

International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666

Fax: 886-3-318-0155



FCC Test Report

FCC ID : VQK-F01F
Equipment : Mobile Phone
Model No. : F-01F
Brand Name : FUJITSU
Applicant : FUJITSU LIMITED
Address : 1-1, Kamikodanaka 4-chome, Nakahara-ku,
Kawasaki 211-8588, Japan
Standard : 47 CFR FCC Part 15.247
Received Date : Jul. 01, 2013
Tested Date : Aug. 15 ~ Aug. 24, 2013

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	The Equipment List	8
1.5	Test Standards	9
1.6	Measurement Uncertainty	10
2	TEST CONFIGURATION.....	11
2.1	Testing Condition	11
2.2	The Worst Test Modes and Channel Details	11
3	TRANSMITTER TEST RESULTS.....	12
3.1	Conducted Emissions.....	12
3.2	Unwanted Emissions into Restricted Frequency Bands	15
3.3	Unwanted Emissions into Non-Restricted Frequency Bands	31
3.4	Conducted Output Power	36
3.5	Number of Hopping Frequency	38
3.6	20dB and Occupied Bandwidth	40
3.7	Channel Separation.....	42
3.8	Number of Dwell Time.....	44

International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666

Fax: 886-3-318-0155

Release Record

Report No.	Version	Description	Issued Date
FR370110AD	Rev. 01	Initial issue	Sep. 03, 2013

International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666

Fax: 886-3-318-0155

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 3.779MHz 33.66 (Margin -12.34dB) - AV	Pass
15.247(d) 15.209	Radiated Emissions	[dBuV/m at 3m]: 30MHz 28.57 (Margin -11.43dB) - PK	Pass
15.247(d)	Band Edge	Meet the requirement of limit	Pass
15.247(b)(1)	Conducted Output Power	Power [dBm]: GFSK: 8.04 8DPSK: 9.01	Pass
15.247(a)(1)(iii)	Number of Hopping Channels	Meet the requirement of limit	Pass
15.247(a)(1)	Hopping Channel Separation	Meet the requirement of limit	Pass
15.247(a)(1)(iii)	Dwell Time	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

1 General Description

1.1 Information

1.1.1 Product Details

Product Name	Mobile Phone
Brand Name	FUJITSU
Model Name	F-01F
IMEI Code	357611050019929 & 357611050023293
H/W Version	V2.1.0
S/W Version	R19.8e

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information				
Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number	Data Rate
2400-2483.5	BR	2402-2480	0-78 [79]	1 Mbps
2400-2483.5	EDR	2402-2480	0-78 [79]	2 Mbps
2400-2483.5	EDR	2402-2480	0-78 [79]	3 Mbps

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.
Note 2: Bluetooth BR uses a GFSK.
Note 3: Bluetooth EDR uses a combination of $\pi/4$ -DQPSK and 8DPSK.

1.1.3 Antenna Details

Ant. No.	Type	Gain (dBi)	Connector	Remark
1	$\lambda/4$ Monopole	-1.5	---	---

1.1.4 EUT Operational Condition

Supply Voltage	<input checked="" type="checkbox"/> AC mains	<input checked="" type="checkbox"/> DC	
Type of DC Source	<input type="checkbox"/> Internal DC supply	<input checked="" type="checkbox"/> External DC adapter	<input checked="" type="checkbox"/> Battery

1.1.5 Accessories

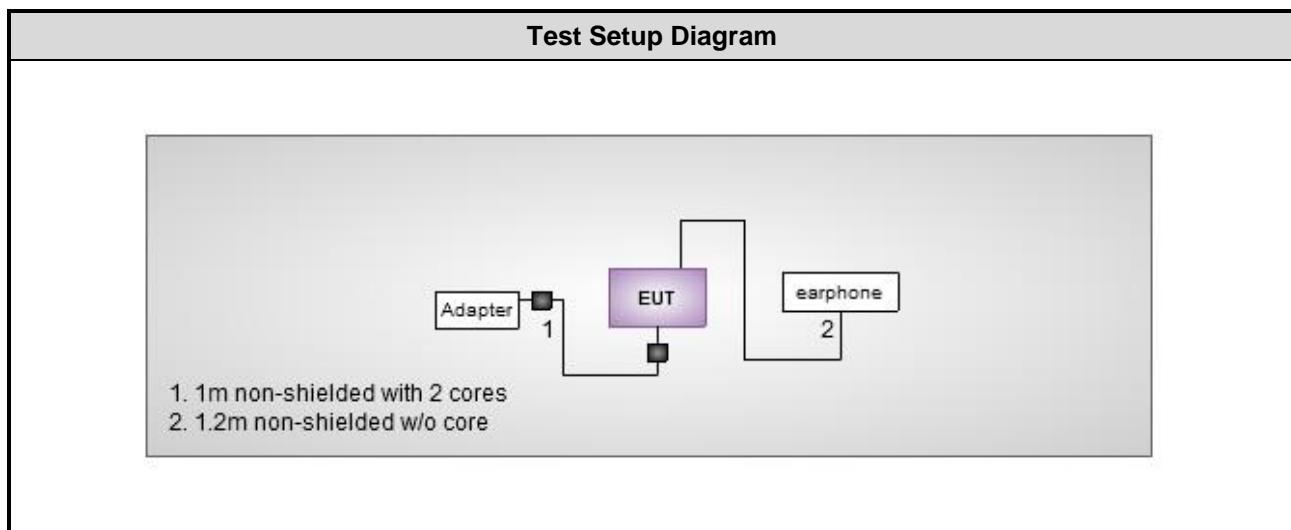
Accessories		
No.	Equipment	Description
1	Battery	Brand Name: Fujitsu limited Model Name: CA54310-0052 Power Rating: O/P: 3.75Vdc, 3200mA, 12Wh

1.1.6 Channel List

Frequency band (MHz)				2400~2483.5			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	---	---

1.1.7 Test Tool and Power setting

Test tool	QRCT , Ver 3.0.6.0		
Modulation Mode	Test Frequency (MHz)		
	2402	2441	2480
GFSK/1Mbps	9	9	9
8DPSK/3Mbps	9	9	9



1.2 Local Support Equipment List

Support Equipment List						
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)
1	Adapter	NTT docomo	AC Adaptor 04	---	---	1m non-shielded with 2 cores
2	Earphone	APPLE	MD827FE/A	---	---	1.2m non-shielded w/o core

Note: Item 1 was provided by client.

1.3 Test Setup Chart

1.4 The Equipment List

Test Item	Conducted Emission				
Test Site	Conduction room 1 / (CO01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
EMC Receiver	R&S	ESCS 30	100169	Oct. 02, 2012	Oct. 01, 2013
LISN	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-667	Dec. 04, 2012	Dec. 03, 2013
LISN (Support Unit)	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-666	Dec. 04, 2012	Dec. 03, 2013
ISN	TESEQ	ISN T800	34406	Apr. 08, 2013	Apr. 07, 2014
ISN	TESEQ	ISN T200A	30494	Apr. 09, 2013	Apr. 08, 2014
ISN	TESEQ	ISN T8-Cat6	27262	Sep. 17, 2012	Sep. 16, 2013
ISN	TESEQ	ISN ST08	22589	Jan. 24, 2013	Jan. 23, 2014
RF Current Probe	FCC	F-33-4	121630	Dec. 04, 2012	Dec. 03, 2013
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 25, 2012	Dec. 24, 2013
ESH3-Z6 V-Network(+)	R&S	ESH3-Z6	100920	Nov. 21, 2012	Nov. 20, 2013
ESH3-Z6 V-Network(-)	R&S	ESH3-Z6	100951	Jan. 30, 2013	Jan. 29, 2014
Two-Line V-Network	R&S	ENV216	101579	Jan. 07, 2013	Jan. 06, 2014
50 ohm terminal	NA	50	01	Apr. 22, 2013	Apr. 21, 2014
50 ohm terminal	NA	50	02	Apr. 22, 2013	Apr. 21, 2014
50 ohm terminal	NA	50	03	Apr. 22, 2013	Apr. 21, 2014
50 ohm terminal (Support Unit)	NA	50	04	Apr. 22, 2013	Apr. 21, 2014
Note: Calibration Interval of instruments listed above is one year.					

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV 40	101063	Feb. 18, 2013	Feb. 17, 2014
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Nov. 29, 2012	Nov. 28, 2013
Power Meter	Anritsu	ML2495A	1241002	Oct. 15, 2012	Oct. 14, 2013
Power Sensor	Anritsu	MA2411B	1027366	Oct. 24, 2012	Oct. 23, 2013
Signal Generator	R&S	SMB100A	175727	Jan. 14, 2013	Jan. 13, 2014
Note: Calibration Interval of instruments listed above is one year.					

Test Item	Radiated Emission above 1GHz				
Test Site	966 chamber1 / (03CH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
3m semi-anechoic chamber	CHAMPRO	SAC-03	03CH01-WS	Jan. 04, 2013	Jan. 03, 2014
Spectrum Analyzer	R&S	FSV40	101498	Jan. 24, 2013	Jan. 23, 2014
Receiver	R&S	ESR3	101658	Jan. 28, 2013	Jan. 27, 2014
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jan. 11, 2013	Jan. 10, 2014
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Feb. 18, 2013	Feb. 17, 2014
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Jan. 14, 2013	Jan. 13, 2014
Amplifier	Burgeon	BPA-530	100219	Nov. 28, 2012	Nov. 27, 2013
Amplifier	Agilent	83017A	MY39501308	Dec. 18, 2012	Dec. 17, 2013
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 25, 2012	Dec. 24, 2013
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 25, 2012	Dec. 24, 2013
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 25, 2012	Dec. 24, 2013
RF Cable-R03m	Woken	CFD400NL-LW	CFD400NL-001	Dec. 25, 2012	Dec. 24, 2013
RF Cable-R10m	Woken	CFD400NL-LW	CFD400NL-002	Dec. 25, 2012	Dec. 24, 2013
control	EM Electronics	EM1000	60612	N/A	N/A
Note: Calibration Interval of instruments listed above is one year.					

Loop Antenna	R&S	HFH2-Z2	100330	Nov. 15, 2012	Nov. 14, 2014
Amplifier	MITEQ	AMF-6F-260400	9121372	Apr. 19, 2013	Apr. 18, 2015
Note: Calibration Interval of instruments listed above is two year.					

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247

FCC Public notice DA 00-705

ANSI C63.10-2009

Note: The EUT has been tested and complied with FCC part 15B requirement. FCC Part 15B test results are issued to another report.

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±35.286 Hz
Conducted power	±0.536 dB
Frequency error	±35.286 Hz
Temperature	±0.3 °C
Conducted emission	±2.946 dB
AC conducted emission	±2.43 dB
Radiated emission	±2.49 dB

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	22°C / 66%	Skys Huang
Radiated Emissions	03CH01-WS	23°C / 66%	Aska Huang Mark Liao
RF Conducted	TH01-WS	24°C / 61%	Felix Sung

➤ FCC site registration No.: 657002

➤ IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test channel
Conducted Emissions	8DPSK	2402
Radiated Emissions < 1GHz	8DPSK	2402
Radiated Emissions > 1GHz	GFSK 8DPSK	2402 / 2441 / 2480 2402 / 2441 / 2480
Band Edge	GFSK 8DPSK	2402 / 2441 / 2480 2402 / 2441 / 2480
Conducted Output Power	GFSK 8DPSK	2402 / 2441 / 2480 2402 / 2441 / 2480
Number of Hopping Channels	GFSK 8DPSK	2402~2480 2402~2480
Hopping Channel Separation	GFSK 8DPSK	2402 / 2441 / 2480 2402 / 2441 / 2480
Dwell Time	GFSK 8DPSK	2402 / 2441 / 2480 2402 / 2441 / 2480

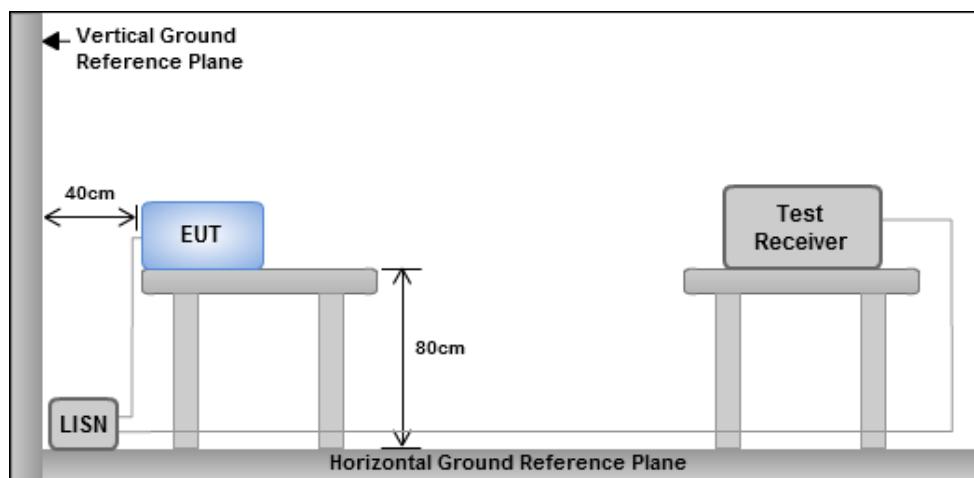
NOTE:

1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Y-plane** results were found as the worst case and were shown in this report.

