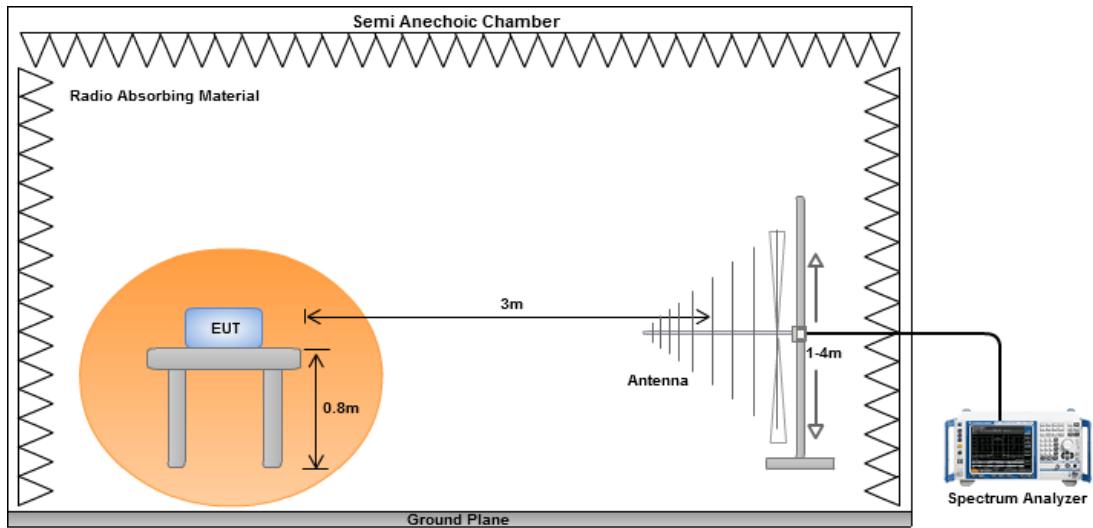
3.1 Effective Radiated Power

3.1.1 Limit of Effective Radiated Power

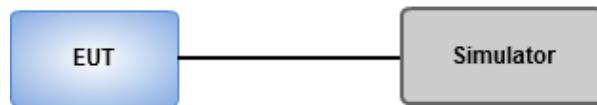
The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

3.1.2 Test Procedures

For E.R.P measurement


1. The EUT links up with simulator and is set to maximum output power level at low / middle / high channel. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.
4. After finding the max radiated emission, substitution method will be used for getting effective radiated power. EUT will be removed and substitution antenna will be placed at same position. Signal generator will output CW signal to substitution antenna through a RF cable. Rotate turntable and move antenna to find maximum radiated emission. Adjust output power of signal generator to let the maximum radiated emission is same as step 3. Record the output power level.
5. E.I.R.P = output power of step 4 + gain of substitution antenna – cable loss of RF cable. ERP can be calculated by below formula:
$$E.R.P = E.I.R.P - 2.15dB$$

For Conducted power measurement


1. The EUT links up with simulator and is set to maximum output power level at low / middle / high channel.
2. Measure the output power of low / middle / high channel of the EUT

3.1.3 Test Setup

Effective Radiated Power Measurement

Conducted Power Measurement

3.1.4 Test Result of Conducted Output Power (dBm)

Band	WCDMA V		
Channel	4132	4182	4233
Frequency (MHz)	826.4	836.4	846.6
AMR	23.93	23.22	23.75
RMC 12.2Kbps	23.95	23.24	23.78
HSDPA Subtest-1	22.76	22.08	22.66
HSDPA Subtest-2	22.75	22.25	22.64
HSDPA Subtest-3	22.26	21.55	22.10
HSDPA Subtest-4	22.48	21.70	22.26
HSUPA Subtest-1	22.40	21.51	22.36
HSUPA Subtest-2	21.65	21.08	21.60
HSUPA Subtest-3	21.35	20.78	21.30
HSUPA Subtest-4	21.81	21.30	21.76
HSUPA Subtest-5	22.89	22.20	22.79

