

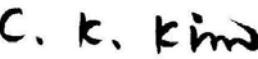
SAR TEST REPORT

Equipment Under Test	: 11b/g/n 1T1R WALN Mini Card
Model No.	: RT3090
Applicant	: Ralink Technology Corporation
Address of Applicant	: 5F., No.36. Taiyuan St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.
FCC ID	: VQF-RT3090-1T1R
IC ID	: 7542A-RT30901T1R
Device Category	: Portable Device
Exposure Category	: General Population/Uncontrolled Exposure
Date of Receipt	: 2009-08-28
Date of Test(s)	: 2009-09-09
Date of Issue	: 2009-10-09
Max. SAR	: 0.046 W/kg (11b)

Standards:

**FCC OET Bulletin 65 supplement C
IEEE 1528, 2003
ANSI/IEEE C95.1, C95.3**

In the configuration tested, the EUT complied with the standards specified above.


Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Testing Korea Co., Ltd. or testing done by SGS Testing Korea Co., Ltd. in connection with distribution or use of the product described in this report must be approved by SGS Testing Korea Co., Ltd. in writing.

Tested by	: Fred Jeong		2009-10-09
Approved by	: Charles Kim		2009-10-09

Contents

1. General Information

1.1	Testing Laboratory.....	3
1.2	Details of Applicant.....	3
1.3	Version of Report.....	3
1.4	Description of EUT(s).....	3
1.5	Description of Host.....	3
1.6	Test Environment.....	4
1.7	Operation description.....	4
1.8	Evaluation procedures.....	5
1.9	The SAR Measurement System.....	6
1.10	System Components.....	8
1.11	SAR System Verification.....	9
1.12	Tissue Simulant Fluid for the Frequency Band.....	11
1.13	Test Standards and Limits.....	12
2.	Instruments List.....	14
3.	Summary of Results.....	15

APPENDIX

- A. Photographs of EUT & EUT's Test Setup
- B. DASY4 SAR Report
- C. Uncertainty Analysis
- D. Calibration certificate

1. General Information

1.1 Testing Laboratory

SGS Testing Korea Co., Ltd.
Wireless Div. 2FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040
Telephone : +82 +31 428 5700
FAX : +82 +31 427 2371
Homepage : www.electrolab.kr.sgs.com

1.2 Details of Manufacturer

Manufacturer	: Ralink Technology Corporation
Address	: 5F., No.36. Taiyuan St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.
Contact Person	: Daniel Kang
Phone No.	: +886-3-5600868
Fax No.	: +886-3-5600818

1.3 Version of Report

Version Number	Date	Revision
00	2009-09-25	Initial issue
01	2009-10-09	Revision 1

1.4 Description of EUT(s)

EUT Type	: 11b/g/n 1T1R WALN Mini Card
Model	: RT3090
Serial Number	: N/A
Mode of Operation	: WLAN(11b/g/n (20 MHz)/n (40 MHz))
Duty Cycle	: 100%
Tx Frequency Range	: 2412 ~ 2462 MHz
Conducted Max Power(dBm)	: 20.17 (11b), 18.83 (11g), 19.36 (11n , 20MHz), 18.20 (11n , 40MHz)

1.5 Description of Host

EUT Type	: Notebook PC
Model	: LGX12
Serial Number	: DMST090825-YKM02
Power Supply	: AC 110 V(Battery : DC 10.8 V)
Body worn Accessory	: None

1.6 Test Environment

Ambient temperature	: 21 ~ 23 ° C
Tissue Simulating Liquid	: 21 ~ 23 ° C
Relative Humidity	: 40 ~ 60 %

1.7 Operation Configuration

The client provided a special driver and test program which can control the frequency and power of the module.. Measurements were performed at the lowest, middle and highest channels of the operating band. The EUT was set to maximum power level during all tests and at the beginning of each test the battery was fully charged.

The DASY4 system measures power drift during SAR testing by comparing e-field in the same location at the beginning and at the end of measurement. Based on the RF Power and antenna separation distance, stand-alone BT SAR and simultaneous SAR evaluation are not required.

1.8 EVALUATION PROCEDURES

- Power Reference Measurement Procedures

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 4 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 2.7 mm for an ET3DV6 probe type).

- The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

1. The extraction of the measured data (grid and values) from the Zoom Scan.
2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
3. The generation of a high-resolution mesh within the measured volume
4. The interpolation of all measured values from the measurement grid to the high-resolution grid
5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within -2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

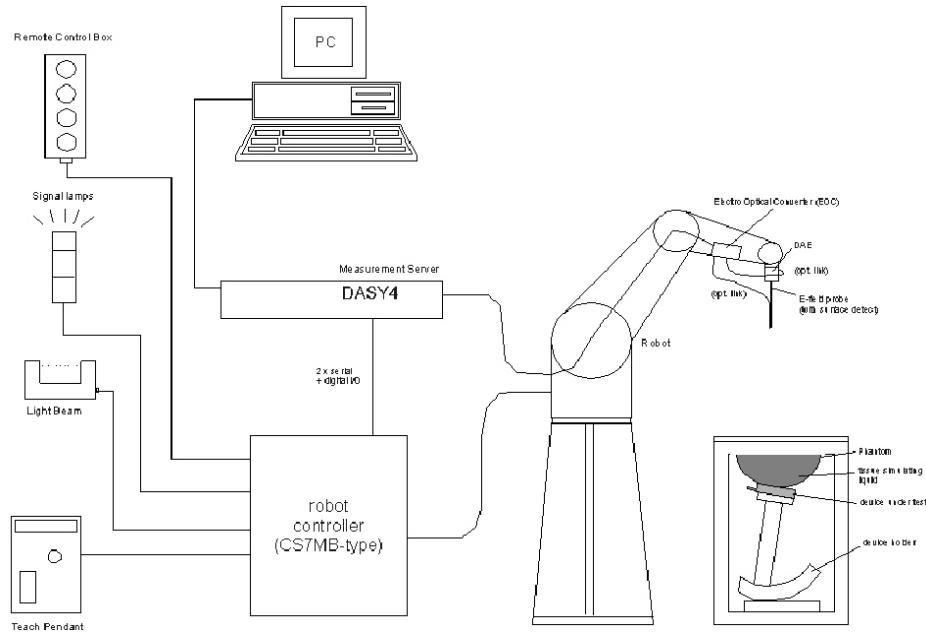
The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a

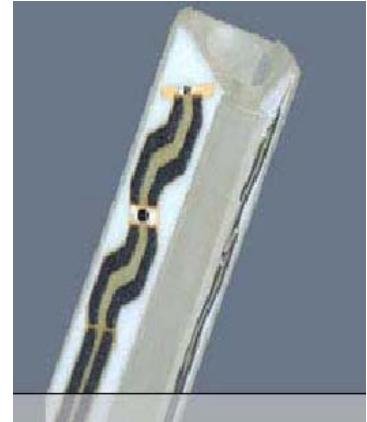
position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.9 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ET3DV6 1782 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation $SAR = \sigma (|E_i|^2) / \rho$ where σ and ρ are the conductivity and mass density of the tissue-simulant. The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimeter probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.




Fig a. The microwave circuit arrangement used for SAR system verification

- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing body usage.
- The device holder for flat phantom.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

1.10 System Components

ET3DV6 E-Field Probe

Construction	: Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g. glycol).
Calibration	: In air from 10 MHz to 2.5 GHz In brain simulating tissue (accuracy $\pm 8\%$)
Frequency	: 10 MHz to >6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)
Directivity	: ± 0.2 dB in brain tissue (rotation around probe axis) ± 0.4 dB in brain tissue (rotation normal to probe axis)
Dynamic Range	: 5 μ W/g to >100 mW/g; Linearity: ± 0.2 dB
Srfce. Detect	: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Dimensions	: Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application	: General dosimetry up to 3 GHz Compliance tests of mobile phone

ET3DV6 E-Field Probe

NOTE:

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.