3 Transmitter Test Results

3.1 Conducted Emissions

3.1.1 Limit of Conducted Emissions

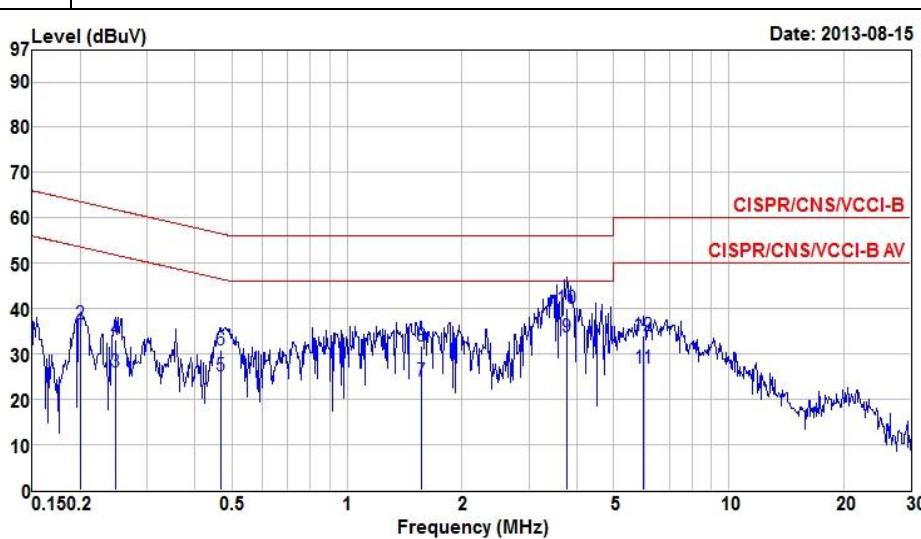

Conducted Emissions Limit		
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50

Note 1: * Decreases with the logarithm of the frequency.

3.1.2 Test Procedures

1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup



Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.1.4 Test Result of Conducted Emissions

Modulation	8DPSK	Test Freq. (MHz)	2402																																																																																																																
Power Phase	Line																																																																																																																		
<table><thead><tr><th>Freq</th><th>Level</th><th>Limit</th><th>Over</th><th>Read</th><th>LISN</th><th>cable</th><th>Remark</th></tr><tr><th>MHz</th><th>dBuV</th><th>dBuV</th><th>dB</th><th>Level</th><th>factor</th><th>loss</th><th></th></tr></thead><tbody><tr><td>1</td><td>0.201</td><td>35.14</td><td>53.58</td><td>-18.44</td><td>34.91</td><td>0.05</td><td>0.18</td></tr><tr><td>2</td><td>0.201</td><td>36.55</td><td>63.58</td><td>-27.03</td><td>36.32</td><td>0.05</td><td>0.18</td></tr><tr><td>3</td><td>0.247</td><td>25.94</td><td>51.86</td><td>-25.92</td><td>25.75</td><td>0.05</td><td>0.14</td></tr><tr><td>4</td><td>0.247</td><td>33.22</td><td>61.86</td><td>-28.64</td><td>33.03</td><td>0.05</td><td>0.14</td></tr><tr><td>5</td><td>0.466</td><td>25.19</td><td>46.58</td><td>-21.39</td><td>25.06</td><td>0.08</td><td>0.05</td></tr><tr><td>6</td><td>0.466</td><td>30.94</td><td>56.58</td><td>-25.64</td><td>30.81</td><td>0.08</td><td>0.05</td></tr><tr><td>7</td><td>1.568</td><td>24.14</td><td>46.00</td><td>-21.86</td><td>23.84</td><td>0.18</td><td>0.12</td></tr><tr><td>8</td><td>1.568</td><td>31.81</td><td>56.00</td><td>-24.19</td><td>31.51</td><td>0.18</td><td>0.12</td></tr><tr><td>9</td><td>3.779</td><td>33.66</td><td>46.00</td><td>-12.34</td><td>33.26</td><td>0.17</td><td>0.23</td></tr><tr><td>10</td><td>3.779</td><td>40.10</td><td>56.00</td><td>-15.90</td><td>39.70</td><td>0.17</td><td>0.23</td></tr><tr><td>11</td><td>5.993</td><td>26.90</td><td>50.00</td><td>-23.10</td><td>26.45</td><td>0.27</td><td>0.18</td></tr><tr><td>12</td><td>5.993</td><td>33.92</td><td>60.00</td><td>-26.08</td><td>33.47</td><td>0.27</td><td>0.18</td></tr></tbody></table>				Freq	Level	Limit	Over	Read	LISN	cable	Remark	MHz	dBuV	dBuV	dB	Level	factor	loss		1	0.201	35.14	53.58	-18.44	34.91	0.05	0.18	2	0.201	36.55	63.58	-27.03	36.32	0.05	0.18	3	0.247	25.94	51.86	-25.92	25.75	0.05	0.14	4	0.247	33.22	61.86	-28.64	33.03	0.05	0.14	5	0.466	25.19	46.58	-21.39	25.06	0.08	0.05	6	0.466	30.94	56.58	-25.64	30.81	0.08	0.05	7	1.568	24.14	46.00	-21.86	23.84	0.18	0.12	8	1.568	31.81	56.00	-24.19	31.51	0.18	0.12	9	3.779	33.66	46.00	-12.34	33.26	0.17	0.23	10	3.779	40.10	56.00	-15.90	39.70	0.17	0.23	11	5.993	26.90	50.00	-23.10	26.45	0.27	0.18	12	5.993	33.92	60.00	-26.08	33.47	0.27	0.18
Freq	Level	Limit	Over	Read	LISN	cable	Remark																																																																																																												
MHz	dBuV	dBuV	dB	Level	factor	loss																																																																																																													
1	0.201	35.14	53.58	-18.44	34.91	0.05	0.18																																																																																																												
2	0.201	36.55	63.58	-27.03	36.32	0.05	0.18																																																																																																												
3	0.247	25.94	51.86	-25.92	25.75	0.05	0.14																																																																																																												
4	0.247	33.22	61.86	-28.64	33.03	0.05	0.14																																																																																																												
5	0.466	25.19	46.58	-21.39	25.06	0.08	0.05																																																																																																												
6	0.466	30.94	56.58	-25.64	30.81	0.08	0.05																																																																																																												
7	1.568	24.14	46.00	-21.86	23.84	0.18	0.12																																																																																																												
8	1.568	31.81	56.00	-24.19	31.51	0.18	0.12																																																																																																												
9	3.779	33.66	46.00	-12.34	33.26	0.17	0.23																																																																																																												
10	3.779	40.10	56.00	-15.90	39.70	0.17	0.23																																																																																																												
11	5.993	26.90	50.00	-23.10	26.45	0.27	0.18																																																																																																												
12	5.993	33.92	60.00	-26.08	33.47	0.27	0.18																																																																																																												
<p>Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dBuV) = Limit Line (dBuV) – Level (dBuV).</p>																																																																																																																			



International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666

Fax: 886-3-318-0155

3.2 Unwanted Emissions into Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit			
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:
Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

Note 2:
Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.2.2 Test Procedures

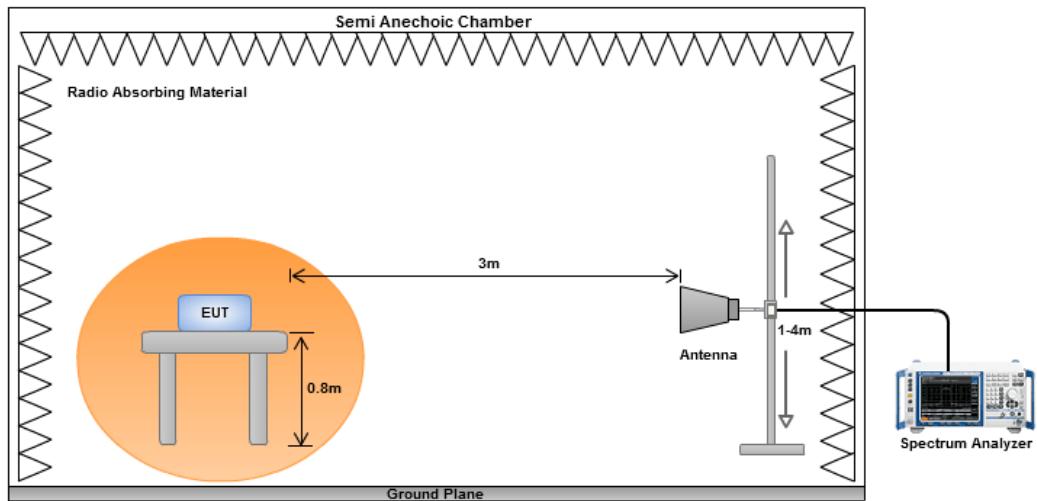
1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
2. Radiated emission above 1GHz / Peak value
RBW=1MHz, VBW=3MHz and Peak detector

Radiated emission above 1GHz / Average value for harmonics

The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:


3.

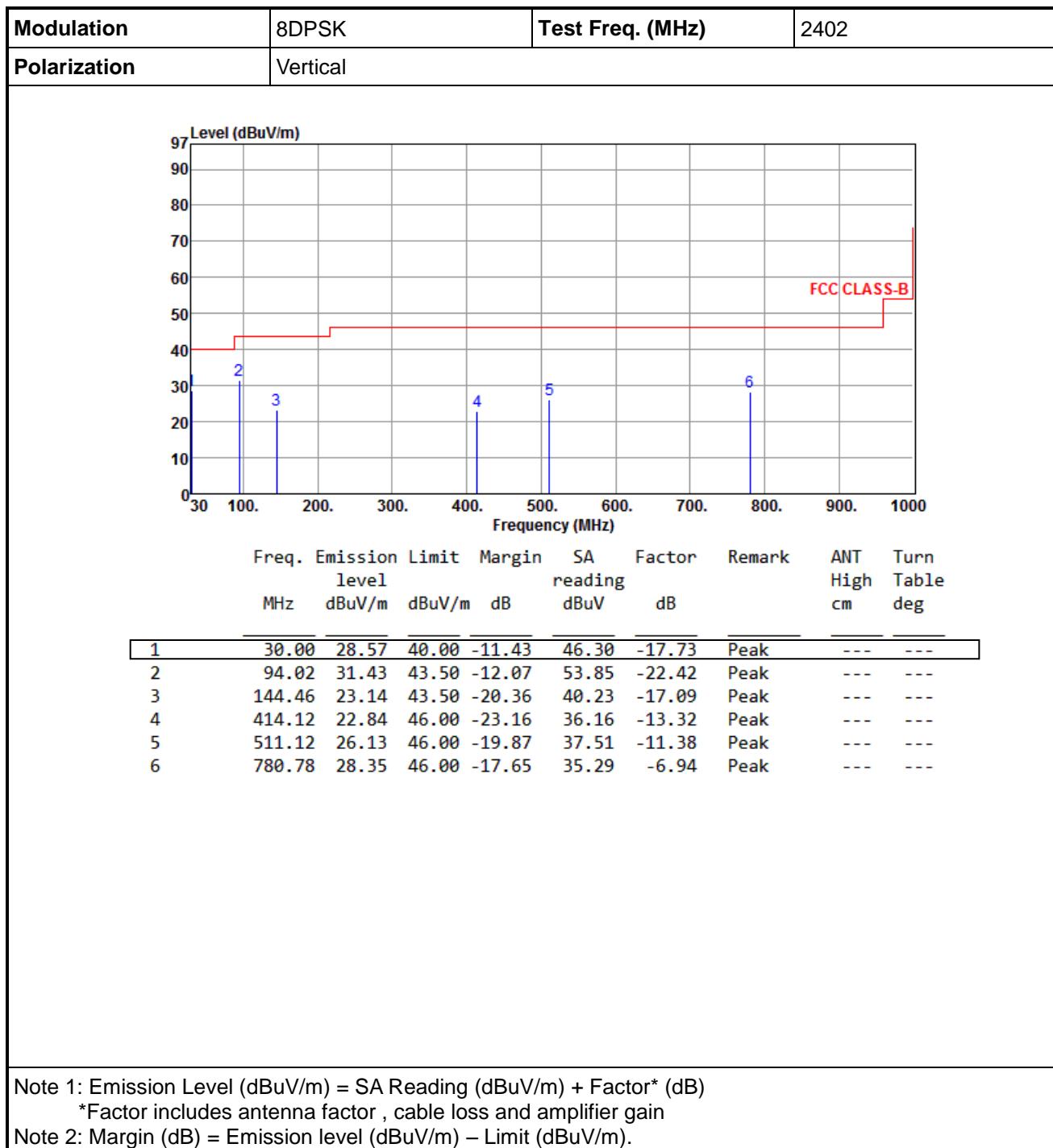
$$20\log(\text{Duty cycle}) = 20\log \frac{1\text{s} / 1600 * 5}{100\text{ ms}} = -30.1\text{dB}$$

