

test report

Applicant:

Xylem Analytics Germany GmbH
Dr. Karl-Slevogt-Straße 1
82362 Weilheim
Tel.: +49 881 183-0
Fax: +49 881 183-420

Test report no.:

170586-AU01+W04

for:

Xylem Analytics Germany GmbH
Wireless charger for TLC750 system
IF 750 / CS 750

according to:

15.209

The test result refers exclusively to the model tested.

This test report may not be copied or published in extracts without the written authorization of the accreditation agency and/or
EMV TESTHAUS GmbH

Deutsche
Akkreditierungsstelle
D-PL-12155-01-04

EMV **TESTHAUS** GmbH

Gustav-Hertz-Straße 35
94315 Straubing
Germany
Tel.: +49 9421 56868-0
Fax: +49 9421 56868-100
Email: info@emv-testhaus.com

Accreditation:

FCC test firm accreditation expiration date: 2021-05-30
MRA US-EU, FCC designation number: DE0010
FCC registration number: 97268
BnetzA-CAB-02/21-02/5 Valid until 2023-11-26

Location of Testing:

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

The technical accuracy is guaranteed through the quality management of the
EMV **TESTHAUS** GmbH.

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Xylem Analytics Germany GmbH
Wireless charger for TLC750 system
IF 750 / CS 750

Table of contents

1	Summary of test results	6
2	Referenced publications	7
3	Equipment under test (EUT)	8
3.1	General information	8
3.2	Radio specifications	9
4	Photo documentation	9
5	Test configuration and mode of operation	10
5.1	Test configuration	10
5.2	Versions of EUT	11
5.3	Mode of operation	11
5.3.1	Separation distance	11
5.3.2	Orientation	11
5.3.3	Operational modes	12
6	Test procedures	13
6.1	General specifications	13
6.2	AC power-line conducted emissions	13
6.3	Radiated emissions below 30 MHz	15
6.3.1	Extrapolation according to ANSI C63.10	15
6.3.2	Measuring radiated emissions below 30 MHz	16
6.4	Radiated emissions from 30 MHz to 1 GHz	17
6.5	Radiated emissions above 1 GHz	19
6.5.1	Exploratory radiated emissions measurements	19
6.5.2	Final radiated emissions measurements	20
7	Test results	23
7.1	Restricted bands of operation	24
7.1.1	Test equipment	24
7.1.2	Limits	25
7.1.3	Test procedure	25
7.1.4	Test results	26
7.2	AC power line conducted emissions	29
7.2.1	Test equipment	29
7.2.2	Limits	30
7.2.3	Test procedure	30
7.2.4	Test results	31
7.3	Radiated emissions	35
7.3.1	Radiated emissions below 30 MHz	35
7.3.2	Radiated emissions from 30 MHz to 1 GHz	45
7.5	Bandwidth tests	55

7.5.1	Test equipment	55
7.5.2	Limits	56
7.5.3	Test procedure	56
7.5.4	Test results	57
8	Equipment calibration status	59
9	Measurement uncertainties	60
10	Revision history	61

List of figures

Figure 1:	Setup for AC power-line conducted emissions test from 150 kHz to 30 MHz	14
Figure 2:	Setup for radiated emissions test below 30 MHz	17
Figure 3:	Setup for radiated emissions test from 30 MHz to 1 GHz	19
Figure 4:	Setup for radiated emissions test above 1 GHz	22
Figure 5:	Chart of restricted bands of operation test for standby mode	26
Figure 6:	Chart of restricted bands of operation test for charging mode 1	27
Figure 7:	Chart of restricted bands of operation test for charging mode 2	28
Figure 8:	Chart of AC power-line conducted emissions test (15.207) on live wire L1 for standby mode	31
Figure 9:	Chart of AC power-line conducted emissions test (15.207) on live wire N for standby mode	32
Figure 10:	Chart of AC power-line conducted emissions test (15.207) on live wire L1 for charging mode 2	33
Figure 11:	Chart of AC power-line conducted emissions test (15.207) on live wire N for charging mode 2	34
Figure 12:	Chart of radiated emissions test below 30 MHz according to §15.209 for standby mode	38
Figure 13:	Chart of radiated emissions test below 30 MHz according to §15.209 for charging mode 2	40
Figure 14:	Chart of radiated emissions test below 30 MHz according to §15.209 for standby mode	42
Figure 15:	Chart of radiated emissions test below 30 MHz according to §15.209 for charging mode 2	44
Figure 16:	Chart of radiated emissions test 30 MHz to 1 GHz according to §15.209 for standby mode	48
Figure 17:	Chart of radiated emissions test 30 MHz to 1 GHz according to §15.209 for charging mode 2	50
Figure 18:	Chart of radiated emissions test 30 MHz to 1 GHz according to §15.209 for standby mode	52
Figure 19:	Chart of radiated emissions test 30 MHz to 1 GHz according to §15.209 for charging mode 2	54
Figure 20:	Chart of 20 dB bandwidth of the emission test for standby mode	57
Figure 21:	Chart of 20 dB bandwidth of the emission test for charging mode 2	58

List of tables

Table 1: Devices used for testing	10
Table 2: Ports of EUT and appropriate cables	10
Table 3: Operational modes of WPT system	12
Table 4: Bandwidth and detector type for AC power-line conducted emissions test.....	13
Table 5: Recalculation factors for extrapolation	15
Table 6: Bandwidth and detector type for radiated emissions test below 30 MHz	16
Table 7: Bandwidth and detector type for radiated emissions test from 30 MHz to 1 GHz	17
Table 8: Bandwidth and trace settings for exploratory radiated emissions test above 1 GHz.....	20
Table 9: Bandwidth and detector type for final radiated emissions test above 1 GHz	20
Table 10: Limits for emissions in restricted bands	25
Table 11: Limits for AC power-line conducted emissions according to §15.207	30
Table 12: General radiated emission limits according to §15.209	36
Table 13: Results of radiated emissions test below 30 MHz according to §15.209 for standby mode	38
Table 14: Results of radiated emissions test below 30 MHz according to §15.209 for charging mode 2.....	40
Table 15: Results of radiated emissions test below 30 MHz according to §15.209 for standby mode	42
Table 16: Results of radiated emissions test below 30 MHz according to §15.209 for charging mode 2.....	44
Table 17: General radiated emission limits according to §15.209	46
Table 18: Results of radiated emissions test 30 MHz to 1 GHz according to §15.209 for standby mode	48
Table 19: Results of radiated emissions test 30 MHz to 1 GHz according to §15.209 for charging mode 2.....	50
Table 20: Results of radiated emissions test 30 MHz to 1 GHz according to §15.209 for standby mode	52
Table 21: Results of radiated emissions test 30 MHz to 1 GHz according to §15.209 for charging mode 2.....	54
Table 22: Results of bandwidth tests for standby mode.....	57
Table 23: Results of bandwidth tests for charging mode 2.....	58

1 Summary of test results

47 CFR part and section	Test	Page	Result	Note(s)
15.205	Restricted bands of operation	24	Passed	1
15.207	AC power line conducted emissions 9 kHz to 30 MHz	29	Passed	2
15.209	Radiated emissions 9 kHz to 30 MHz 30 MHz to 1 GHz 1 GHz to 10 th harmonic	35 45 ---	Passed Passed Not applicable	--- 3
15.215	Emission bandwidth	51	Recorded	4

Notes (for information about EUT see clause 3):

- 1 Restricted band according to §15.205 close to operating frequency range is 90 kHz to 110 kHz.
- 2 According to §15.207, conducted emission limits are defined for the frequency range 150 kHz to 30 MHz.
- 3 As the intentional radiator of the WPT system operates below 10 GHz and the tenth harmonic of the highest fundamental frequency is lower than 1 GHz (see 47 CFR Part 15, section 15.33(a)(1)), this measurement needs to be applied only if the digital part of the WPT device generates or uses internal frequencies higher than 108 MHz (see 47 CFR Part 15 section 15.33(b)(1)).
- 4 Required for intentional radiators operating under the alternative provisions to the general emission limits, only.

Straubing, November 29, 2019

Andreas Menacher
Test engineer
EMV **TESTHAUS** GmbH

Konrad Graßl
Head of Radio Department
EMV **TESTHAUS** GmbH

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

Xylem Analytics Germany GmbH
Wireless charger for TLC750 system
IF 750 / CS 750

2 Referenced publications

In this report, any reference to publications without stating the issue date explicitly refers to the versions as listed below.

Publication	Title
47 CFR Part 2:2017-10	Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)
47 CFR Part 15:2017-10	Code of Federal Regulations Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)
ANSI C63.10:2013-06	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
FCC KDB 174176 D01 June 3, 2015	AC power-line conducted emissions Frequently Asked Questions

3 Equipment under test (EUT)

All Information in this clause is declared by customer.

3.1 General information

Product type: Wireless charger for TLC750 system

Model name: Power transmitter: IF 750
CS 750
(WPT source device)
Power receiver: TLC 750 NFC
(WPT client device)

Serial number(s): Power transmitter: DUT_7
DUT_5
Power receiver: DUT_1

FCC ID: VQ5-IF750

Manufacturer: Xylem Analytics Germany GmbH

Version: Power transmitter: Hardware: 1.00
Software: 1.00
Power receiver: Hardware: V1.0
Software: V0.59.91

Short description: EUT is a Wireless power transmission (WPT) system that has a range of operating frequencies from 112 kHz to 177 kHz.

Additional modifications: None

Power supply: DC supply
Nominal voltage: 5.00 V
Minimum voltage: 4.75 V
Maximum voltage: 5.25 V

Supply used for testing: 120 V / 60 Hz for power supply of notebook

Temperature range: 0 °C to +50 °C (Customized)

Period of tests: 27.08.2018 – 14.02.2019

3.2 Radio specifications

Application(s):	Wireless Power Transfer (WPT)		
Range of operating frequencies:	112 kHz to 177 kHz		
Frequency stability during charging:	<input type="checkbox"/> Fixed frequency <input checked="" type="checkbox"/> Frequency depending on charge of battery		
Modulation:	ASK		
Antenna:	Type:	Power transmitter:	TDK WT303012-12F2-ID
		Power receiver:	Würth Electronic 760308101214
	Size:	Power transmitter:	30 mm Ø
		Power receiver:	19 mm Ø
	Style:	<input checked="" type="checkbox"/> integral	<input type="checkbox"/> dedicated
	Connector:	<input type="checkbox"/> external	<input checked="" type="checkbox"/> internal
		<input type="checkbox"/> temporary	<input checked="" type="checkbox"/> none

4 Photo documentation

For external photos of the EUT see annex B, for internal ones see annex C. Photos taken during testing including EUT positions can be found in annex A.

5 Test configuration and mode of operation

5.1 Test configuration

EUT			
Device	Type designation	Serial or inventory no.	Manufacturer
Power transmitter	IF 750	DUT_7	Xylem Analytics Germany GmbH
Power transmitter	CS 750	DUT_5	Xylem Analytics Germany GmbH
Peripheral devices			
Device	Type designation	Serial or inventory no.	Manufacturer
Notebook	LATITUDE E6510	5FWTZN1	DELL
AD/DC adaptor of notebook	LA130PM121	OVJCH5	DELL
Power receiver	TLC 750 NFC	DUT_1	Xylem Analytics Germany GmbH
Power receiver dummy	TLC 750 NFC	MUSTER	Xylem Analytics Germany GmbH
Support devices			
Device	Type designation	Serial or inventory no.	Manufacturer
AC power source	616062	E00633	Chroma

Table 1: Devices used for testing

Note: The power receiver is used for determining the operating frequency range when charging. For testing at a single frequency, the power receiver dummy is selected. This dummy device is equipped with the same power receiver part as the original power receiver device, but the battery is disconnected and a special load mounted outside the cabinet is used instead. This enables testing the EUT operating in charging mode at a single and stable frequency.

Port	Classification	Cable type
Ethernet ¹	Signal/control	Shielded
USB	DC power / Signal control	Shielded

Table 2: Ports of EUT and appropriate cables²

¹ Only IF 750 includes Ethernet port.

² As specified by customer.

<p>EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany</p>	<p>Xylem Analytics Germany GmbH Wireless charger for TLC750 system IF 750 / CS 750</p>
	<p>170586-AU01+W04</p>

5.2 Versions of EUT

CS 750: Wireless charger for TLC750 Systems. Powered via USB (no communication via this interface).

IF 750: Wireless charger for TLC750 Systems, with NFC and BLE module integrated. Powered via USB (communication possible). Includes also an Ethernet interface for communication (no PoE).