SAM Phantom

Construction:

The SAM Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot

Shell Thickness:

2.0 ± 0.1 mm

Filling Volume:

Approx. 25 liters

SAM Phantom

DEVICE HOLDER

Construction

In combination with the Twin SAM PhantomV4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device Holder

1.11 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within $\pm 10\%$ from the target SAR values. These tests were done at 2450 MHz. The tests for EUT were conducted within 24 hours after each validation. The obtained results from the system accuracy verification are displayed in the table 1. During the tests, the ambient temperature of the laboratory was in the range 21~23 °C, the relative humidity was in the range 40~60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

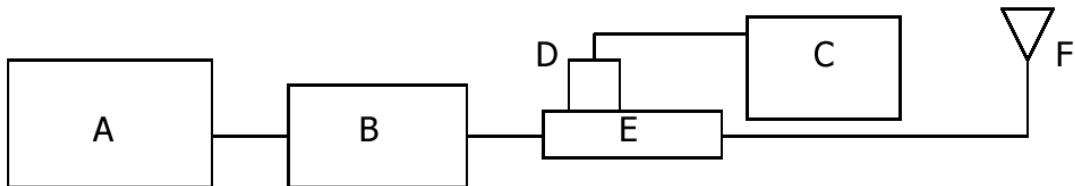


Fig b. The microwave circuit arrangement used for SAR system verification

- A. Agilent Model E4421B Signal Generator
- B. EMPOWER Model 2001-BBS3Q7ECK Amplifier
- C. Agilent Model E4419B Power Meter
- D. Agilent Model 9300H Power Sensor
- E. Agilent Model 777D/778D Dual directional coupling
- F. Reference dipole Antenna

Photo of the dipole Antenna

System Validation Results

Validation Kit	Tissue	Target SAR 1 g from Calibration Certificate (Input Power : 250 mW)	Measured SAR 1 g (Input Power : 250 mW)	Deviation (%)	Date	Liquid Temp. (°C)
D2450V2 S/N: 734	2450 MHz Brain	13.3 W/kg	13.3 W/kg	0.00	2009-09-09	22.2

Table 1. Results system validation

1.12 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this simulant fluid were measured by using the Agilent Model 85070D Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Agilent E5070B Network Analyzer(300 KHz-3000 MHz) by using a procedure detailed in Section V.

f (MHz)	Tissue type	Limits / Measured	Dielectric Parameters		
			Permittivity	Conductivity	Simulated Tissue Temp(°C)
2450	Head	Measured, 2009-09-09	38.5	1.80	22.2
		Recommended Limits	39.2	1.80	22.0
		Deviation(%)	-1.79	0.00	-
	Body	Measured, 2009-09-09	50.7	1.93	22.2
		Recommended Limits	52.7	1.95	22.0
		Deviation(%)	-3.80	-1.03	-

frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

(1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

(2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.(Table .4)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Partial Peak SAR (Partial)	1.60 m W/g	8.00 m W/g
Partial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Partial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table .4 RF exposure limits

2. Instruments List

Manufacturer	Device	Type	Serial Number	Due date of Calibration
Stäubli	Robot	RX90BL	F03/5W05A1/A/01	N/A
Schmid& Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1782	April 30, 2010
Schmid& Partner Engineering AG	2450 MHz System Validation Dipole	D2450V2	734	August 27, 2011
Schmid& Partner Engineering AG	Data acquisition Electronics	DAE4	614	August 20, 2010
Schmid& Partner Engineering AG	Software	DASY 4 V4.7	-	N/A
Schmid& Partner Engineering AG	Phantom	SAM Phantom V4.0	TP-1299 TP-1300	N/A
Agilent	Network Analyzer	E5070B	MY42100282	April 1, 2010
Agilent	Dielectric Probe Kit	85070D	2184	N/A
Agilent	Power Meter	E4419B	GB43311126	September 28, 2010
Agilent	Power Sensor	E9300H	MY41495308	September 29, 2010
			MY41495314	September 29, 2010
Agilent	Signal Generator	E4421B	MY43350132	September 29, 2010
Empower RF Systems	Power Amplifier	2001-BBS3Q7ECK	1032 D/C 0336	April 1, 2010
Agilent	Dual Directional Coupler	777D	50128	September 28, 2010
Microlab	LP Filter	LA-30N	N/A	September 29, 2010

3. Summary of Results

A. Conducted Power

1. Conducted Power Table.

- WLAN

Mode	Mbps	Average Power(dBm)		
		Low	Mid	High
11b	1	18.54	20.17	19.14
11g	6	17.21	18.83	18.57
11n (20 MHz)	6.5	19.35	19.36	19.08
11n (40 MHz)	13.5	17.28	18.20	17.89

2. Worst-case result was reported.

11 b mode :

The power was measured with all data rates and 1 Mbps data rate was selected as the worst case.

11g mode :

The power was measured with all data rates and 6 Mbps data rate was selected as the worst case.

11n mode (20 MHz):

The power was measured with all data rates and 6.5 Mbps data rate was selected as the worst case.

11n mode (40 MHz):

The power was measured with all data rates and 13.5 Mbps data rate was selected as the worst case.

3. The EUT Position is based on normal operating condition.

B. SAR Evaluation Consideration

KDB 447498 -SAR evaluation

- output \leq 60/f : SAR not required

- output $>$ 60/f : Stand-alone SAR required

Mode (f)	P (dBm)	P (mW)	Stand-alone SAR
802.11 b/g (2450)	20.17	103.99	Yes
Bluetooth	1.129	1.297	No

The composition of the brain tissue simulating liquid

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

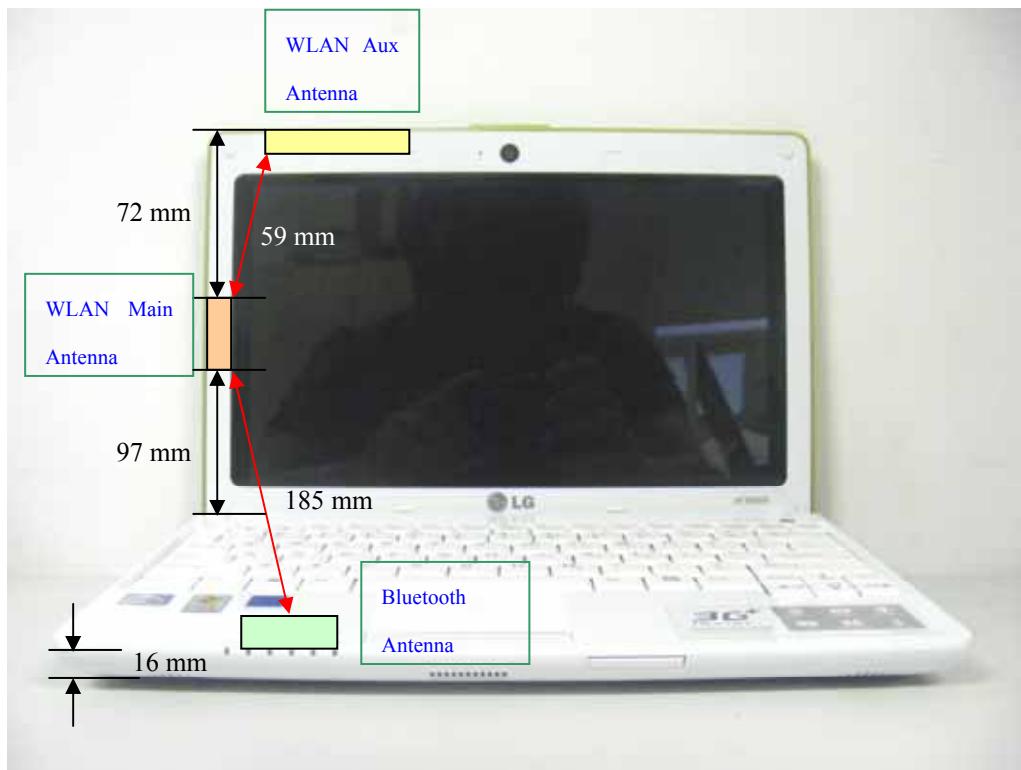
Ingredients (% by weight)	Frequency (MHz)									
	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99⁺% Pure Sodium Chloride

Sugar: 98⁺% Pure Sucrose

Water: De-ionized, 16 MΩ⁺ resistivity

HEC: Hydroxyethyl Cellulose


DGBE: 99⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

1.13 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (“SAR”) in Section 4.2 of “IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” ANSI/IEEE C95.3–2003, Copyright 2003 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in “Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields,” NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the

KDB 616217 RF Exposure Assessments

Bluetooth-to-User = 16 mm, WLAN Main-to-User = 97 mm,

Aux-to-WLAN Main = 59 mm, WLAN Main-to-Bluetooth = 185 mm

A. Individual SAR evaluation (Max)

- 802.11b at WLAN Main = 0.046 W/kg
- Individual SAR for Bluetooth is not required.