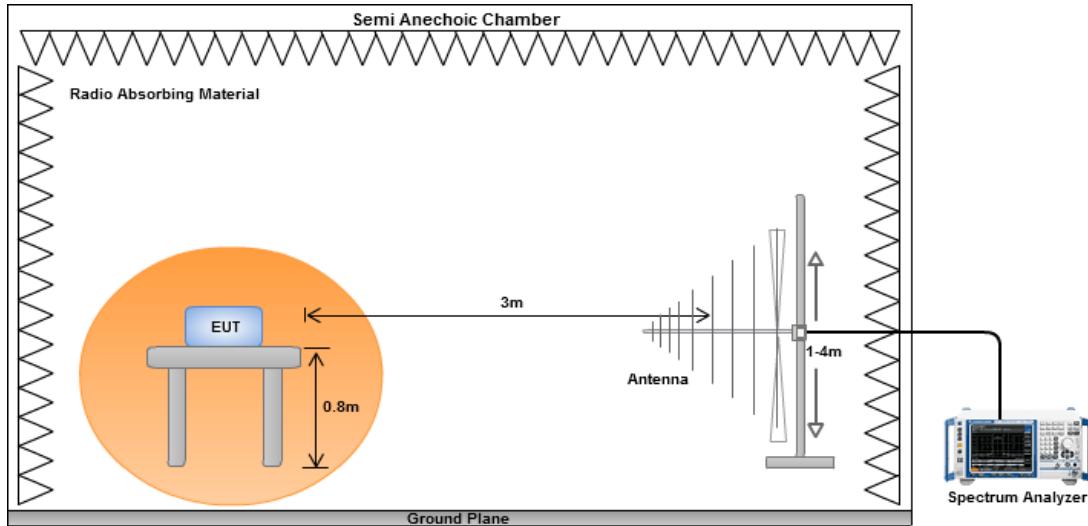
3.1.5 Test Result of Effective Radiated Power (dBm)

Mode	WCDMA							
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	
4132	826.4	18.65	38.45	-19.8	9.39	17.43	3.37	
4182	836.4	19.05	38.45	-19.4	8.99	17.88	3.32	
4233	846.6	20.25	38.45	-18.2	7.79	19.13	3.27	

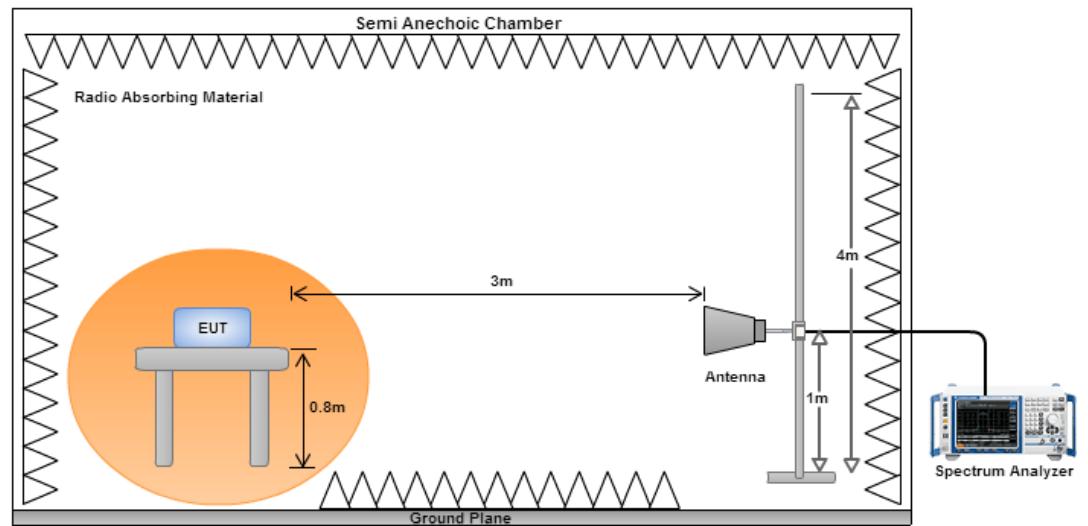
NOTE: ERP = S.G power value + correction factor - 2.15.

3.2 Radiated Emissions

3.2.1 Limit of Radiated Emissions


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB equal to -13dBm.