4. Radiated emission above 1GHz / Average value for other emissions
RBW=1MHz, VBW=1/T and Peak detector

3.2.3 Test Setup

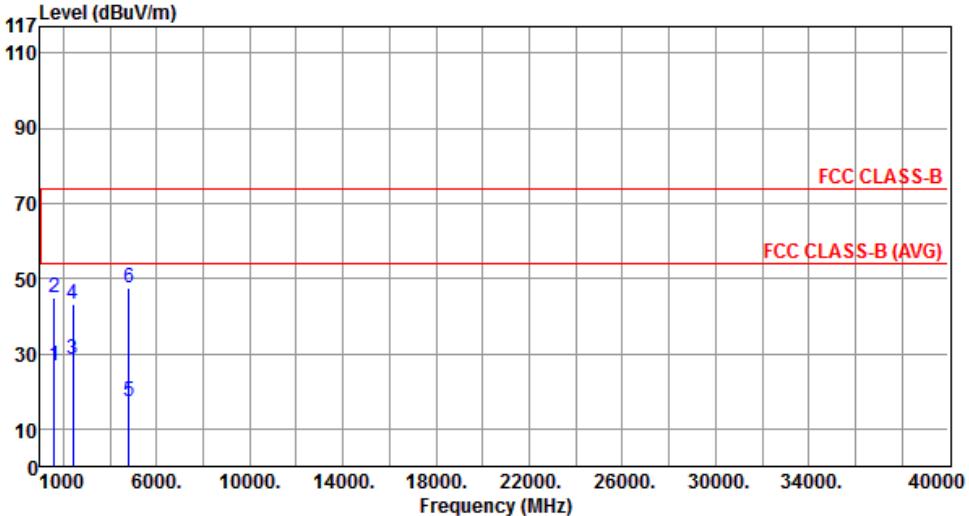
3.2.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Modulation	8DPSK	Test Freq. (MHz)	2402																																																																						
Polarization	Horizontal																																																																								
<table><thead><tr><th>Freq.</th><th>Emission Limit</th><th>Margin</th><th>SA</th><th>Factor</th><th>Remark</th><th>ANT</th><th>Turn</th></tr><tr><th>MHz</th><th>level</th><th>level</th><th>reading</th><th>reading</th><th></th><th>High</th><th>Table</th></tr></thead><tbody><tr><td>1</td><td>143.49</td><td>21.92</td><td>43.50</td><td>-21.58</td><td>39.03</td><td>-17.11</td><td>Peak</td><td>---</td></tr><tr><td>2</td><td>165.80</td><td>22.26</td><td>43.50</td><td>-21.24</td><td>39.28</td><td>-17.02</td><td>Peak</td><td>---</td></tr><tr><td>3</td><td>243.40</td><td>21.13</td><td>46.00</td><td>-24.87</td><td>39.16</td><td>-18.03</td><td>Peak</td><td>---</td></tr><tr><td>4</td><td>511.12</td><td>21.40</td><td>46.00</td><td>-24.60</td><td>32.78</td><td>-11.38</td><td>Peak</td><td>---</td></tr><tr><td>5</td><td>752.65</td><td>25.36</td><td>46.00</td><td>-20.64</td><td>32.54</td><td>-7.18</td><td>Peak</td><td>---</td></tr><tr><td>6</td><td>780.78</td><td>30.80</td><td>46.00</td><td>-15.20</td><td>37.74</td><td>-6.94</td><td>Peak</td><td>---</td></tr></tbody></table>				Freq.	Emission Limit	Margin	SA	Factor	Remark	ANT	Turn	MHz	level	level	reading	reading		High	Table	1	143.49	21.92	43.50	-21.58	39.03	-17.11	Peak	---	2	165.80	22.26	43.50	-21.24	39.28	-17.02	Peak	---	3	243.40	21.13	46.00	-24.87	39.16	-18.03	Peak	---	4	511.12	21.40	46.00	-24.60	32.78	-11.38	Peak	---	5	752.65	25.36	46.00	-20.64	32.54	-7.18	Peak	---	6	780.78	30.80	46.00	-15.20	37.74	-6.94	Peak	---
Freq.	Emission Limit	Margin	SA	Factor	Remark	ANT	Turn																																																																		
MHz	level	level	reading	reading		High	Table																																																																		
1	143.49	21.92	43.50	-21.58	39.03	-17.11	Peak	---																																																																	
2	165.80	22.26	43.50	-21.24	39.28	-17.02	Peak	---																																																																	
3	243.40	21.13	46.00	-24.87	39.16	-18.03	Peak	---																																																																	
4	511.12	21.40	46.00	-24.60	32.78	-11.38	Peak	---																																																																	
5	752.65	25.36	46.00	-20.64	32.54	-7.18	Peak	---																																																																	
6	780.78	30.80	46.00	-15.20	37.74	-6.94	Peak	---																																																																	
<p>Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).</p>																																																																									



International Certification Corp.

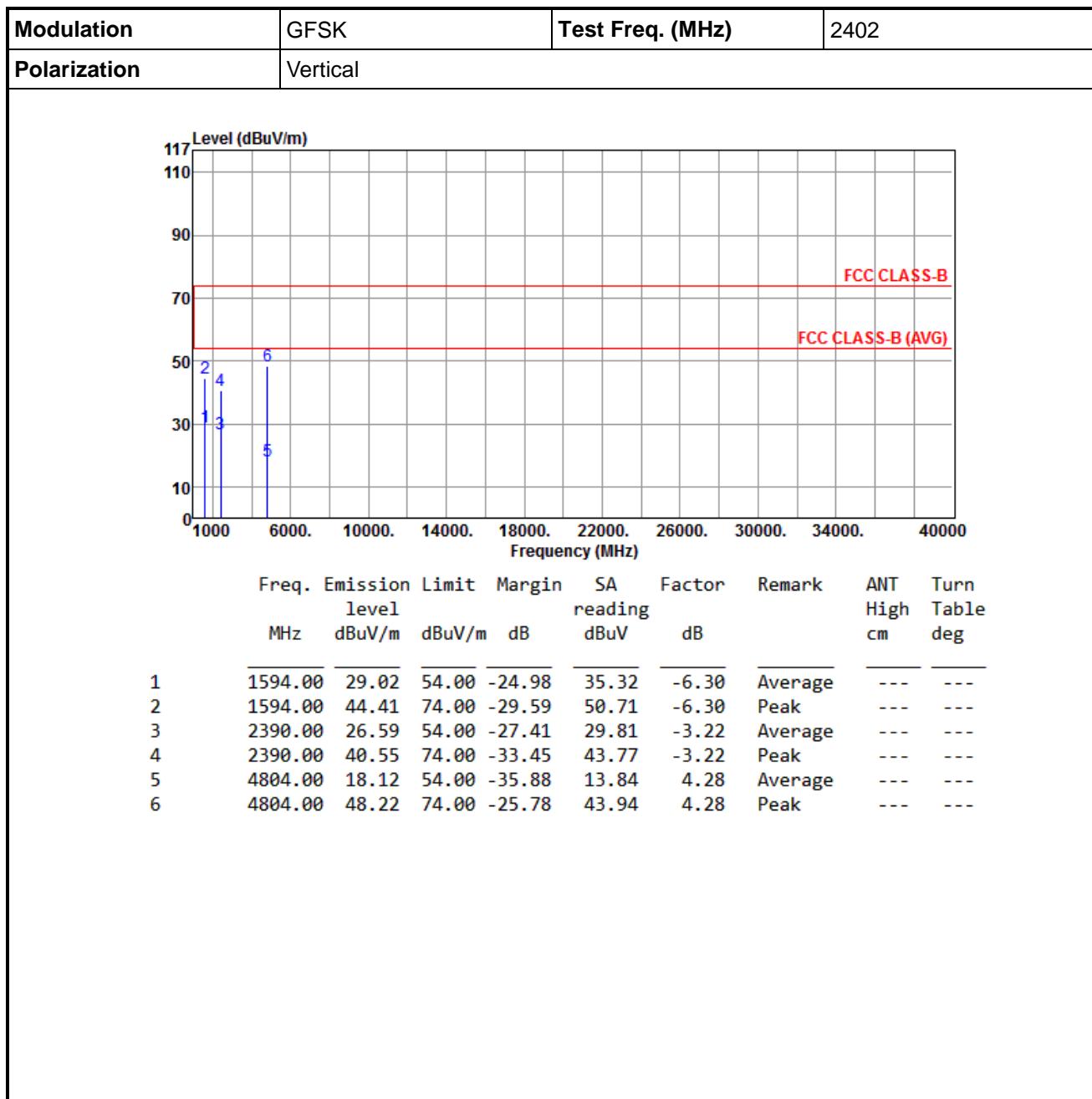
No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.


Tel: 886-3-271-8666

Fax: 886-3-318-0155

3.2.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK

Modulation	GFSK	Test Freq. (MHz)	2402																																																																																
Polarization	Horizontal																																																																																		
<table><thead><tr><th></th><th>Freq.</th><th>Emission level</th><th>Limit</th><th>Margin</th><th>SA reading</th><th>Factor</th><th>Remark</th><th>ANT High</th><th>Turn Table</th></tr><tr><th></th><th>MHz</th><th>dBuV/m</th><th>dBuV/m</th><th>dB</th><th>dBuV</th><th>dB</th><th></th><th>cm</th><th>deg</th></tr></thead><tbody><tr><td>1</td><td>1594.00</td><td>26.97</td><td>54.00</td><td>-27.03</td><td>33.27</td><td>-6.30</td><td>Average</td><td>---</td><td>---</td></tr><tr><td>2</td><td>1594.00</td><td>45.04</td><td>74.00</td><td>-28.96</td><td>51.34</td><td>-6.30</td><td>Peak</td><td>---</td><td>---</td></tr><tr><td>3</td><td>2390.00</td><td>28.64</td><td>54.00</td><td>-25.36</td><td>31.86</td><td>-3.22</td><td>Average</td><td>---</td><td>---</td></tr><tr><td>4</td><td>2390.00</td><td>43.07</td><td>74.00</td><td>-30.93</td><td>46.29</td><td>-3.22</td><td>Peak</td><td>---</td><td>---</td></tr><tr><td>5</td><td>4804.00</td><td>17.36</td><td>54.00</td><td>-36.64</td><td>13.08</td><td>4.28</td><td>Average</td><td>---</td><td>---</td></tr><tr><td>6</td><td>4804.00</td><td>47.46</td><td>74.00</td><td>-26.54</td><td>43.18</td><td>4.28</td><td>Peak</td><td>---</td><td>---</td></tr></tbody></table>					Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg	1	1594.00	26.97	54.00	-27.03	33.27	-6.30	Average	---	---	2	1594.00	45.04	74.00	-28.96	51.34	-6.30	Peak	---	---	3	2390.00	28.64	54.00	-25.36	31.86	-3.22	Average	---	---	4	2390.00	43.07	74.00	-30.93	46.29	-3.22	Peak	---	---	5	4804.00	17.36	54.00	-36.64	13.08	4.28	Average	---	---	6	4804.00	47.46	74.00	-26.54	43.18	4.28	Peak	---	---
	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table																																																																										
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg																																																																										
1	1594.00	26.97	54.00	-27.03	33.27	-6.30	Average	---	---																																																																										
2	1594.00	45.04	74.00	-28.96	51.34	-6.30	Peak	---	---																																																																										
3	2390.00	28.64	54.00	-25.36	31.86	-3.22	Average	---	---																																																																										
4	2390.00	43.07	74.00	-30.93	46.29	-3.22	Peak	---	---																																																																										
5	4804.00	17.36	54.00	-36.64	13.08	4.28	Average	---	---																																																																										
6	4804.00	47.46	74.00	-26.54	43.18	4.28	Peak	---	---																																																																										
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.																																																																																			
Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.																																																																																			
Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.																																																																																			



International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

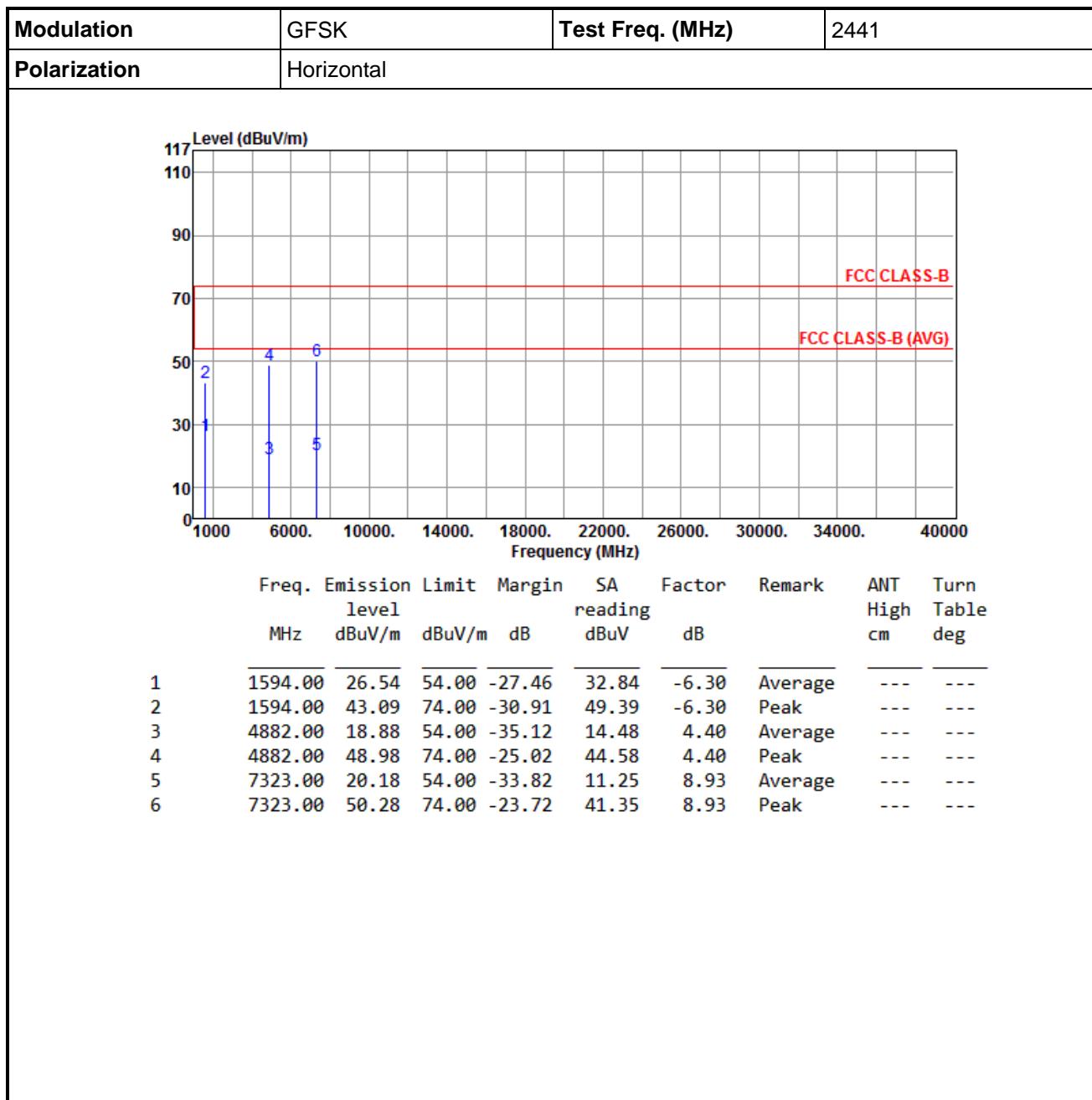
Tel: 886-3-271-8666

Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.