B. Individual output power

- Bluetooth output power = 1.297 mW
- WLAN output power = 103.99 mW

C. Antenna-to-antenna and Antenna-to-user ratio consideration

- n_x = WLAN = 3 • WLAN-to-user distance ratio = $(5+1/2 * n_x) = 6.5$ cm

D. Simultaneously SAR consideration

- Aux antenna-to-WLAN main antenna separation distance = 5.9 cm
- WLAN main-to-Bluetooth = 18.5 cm
- WLAN main-to-user = 9.7 cm

KDB 616217

** The closest antenna-to-antenna distance is > 5 cm, Bluetooth and WLAN main antenna are more than 5 cm to the user, thus simultaneous SAR evaluation is not required.

WLAN Body SAR

Ambient Temperature (°C)	22.2
Liquid Temperature (°C)	22.2
Date	2009-09-09

Test Mode	EUT Position	Traffic Channel		Power Drift(dB)	1 g SAR (W/kg)	1 g SAR Limits (W/kg)
		Frequency (MHz)	Channel			
11b	Bottom of Base	2437	6	-0.020	0.032	1.6
11g	Bottom of Base	2437	6	-0.145	0.016	
11n (20 MHz)	Bottom of Base	2437	6	-0.048	0.021	
11n (40 MHz)	Bottom of Base	2437	6	-0.185	0.022	
11b	Bottom of Base	2412	1	0.042	0.046	
11b	Bottom of Base	2462	11	0.085	0.024	

Note : If the SAR measured at the middle channel for this configuration is at least 3dB lower (0.8 W/kg) than SAR limit, testing at low and high channel is optional.

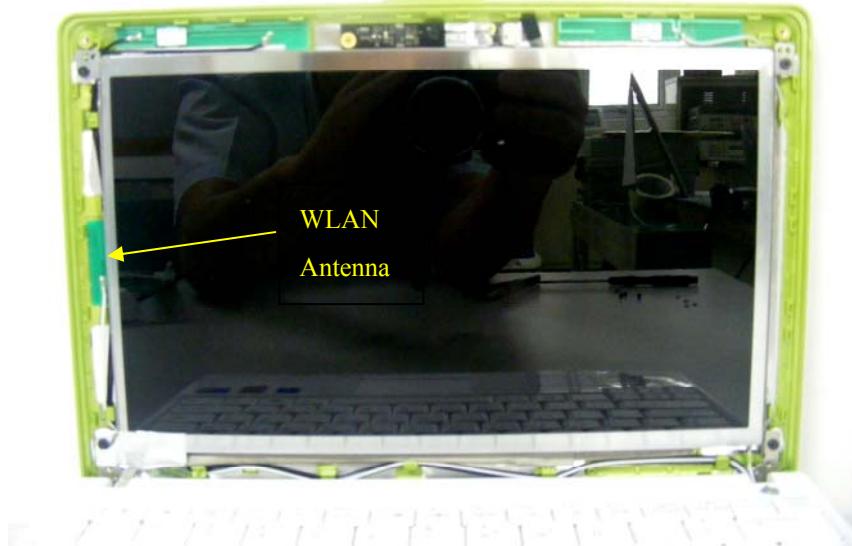
Appendix

List

Appendix A	Photographs	- EUT - Test Setup
Appendix B	DASY4 Report (Plots of the SAR Measurements)	- 2450 MHz Validation Test - WLAN
Appendix C	Uncertainty Analysis	
Appendix D	Calibration Certificate	- PROBE - DAE - DIPOLE

Appendix A

EUT Photographs


Front View of EUT

Rear View of EUT

Right-Top Side View of EUT**Left-Bottom Side View of EUT**

Open View of EUT**Antenna Position**

Test Setup Photographs

Bottom of Base

Appendix B

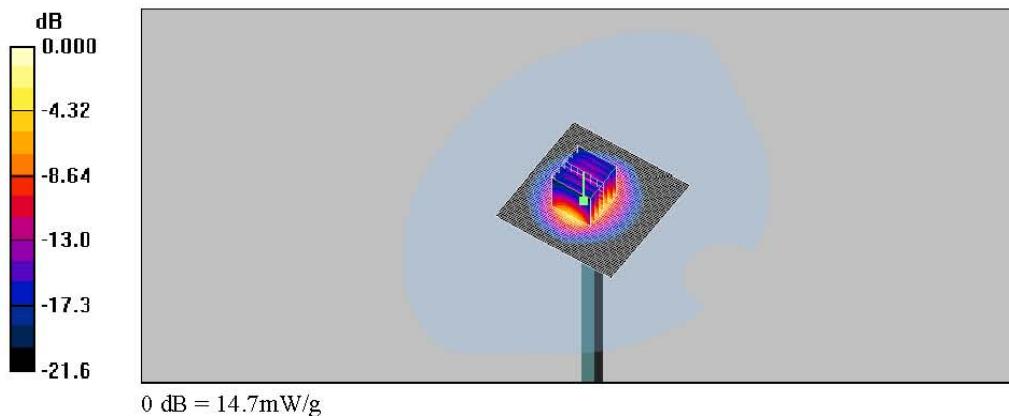
Test Plot - DASY4 Report

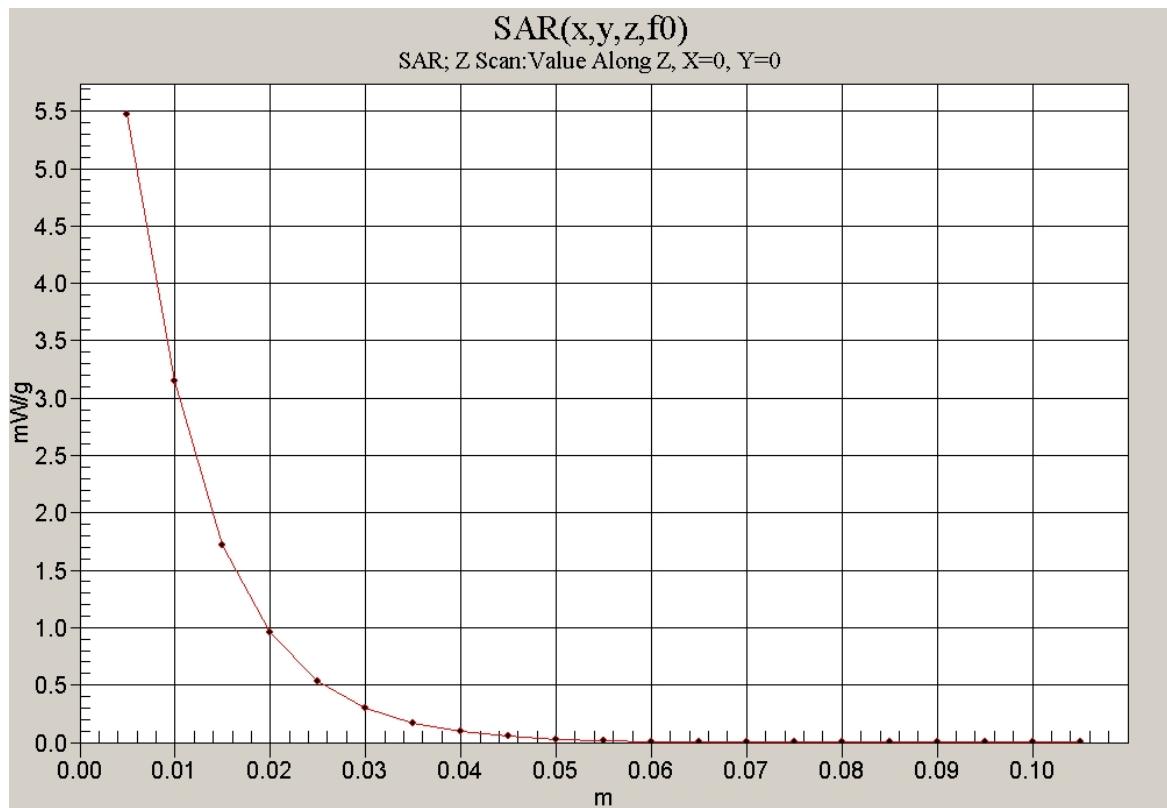
2450 MHz Validation Test

Date/Time: 2009-09-09 1:30:15

Test Laboratory: SGS Testing Korea
File Name: [Validation 2450 MHz.da4](#)