All tests were performed with the version IF 750 as this transmits the maximum radiated emission at the operating frequency and represents the maximum assembly of the EUT. Additionally, radiated spurious emissions of the CS 750 were performed to ensure that this version also complies with the requirements. Therefore, with radiated spurious emissions the version is reported. If no version is stated, IF 750 was used.

5.3 Mode of operation

5.3.1 Separation distance

For EUTs that are capable of wireless power transfer over a non-zero separation distance between the source and the client devices, testing at zero separation only is not sufficient.

- EUT is not capable of wireless power transfer over a non-zero separation distance:
Testing at zero separation is performed.
- EUT is capable of wireless power transfer over a non-zero separation distance.

5.3.2 Orientation

The EUT is tested in its typical setup configuration, as per the manufacturer's instructions in the user manual. If the device can be operated in various orientations (e.g. tabletop and wall-mount), it is tested in each orientation in which it is intended to be used.

- EUT has one position of use which is selected for testing.
- EUT is tested in three orthogonal orientations.

For photos of EUT positions see annex A.

5.3.3 Operational modes

In table 3 the operational modes of the WPT system are listed.

<i>Operational mode</i>	<i>Set-up</i>	<i>Function of WPT source</i>	<i>Function of WPT client</i>	<i>Tests performed</i>
Standby mode: WPT source in standby or idle mode	WPT source only	Transmitter	Not applicable	<ul style="list-style-type: none"> • Restricted bands of operation • AC power line conducted emissions • Radiated emissions
Charging mode 1: energy transmission with communication	WPT system alignment with WPT source and standard WPT client	TX and RX	TX and RX	<ul style="list-style-type: none"> • Restricted bands of operation
Charging mode 2: energy transmission with communication on fixed frequency	WPT system alignment with WPT source and power receiver dummy	TX and RX	TX and RX	<ul style="list-style-type: none"> • Restricted bands of operation • AC power line conducted emissions • Radiated emissions

Table 3: Operational modes of WPT system

Note: The power transfer and communication operate at the same frequency.
There is no communication without power transfer.

6 Test procedures

6.1 General specifications

Tabletop devices are placed on a non-conductive table with a height of 0.8 m. In case of AC power-line conducted emissions test, the rear of the EUT is located 40 cm to the vertical wall of the RF-shielded (screened) room which is used as vertical conducting plane. For radiated emission measurements above 1 GHz, tabletop devices are placed at a height of 1.5 m above the floor using a support made of styrene placed on top of the non-conductive table.

Floor-standing devices are placed either directly on the reference ground-plane or on insulating material (see clause 6.3.3 of ANSI C63.4-2014 for more details).

All other surfaces of tabletop or floor-standing EUTs are at least 80 cm from any other grounded conducting surface. This includes the case or cases of one or more LISNs when performing an AC power-line conducted emissions test.

Radiated emission measurements of equipment that can be used in multiple orientations (e.g. portable or handheld devices) are performed with the EUT in each of three orthogonal axis positions.

6.2 AC power-line conducted emissions

AC power-line conducted emissions are measured according to clause 6.2 of ANSI C63.10 over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network. The tests are performed in a shielded room.

If the EUT normally receives power from another device that in turn connects to the public utility ac power lines, measurements are made on that device with the EUT in operation to demonstrate that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required.

For direct current (dc) powered devices where the ac power adapter is not supplied with the device, an “off-the-shelf” unmodified ac power adapter is used. If the device is supposed to be installed in a host (e.g., the device is a module or PC card), then it is tested in a typical compliant host.

Frequency (f)	Measurement receiver bandwidth	Step size	Detector type		
			Prescan	Prescan with FFT	Final scan
150 kHz ≤ f < 30 MHz	9 kHz	≤ 4.5 kHz	Peak, Average	Quasi-peak, Average	Quasi-peak, Average

Table 4: Bandwidth and detector type for AC power-line conducted emissions test

The AC power-line conducted emissions test is performed in the following steps:

- a) The EUT is arranged as tabletop or floor-standing equipment, as applicable, and connected to a line impedance stabilization network (LISN) with $50 \mu\text{H} / 50 \Omega$. If required, a second LISN of the same type and terminated by 50Ω is used for peripheral devices. The EUT is switched on.
- b) The measurement equipment is connected to the LISN for the EUT and set-up according to the specifications of the test (see table 4). At the LISN, the neutral line is selected to be tested.
- c) The prescan is performed with both detectors activated at the same time. If the test receiver is capable of FFT analysis, it is used for prescan, but not for final scan.
- d) When the prescan is completed, maximum levels with less margin than 10 dB or exceeding the limit are determined and collected in a list.
- e) With the first frequency of the list selected, a frequency zoom over a range of ten times of the measurement receiver bandwidth around this frequency is performed. If the EUT has no significant drift in frequency, the frequency zoom can be skipped.
- f) For final scan, the emission level is measured and the maximum is recorded.
- g) Steps e) to f) are repeated for all other frequencies in the list. At least the six highest EUT emissions relative to the limit have to be recorded.
- h) Steps c) to g) are repeated for all current-carrying conductors of all of the power cords of EUT, i.e. all phase and (if used) neutral line(s).

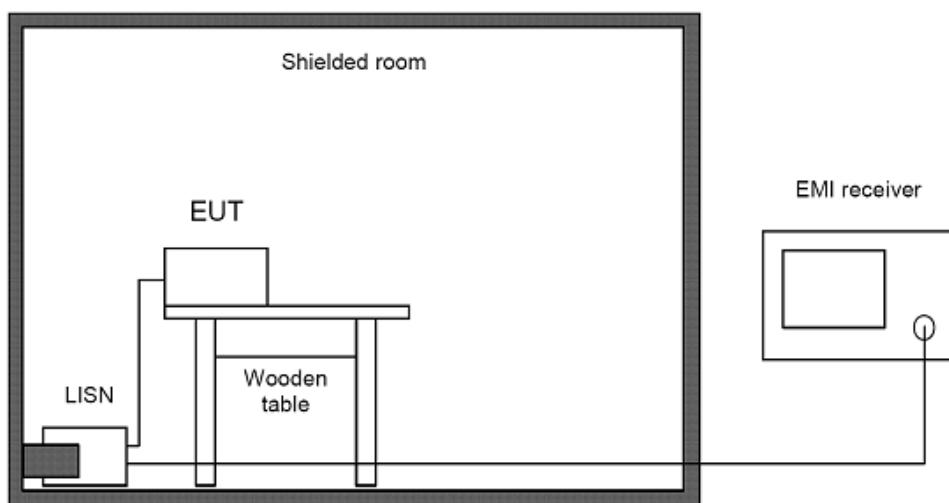


Figure 1: Setup for AC power-line conducted emissions test from 150 kHz to 30 MHz

6.3 Radiated emissions below 30 MHz

Radiated emissions below 30 MHz are measured according to clause 6.4 of ANSI C63.10, using an inductive shielded loop antenna. As this antenna measures the magnetic field only, its antenna factors are converted to electric field strength values assuming a free space impedance of 377 Ω as described in clause 4.3.1 of ANSI C63.10. This results in an additional correction of 51.53 dB.

6.3.1 Extrapolation according to ANSI C63.10

According to clause 6.4.3 of ANSI C63.10, at frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements. In this case, the results are extrapolated to the specified distance by using a recalculation factor determined according to one of the methods described in clause 6.4.4 of ANSI C63.10, provided that the maximum dimension of the device is equal to or less than 0.625 times the wavelength at the frequency being measured. As the minimum wavelength is 10 meters corresponding to the maximum frequency of 30 MHz, this requirement is fulfilled if the maximum dimension of the device is equal to or less than 6.25 meters.

Unless otherwise stated, the recalculation factor is determined according to clause 6.4.4.2 "Extrapolation from the measurement of a single point" of ANSI C63.10:

$$\begin{aligned} d_{\text{near field}} &= 47.77 / f_{\text{MHz}}, \text{ or} \\ f_{\text{MHz}} &= 47.77 / d_{\text{near field}} \end{aligned}$$

The frequency f_{MHz} at which the near field distance is equal to the limit and/or test distance is important for selection of the right formula to determine the recalculation factor:

$$\begin{aligned} f_{\text{MHz}}(300 \text{ m}) &\approx 0.159 \text{ MHz} \\ f_{\text{MHz}}(30 \text{ m}) &\approx 1.592 \text{ MHz} \\ f_{\text{MHz}}(3 \text{ m}) &\approx 15.923 \text{ MHz} \end{aligned}$$

Based on the test distances for the general radiated emission limits as specified in §15.209 of 47 CFR Part 15, the following formulas are used to determine the recalculation factor:

Frequency (f)	d_{limit}	d_{measure}	Formula for recalculation factor
9 kHz \leq f \leq 159 kHz 490 kHz $<$ f \leq 1.592 MHz	300 m 30 m	3 m	$-40 \log(d_{\text{limit}} / d_{\text{measure}})$
159 kHz $<$ f \leq 490 kHz 1.592 MHz $<$ f \leq 15.923 MHz	300 m 30 m	3 m	$-40 \log(d_{\text{near field}} / d_{\text{measure}}) - 20 \log(d_{\text{limit}} / d_{\text{near field}})$
f $>$ 15.923 MHz	30 m	3 m	$-20 \log(d_{\text{limit}} / d_{\text{measure}})$

Table 5: Recalculation factors for extrapolation

6.3.2 Measuring radiated emissions below 30 MHz

Prescans for radiated measurements below 30 MHz are performed in a fully anechoic room (called "CDC"). The measurement distance is 3 meters. The emissions of the EUT are recorded with an EMI test receiver configured as described in table 6.

Frequency (f)	Measurement receiver bandwidth	Step size	Detector type		
			Prescan	Prescan with FFT	Final scan
9 kHz ≤ f < 150 kHz	200 Hz	≤ 100 Hz	Peak, Average	Peak Quasi-peak, Average	Peak Quasi-peak, Average
150 kHz ≤ f < 30 MHz	9 kHz	≤ 4.5 kHz	Peak, Average	Peak Quasi-peak, Average	Peak Quasi-peak, Average

Table 6: Bandwidth and detector type for radiated emissions test below 30 MHz

Prescans are performed with all detectors activated at the same time. If the test receiver is capable of FFT analysis, it is used for prescans, but not for final scans. If no limit is specified for certain detectors, final scan measurement with these detectors may be omitted.

The radiated emissions test below 30 MHz is performed in the following steps:

- a) The loop antenna is positioned with its plane perpendicular to the ground with the lowest height of the antenna 1 m above the ground.
- b) The EUT is placed in its standard position on a turntable capable of rotation through 360° in the horizontal plane and arranged as tabletop or floor-standing equipment, as applicable. The EUT is switched on.
- c) The measurement equipment is connected to the loop antenna and set-up according to the specifications of the test (see table 6).
- d) The EUT is turned to a position likely to get the maximum and the test antenna is rotated to detect the maximum of the fundamental in this EUT position.
- e) Then the EUT is rotated in a horizontal plane through 360° in steps of 45°. Starting at 0°, at each table position the spectrum for the full frequency range is recorded. If the emission at a certain frequency is higher than the levels already recorded, the current table position is noted as the maximum position.
- f) After the last prescan, the significant maximum emissions and their table positions are determined and collected in a list.
- g) With the test receiver set to the first frequency of the list, the EUT is rotated by ±45° around the table position found during prescans while measuring the emission level continuously. For final scan, the worst-case table position is set and the maximum emission level is recorded.
- h) Step g) is repeated for all other frequencies in the list.
- i) Finally, for frequencies with critical emissions the loop antenna is rotated again to find the maximum of emission. At least, frequency and level of the six highest emissions relative to the limit have to be recorded. However, emissions more than 20 dB below the limit do not need to be reported.

If the EUT may be used in various positions, steps a) to i) are repeated in two other orthogonal positions. If the EUT may be used in one position only, steps a) to i) are repeated in one orthogonal position.



Figure 2: Setup for radiated emissions test below 30 MHz

6.4 Radiated emissions from 30 MHz to 1 GHz

Radiated emissions in the frequency range 30 MHz to 1 GHz are measured according to clause 6.5 of ANSI C63.10 using a semi-anechoic chamber (SAC) with a ground plane on the floor. The measurement distance is 3 meters. The emissions of the EUT are recorded with an EMI test receiver configured as described in table 7.

Frequency (f)	Measurement receiver bandwidth	Step size	Detector type		
			Prescan	Prescan with FFT	Final scan
30 MHz \leq f \leq 1 GHz	120 kHz	\leq 60 kHz	Peak	Quasi-peak	Quasi-peak

Table 7: Bandwidth and detector type for radiated emissions test from 30 MHz to 1 GHz

The measurement antenna is a combination of a biconical antenna and a logarithmic-periodic dipole array antenna. It is mounted on a support capable of allowing the antenna to be used in either horizontal or vertical polarization and in a height between 1 m and 4 m above the ground plane.