International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

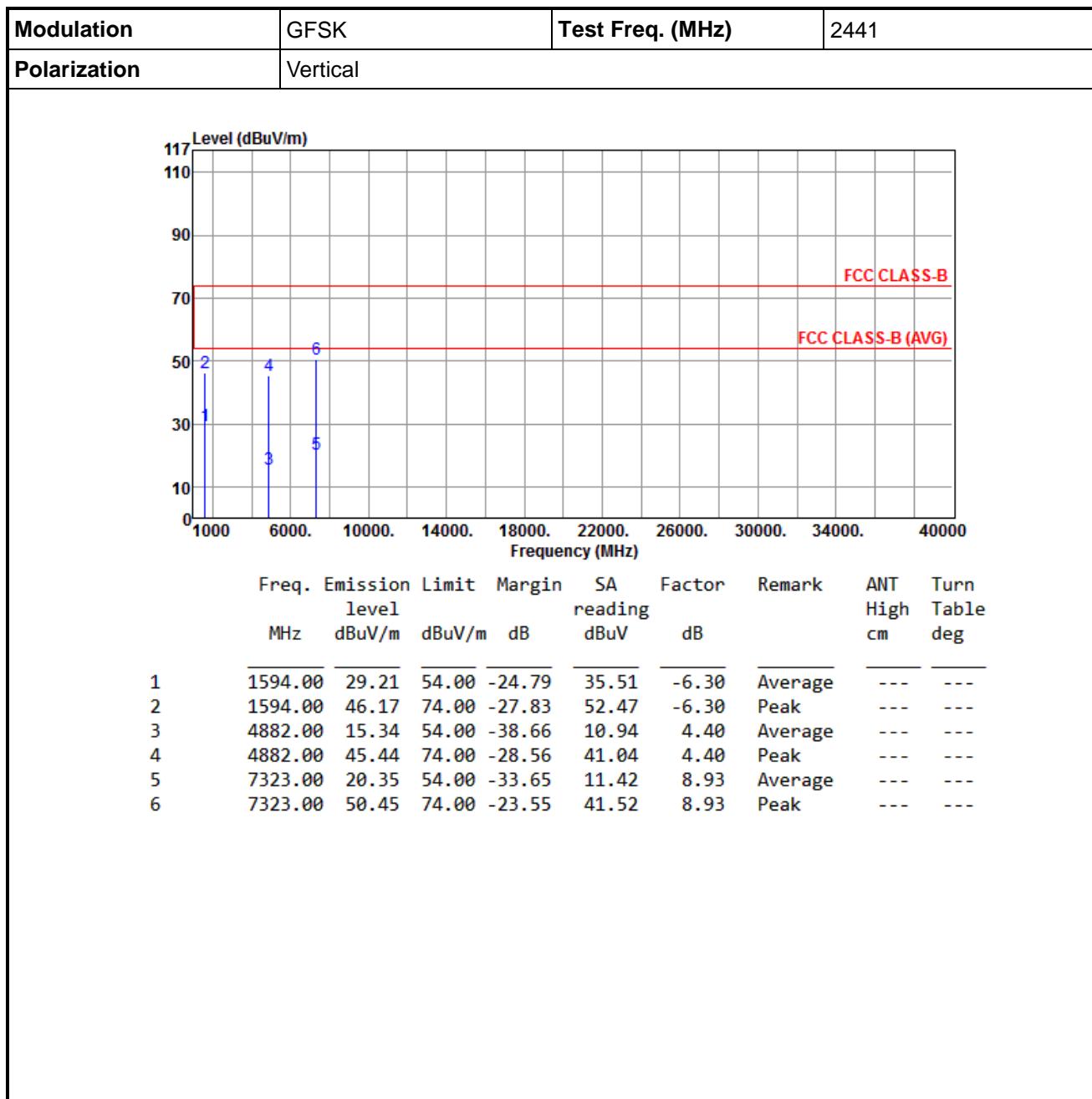
Tel: 886-3-271-8666

Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.



International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666

Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

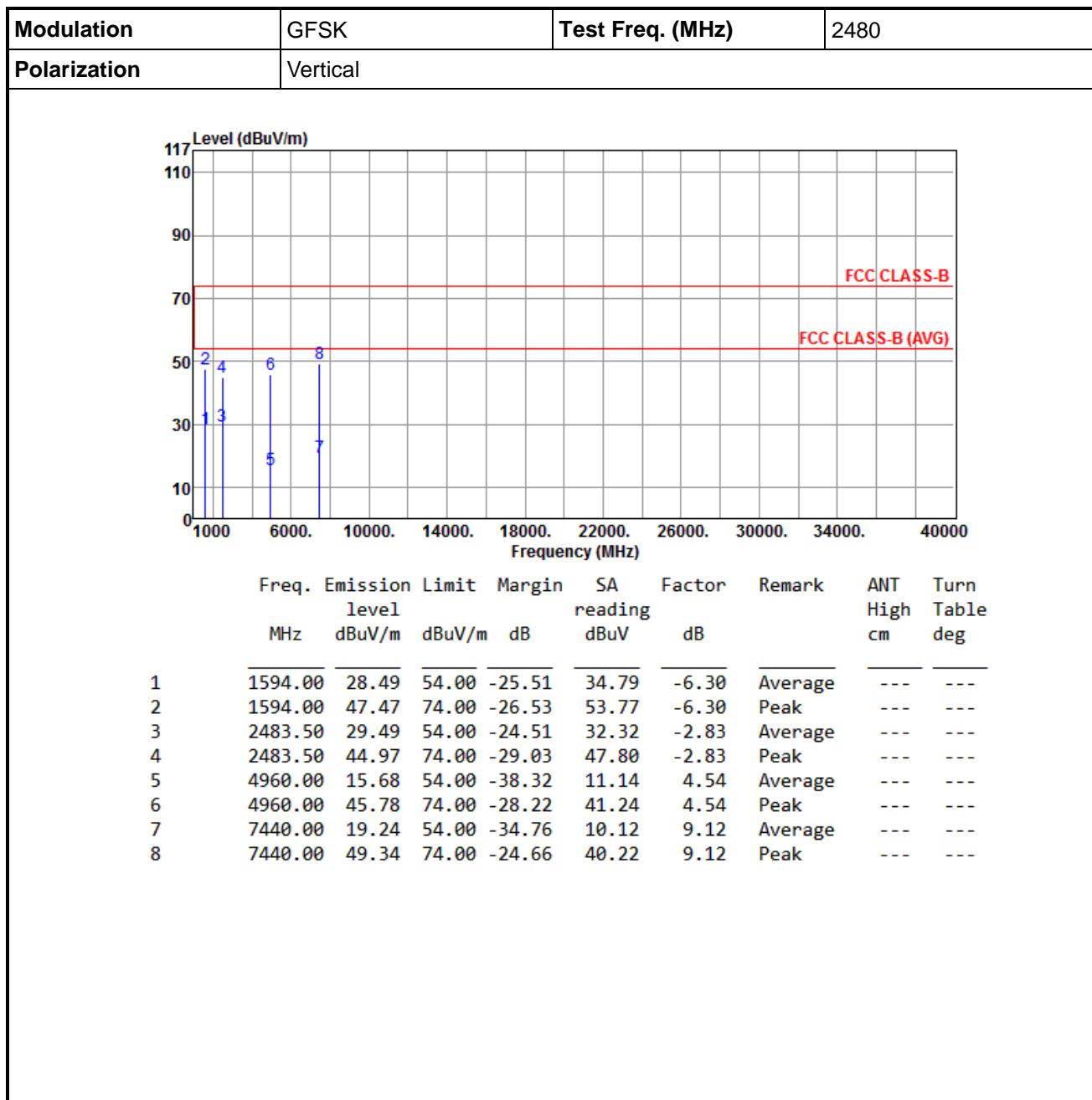
Tel: 886-3-271-8666

Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.



International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666

Fax: 886-3-318-0155

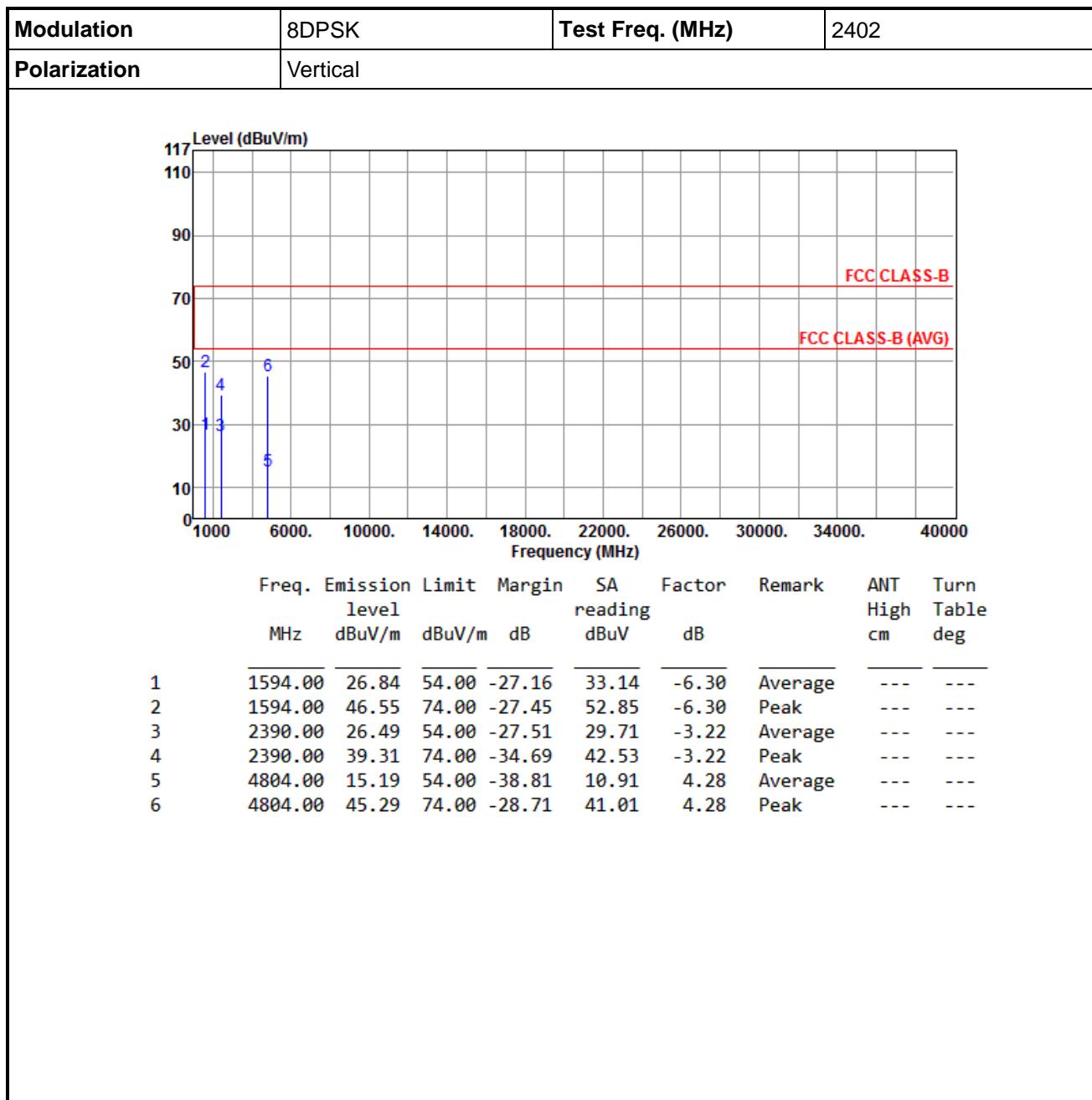
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