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:734
Program Name: Validation 2450 MHz


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 2450$ MHz; $\sigma = 1.8$ mho/m; $\epsilon_r = 38.5$; $\rho = 1000$ kg/m³
Phantom section: Flat Section


DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn614; Calibrated: 2009-08-20
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Validation 2450 MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 15.7 mW/g

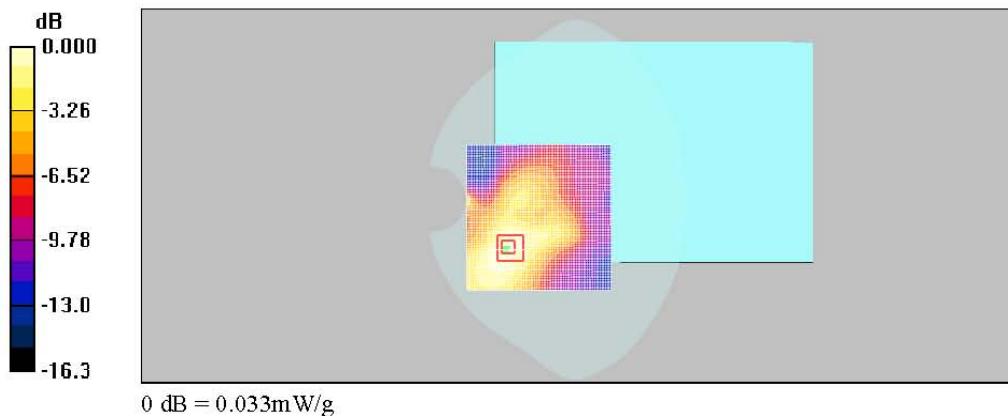
Validation 2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 87.5 V/m; Power Drift = -0.035 dB
Peak SAR (extrapolated) = 29.9 W/kg
SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.16 mW/g
Maximum value of SAR (measured) = 14.7 mW/g

WLAN Body SAR Test

Date/Time: 2009-09-09 4:29:05

Test Laboratory: SGS Testing Korea
File Name: [WLAN_Body.da4](#)

DUT: LGX12; Type: Notebook PC; Serial: DMST090825-YKM02
Program Name: 2450 MHz_Body


Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 2437$ MHz; $\sigma = 1.91$ mho/m; $\epsilon_r = 50.8$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(3.95, 3.95, 3.95); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn614; Calibrated: 2009-08-20
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

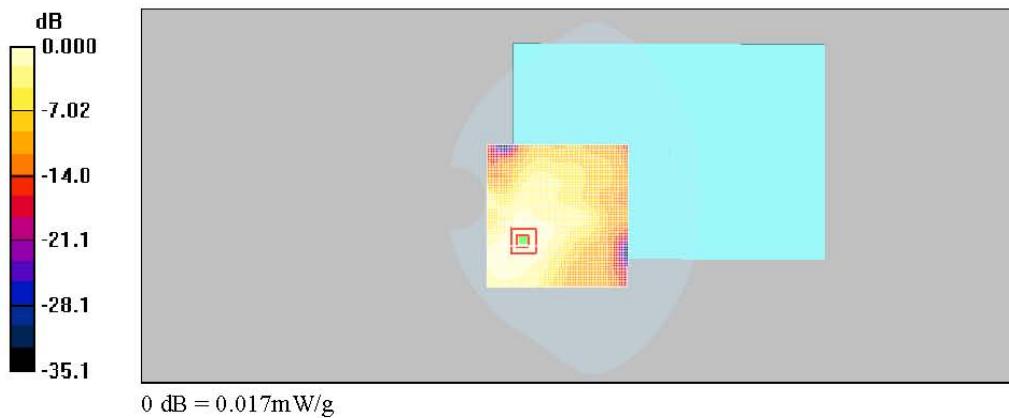
Body_11b_Mid/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.032 mW/g

Body_11b_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 2.19 V/m; Power Drift = -0.020 dB
Peak SAR (extrapolated) = 0.068 W/kg
SAR(1 g) = 0.032 mW/g; SAR(10 g) = 0.018 mW/g
Maximum value of SAR (measured) = 0.033 mW/g

Date/Time: 2009-09-09 5:30:32

Test Laboratory: SGS Testing Korea
File Name: [WLAN_Body.da4](#)

DUT: LGX12; Type: Notebook PC; Serial: DMST090825-YKM02
Program Name: 2450 MHz_Body


Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 2437$ MHz; $\sigma = 1.91$ mho/m; $\epsilon_r = 50.8$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(3.95, 3.95, 3.95); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn614; Calibrated: 2009-08-20
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body_11g_Mid/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.017 mW/g

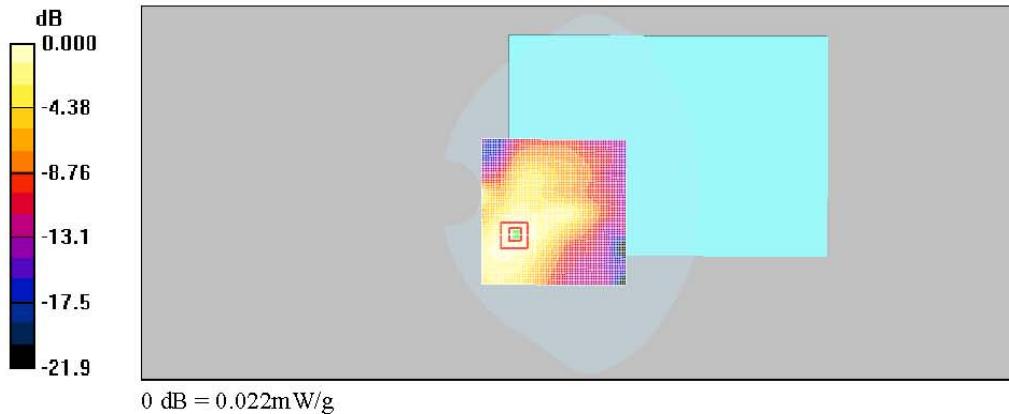
Body_11g_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 1.45 V/m; Power Drift = -0.145 dB
Peak SAR (extrapolated) = 0.034 W/kg
SAR(1 g) = 0.016 mW/g; SAR(10 g) = 0.0091 mW/g
Maximum value of SAR (measured) = 0.017 mW/g

Date/Time: 2009-09-09 5:55:32

Test Laboratory: SGS Testing Korea
File Name: WLAN_Body.da4

DUT: LGX12; Type: Notebook PC; Serial: DMST090825-YKM02
Program Name: 2450 MHz_Body

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 2437$ MHz; $\sigma = 1.91$ mho/m; $\epsilon_r = 50.8$; $\rho = 1000$ kg/m³


Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(3.95, 3.95, 3.95); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn614; Calibrated: 2009-08-20
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body_11n_Mid_20 MHz/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.021 mW/g