If the test receiver is capable of FFT analysis, it is used for prescans, but not for final scans.

The radiated emissions test from 30 MHz to 1 GHz is performed in the following steps:

- a) The measurement antenna is oriented initially for vertical polarization.
- b) The EUT is placed in its standard position on a turntable capable of rotation through 360° in the horizontal plane and arranged as tabletop or floor-standing equipment, as applicable. The EUT is switched on.
- c) The measurement equipment is connected to the measurement antenna and set-up according to the specifications of the test (see table 7).
- d) The table position is set to 0°.
- e) The antenna height is set to 1 m.
- f) The spectrum for the full frequency range is recorded. If the emission at a certain frequency is higher than the levels already recorded, the polarization and height of the measurement antenna as well as the current table position are noted as the maximum position.
- g) The antenna height is increased to 4 m in steps of 50 cm. At each height, step f) is repeated.
- h) The polarization of the measurement antenna is changed to horizontal.
- i) The antenna height is decreased from 4 m to 1 m in steps of 50 cm. At each height, step f) is repeated.
- j) The EUT is rotated in a horizontal plane through 360° in steps of 60°. At each table position, steps e) to i) are repeated.
- k) After the last prescan, the significant maximum emissions with their polarizations and heights of the measurement antenna as well as their table positions are determined and collected in a list.
- l) With the test receiver set to the first frequency of the list, the measurement antenna is set to the polarization and height and the table is moved to the position as determined during prescans.
- m) The antenna is moved by ± 50 cm around this height and the EUT is rotated by ± 60 ° around this table position while measuring the emission level continuously.
- n) For final scan, the worst-case positions of antenna and table are set and the maximum emission level is recorded.
- o) Steps l) to n) are repeated for all other frequencies in the list. At least, frequency and level of the six highest emissions relative to the limit have to be recorded. However, emissions more than 20 dB below the limit do not need to be reported.

If the EUT may be used in various positions, steps a) to o) are repeated in two other orthogonal positions.

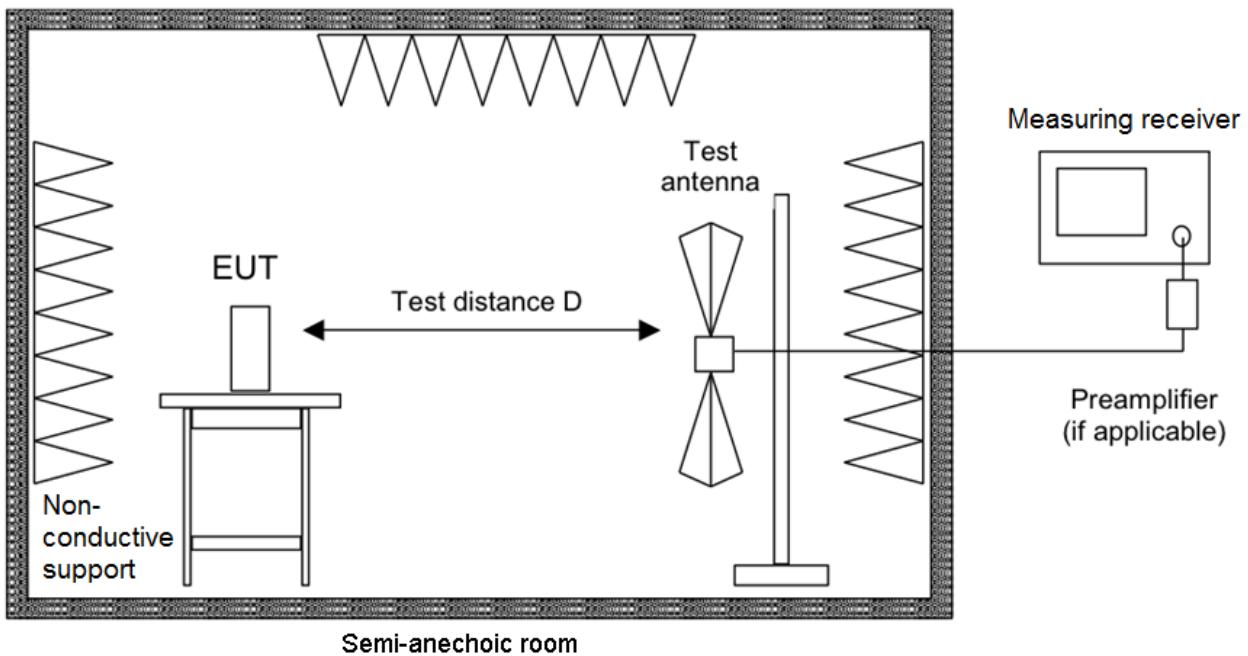


Figure 3: Setup for radiated emissions test from 30 MHz to 1 GHz

6.5 Radiated emissions above 1 GHz

Radiated emissions above 1 GHz are measured according to clause 6.6 of ANSI C63.10 by conducting exploratory and final radiated emission tests. According to clause 6.6.4.1 of ANSI C63.10, measurements may be performed at a distance closer than that specified in the requirements. However, an attempt shall be made to avoid making final measurements in the near field of both the measurement antenna and the EUT.

For measurement of radiated emissions above 1 GHz, horn antennas are used.

6.5.1 Exploratory radiated emissions measurements

Exploratory radiated emissions above 1 GHz are measured in a semi-anechoic chamber with RF absorbing material on the floor or a fully anechoic room. They are performed by moving the receiving antenna over all sides of the EUT at a closer distance (e.g. 0.5 or 1 m) while observing the display of the test receiver to find the emissions to be re-tested during final radiated emission measurements.

According to clause 5.3.3 of ANSI C63.10, when performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an

extrapolation factor of 20 dB/decade of distance (inverse of linear distance for field-strength measurements). To simplify testing and documentation, the limits are increased accordingly instead of decreasing the results.

The emissions of the EUT are displayed and recorded with an EMI test receiver operating in the spectrum analyzer mode using the settings as described in table 8.

Frequency (f)	Resolution bandwidth	Video bandwidth	Sweep time	Trace detector(s)	Trace mode(s)	Test
$f \geq 1 \text{ GHz}$	1 MHz	3 MHz	AUTO	Max Peak, Average	Clear Write	Searching
					Max Hold	Recording

Table 8: Bandwidth and trace settings for exploratory radiated emissions test above 1 GHz

If during exploratory radiated emissions measurements no levels to be re-tested are found, the final radiated emissions measurement may be omitted. In this case, the chart of the exploratory radiated emissions measurements has to be reported.

6.5.2 Final radiated emissions measurements

Final radiated emissions above 1 GHz are measured in a semi-anechoic chamber (SAC) with RF absorbing material on the floor between measurement antenna and EUT. The measurement distance is 3 meters. The emissions of the EUT are recorded with an EMI test receiver configured as described in table 9.

Frequency (f)	Measurement receiver bandwidth	Step size	Detector type	
			Prescan	Final scan
$f \geq 1 \text{ GHz}$	1 MHz	$\leq 500 \text{ kHz}$	Peak, Average	Peak, Average

Table 9: Bandwidth and detector type for final radiated emissions test above 1 GHz

Prescans are performed with both detectors activated at the same time. If the test receiver is capable of FFT analysis, it is used for prescans, but not for final scans.

The horn antenna is mounted on a support capable of allowing the antenna to be used in either horizontal or vertical polarization and to be moved in a scan height range between 1 m and the scan height upper range defined in clause 6.6.3.3 of ANSI C63.10. When the EUT is manipulated through three different orientations, the scan height upper range for the measurement antenna is limited to 2.5 m above the ground plane or 0.5 m above the top of the EUT, whichever is higher. Otherwise, the scan height upper range is 4 m above the ground plane.

To keep the emission signal within the illumination area of the 3 dB beamwidth of the measurement antenna, the automatic tilt function of the antenna support device is used to point the antenna at an angle toward the source of the emission.

The final radiated emissions test above 1 GHz is performed in the following steps:

- a) The measurement antenna is oriented initially for vertical polarization.
- b) The EUT is placed in its standard position on a turntable capable of rotation through 360° in the horizontal plane and arranged as tabletop or floor-standing equipment, as applicable. The EUT is switched on.
- c) The measurement equipment is connected to the measurement antenna and set-up according to the specifications of the test (see table 9).
- d) The table position is set to 0°.
- e) The antenna height is set to 1 m.
- f) The spectrum for the full frequency range is recorded. If the emission at a certain frequency is higher than the levels already recorded, the polarization and height of the measurement antenna as well as the current table position are noted as the maximum position.
 - g) The antenna height is increased to the scan height upper range in steps of 50 cm. At each height, step f) is repeated.
- h) The polarization of the measurement antenna is changed to horizontal.
- i) The antenna height is decreased from the scan height upper range to 1 m in steps of 50 cm. At each height, step f) is repeated.
- j) The EUT is rotated in a horizontal plane through 360° in steps of 30°. At each table position, steps e) to i) are repeated.
- k) After the last prescan, the significant maximum emissions with their polarizations and heights of the measurement antenna as well as their table positions are determined and collected in a list.
- l) With the test receiver set to the first frequency of the list, the measurement antenna is set to the polarization and height and the table is moved to the position as determined during prescans.
- m) The antenna is moved by ±50 cm around this height and the EUT is rotated by ±30° around this table position while measuring the emission level continuously.
- n) For final scan, the worst-case positions of antenna and table are set and the maximum emission level is recorded.
- o) Steps l) to n) are repeated for all other frequencies in the list. At least, frequency and level of the six highest emissions relative to the limit have to be recorded. However, emissions more than 20 dB below the limit do not need to be reported.

If the EUT may be used in various positions, steps a) to o) are repeated in two other orthogonal positions.

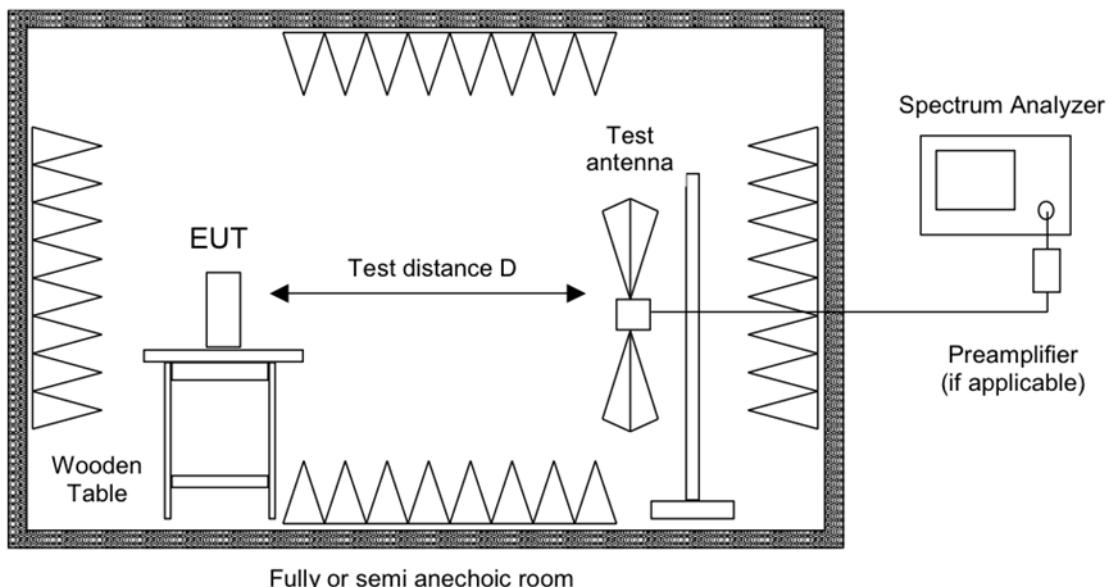


Figure 4: Setup for radiated emissions test above 1 GHz

7 Test results

This clause gives details about the test results as collected in the summary of test results starting on page 6.

The climatic conditions are recorded during the tests. It is ensured that the climatic conditions are within the following ranges:

<i>Ambient temperature</i>	<i>Ambient humidity</i>	<i>Ambient pressure</i>
15°C to 35°C	30 % to 75 %	86 kPa to 106 kPa

7.1 Restricted bands of operation

Result³: Test passed Test not passed

7.1.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
<input checked="" type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input checked="" type="checkbox"/> Loop antenna	HFH2-Z2	Rohde & Schwarz	E00060
<input checked="" type="checkbox"/> Cable set CDC	RF cable(s)	Huber + Suhner AME HF-Technik AME HF-Technik Stabo	E00446 E00920 E00921 E01215
<input checked="" type="checkbox"/> Test software	EMC32-MEB (v10.35)	Rohde & Schwarz	E00778

³ For information about measurement uncertainties see page 73.