3.2.2 Test Procedures


1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.
4. After finding the max radiated emission, substitution method will be used for getting effective radiated power. EUT will be removed and substitution antenna will be placed at same position. Signal generator will output CW signal to substitution antenna through a RF cable. Rotate turntable and move antenna to find maximum radiated emission. Adjust output power of signal generator to let the maximum radiated emission is same as step 3. Record the output power level.
5. E.I.R.P = output power of step 4 + gain of substitution antenna – cable loss of RF cable. ERP can be calculated by below formula:
$$E.R.P = E.I.R.P - 2.15dB$$

3.2.3 Test Setup

Radiated Emissions below 1 GHz

Radiated Emissions above 1 GHz

3.2.4 Test Result of Radiated Emissions below 1GHz

Mode	WCDMA, Channel: 4182							
Frequency (MHz)	Antenna Polarity	E.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	
30.00	H	-72.40	-13.00	-59.40	-67.16	-56.04	-14.21	
118.27	H	-74.80	-13.00	-61.80	-68.17	-71.88	-0.77	
148.34	H	-72.95	-13.00	-59.95	-58.71	-69.66	-1.14	
289.96	H	-68.56	-13.00	-55.56	-58.51	-70.71	4.30	
312.27	H	-68.58	-13.00	-55.58	-70.45	-70.73	4.30	
746.83	H	-67.28	-13.00	-54.28	-67.72	-68.55	3.42	
46.49	V	-74.85	-13.00	-61.85	-67.16	-60.49	-12.21	
118.27	V	-73.17	-13.00	-60.17	-68.17	-70.25	-0.77	
284.14	V	-62.59	-13.00	-49.59	-58.71	-64.76	4.32	
298.69	V	-62.58	-13.00	-49.58	-58.51	-64.70	4.27	
731.31	V	-67.13	-13.00	-54.13	-70.45	-68.46	3.48	
746.83	V	-64.33	-13.00	-51.33	-67.72	-65.60	3.42	

NOTE: ERP = S.G power value + correction factor - 2.15.

3.2.5 Test Result of Radiated Emissions above 1GHz

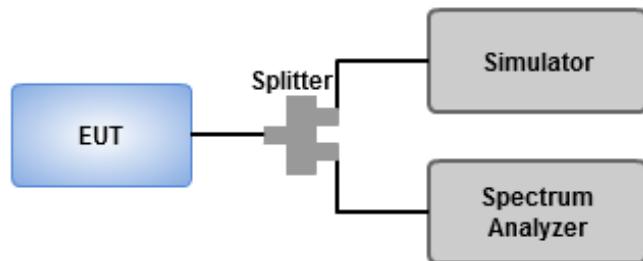
Mode	WCDMA, Channel: 4132							
Frequency (MHz)	Antenna Polarity	E.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	
1652.80	H	-59.31	-13.00	-46.31	-61.12	-62.34	5.18	
2479.20	H	-68.99	-13.00	-55.99	-75.16	-73.15	6.31	
3305.60	H	-64.98	-13.00	-51.98	-74.86	-69.56	6.73	
1652.80	V	-63.22	-13.00	-50.22	-64.28	-66.25	5.18	
2479.20	V	-65.90	-13.00	-52.90	-73.21	-70.06	6.31	
3305.60	V	-65.11	-13.00	-52.11	-74.58	-69.69	6.73	

Mode	WCDMA, Channel: 4182							
Frequency (MHz)	Antenna Polarity	E.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	
1672.80	H	-53.63	-13.00	-40.63	-55.54	-56.70	5.22	
2509.20	H	-66.82	-13.00	-53.82	-73.16	-70.99	6.32	
3345.60	H	-66.09	-13.00	-53.09	-75.62	-70.72	6.78	
1672.80	V	-57.24	-13.00	-44.24	-58.33	-60.31	5.22	
2509.20	V	-62.85	-13.00	-49.85	-70.32	-67.02	6.32	
3345.60	V	-66.08	-13.00	-53.08	-75.58	-70.71	6.78	