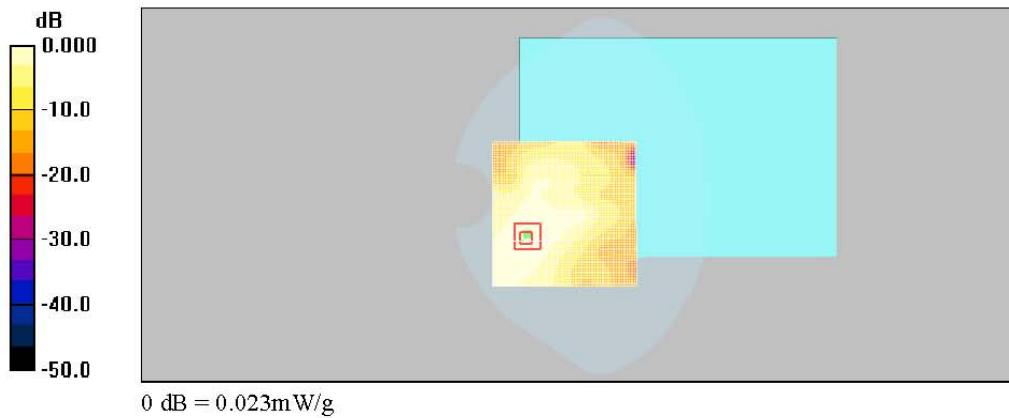
Body_11n_Mid_20 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 1.56 V/m; Power Drift = -0.048 dB
Peak SAR (extrapolated) = 0.049 W/kg
SAR(1 g) = 0.021 mW/g; SAR(10 g) = 0.012 mW/g
Maximum value of SAR (measured) = 0.022 mW/g

Date/Time: 2009-09-09 6:22:00

Test Laboratory: SGS Testing Korea
File Name: [WLAN_Body_11n.da4](#)

DUT: LGX12; Type: Notebook PC; Serial: DMST090825-YKM02
Program Name: 2450 MHz_Body

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 2437$ MHz; $\sigma = 1.91$ mho/m; $\epsilon_r = 50.8$; $\rho = 1000$ kg/m³


Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(3.95, 3.95, 3.95); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn614; Calibrated: 2009-08-20
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body_11n_Mid_40 MHz/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.023 mW/g

Body_11n_Mid_40 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 1.58 V/m; Power Drift = -0.185 dB
Peak SAR (extrapolated) = 0.052 W/kg
SAR(1 g) = 0.022 mW/g; SAR(10 g) = 0.012 mW/g
Maximum value of SAR (measured) = 0.023 mW/g

Date/Time: 2009-09-09 6:48:58

Test Laboratory: SGS Testing Korea
File Name: WLAN_Body.da4

DUT: LGX12; Type: Notebook PC; Serial: DMST090825-YKM02
Program Name: 2450 MHz_Body

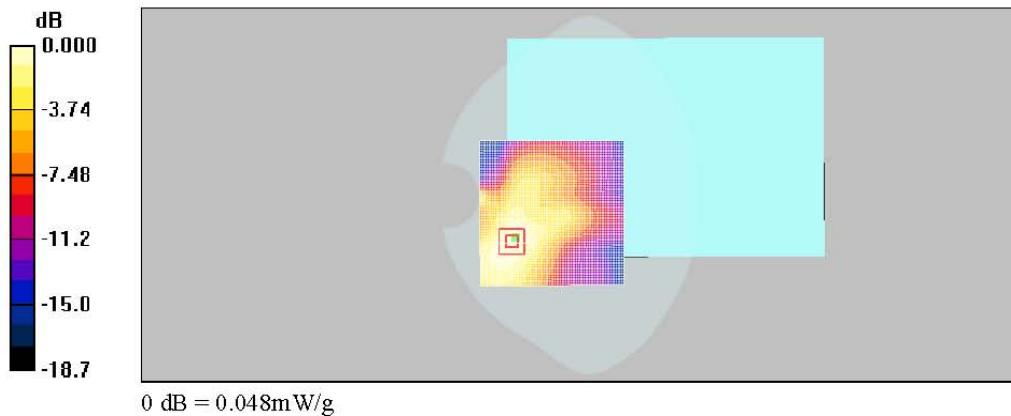
Communication System: WLAN; Frequency: 2412 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 2412$ MHz; $\sigma = 1.88$ mho/m; $\epsilon_r = 50.8$; $\rho = 1000$ kg/m³

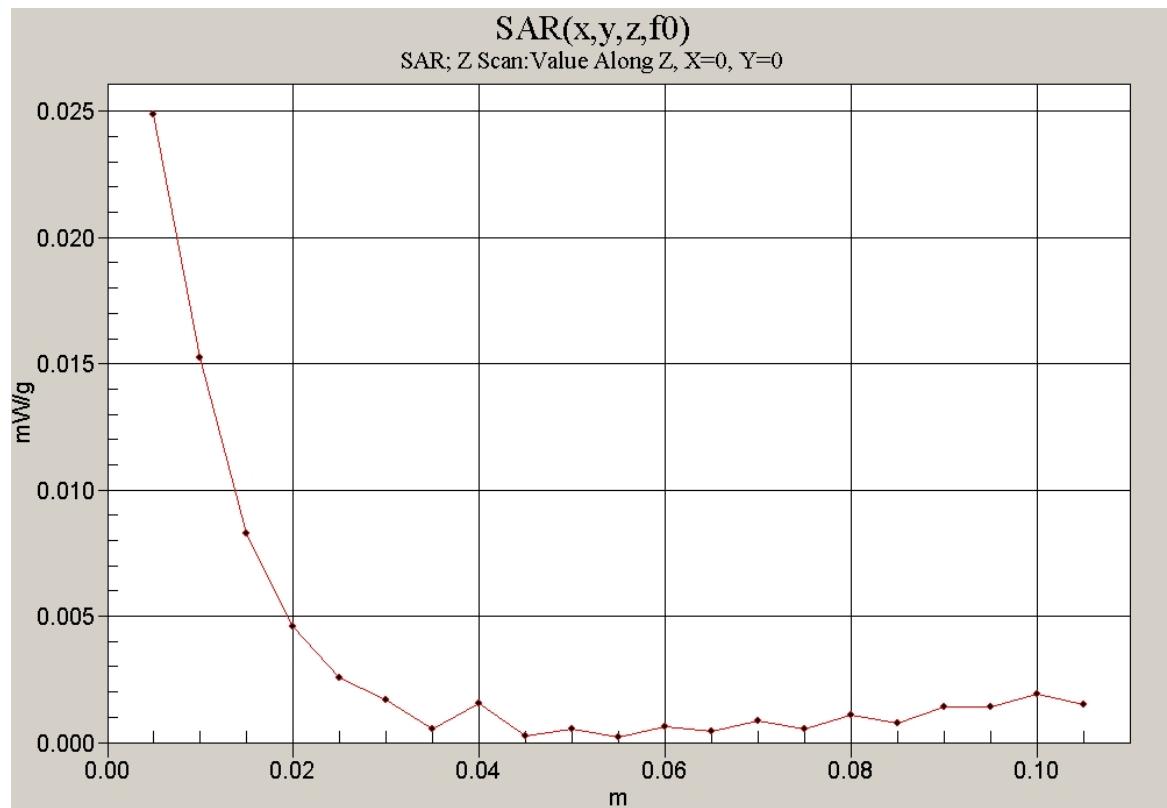
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(3.95, 3.95, 3.95); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn614; Calibrated: 2009-08-20
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body_11b_Low/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.049 mW/g


Body_11b_Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 2.38 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 0.098 W/kg