3.2.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 8DPSK

Modulation	8DPSK	Test Freq. (MHz)	2402																																																																								
Polarization	Horizontal																																																																										
<table><thead><tr><th>Freq.</th><th>Emission level</th><th>Limit</th><th>Margin</th><th>SA reading</th><th>Factor</th><th>Remark</th><th>ANT High</th><th>Turn Table</th></tr><tr><th>MHz</th><th>dBuV/m</th><th>dBuV/m</th><th>dB</th><th>dBuV</th><th>dB</th><th></th><th>cm</th><th>deg</th></tr></thead><tbody><tr><td>1</td><td>1594.00</td><td>24.94</td><td>54.00</td><td>-29.06</td><td>31.24</td><td>-6.30</td><td>Average</td><td>---</td></tr><tr><td>2</td><td>1594.00</td><td>42.17</td><td>74.00</td><td>-31.83</td><td>48.47</td><td>-6.30</td><td>Peak</td><td>---</td></tr><tr><td>3</td><td>2390.00</td><td>26.65</td><td>54.00</td><td>-27.35</td><td>29.87</td><td>-3.22</td><td>Average</td><td>---</td></tr><tr><td>4</td><td>2390.00</td><td>39.58</td><td>74.00</td><td>-34.42</td><td>42.80</td><td>-3.22</td><td>Peak</td><td>---</td></tr><tr><td>5</td><td>4804.00</td><td>15.32</td><td>54.00</td><td>-38.68</td><td>11.04</td><td>4.28</td><td>Average</td><td>---</td></tr><tr><td>6</td><td>4804.00</td><td>45.42</td><td>74.00</td><td>-28.58</td><td>41.14</td><td>4.28</td><td>Peak</td><td>---</td></tr></tbody></table>				Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg	1	1594.00	24.94	54.00	-29.06	31.24	-6.30	Average	---	2	1594.00	42.17	74.00	-31.83	48.47	-6.30	Peak	---	3	2390.00	26.65	54.00	-27.35	29.87	-3.22	Average	---	4	2390.00	39.58	74.00	-34.42	42.80	-3.22	Peak	---	5	4804.00	15.32	54.00	-38.68	11.04	4.28	Average	---	6	4804.00	45.42	74.00	-28.58	41.14	4.28	Peak	---
Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table																																																																			
MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg																																																																			
1	1594.00	24.94	54.00	-29.06	31.24	-6.30	Average	---																																																																			
2	1594.00	42.17	74.00	-31.83	48.47	-6.30	Peak	---																																																																			
3	2390.00	26.65	54.00	-27.35	29.87	-3.22	Average	---																																																																			
4	2390.00	39.58	74.00	-34.42	42.80	-3.22	Peak	---																																																																			
5	4804.00	15.32	54.00	-38.68	11.04	4.28	Average	---																																																																			
6	4804.00	45.42	74.00	-28.58	41.14	4.28	Peak	---																																																																			
<p>Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.</p> <p>Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.</p> <p>Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.</p>																																																																											



International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

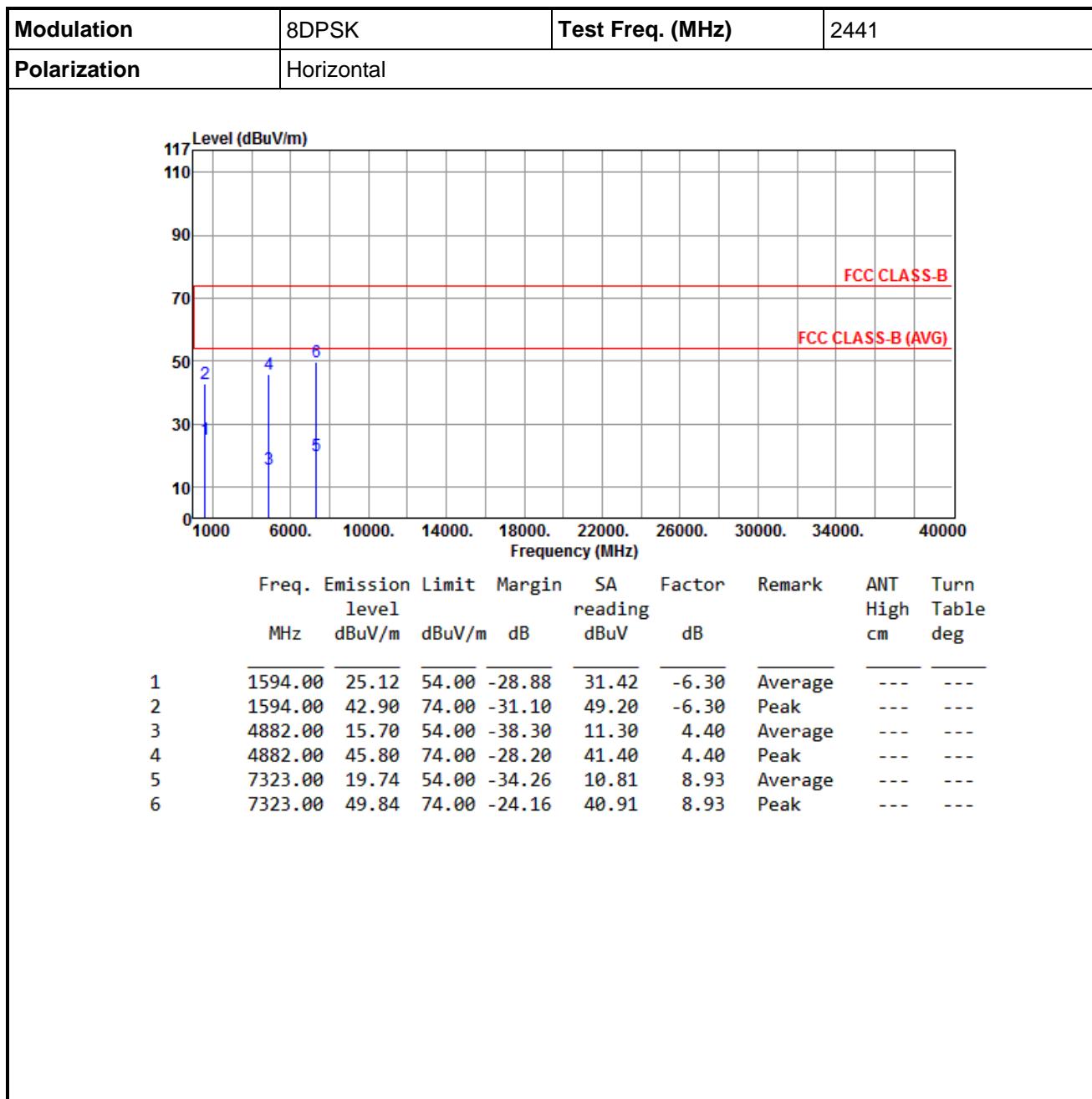
Tel: 886-3-271-8666

Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.



International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

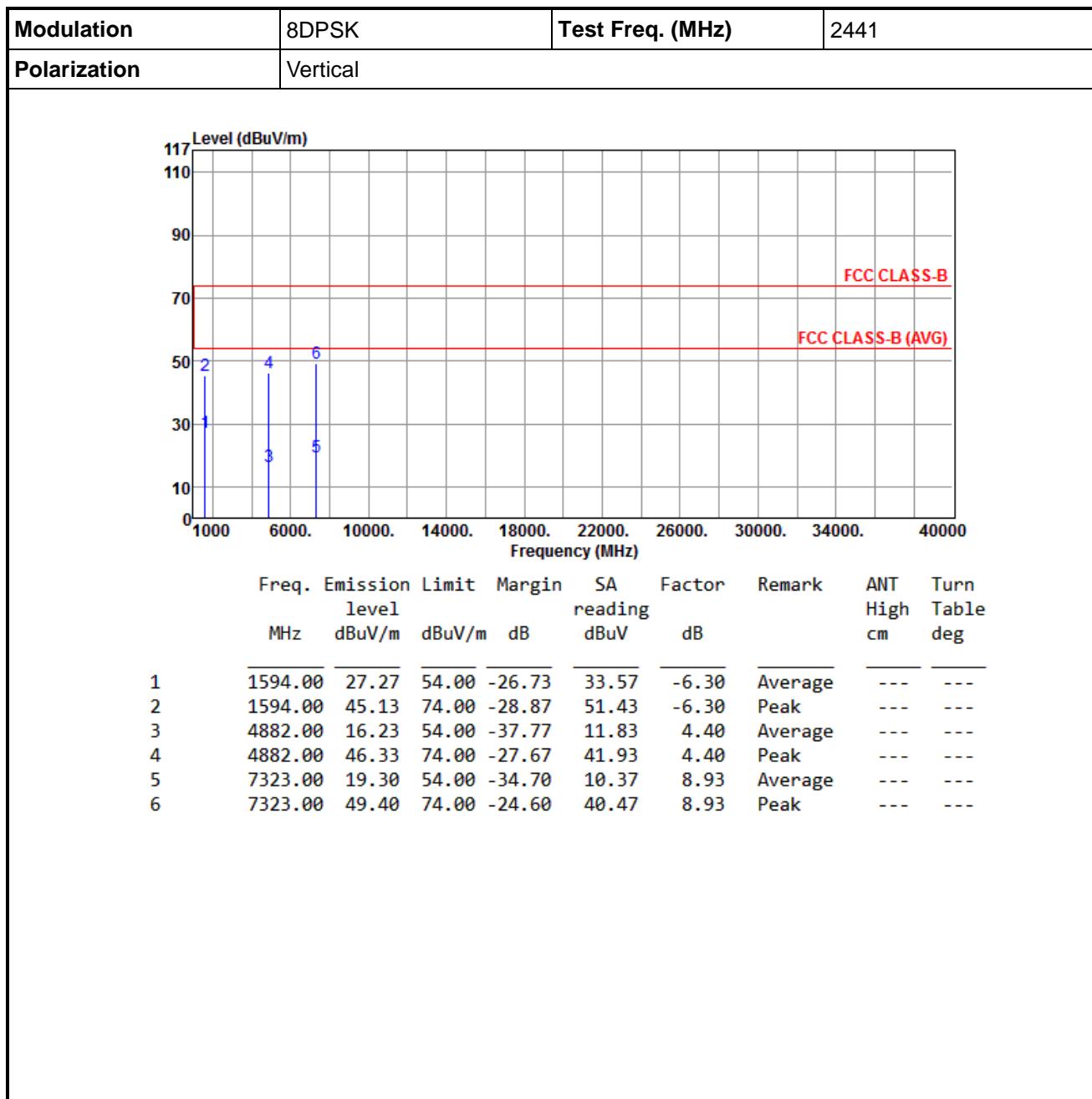
Tel: 886-3-271-8666

Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.



International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

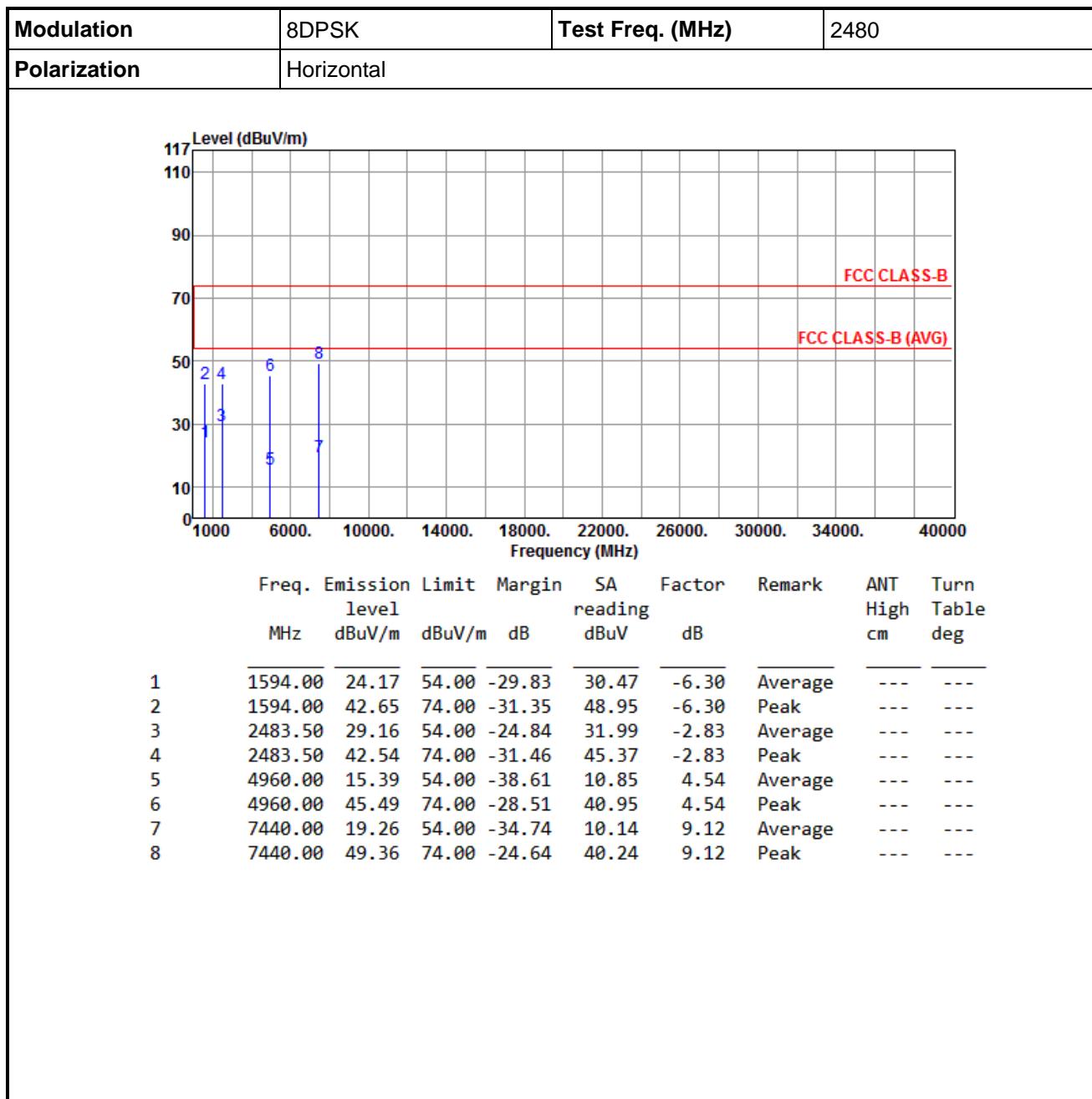
Tel: 886-3-271-8666

Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.