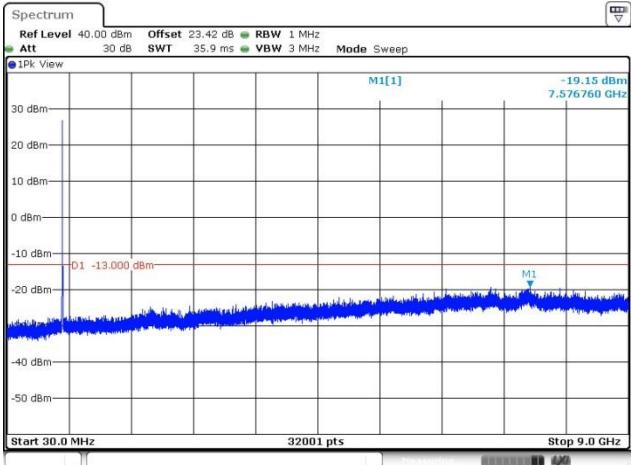
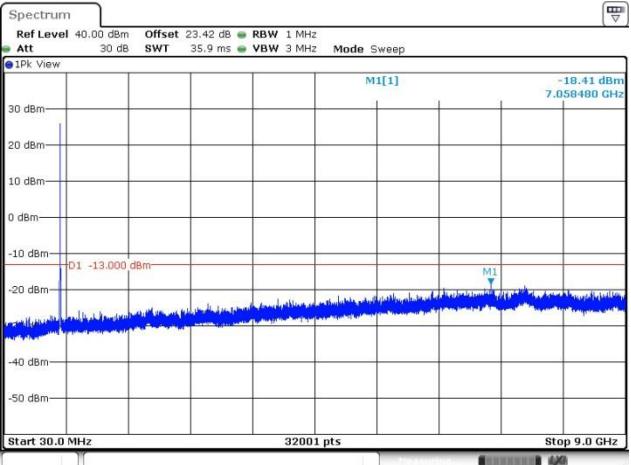
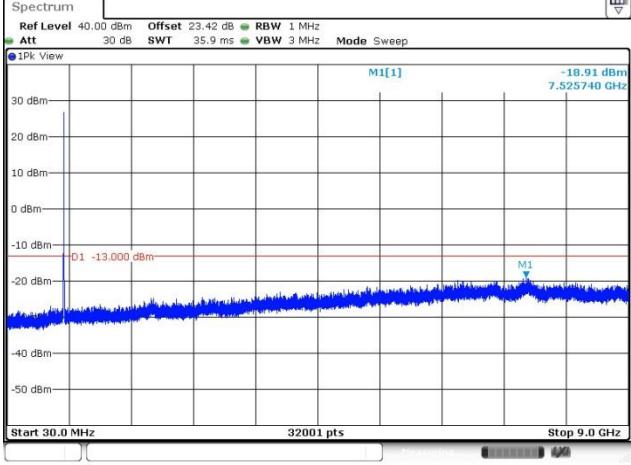
Mode	WCDMA, Channel: 4233							
Frequency (MHz)	Antenna Polarity.	E.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	
1693.20	H	-55.58	-13.00	-42.58	-57.61	-58.70	5.27	
2539.80	H	-65.60	-13.00	-52.60	-72.11	-69.79	6.34	
3386.40	H	-66.36	-13.00	-53.36	-75.54	-71.03	6.82	
1693.20	V	-58.70	-13.00	-45.70	-59.83	-61.82	5.27	
2539.80	V	-63.39	-13.00	-50.39	-71.02	-67.58	6.34	
3386.40	V	-65.80	-13.00	-52.80	-75.32	-70.47	6.82	

NOTE: ERP = S.G power value + correction factor - 2.15.

3.3 Conducted Emissions


3.3.1 Limit of Conducted Emissions

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB equal to -13dBm.




3.3.2 Test Procedures

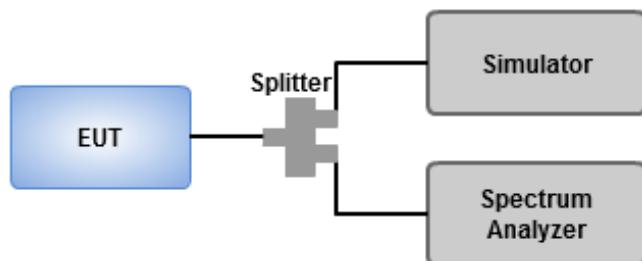
1. Lowest, middle and highest operating channels are tested for this item.
2. Scan frequency range is from 30MHz~9GHz.
3. Set RBW = 1MHz, VBW = 3MHz, detector = Peak, sweep time = auto.
4. Record the max trace value and capture the test plot of each sub frequency band.