SAR(1 g) = 0.046 mW/g; SAR(10 g) = 0.026 mW/g

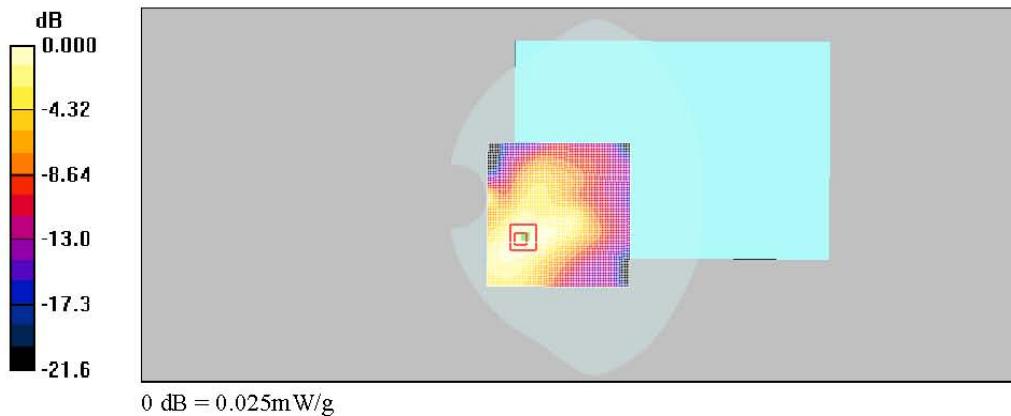
Maximum value of SAR (measured) = 0.048 mW/g

Date/Time: 2009-09-09 8:07:47

Test Laboratory: SGS Testing Korea
File Name: WLAN_Body.da4

DUT: LGX12; Type: Notebook PC; Serial: DMST090825-YKM02
Program Name: 2450 MHz_Body

Communication System: WLAN; Frequency: 2462 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 2462$ MHz; $\sigma = 1.95$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³


Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(3.95, 3.95, 3.95); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn614; Calibrated: 2009-08-20
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body_11b_High/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.025 mW/g

Body_11b_High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 1.58 V/m; Power Drift = 0.085 dB
Peak SAR (extrapolated) = 0.053 W/kg
SAR(1 g) = 0.024 mW/g; SAR(10 g) = 0.013 mW/g
Maximum value of SAR (measured) = 0.025 mW/g

Appendix C

Uncertainty Analysis

Uncertainty of SAR equipments for measurement

Items	Uncertainty value %	Probability Distribution	Divisor	ci 1 1g	Standard unc (1g)	vi or Veff
Measurement System						
Probe calibration	4.8	normal	1	1	4.8%	∞
Axial isotropy	4.7	rectangular	$\sqrt{3}$	$(1-c_p)^{1/2}$	1.9%	∞
Hemispherical isotropy	9.6	rectangular	$\sqrt{3}$	$(c_p)^{1/2}$	3.9%	∞
Boundary effects	1.0	rectangular	$\sqrt{3}$	1	0.6%	∞
Linearity	4.7	rectangular	$\sqrt{3}$	1	2.7%	∞
System Detection limits	1.0	rectangular	$\sqrt{3}$	1	0.6%	∞
Readout Electronics	1.0	normal	1	1	1.0%	∞
Response time	0.8	rectangular	$\sqrt{3}$	1	0.5%	∞
Integration time	2.6	rectangular	$\sqrt{3}$	1	1.5%	∞
RF Ambient Conditions	3.0	rectangular	$\sqrt{3}$	1	1.7%	∞
Mech. constrains of robot	0.4	rectangular	$\sqrt{3}$	1	0.2%	∞
Probe positioning	2.9	rectangular	$\sqrt{3}$	1	1.7%	∞
Extrap. and integration	1.0	rectangular	$\sqrt{3}$	1	0.6%	∞

Uncertainty of measurements

Test Sample Related						
Device positioning	2.9	normal	1	1	2.9%	145
Device holder uncertainty	3.6	normal	1	1	3.6%	5
Power drift	5.0	rectangular	$\sqrt{3}$	1	2.9%	∞
Phantom and Setup						
Phantom uncertainty	4.0	rectangular	$\sqrt{3}$	1	2.3%	∞
Liquid conductivity(target)	5.0	rectangular	$\sqrt{3}$	0.64	1.8%	∞
Liquid conductivity(meas.)	2.5	normal	1	0.64	1.6%	∞
Liquid permittivity(target)	5.0	rectangular	$\sqrt{3}$	0.6	1.7%	∞
Liquid permittivity(meas.)	2.5	normal	1	0.6	1.5%	∞

Uncertainty of SAR system

Combined Standard Uncertainty				10.3%	
Expanded Standard Uncertainty(k=2)				20.6%	

Appendix D

Calibration Certificate

- PROBE

- DAE

- 2450 MHz DIPOLE

- PROBE Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **SGS KES (Dymstec)**Certificate No: **ET3-1782_Arp09****CALIBRATION CERTIFICATE**Object **ET3DV6 - SN:1782**Calibration procedure(s) **QA CAL-01.v6, QA CAL-12.v5 and QA CAL-23.v3
Calibration procedure for dosimetric E-field probes**Calibration date: **April 30, 2009**Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Probe ES3DV2	SN: 3013	2-Jan-09 (No. ES3-3013_Jan09)	Jan-10
DAE4	SN: 660	9-Sep-08 (No. DAE4-660_Sep08)	Sep-09

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-08)	In house check: Oct-09

Calibrated by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Approved by:	Name	Function	Signature
	Niels Kuster	Quality Manager	

Issued: April 30, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalementage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TS	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TS / NORM x,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM x,y,z are only intermediate values, i.e., the uncertainties of NORM x,y,z does not effect the E²-field uncertainty inside TS (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters:* Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TS corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy):* in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset:* The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

ET3DV6 SN:1782

April 30, 2009

Probe ET3DV6

SN:1782

Manufactured: April 15, 2003
Last calibrated: April 22, 2008
Recalibrated: April 30, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1782

April 30, 2009

DASY - Parameters of Probe: ET3DV6 SN:1782

Sensitivity in Free Space^A

NormX	2.03 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP X	91 mV
NormY	1.70 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP Y	91 mV
NormZ	1.92 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP Z	90 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 835 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%] Without Correction Algorithm	10.6	6.3
SAR _{be} [%] With Correction Algorithm	0.9	0.5

TSL 1750 MHz Typical SAR gradient: 10 % per mm

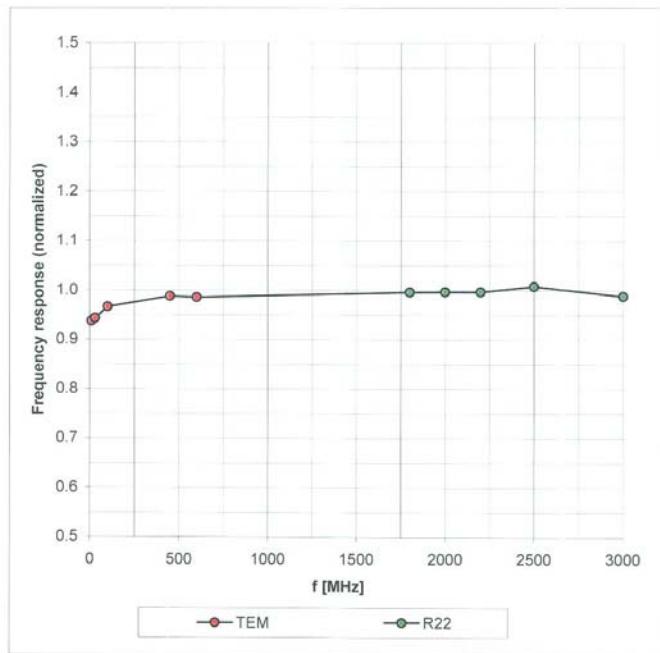
Sensor Center to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%] Without Correction Algorithm	11.5	7.5
SAR _{be} [%] With Correction Algorithm	0.9	0.6

Sensor Offset

Probe Tip to Sensor Center **2.7** mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Page 8).