International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

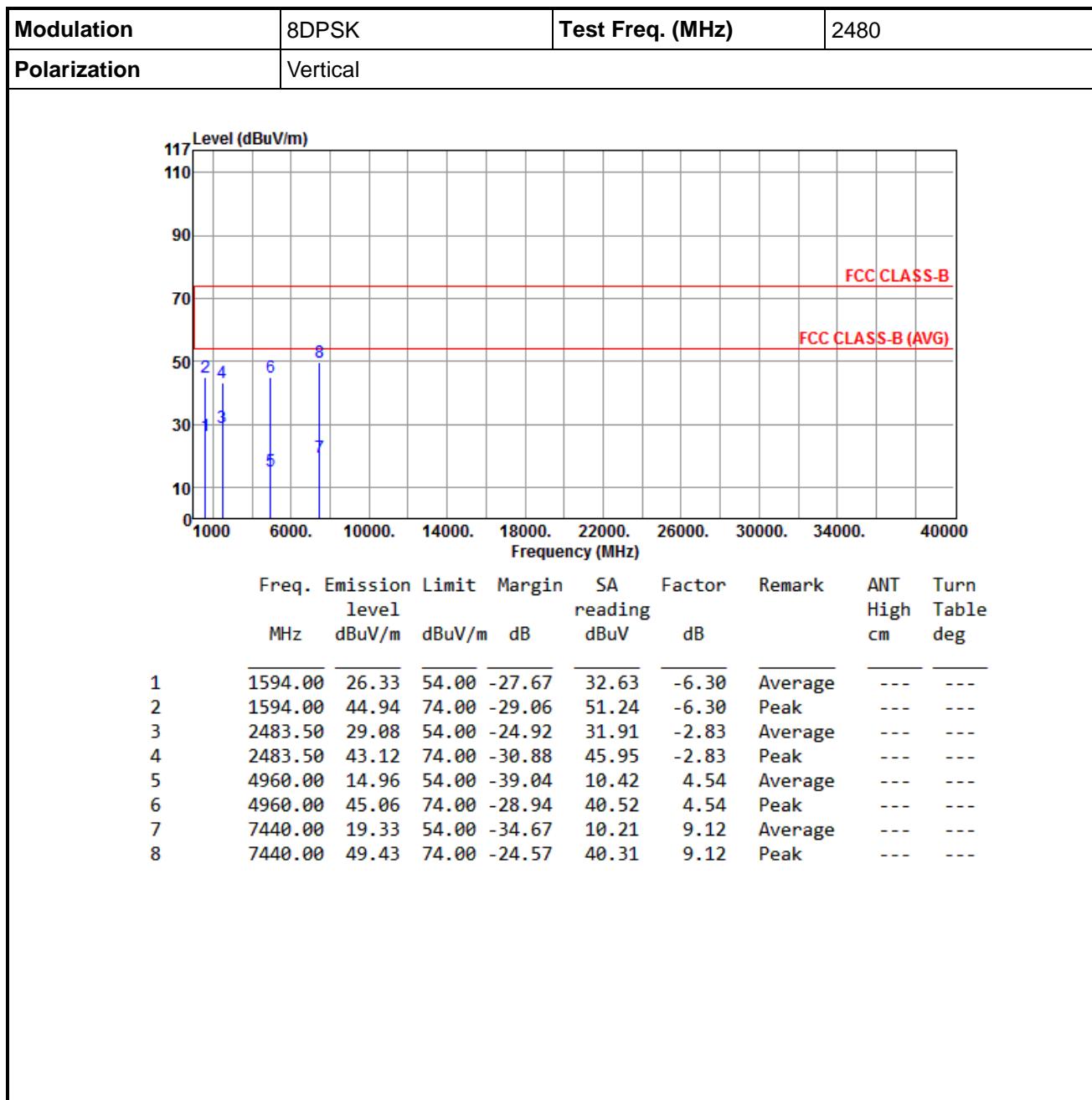
Tel: 886-3-271-8666

Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.



International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666

Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

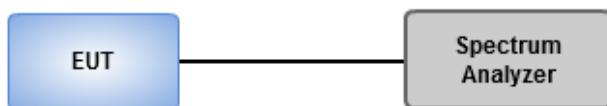
Note 3: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

3.3 Unwanted Emissions into Non-Restricted Frequency Bands

3.3.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

- The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.
- The peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

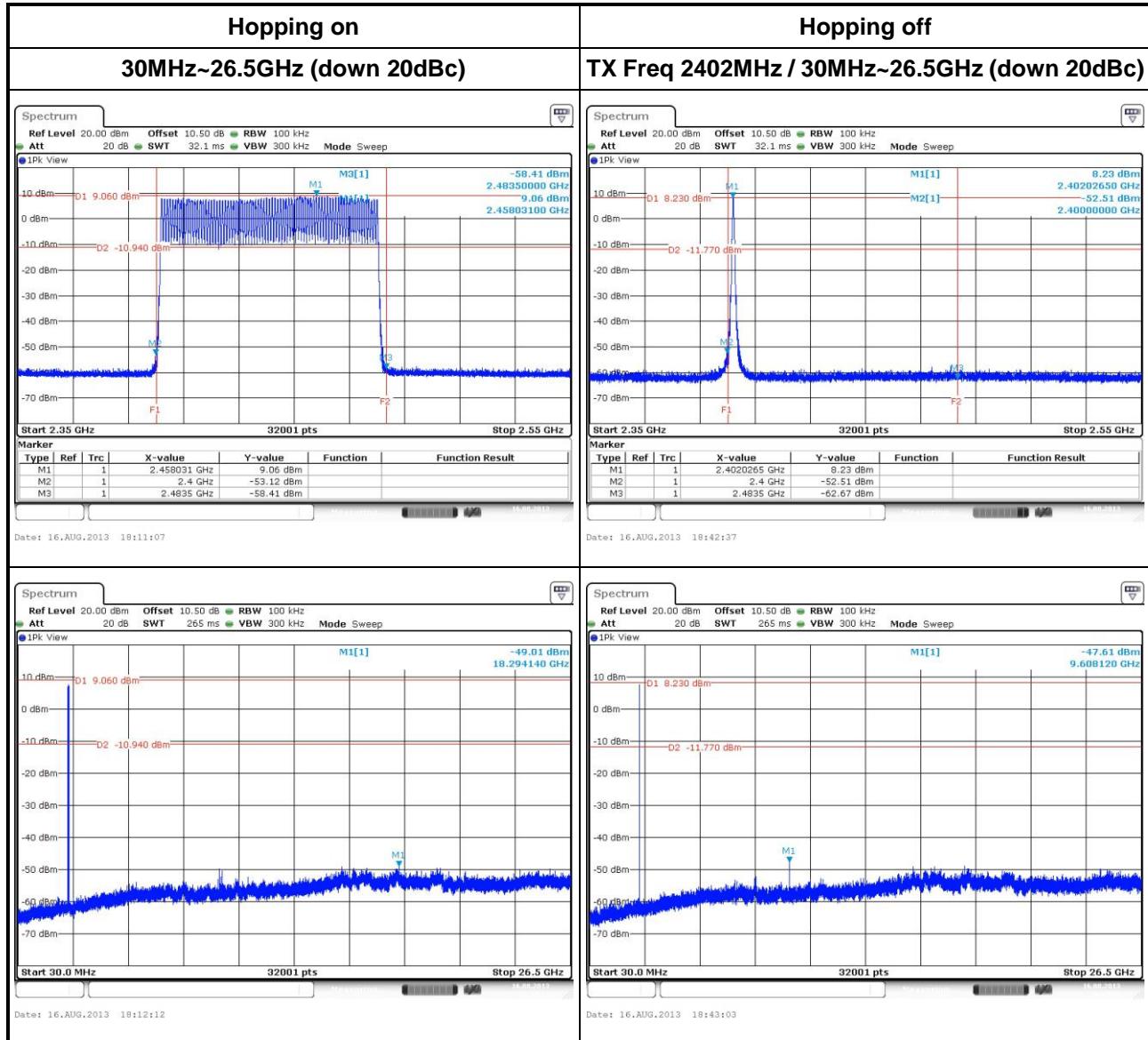
3.3.2 Test Procedures


Reference Level Measurement

1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
2. Set Sweep time = auto couple, Trace mode = max hold.
3. Allow trace to fully stabilize.
4. Use the peak marker function to determine the maximum amplitude level.

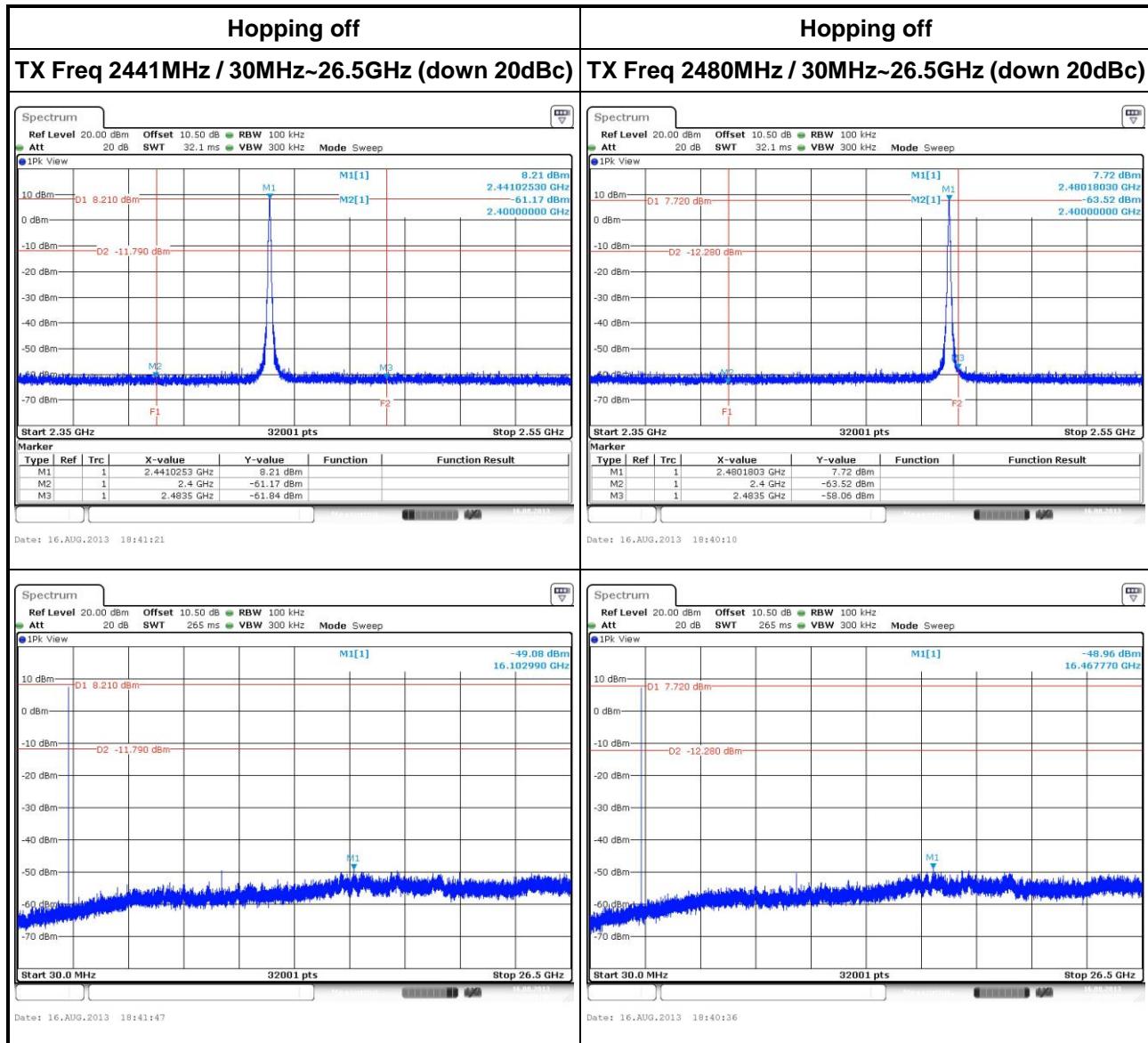
Unwanted Emissions Level Measurement

1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
2. Trace Mode = max hold, Sweep = auto couple.
3. Allow the trace to stabilize.
4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.