7.1.2 Limits

The field strength of any emissions including spurious emissions falling into restricted bands as specified in section 15.205(a) of 47 CFR Part 15, shall not exceed the general radiated emission limits as specified in section 15.209 of 47 CFR Part 15. In addition, only spurious emissions are permitted in any of the restricted bands.

Frequency [MHz]	Field strength [μ V/m]	Field strength [dB μ V/m]	Measurement distance [m]
0.009 – 0.490	2400/F(kHz) (266.67 – 4.90)	48.52 – 13.80	300
0.490 – 1.705	24000/F(kHz) (48.98 – 14.08)	33.80 – 22.97	30
1.705 – 30	30	29.54	30
30 – 88	100	40.00	3
88 – 216	150	43.52	3
216 - 960	200	46.02	3
Above 960	500	53.98	3

Table 10: Limits for emissions in restricted bands

In case of measurements are performed at other distances than that specified in the requirements, the limits in the charts and tables reported with the test results are derived from the general radiated emission limits as listed in table 10 using the recalculation factor as described in clause 6.3.1.

7.1.3 Test procedure

Emissions in the restricted bands of operation are measured using the test procedure as described in clause 6.3.

7.1.4 Test results

7.1.4.1 Test results for standby mode

Performed by:	Andreas Menacher	Date of test:	November 16, 2018
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input type="checkbox"/> Position 1	<input checked="" type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	50 Hz	200 Hz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off
150 kHz – 30 MHz	2.25 kHz	9 kHz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off

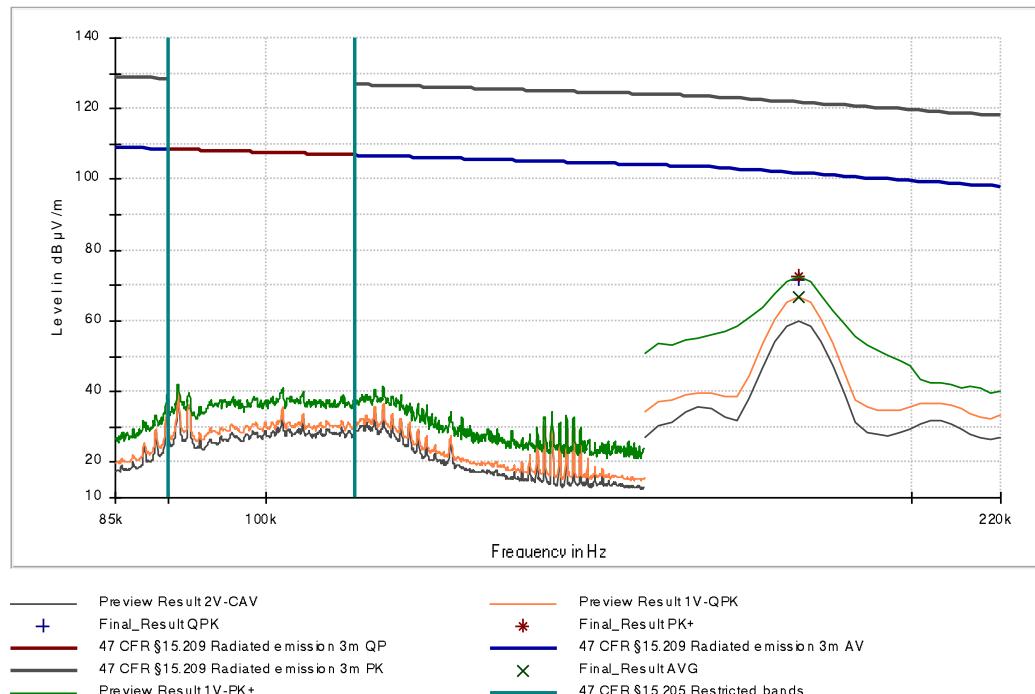
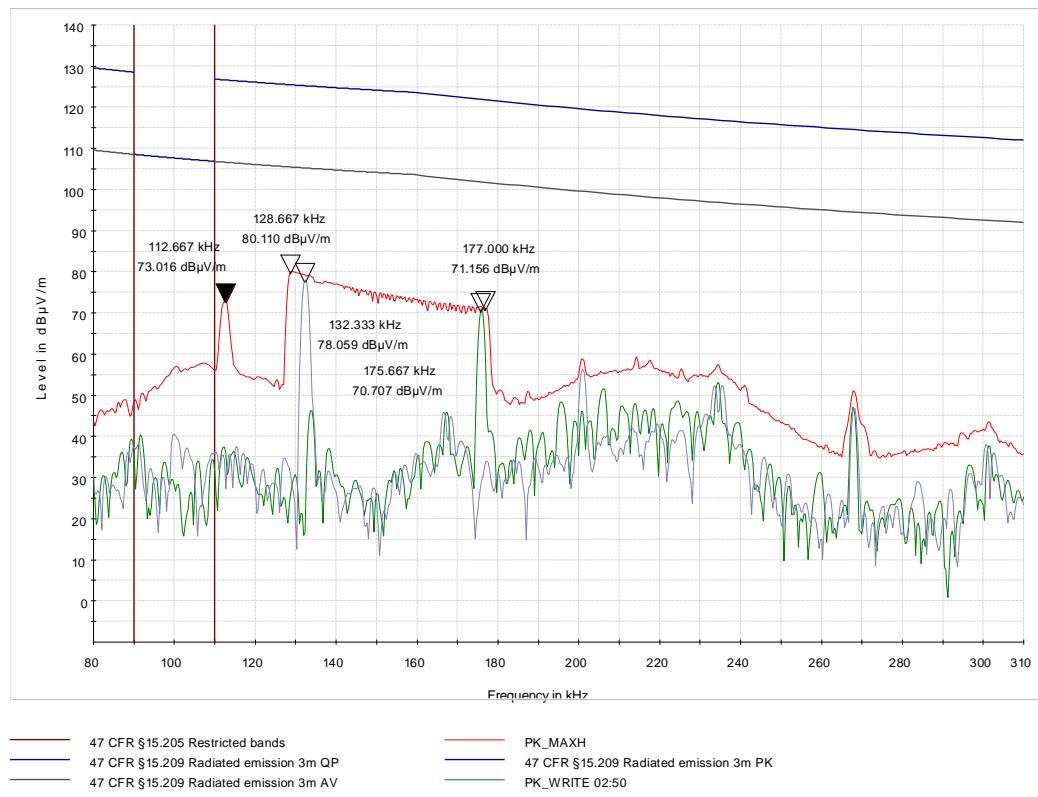



Figure 5: Chart of restricted bands of operation test for standby mode

7.1.4.2 Test results for charging mode 1

Performed by:	Andreas Menacher	Date of test:	February 28, 2019
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input type="checkbox"/> Position 1	<input checked="" type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

7.1.4.3 Test results for charging mode 2

Performed by:	Andreas Menacher	Date of test:	February 14, 2019
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input type="checkbox"/> Position 1	<input checked="" type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	50 Hz	200 Hz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off
150 kHz – 30 MHz	2.25 kHz	9 kHz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off

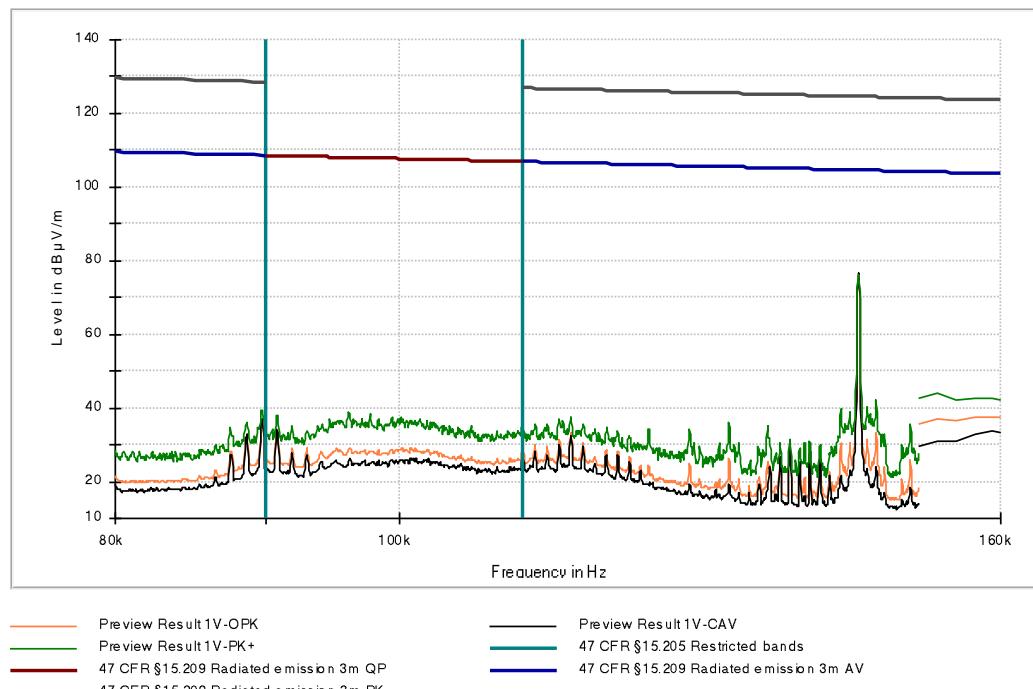


Figure 7: Chart of restricted bands of operation test for charging mode 2

7.2 AC power line conducted emissions

Result⁴: Test passed Test not passed

Remark: The test was performed with a representative power supply

7.2.1 Test equipment

	Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/>	Shielded room	P92007	Siemens Matsushita	E00107
<input checked="" type="checkbox"/>	EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input checked="" type="checkbox"/>	Artificial mains network	ESH2-Z5	Rohde & Schwarz	E00004
<input checked="" type="checkbox"/>	Attenuator (10 dB)	50FHB-010-10	JFW Industries	E00471
<input checked="" type="checkbox"/>	Cable set (shielded room) no. 1	RF cable(s)	Huber + Suhner	E00741 E00804
<input checked="" type="checkbox"/>	Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777

⁴ For information about measurement uncertainties see page 73.

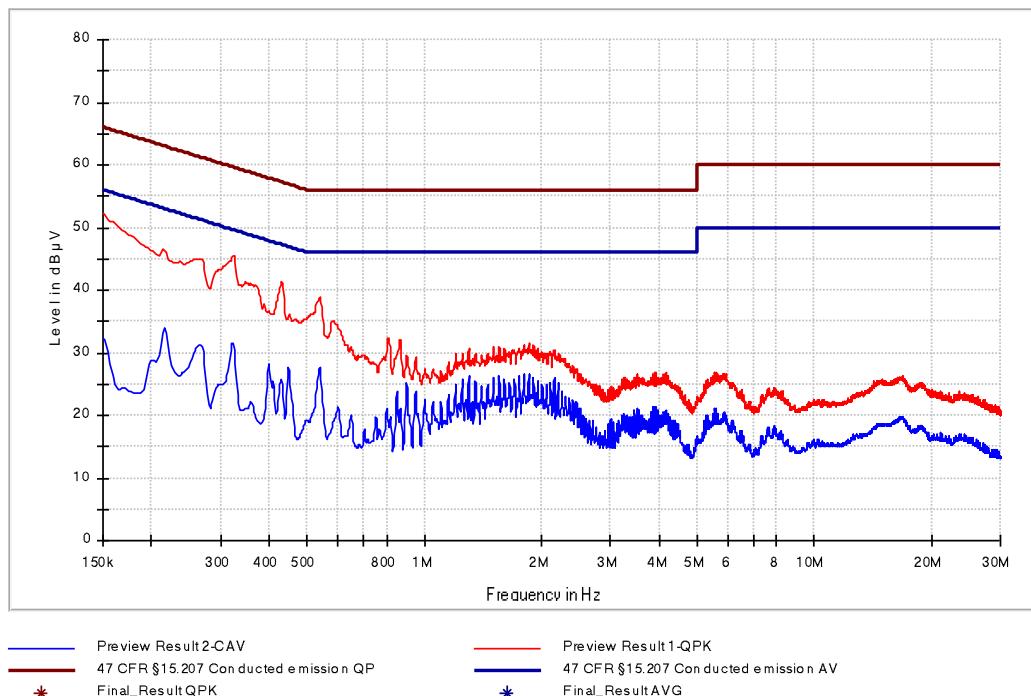
7.2.2 Limits

As specified in section 15.207 of 47 CFR Part 15, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in table 11.