3.3.3 Test Setup

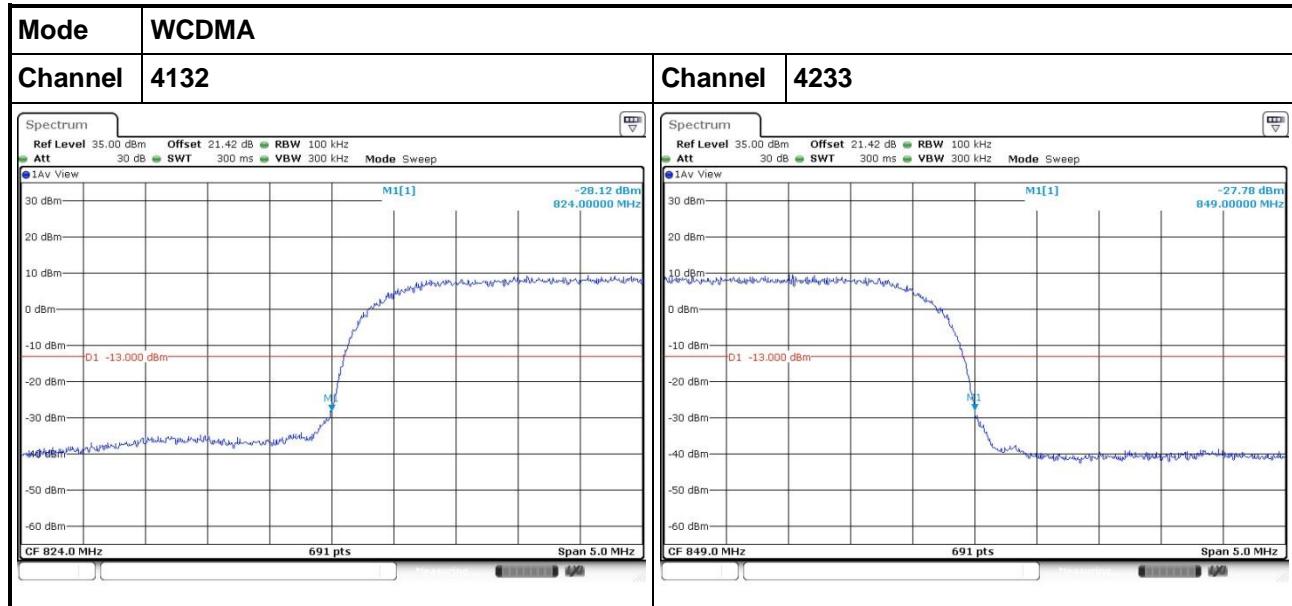
3.3.4 Test Result of Conducted Emissions

Mode	WCDMA	Channel	4132	Channel	4182
		Channel	4132	Channel	4182
Channel	4233				---

3.4 Band Edge


3.4.1 Limit of Band Edge

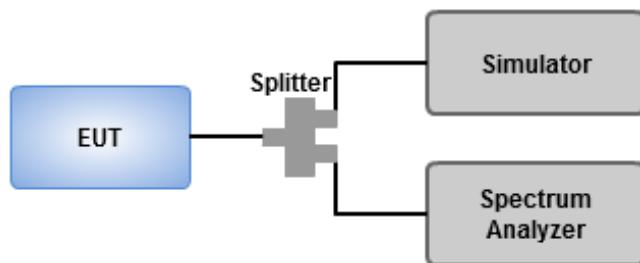
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB equal to -13dBm.


3.4.2 Test Procedures

1. Lowest and highest operating channels are tested for this item.
2. The center frequency of spectrum analyzer will be set to 824 and 849 MHz.
3. Set RBW =100kHz, VBW = 300kHz, span = 5 MHz, detector = RMS, sweep time = auto
4. Record the max trace value and capture the test plot.