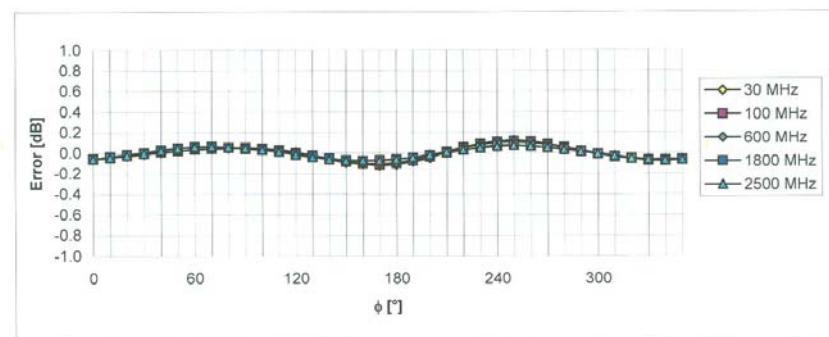
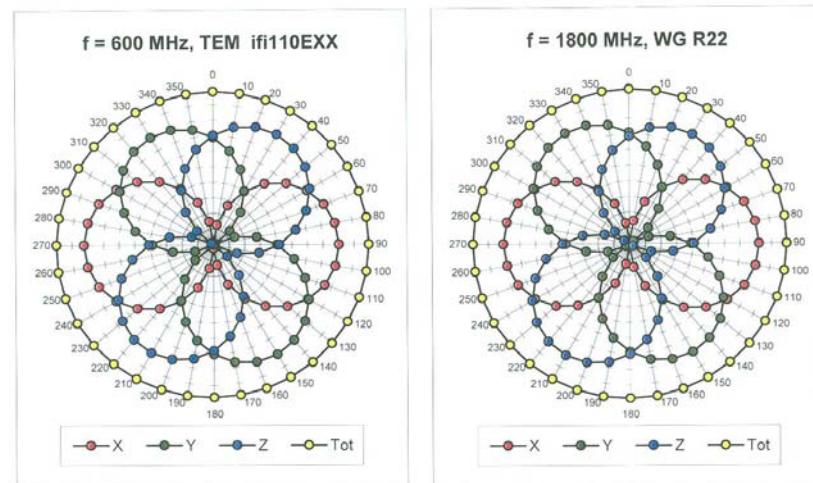

^B Numerical linearization parameter: uncertainty not required.

ET3DV6 SN:1782

April 30, 2009

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

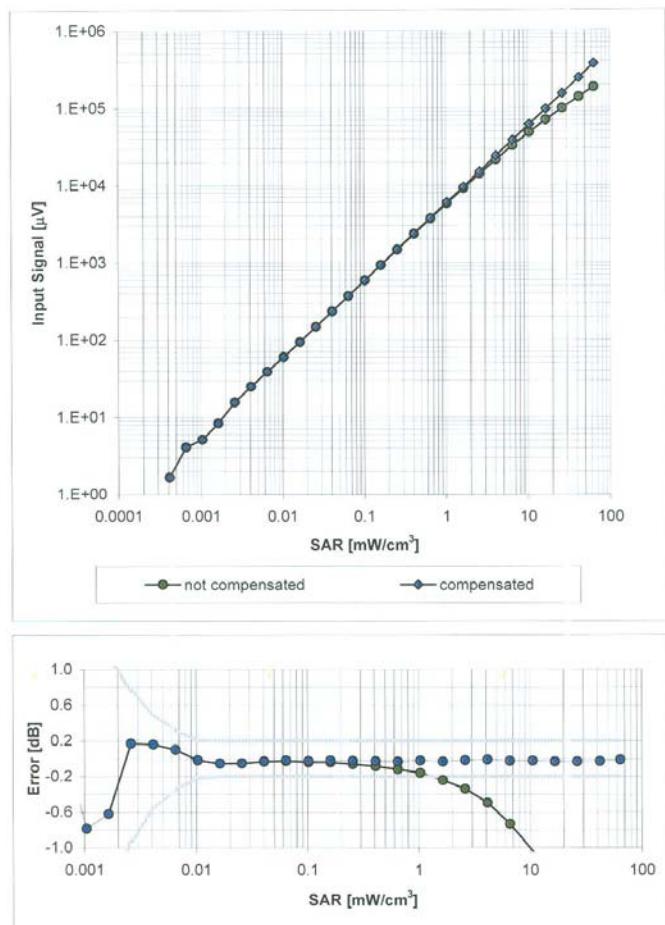



Uncertainty of Frequency Response of E-field: $\pm 6.3\% (k=2)$

ET3DV6 SN:1782

April 30, 2009

Receiving Pattern (ϕ), $\theta = 0^\circ$

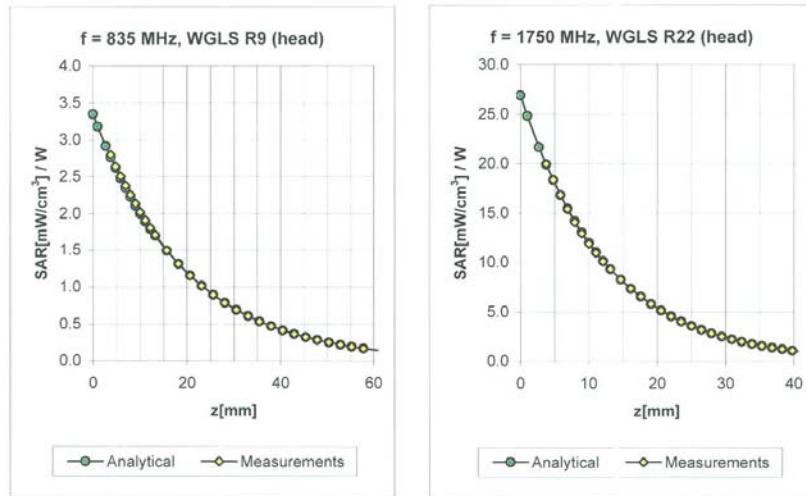


Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

ET3DV6 SN:1782

April 30, 2009

Dynamic Range $f(\text{SAR}_{\text{head}})$
(Waveguide R22, $f = 1800 \text{ MHz}$)



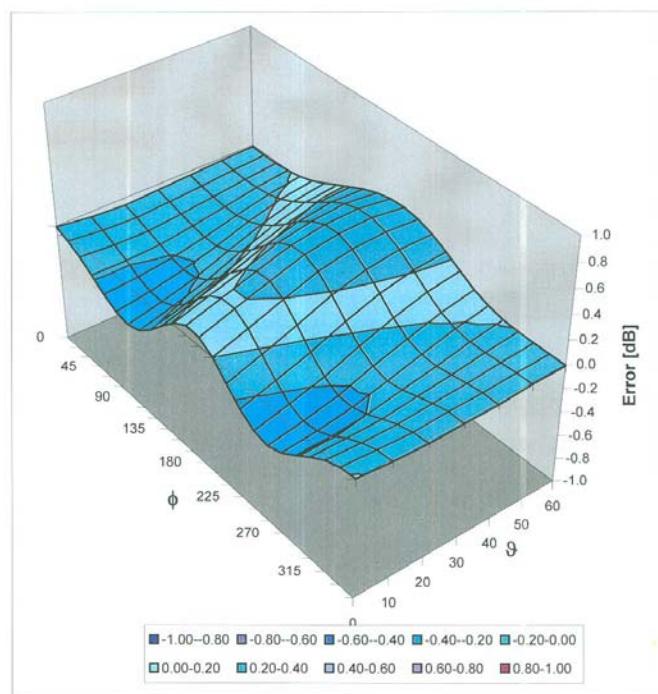
Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

ET3DV6 SN:1782

April 30, 2009

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
450	$\pm 50 / \pm 100$	Head	$43.5 \pm 5\%$	$0.87 \pm 5\%$	0.29	1.94	6.66	$\pm 13.3\% \text{ (k=2)}$
835	$\pm 50 / \pm 100$	Head	$41.5 \pm 5\%$	$0.90 \pm 5\%$	0.51	2.09	6.18	$\pm 11.0\% \text{ (k=2)}$
1750	$\pm 50 / \pm 100$	Head	$40.1 \pm 5\%$	$1.37 \pm 5\%$	0.50	2.68	5.19	$\pm 11.0\% \text{ (k=2)}$
1900	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.64	2.29	5.00	$\pm 11.0\% \text{ (k=2)}$
2450	$\pm 50 / \pm 100$	Head	$39.2 \pm 5\%$	$1.80 \pm 5\%$	0.80	1.71	4.45	$\pm 11.0\% \text{ (k=2)}$