Frequency [MHz]	Conducted limit	
	Quasi-peak [dB μ V]	Average [dB μ V]
0.15 – 0.5	66 – 56	56 – 46
0.5 – 5	56	46
5 – 30	60	50

Table 11: Limits for AC power-line conducted emissions according to §15.207

7.2.3 Test procedure


AC power line conducted emissions are measured using the test procedure as described in clause 6.2.

7.2.4 Test results

7.2.4.1 Test results for standby mode

Performed by: Andreas Menacher Date of test: November 21, 2018

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	100 Hz	200 Hz	PK, AV	QP, AV	100 ms	1 s	Off
150 kHz – 30 MHz	4 kHz	9 kHz	PK, AV	QP, AV	10 ms	1 s	Off

Note: No assessable emissions detected.

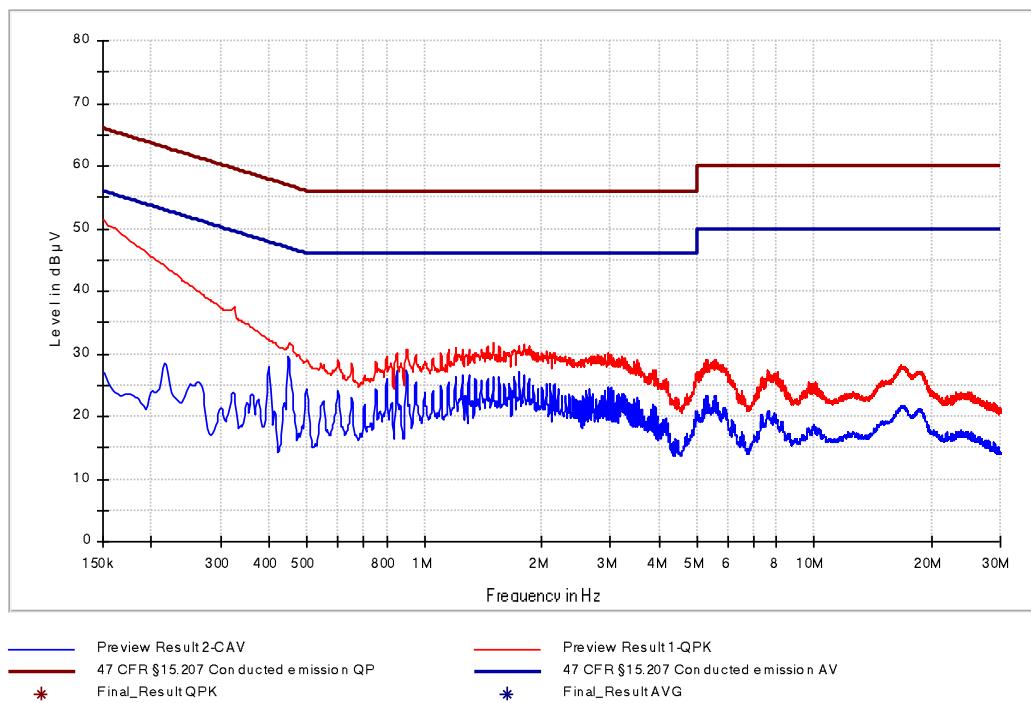


Figure 9: Chart of AC power-line conducted emissions test (15.207) on live wire N for standby mode

Note: No assessable emissions detected.

7.2.4.2 Test results for charging mode 2

Performed by: Andreas Menacher Date of test: November 21, 2018

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	100 Hz	200 Hz	PK, AV	QP, AV	100 ms	1 s	Off
150 kHz – 30 MHz	4 kHz	9 kHz	PK, AV	QP, AV	10 ms	1 s	Off

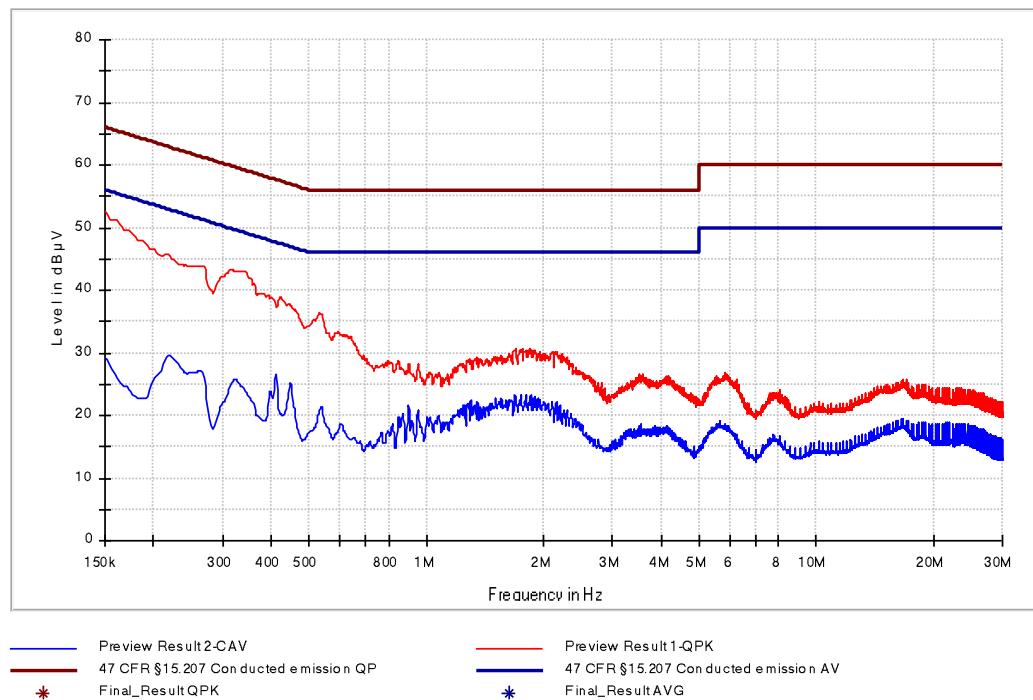


Figure 10: Chart of AC power-line conducted emissions test (15.207) on live wire L1 for charging mode 2

Note: No assessable emissions detected.

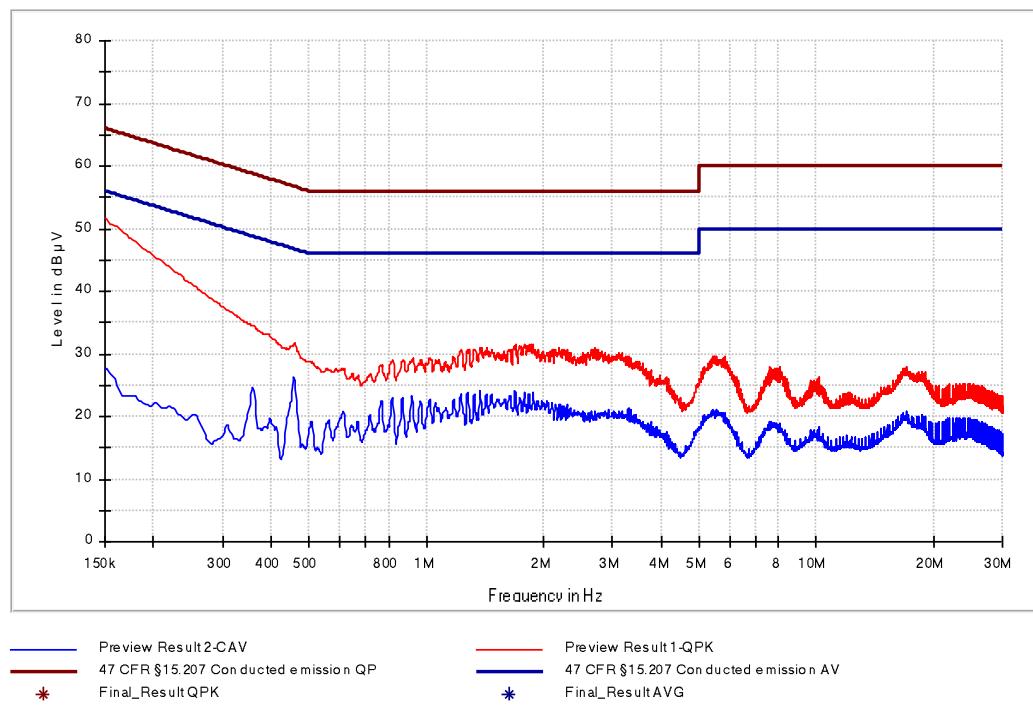


Figure 11: Chart of AC power-line conducted emissions test (15.207) on live wire N for charging mode 2

Note: No assessable emissions detected.

7.3 Radiated emissions

7.3.1 Radiated emissions below 30 MHz

Result⁵: Test passed Test not passed

7.3.1.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
<input checked="" type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input checked="" type="checkbox"/> Loop antenna	HFH2-Z2	Rohde & Schwarz	E00060
<input checked="" type="checkbox"/> Cable set CDC	RF cable(s)	Huber + Suhner AME HF-Technik AME HF-Technik Stabo	E00446 E00920 E00921 E01215
<input checked="" type="checkbox"/> Test software	EMC32-MEB (v10.35)	Rohde & Schwarz	E00778

⁵ For information about measurement uncertainties see page 73.

7.3.1.2 Limits

As specified in section 15.209 of 47 CFR Part 15, the emissions from an intentional radiator shall not exceed the field strength levels specified in table 12:

Frequency [MHz]	Field strength [μ V/m]	Field strength [dB μ V/m]	Measurement distance [m]
0.009 – 0.490	2400/F(kHz) (266.67 – 4.90)	48.52 – 13.80	300
0.490 – 1.705	24000/F(kHz) (48.98 – 14.08)	33.80 – 22.97	30
1.705 – 30	30	29.54	30

Table 12: General radiated emission limits according to §15.209

In case of measurements are performed at other distances than that specified in the requirements, the limits in the charts and tables reported with the test results are derived from the general radiated emission limits as listed in table 12 using the recalculation factor as described in clause 6.3.1.

7.3.1.3 Test procedure

Radiated emissions below 30 MHz are measured using the test procedure as described in clause 6.3.

7.3.1.4 Test results for IF 750

7.3.1.4.1 Test results for standby mode

Performed by:	Andreas Menacher	Date of test:	November 16, 2018
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input type="checkbox"/> Position 1	<input checked="" type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	50 Hz	200 Hz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off
150 kHz – 30 MHz	2.25 kHz	9 kHz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off

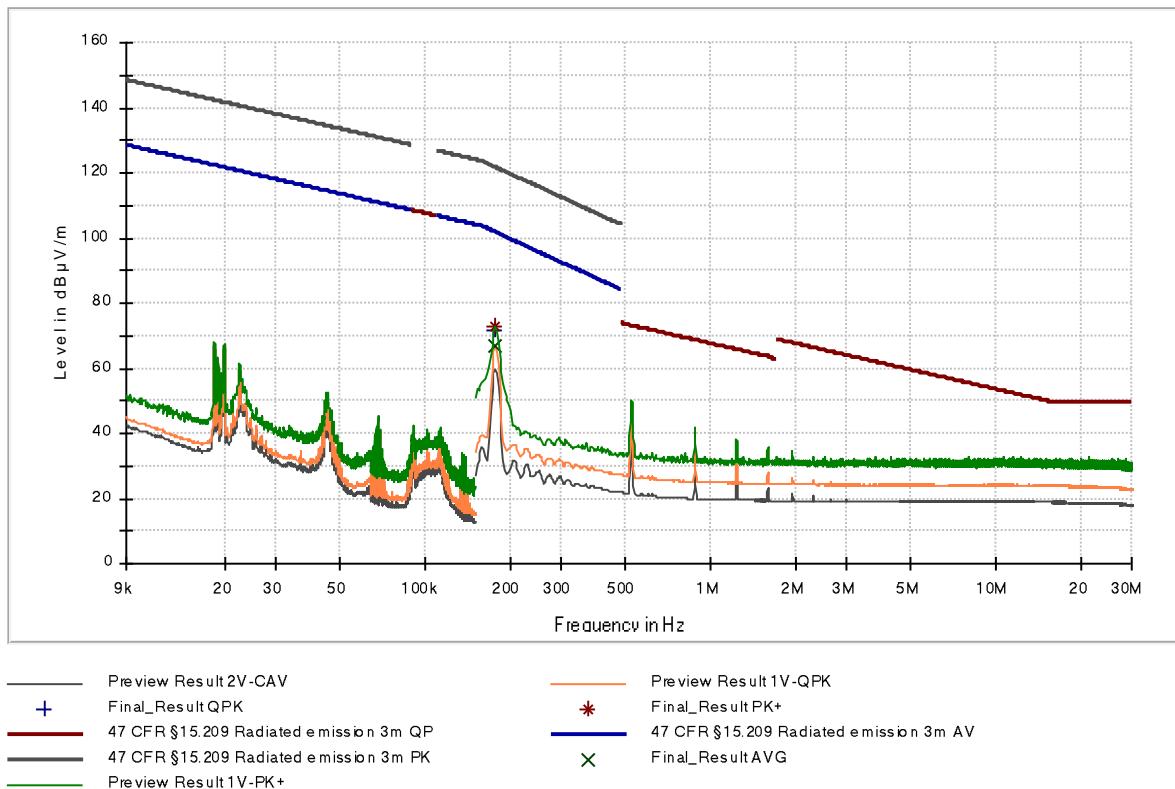


Figure 12: Chart of radiated emissions test below 30 MHz according to §15.209 for standby mode

Frequency (MHz)	Detector	Measured field strength (dB μ V/m)	Distance referred to limit (m)	Recalculation factor (dB)	Calculated field strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azi-muth (deg)
0.17700	AV	66.78	300	79.08	-12.30	22.64	34.94	183.0
0.17700	PK	72.81	300	79.08	-6.27	42.64	48.91	183.0

Table 13: Results of radiated emissions test below 30 MHz according to §15.209 for standby mode

Note: The emission within the restricted band from 90 kHz to 110 kHz is a spurious emission for which the quasi-peak limit applies. In standby mode, no power receiver is present, i.e. there is no communication.