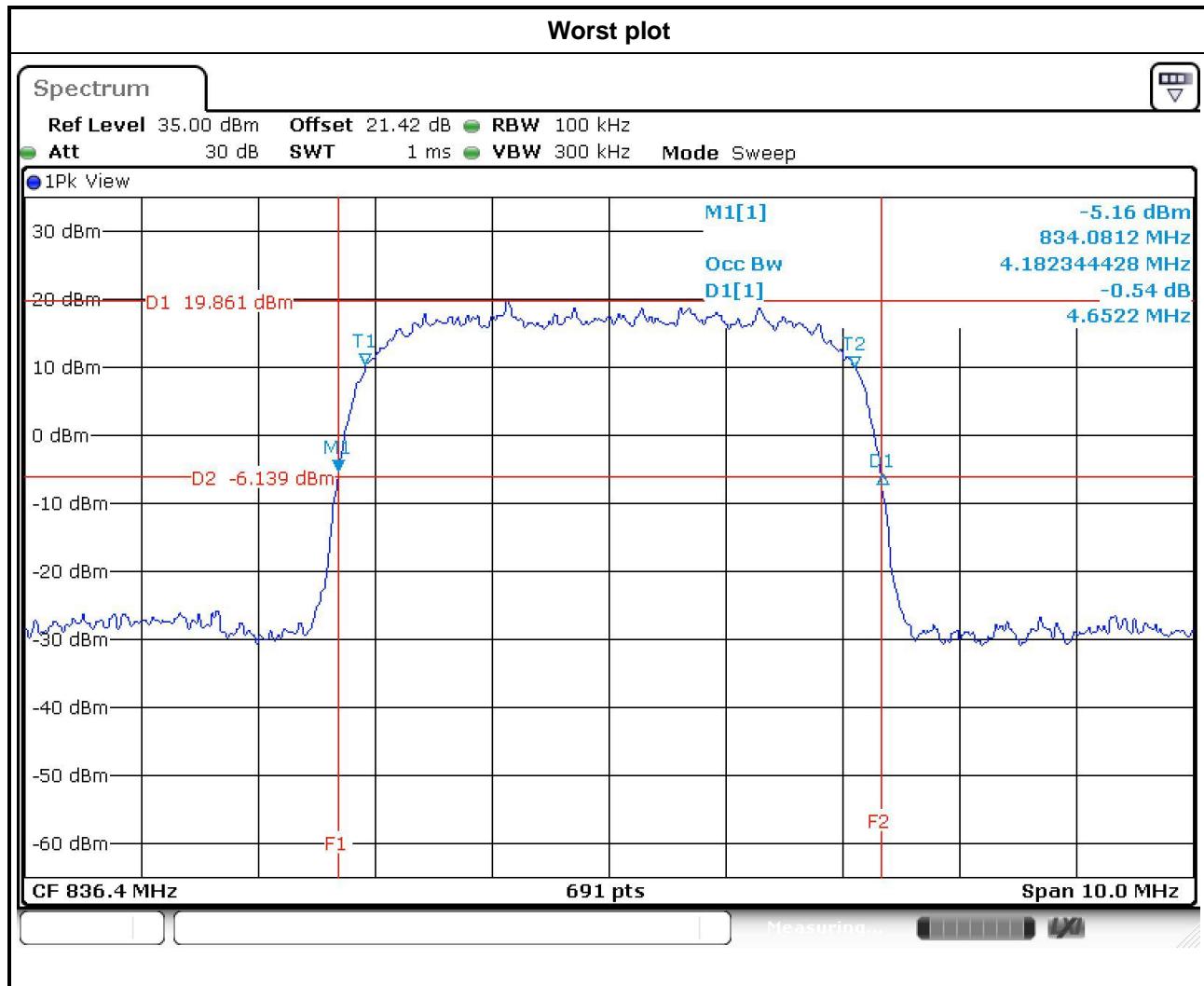
3.4.3 Test Setup

3.4.4 Test Result of Band Edge



3.5 Occupied Bandwidth and 26dBc Bandwidth

3.5.1 Test Procedures

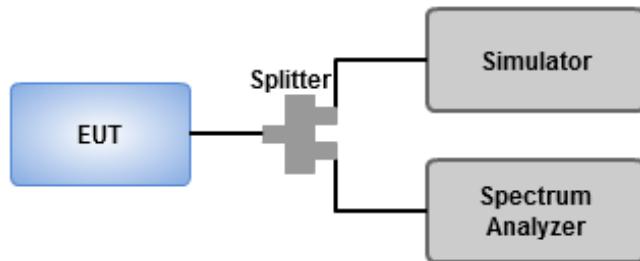

1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz
2. Detector = Peak, Trace mode = max hold.
3. Sweep = auto couple, Allow the trace to stabilize.
4. Using occupied bandwidth measurement function of spectrum analyzer to measure occupied bandwidth
5. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 26dB relative to the maximum level measured in the fundamental emission.

3.5.2 Test Setup

3.5.3 Test Result of Occupied Bandwidth

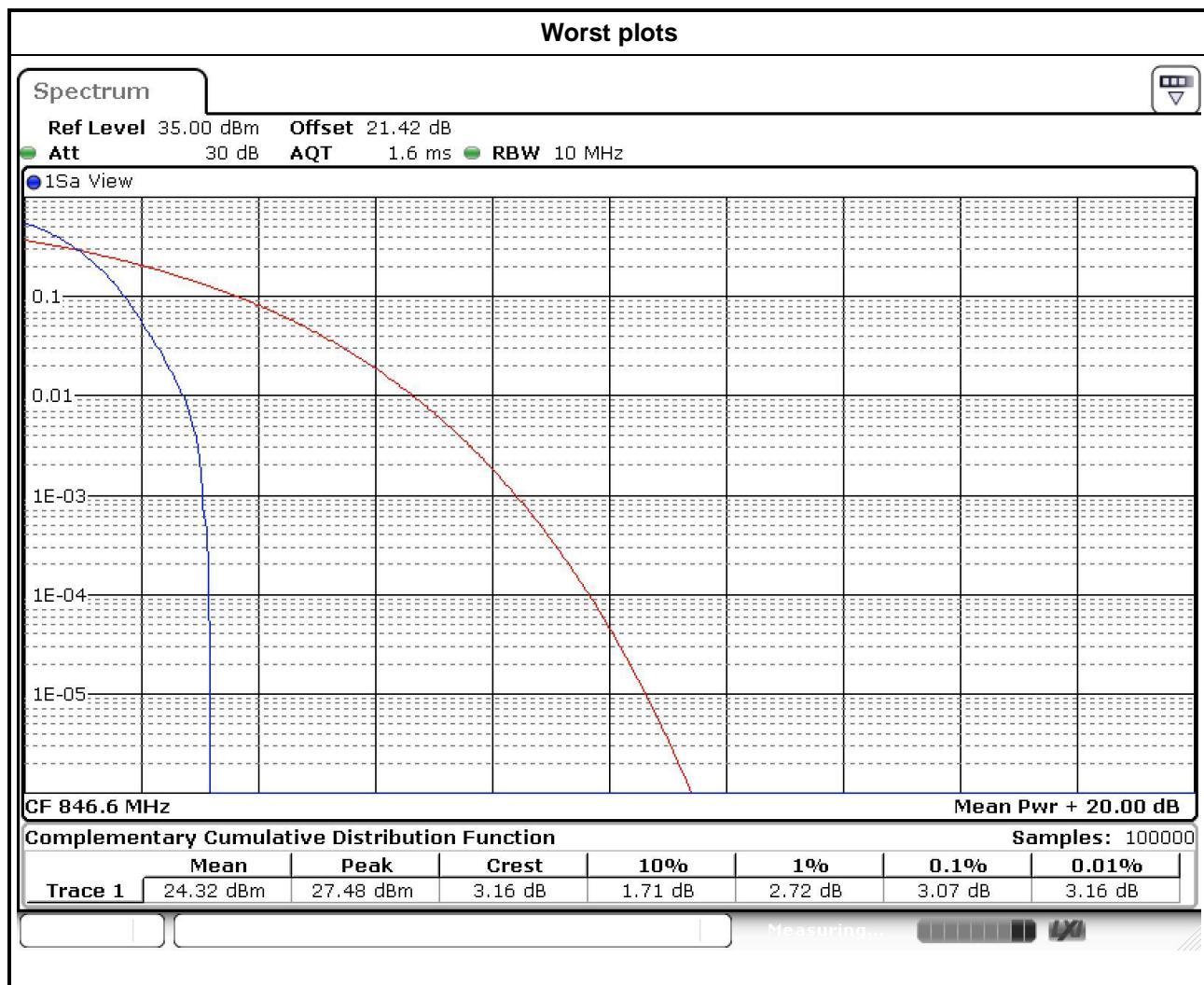
MODE	Channel	Frequency (MHz)	OBW (MHz)	26dB bandwidth(MHz)
WCDMA	4132	826.4	4.15	4.6522
WCDMA	4182	836.4	4.18	4.6522
WCDMA	4233	846.6	4.14	4.6522