3.3.3 Test Setup

3.3.4 Unwanted Emissions into Non-Restricted Frequency Bands

GFSK

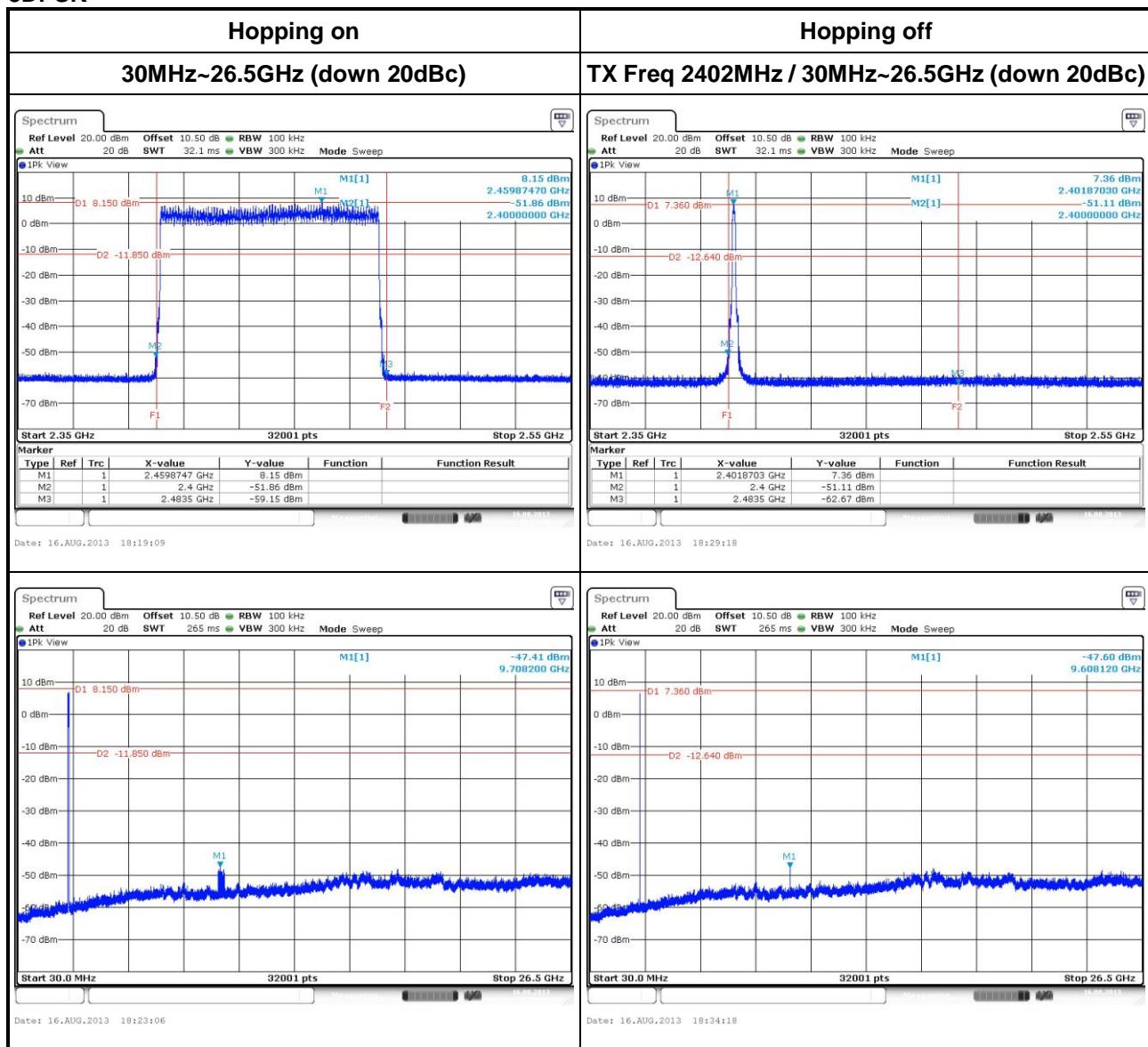


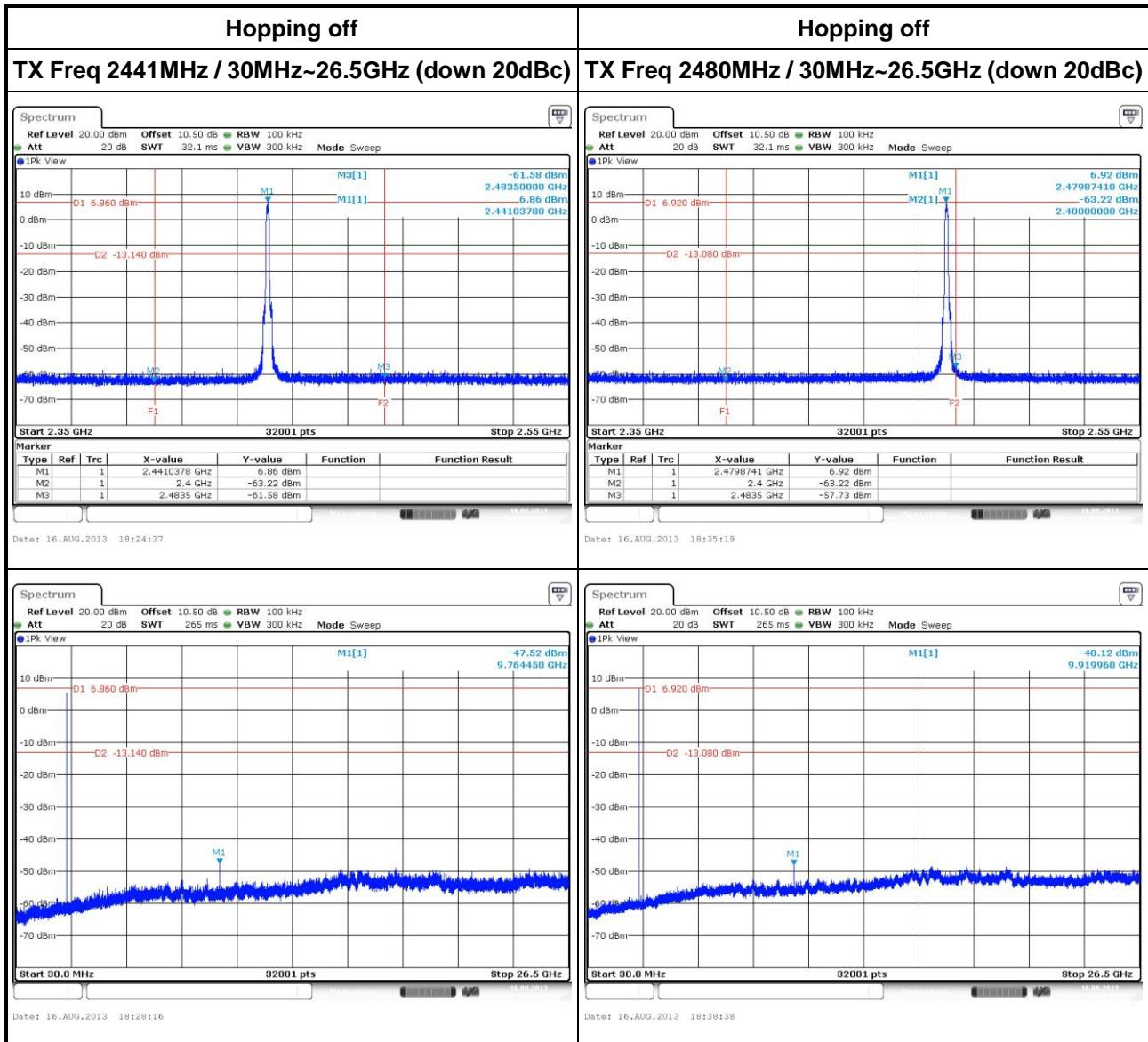
International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666

Fax: 886-3-318-0155


International Certification Corp.


No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666

Fax: 886-3-318-0155

8DPSK

3.4 Conducted Output Power

3.4.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

- 1 Watt
For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band.
- 0.125 Watt
For all other frequency hopping systems in the 2400–2483.5 MHz band.
- 0.125 Watt
For Frequency hopping systems operating in the 2400–2483.5 MHz band have hopping channel carrier frequencies that are separated by two-thirds of the 20 dB bandwidth of the hopping channel.

3.4.2 Test Procedures

1. A wideband power meter is used for power measurement. Bandwidth of power sensor and meter is 50MHz
2. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.4.3 Test Setup

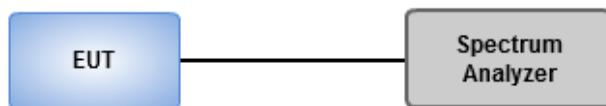
3.4.4 Test Result of Conducted Output Power

Modulation Mode	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Limit (mW)
GFSK	2402	6.37	8.04	125
GFSK	2441	6.30	7.99	125
GFSK	2480	5.90	7.71	125
8DPSK	2402	7.96	9.01	125
8DPSK	2441	7.93	8.99	125
8DPSK	2480	7.26	8.61	125

Modulation Mode	Freq. (MHz)	AV Output Power (mW)	AV Output Power (dBm)
GFSK	2402	6.01	7.79
GFSK	2441	5.97	7.76
GFSK	2480	5.57	7.46
8DPSK	2402	4.80	6.81
8DPSK	2441	4.78	6.79
8DPSK	2480	4.42	6.45

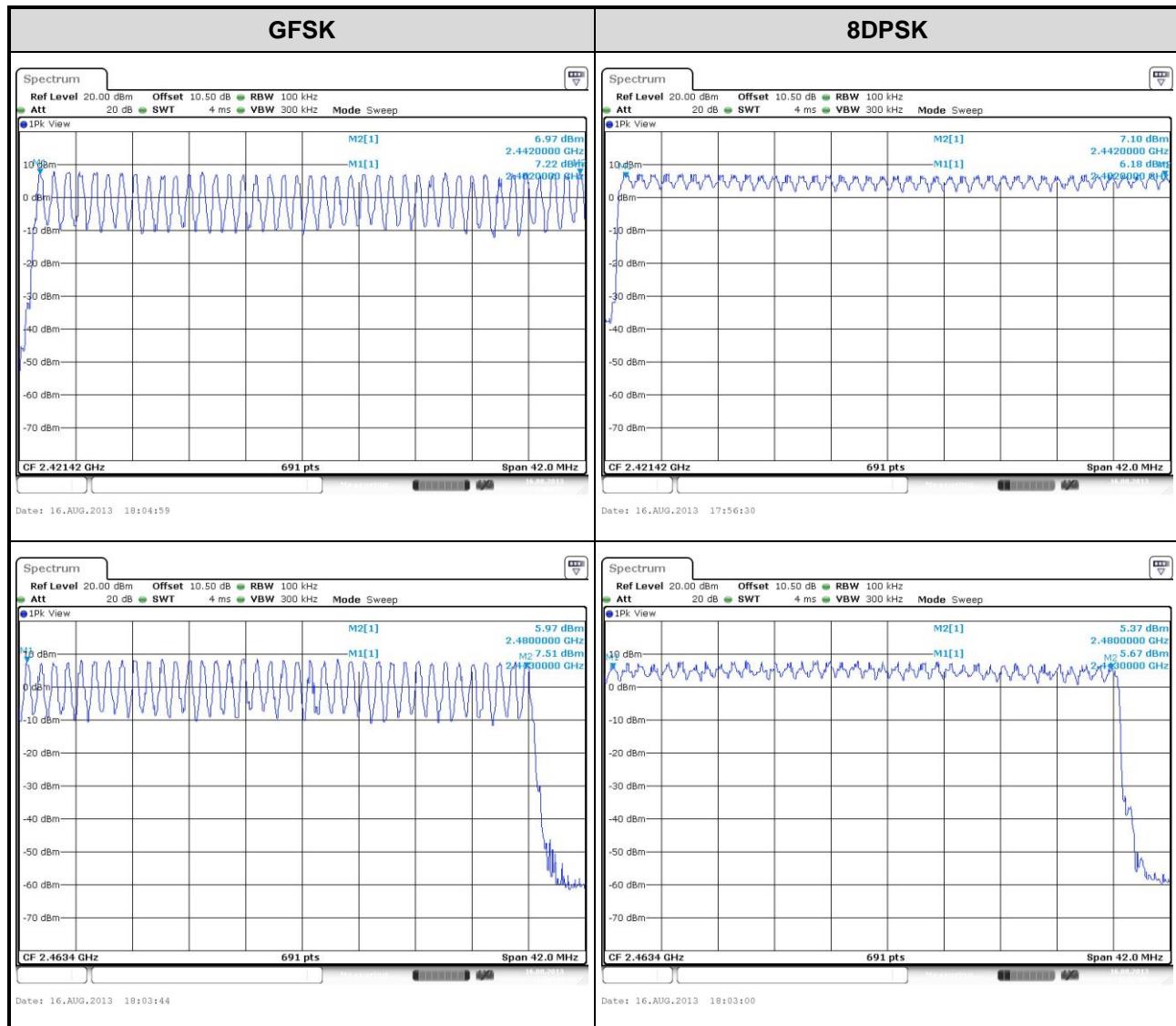
Note: Average power is for reference only

3.5 Number of Hopping Frequency


3.5.1 Limit of Number of Hopping Frequency

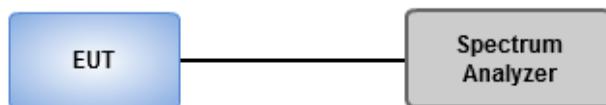
Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

3.5.2 Test Procedures


1. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Peak Trace max hold.
2. Allow trace to stabilize.