450	$\pm 50 / \pm 100$	Body	$56.7 \pm 5\%$	$0.94 \pm 5\%$	0.21	1.99	7.22	$\pm 13.3\% \text{ (k=2)}$
835	$\pm 50 / \pm 100$	Body	$55.2 \pm 5\%$	$0.97 \pm 5\%$	0.40	2.42	6.07	$\pm 11.0\% \text{ (k=2)}$
1750	$\pm 50 / \pm 100$	Body	$53.4 \pm 5\%$	$1.49 \pm 5\%$	0.63	3.09	4.71	$\pm 11.0\% \text{ (k=2)}$
1900	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.84	2.44	4.45	$\pm 11.0\% \text{ (k=2)}$
2450	$\pm 50 / \pm 100$	Body	$52.7 \pm 5\%$	$1.95 \pm 5\%$	0.70	1.40	3.95	$\pm 11.0\% \text{ (k=2)}$

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

ET3DV6 SN:1782

April 30, 2009

Deviation from Isotropy in HSL
Error (ϕ, θ), $f = 900$ MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ ($k=2$)

-DAE Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **Dymstec**

Certificate No: **DAE4-614_Aug09**

CALIBRATION CERTIFICATE

Object **DAE4 - SD 000 D04 BJ - SN: 614**

Calibration procedure(s) **QA CAL-06.v20**
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: **August 20, 2009**

Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	30-Sep-08 (No: 7670)	Sep-09
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	05-Jun-09 (in house check)	In house check: Jun-10

Calibrated by:	Name Andrea	Function Technician	Signature
Approved by:	Fin Bomholt	R&D Director	

Issued: August 20, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance*: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption*: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu\text{V}$, full range = $-100...+300\text{ mV}$

Low Range: 1LSB = 61nV , full range = $-1.....+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$403.896 \pm 0.1\% \text{ (k=2)}$	$404.404 \pm 0.1\% \text{ (k=2)}$	$405.025 \pm 0.1\% \text{ (k=2)}$
Low Range	$3.95255 \pm 0.7\% \text{ (k=2)}$	$3.95781 \pm 0.7\% \text{ (k=2)}$	$3.99831 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$80.5^\circ \pm 1^\circ$
---	--------------------------

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200002.7	0.73	0.00
Channel X + Input	20004.29	5.29	0.03
Channel X - Input	-19997.87	2.33	-0.01
Channel Y + Input	200010.6	0.56	0.00
Channel Y + Input	20002.92	3.02	0.02
Channel Y - Input	-20001.43	-1.23	0.01
Channel Z + Input	200009.2	-0.80	-0.00
Channel Z + Input	20001.54	1.64	0.01
Channel Z - Input	-20000.92	0.00	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	1999.3	-0.52	-0.03
Channel X + Input	198.60	-1.20	-0.60
Channel X - Input	-200.97	-0.77	0.39
Channel Y + Input	2000.0	0.14	0.01
Channel Y + Input	198.56	-1.44	-0.72
Channel Y - Input	-202.35	-2.45	1.23
Channel Z + Input	2000.1	-0.24	-0.01
Channel Z + Input	198.87	-1.13	-0.57
Channel Z - Input	-202.91	-2.81	1.41

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	1.53	-0.11
	-200	0.76	-1.00
Channel Y	200	8.17	7.96
	-200	-9.12	-9.45
Channel Z	200	-10.15	-10.76
	-200	9.17	9.11

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	2.30	-1.32
Channel Y	200	1.33	-	3.34
Channel Z	200	1.21	-0.12	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16242	16390
Channel Y	16360	17211
Channel Z	16101	16845

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-1.02	-2.33	0.64	0.59
Channel Y	-0.59	-1.86	0.29	0.28
Channel Z	-1.24	-2.43	0.12	0.47

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MΩ)	Measuring (MΩ)
Channel X	0.1999	198.8
Channel Y	0.1999	203.5
Channel Z	0.1999	204.0

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

- 2450 MHz Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **SGS KES (Dymstec)**

Certificate No: **D2450V2-734_Aug09**

CALIBRATION CERTIFICATE

Object **D2450V2 - SN: 734**

Calibration procedure(s) **QA CAL-05.v7**
Calibration procedure for dipole validation kits

Calibration date: **August 27, 2009**

Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV3	SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: August 27, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature during test	(22.3 ± 0.2) °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 mW / g
SAR normalized	normalized to 1W	53.2 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	53.5 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.27 mW / g
SAR normalized	normalized to 1W	25.1 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	25.2 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2 Ω + 3.2 $j\Omega$
Return Loss	- 27.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 7, 2003

DASY5 Validation Report for Head TSL

Date/Time: 27.08.2009 11:36:28

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN734

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

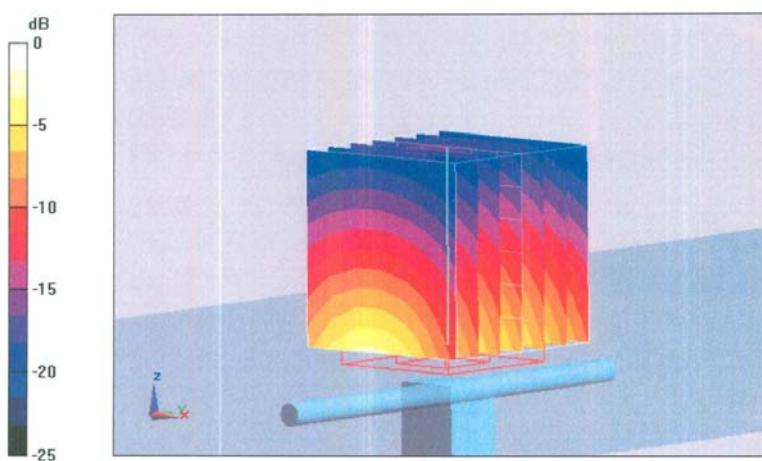
Medium parameters used: $f = 2450$ MHz; $\sigma = 1.8$ mho/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

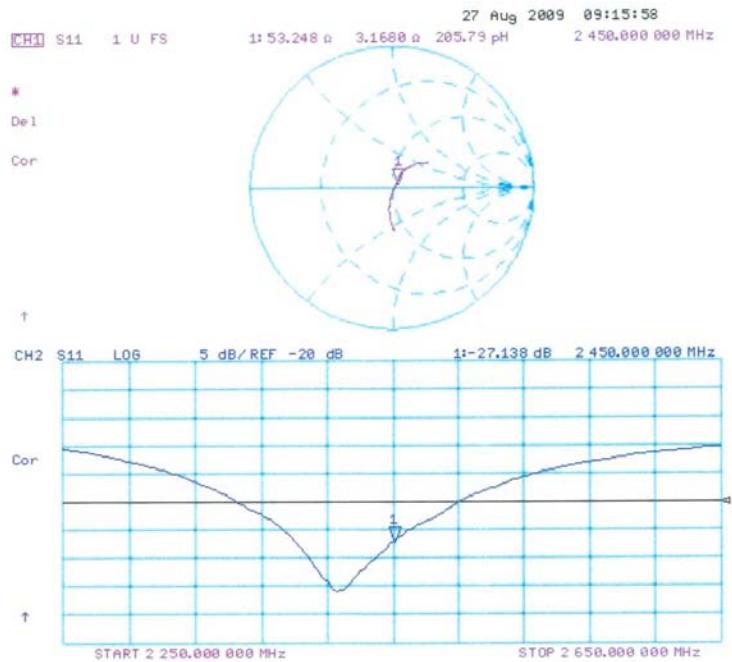
Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.6 V/m; Power Drift = 0.052 dB


Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.27 mW/g

Maximum value of SAR (measured) = 16.9 mW/g

0 dB = 16.9mW/g

Impedance Measurement Plot for Head TSL