3.6 Peak to Average Ratio


3.6.1 Limit of Peak to Average Ratio

Peak-to-average ratio (PAR) of the transmission may not exceed 13 dB

3.6.2 Test Procedures

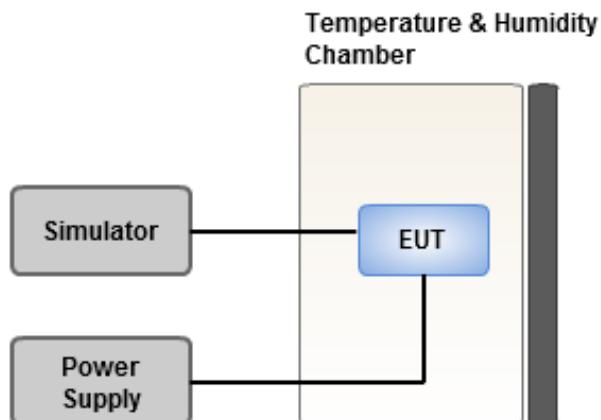

1. Enable CCDF function of spectrum analyzer and set RBW=10MHz
2. Set the number of counts to a value that stabilizes the measured CCDF curve
3. Record the maximum PAPR level associated with a probability of 0.1%.

3.6.3 Test Setup

3.6.4 Test Result of Peak to Average Ratio

MODE	Channel	Frequency (MHz)	Peak to Average ratio (dB)
WCDMA	4132	826.4	3.01
WCDMA	4182	836.4	2.87
WCDMA	4233	846.6	3.07

3.7 Frequency Stability


3.7.1 Limit of Frequency Stability

The frequency stability shall be less +/- 2.5ppm.

3.7.2 Test Procedures

1. EUT was placed at temperature chamber and connected to an external power supply.
2. Temperature and voltage condition shall be tested to confirm frequency stability.
3. Temperature range is from -30~55°C and voltage range is from lowest to highest working voltage.
4. Link up EUT and simulator. Confirm frequency drift value of simulator and record it.

3.7.3 Test Setup

3.7.4 Test Result of Frequency Stability

Temperature (°C)	Voltage (dc)	Frequency Drift (ppm)	Limit (ppm)
20	4.29	-0.011	2.5
20	3.51	-0.010	2.5
55	3.9	-0.007	2.5
50	3.9	-0.008	2.5
40	3.9	-0.008	2.5
30	3.9	-0.011	2.5
20	3.9	-0.011	2.5
10	3.9	-0.013	2.5
0	3.9	-0.013	2.5
-10	3.9	-0.013	2.5
-20	3.9	-0.014	2.5
-30	3.9	-0.016	2.5

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website <http://www.icertifi.com.tw>.

Linkou

Tel: 886-2-2601-1640
No. 30-2, Ding Fwu Tsuen, Lin
Kou District, New Taipei City,
Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666
No. 3-1, Lane 6, Wen San 3rd St.,
Kwei Shan District, Tao Yuan City
333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640
No. 14-1, Lane 19, Wen San 3rd
St., Kwei Shan District, Tao Yuan
City 333, Taiwan, R.O.C..

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666
Fax: 886-3-318-0155
Email: ICC_Service@icertifi.com.tw

==END==