7.3.1.4.2 Test results for charging mode 2

Performed by:	Andreas Menacher	Date of test:	February 14, 2019
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input type="checkbox"/> Position 1	<input checked="" type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	50 Hz	200 Hz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off
150 kHz – 30 MHz	2.25 kHz	9 kHz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off

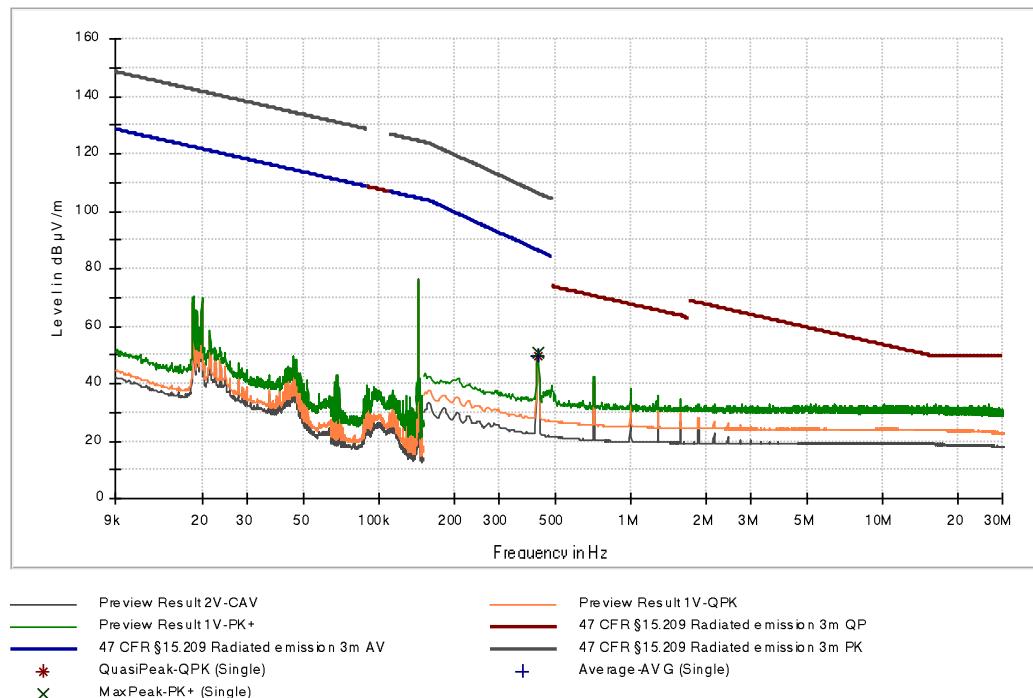


Figure 13: Chart of radiated emissions test below 30 MHz according to §15.209 for charging mode 2

Frequency (MHz)	Detector	Measured field strength (dB μ V/m)	Distance referred to limit (m)	Recalculation factor (dB)	Calculated field strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (deg)
0.142750	AV	75.29	300	80.00	-4.71	24.51	29.22	180.0
0.142750	PK	75.62	300	80.00	-4.38	44.51	48.89	180.0
0.429000	AV	49.51	300	80.95	-31.44	14.96	46.40	180.0
0.429000	PK	50.67	300	80.95	-30.28	34.96	65.24	180.0

Table 14: Results of radiated emissions test below 30 MHz according to §15.209 for charging mode 2

7.3.1.5 Test results for CS 750

7.3.1.5.1 Test results for standby mode

Performed by:	Andreas Menacher	Date of test:	November 16, 2018
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input type="checkbox"/> Position 1	<input checked="" type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	50 Hz	200 Hz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off
150 kHz – 30 MHz	2.25 kHz	9 kHz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off

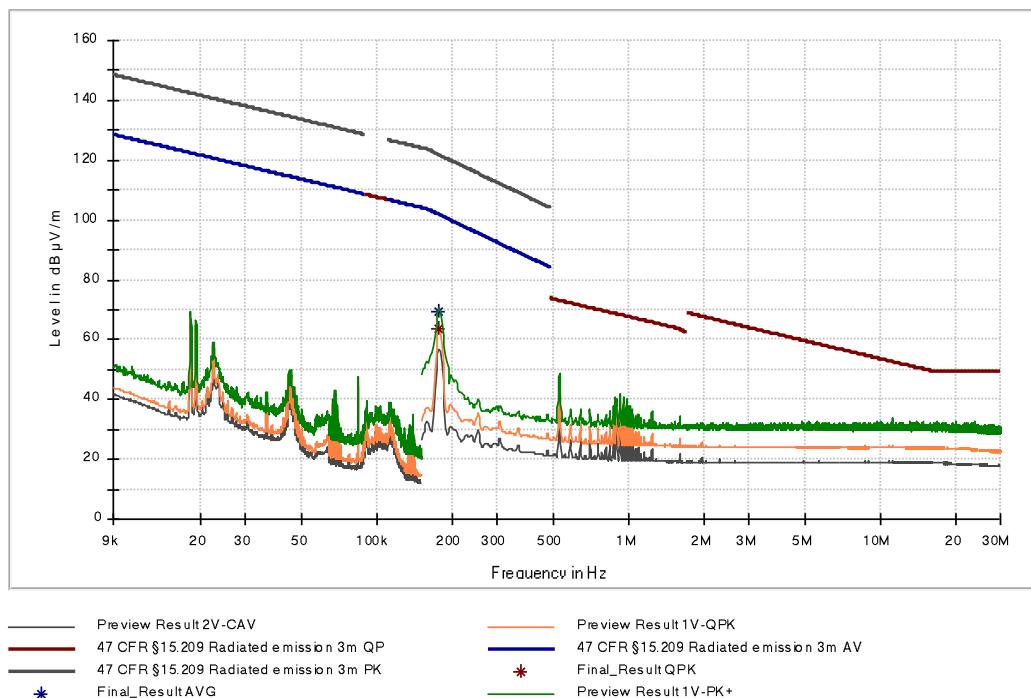


Figure 14: Chart of radiated emissions test below 30 MHz according to §15.209 for standby mode

Frequency (MHz)	Detector	Measured field strength (dB μ V/m)	Distance referred to limit (m)	Recalculation factor (dB)	Calculated field strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (deg)
0.17700	AV	69.58	300	79.08	-9.50	22.64	34.14	4.0
0.17700	PK	70.80	300	79.08	-8.28	42.64	50.92	4.0

Table 15: Results of radiated emissions test below 30 MHz according to §15.209 for standby mode

Note: The emission within the restricted band from 90 kHz to 110 kHz is a spurious emission for which the quasi-peak limit applies. In standby mode, no power receiver is present, i.e. there is no communication.

7.3.1.5.2 Test results for charging mode 2

Performed by:	Andreas Menacher	Date of test:	February 14, 2019
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input type="checkbox"/> Position 1	<input checked="" type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	50 Hz	200 Hz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off
150 kHz – 30 MHz	2.25 kHz	9 kHz	QP, PK, CAV	QP, PK, AV	2 s	1 s	Off

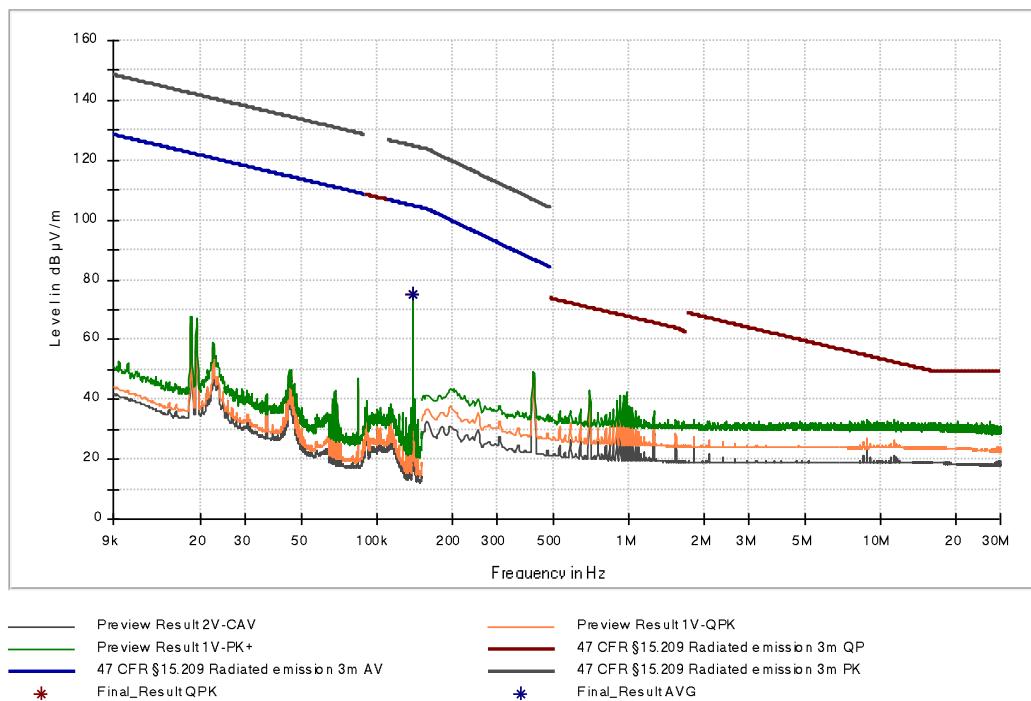


Figure 15: Chart of radiated emissions test below 30 MHz according to §15.209 for charging mode 2

Frequency (MHz)	Detector	Measured field strength (dB μ V/m)	Distance referred to limit (m)	Recalculation factor (dB)	Calculated field strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (deg)
0.140150	AV	74.96	300	80.00	-5.04	24.67	29.71	11.0
0.140150	PK	75.40	300	80.00	-4.60	24.67	29.27	11.0

Table 16: Results of radiated emissions test below 30 MHz according to §15.209 for charging mode 2

7.3.2 Radiated emissions from 30 MHz to 1 GHz

Section(s) in 47 CFR Part 15: Requirement:
Reference(s):

15.209
ANSI C63.10, clause 6.5

Result⁶: Test passed Test not passed

7.3.2.1 Test equipment

	Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/>	Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
<input checked="" type="checkbox"/>	EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input checked="" type="checkbox"/>	TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input checked="" type="checkbox"/>	Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
<input checked="" type="checkbox"/>	Test software	EMC32-MEB (v10.35)	Rohde & Schwarz	E00778

⁶ For information about measurement uncertainties see page 73.

7.3.2.2 Limits

As specified in section 15.209 of 47 CFR Part 15, the emissions from an intentional radiator shall not exceed the field strength levels specified in table 17:

Frequency [MHz]	Field strength [μ V/m]	Field strength [dB μ V/m]	Measurement distance [m]
30 – 88	100	40.00	3
88 – 216	150	43.52	3
216 - 960	200	46.02	3
Above 960	500	53.98	3

Table 17: General radiated emission limits according to §15.209

7.3.2.3 Test procedure

Radiated emissions from 30 MHz to 1 GHz are measured using the test procedure as described in clause 6.4.