3.5.3 Test Setup

3.5.4 Test Result of Number of Hopping Frequency



3.6 20dB and Occupied Bandwidth

3.6.1 Test Procedures

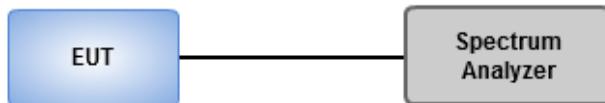
1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Peak Trace max hold
2. Allow trace to stabilize
3. Use N dB function of spectrum analyzer to measuring 20 dB bandwidth
4. Use Occupied bandwidth function of spectrum analyzer to measuring 99% occupied bandwidth

3.6.2 Test Setup

3.6.3 Test result of 20dB and Occupied Bandwidth

Modulation Mode	Freq. (MHz)	20dB Bandwidth (MHz)	Occupied Bandwidth (MHz)
GFSK	2402	1.061	0.938
GFSK	2441	1.048	0.933
GFSK	2480	1.078	0.933
8DPSK	2402	1.291	1.177
8DPSK	2441	1.309	1.177
8DPSK	2480	1.309	1.181

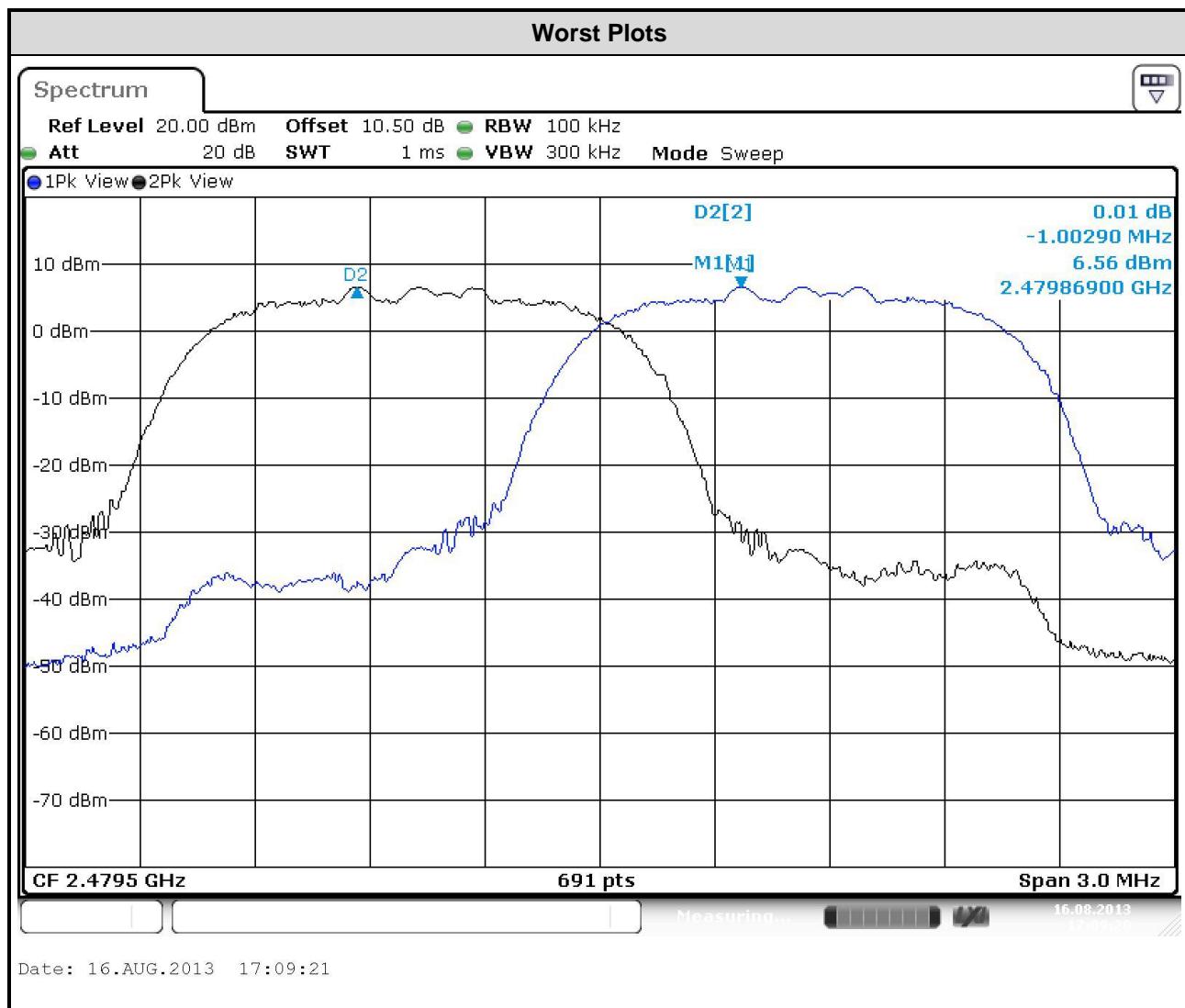
3.7 Channel Separation


3.7.1 Limit of Channel Separation

- Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.
- Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.7.2 Test Procedures

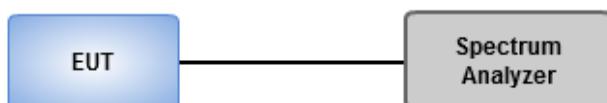
1. Set RBW=100kHz, VBW=300kHz, Sweep time = Auto, Detector=Peak Trace max hold
2. Allow trace to stabilize
3. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit


3.7.3 Test Setup

3.7.4 Test result of Channel Separation

Modulation Mode	Freq. (MHz)	Channel Separation (MHz)	20dB Bandwidth (MHz)	Minimum Limit (MHz)
GFSK	2402	1.003	1.061	0.707
GFSK	2441	1.003	1.048	0.699
GFSK	2480	1.003	1.078	0.719
8DPSK	2402	1.007	1.291	0.861
8DPSK	2441	1.003	1.309	0.873
8DPSK	2480	1.003	1.309	0.873

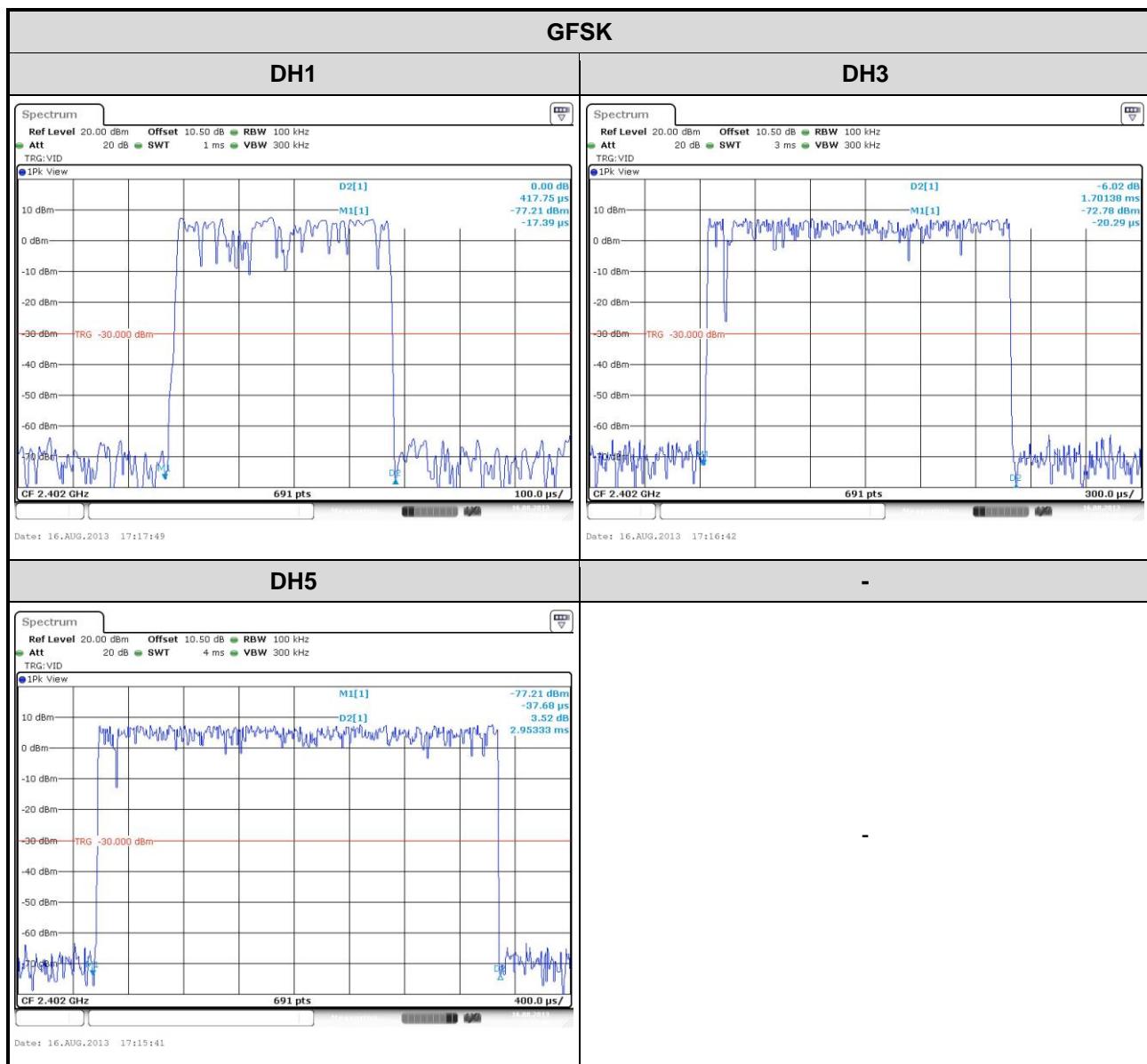
3.8 Number of Dwell Time


3.8.1 Limit of Dwell time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

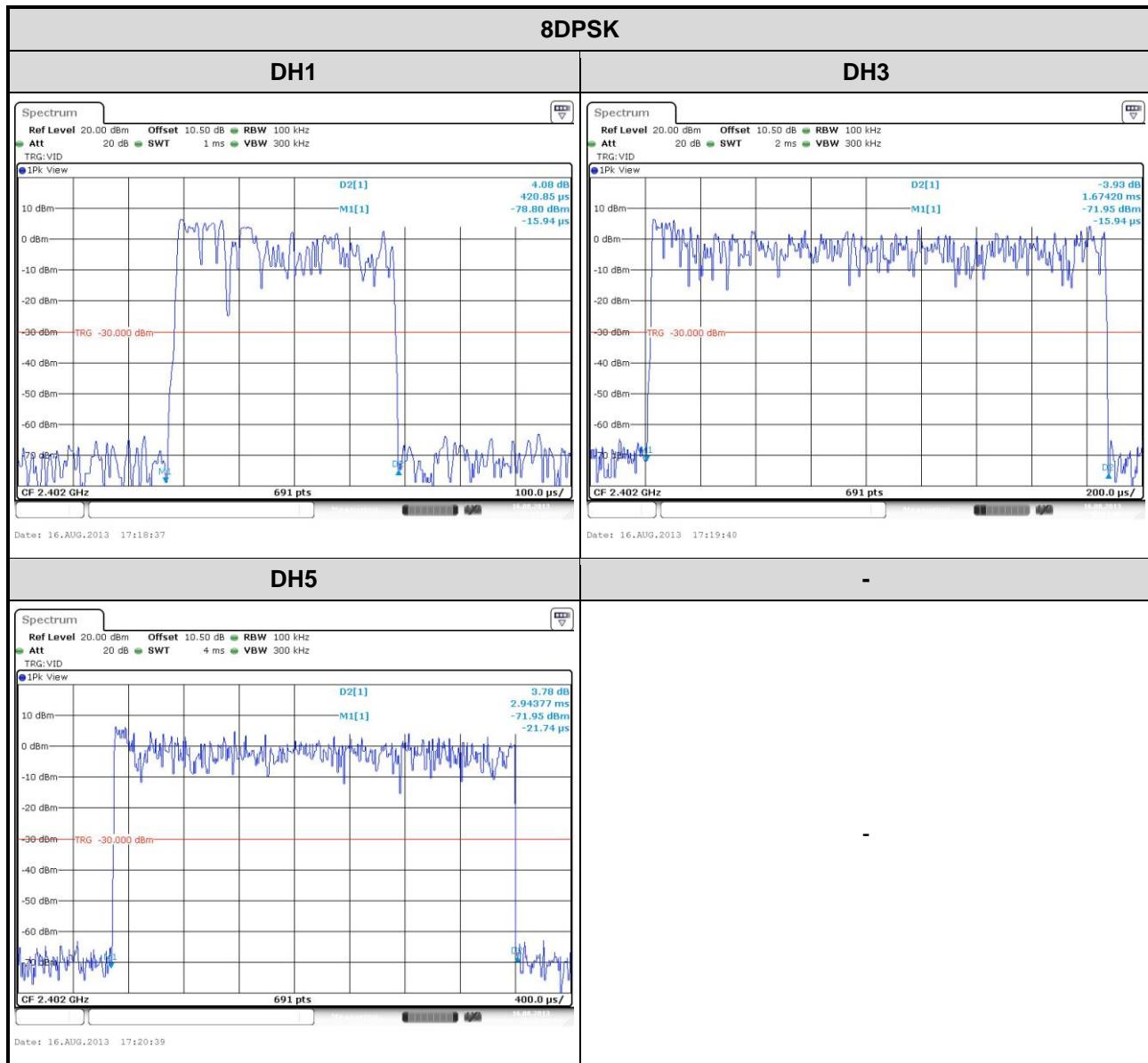
3.8.2 Test Procedures

1. Set RBW=100kHz, VBW=300kHz, Sweep time = 500us(DH1), 2ms(DH3), 4ms(DH5), Detector=Peak, Span=0Hz, Trace max hold
2. Enable gating and trigger function of spectrum analyzer to measure burst on time.
3. The DH1 packet can cover a single time slot. A maximum length packet has duration of 1 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 1/1600 seconds, or 0.625ms. DH1 Packet permit maximum $1600 / 79 / 2 = 10.12$ hops per second in each channel (1 time slot RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times $10.12 \times 31.6 = 320$ within 31.6 seconds.
4. The DH3 packet can cover up to 3 time slots. A maximum length packet has duration of 3 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 3/1600 seconds, or 1.875ms. DH3 Packet permit maximum $1600 / 79 / 4 = 5.06$ hops per second in each channel (3 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times $5.06 \times 31.6 = 160$ within 31.6 seconds.
5. The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle. A maximum length packet has duration of 5 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms. DH5 Packet permit maximum $1600 / 79 / 6 = 3.37$ hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times $3.37 \times 31.6 = 106.6$ within 31.6 seconds


3.8.3 Test Setup

3.8.4 Test Result of Dwell Time

Time of Occupancy (Dwell Time) Result					
Modulation Mode	Freq. (MHz)	Pulse Time per Hop (ms)	Number of Pulse in [0.4 x N sec]	Dwell Time in [0.4 x N sec] (s)	Dwell Time Limits (s)
GFSK-DH1	2402	0.41775	320	0.134	0.4
GFSK-DH3	2402	1.70138	160	0.272	0.4
GFSK-DH5	2402	2.95333	106.6	0.315	0.4
8DPSK-DH1	2402	0.42085	320	0.135	0.4
8DPSK-DH3	2402	1.67420	160	0.268	0.4
8DPSK-DH5	2402	2.94377	106.6	0.314	0.4



International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666

Fax: 886-3-318-0155

==END==