7.3.2.4 Test results for IF 750

7.3.2.4.1 Test results for standby mode

Performed by:	Andreas Menacher	Date of test:	February 5, 2019
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
EUT position:	<input checked="" type="checkbox"/> Position 1	<input type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
30 MHz – 1 GHz	30 kHz	120 kHz	QP	QP	1 s	1 s	20 dB

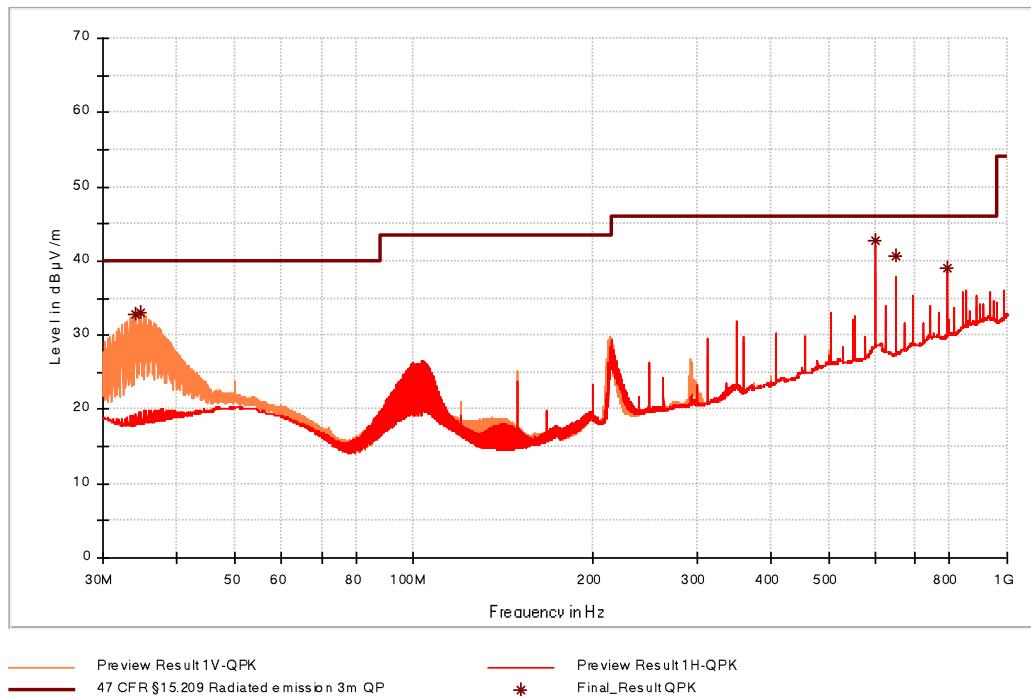


Figure 16: Chart of radiated emissions test 30 MHz to 1 GHz according to §15.209 for standby mode

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.080000	32.88	40.00	7.12	1000.0	120.000	100.0	V	240.0	11.1
34.770000	32.95	40.00	7.05	1000.0	120.000	100.0	V	260.0	11.4
600.000000	42.75	46.00	3.25	1000.0	120.000	140.0	H	68.0	21.6
648.000000	40.63	46.00	5.37	1000.0	120.000	123.0	H	132.0	21.6
792.000000	39.04	46.00	6.96	1000.0	120.000	101.0	H	59.0	24.0

Table 18: Results of radiated emissions test 30 MHz to 1 GHz according to §15.209 for standby mode

7.3.2.4.2 Test results for charging mode 2

Performed by:	Andreas Menacher	Date of test:	April 25, 2018
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
EUT position:	<input checked="" type="checkbox"/> Position 1	<input type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
30 MHz – 1 GHz	30 kHz	120 kHz	QP	QP	1 s	1 s	20 dB

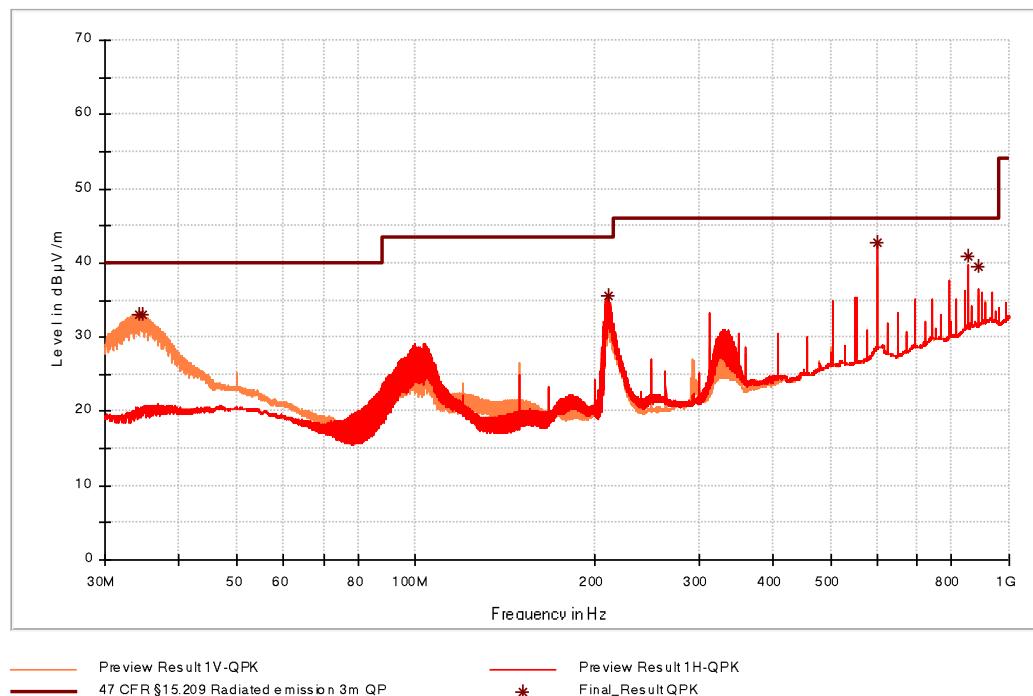


Figure 17: Chart of radiated emissions test 30 MHz to 1 GHz according to §15.209 for charging mode 2

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
34.200000	33.10	40.00	6.90	1000.0	120.000	100.0	V	266.0	11.2
34.770000	32.94	40.00	7.06	1000.0	120.000	100.0	V	240.0	11.4
210.720000	35.61	43.50	7.89	1000.0	120.000	139.0	H	245.0	12.5
600.000000	42.85	46.00	3.15	1000.0	120.000	128.0	H	64.0	21.6
849.990000	40.87	46.00	5.13	1000.0	120.000	100.0	H	131.0	24.9
888.030000	39.61	46.00	6.39	1000.0	120.000	150.0	H	140.0	25.4

Table 19: Results of radiated emissions test 30 MHz to 1 GHz according to §15.209 for charging mode 2

7.4.1.1 Test results for CS 750

7.4.1.1.1 Test results for standby mode

Performed by:	Andreas Menacher	Date of test:	February 5, 2019
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
EUT position:	<input checked="" type="checkbox"/> Position 1	<input type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
30 MHz – 1 GHz	30 kHz	120 kHz	QP	QP	1 s	1 s	20 dB

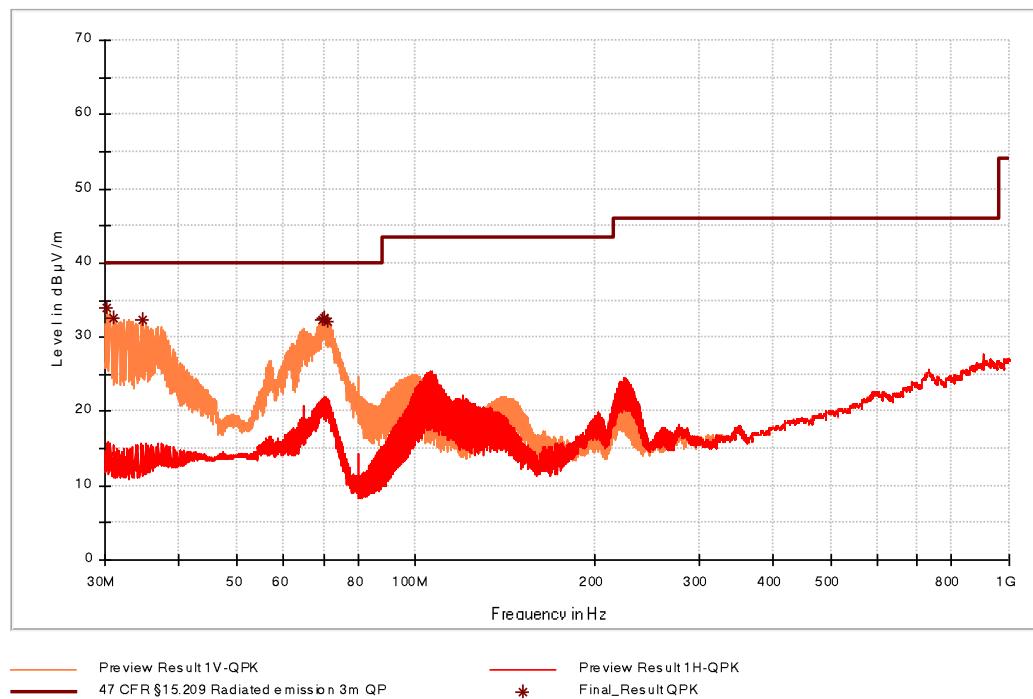


Figure 18: Chart of radiated emissions test 30 MHz to 1 GHz according to §15.209 for standby mode

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
30.270000	34.00	40.00	6.00	1000.0	120.000	100.0	V	170.0
30.960000	32.67	40.00	7.33	1000.0	120.000	101.0	V	129.0
34.770000	32.36	40.00	7.64	1000.0	120.000	102.0	V	50.0
69.570000	32.37	40.00	7.63	1000.0	120.000	102.0	V	222.0
70.290000	32.65	40.00	7.35	1000.0	120.000	114.0	V	206.0
71.160000	32.02	40.00	7.98	1000.0	120.000	100.0	V	239.0

Table 20: Results of radiated emissions test 30 MHz to 1 GHz according to §15.209 for standby mode

7.4.1.1.2 Test results for charging mode 2

Performed by:	Andreas Menacher	Date of test:	April 25, 2018
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
EUT position:	<input checked="" type="checkbox"/> Position 1	<input type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
30 MHz – 1 GHz	30 kHz	120 kHz	QP	QP	1 s	1 s	20 dB

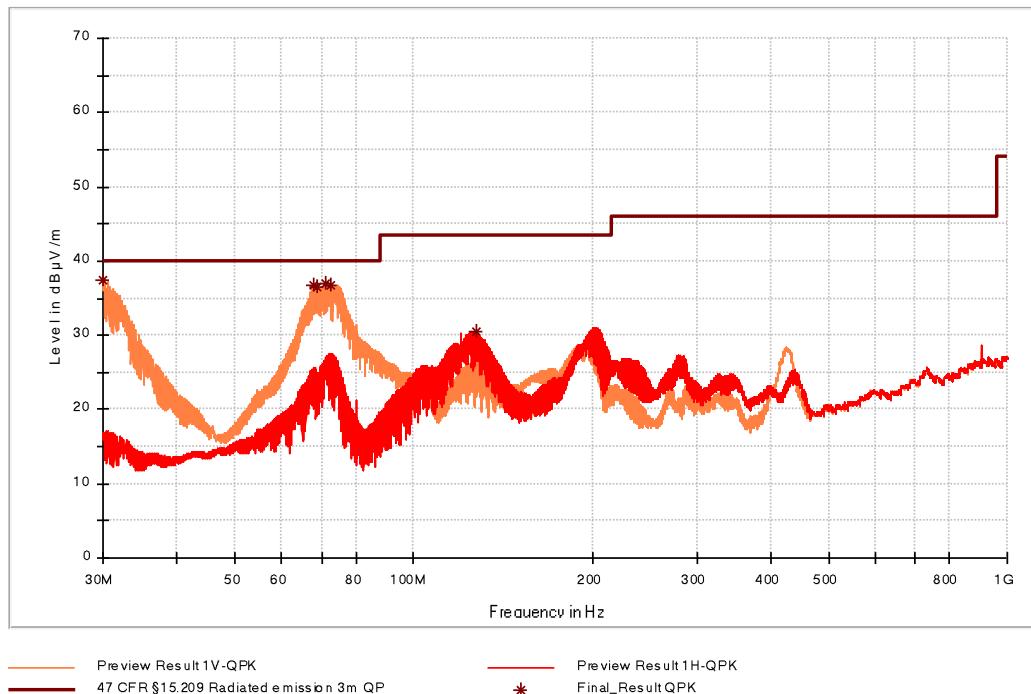


Figure 19: Chart of radiated emissions test 30 MHz to 1 GHz according to §15.209 for charging mode 2

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
30.000000	37.33	40.00	2.67	1000.0	120.000	100.0	V	180.0
67.980000	36.82	40.00	3.18	1000.0	120.000	100.0	V	0.0
68.700000	36.57	40.00	3.43	1000.0	120.000	100.0	V	9.0
71.250000	36.89	40.00	3.11	1000.0	120.000	100.0	V	176.0
72.570000	36.72	40.00	3.28	1000.0	120.000	100.0	V	231.0
127.350000	30.45	43.50	13.05	1000.0	120.000	278.0	H	274.0

Table 21: Results of radiated emissions test 30 MHz to 1 GHz according to §15.209 for charging mode 2

7.5 Bandwidth tests

Result⁷: Test passed Test not passed

7.5.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input checked="" type="checkbox"/> Field probe	RF-R 400-1	Langer EMV-Technik	E00270

⁷ For information about measurement uncertainties see page 73.

7.5.2 Limits

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of 47 CFR Part 15, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. However, as WPT systems are certified with reference to the general radiated emission limits as specified in §15.209, no limit for the 20 dB bandwidth applies.

The occupied bandwidth is recorded according to section 6.6 of RSS-Gen with no limit applied, as there is no occupied bandwidth limit stated in RSS-216.

7.5.3 Test procedure

Emissions in the restricted bands of operation are measured using the test procedure as described in clause 6.3.

7.5.3.1 Test procedure for 20 dB bandwidth of the emission

The 20 dB bandwidth of the emission is measured according to clause 6.9.2 of ANSI C63.10 as the width of the spectral envelope of the modulated signal, at an amplitude level reduced by a ratio of 20 dB down from the reference value. The reference value is

- the level of the unmodulated carrier, or
- the highest level of the spectral envelope of the modulated signal.

The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer is between two times and five times the 20 dB bandwidth. The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 % to 5 % of the 20 dB bandwidth and the video bandwidth (VBW) shall be approximately three times RBW. The reference level of the instrument is set as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than $[10 \log (20 \text{ dB bandwidth}/\text{RBW})]$ below the reference level.

7.5.4 Test results

7.5.4.1 Test results for standby mode

Performed by:	Andreas Menacher	Date of test:	August 27, 2019
Test distance:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input type="checkbox"/> Position 1	<input checked="" type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Bandwidth test	Value kHz	Center frequency kHz	Lowest frequency kHz	Highest frequency kHz	Application band kHz	Result
20 dB bandwidth	5.225	177.206	174.384	179.609	---	Recorded

Table 22: Results of bandwidth tests for standby mode

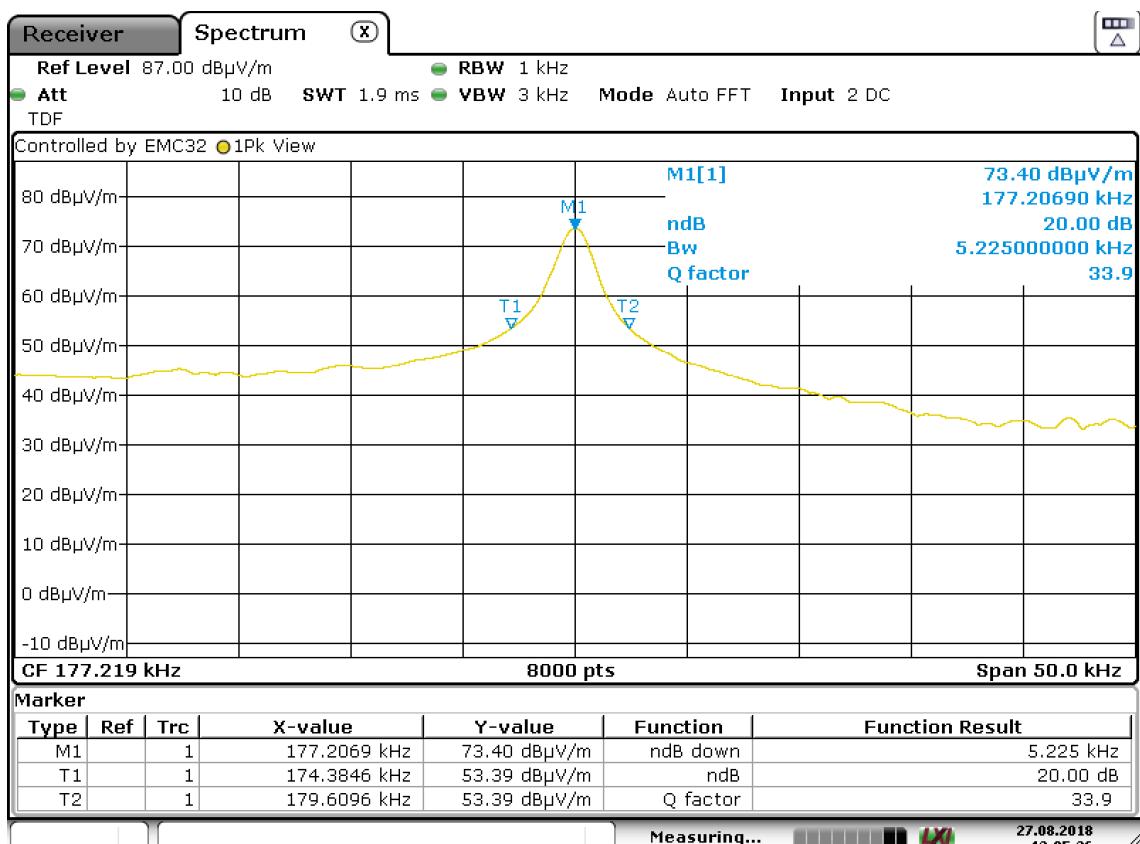


Figure 20: Chart of 20 dB bandwidth of the emission test for standby mode

7.5.4.2 Test results for charging mode 2

Performed by:	Andreas Menacher	Date of test:	February 14, 2019
Test distance:	<input type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input checked="" type="checkbox"/> 0.1 m
Antenna alignment:	<input checked="" type="checkbox"/> in parallel	<input type="checkbox"/> in line	<input type="checkbox"/> angle °
EUT position:	<input checked="" type="checkbox"/> Position 1	<input type="checkbox"/> Position 2	<input type="checkbox"/> Position 3

Bandwidth test	Value kHz	Center frequency kHz	Lowest frequency kHz	Highest frequency kHz	Application band kHz	Result
20 dB bandwidth	0.068	146.418	146.383	146.452	---	Recorded

Table 23: Results of bandwidth tests for charging mode 2

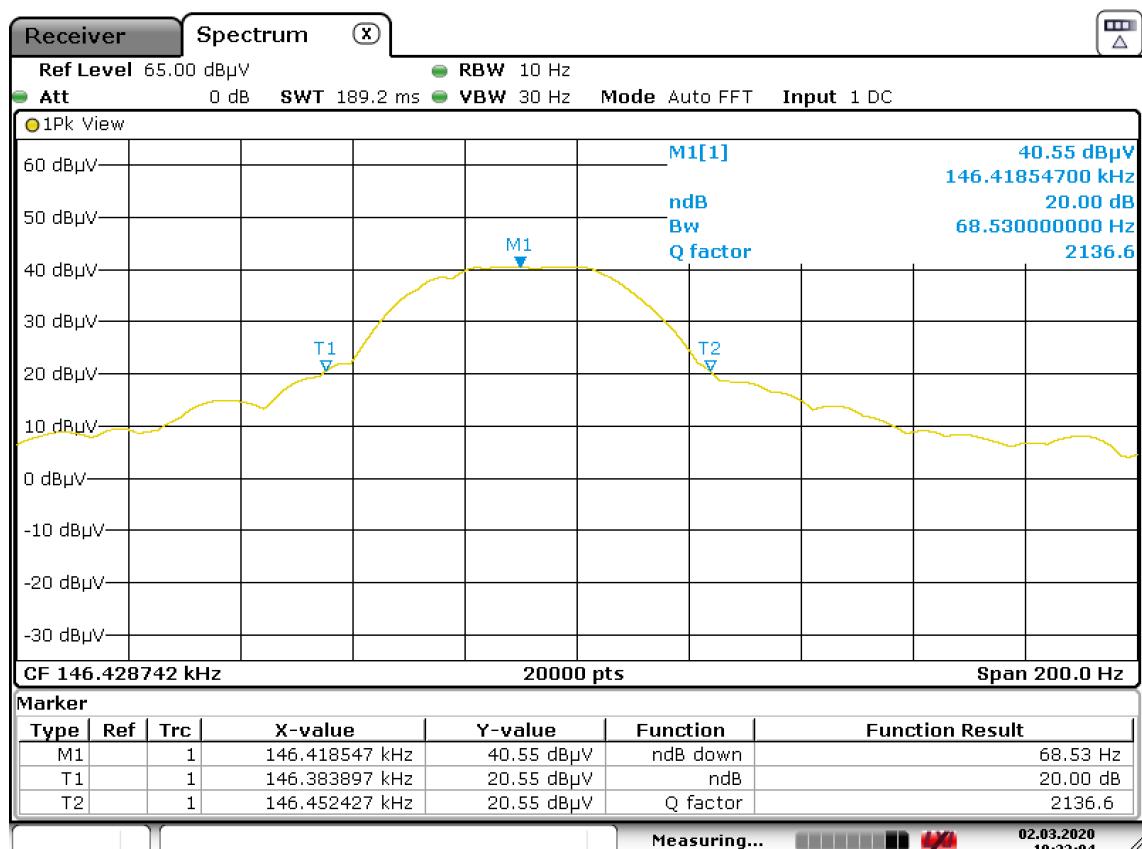


Figure 21: Chart of 20 dB bandwidth of the emission test for charging mode 2

8 Equipment calibration status

Description	Modell number	Serial number	Inventory number(s)	Last calibration	Next calibration
EMI test receiver	ESR7	101059	E00739	2018-05	2020-05
EMI test receiver	ESW44	101538	E00895	2019-07	2020-07
EMI test receiver	ESCI3	100013	E00001	2018-05	2020-05
EMI test receiver	ESCI3	1000328	E00552	2018-10	2020-10
Attenuator (10 dB)	50FHB-010-10	---	E00471	2017-02	2019-02
Artificial mains network (AMN)	ESH2-Z5	881362/037	E00004	see Note 1	
Artificial mains network (AMN)	ESH2-Z5	893406/009	E00005	2018-10	2020-10
Loop antenna	HFH2-Z2	871398/0050	E00060	2016-09	2018-09
Field probe	RF-R 400-1	02-2030	E00270	see Note 2	
TRILOG broadband antenna (SAC)	VULB 9162	9162-041	E00643	2015-11	2018-11
Shielded room	P92007	B 83117 C 1109 T 211	E00107	N/A	
Compact diagnostic chamber (CDC)	VK041.0174	D62128-A502-A69-2-0006	E00026	N/A	
Semi-anechoic chamber (SAC)	SAC3	C62128-A520-A643-x-0006	E00716	See notes 1 and 2	
Cable set shielded room	RG 223/U	---	E00741	2017-02	2019-02
	RG 223/U	---	E00804	2017-02	2019-02
Cable set CDC	RG214/U	---	E00446	2018-01	2020-01
	LMR400	1718020006	E00920	2018-01	2020-01
	RG214 Hiflex	171802007	E00921	2018-01	2020-01
	LCF12-50J	---	E01215	2018-01	2020-01
Cable set SAC	SF104EA/11PC35/11PC35/10000MM	501347/4EA	E00755	2017-12	2019-12
	SF104E/11PC35/11PC35/2000MM	507410/4E	E01033	2017-12	2019-12
	SF104E/11PC35/11PC35/2000MM	507411/4E	E01034	2017-09	2019-09

Note 1: Only used for decoupling of support equipment.

Note 2: Only used for relative measurements (clause 7.4).

9 Measurement uncertainties

Description	Uncertainty	k=
AC power line conducted emissions (with AMN) 9 kHz to 150 kHz 150 kHz to 30 MHz	±3.8 dB ±3.4 dB	2
Radiated emissions in semi-anechoic chamber or open area test site 9 kHz to 30 MHz 30 MHz to 300 MHz 300MHz to 1 GHz	± 4.8 dB ± 5.4 dB ± 4.7 dB	2
Radiated emissions in semi-anechoic chamber with RF absorbing material on the floor or fully anechoic room 1 GHz to 18 GHz	± 4.5 dB	2

Comment: The uncertainty stated is the expanded uncertainty obtained by multiplying the standard uncertainty by the coverage factor k. For a confidence level of 95 % the coverage factor k is 2.

All used test instrument as well as the test accessories are calibrated at regular intervals.

10 Revision history

<i>Revision</i>	<i>Date</i>	<i>Issued by</i>	<i>Description of modifications</i>
0	2019-11-29	Andreas Menacher	First edition