

Test report No. : 10180434H-B-R1
Page : 1 of 50
FCC ID : VPYLBNSN460
Issued date : February 7, 2014
Revised date : February 13, 2014

SAR TEST REPORT

Test Report No. : 10180434H-B-R1

Applicant : Murata Manufacturing Company, Ltd.

Type of Equipment : Communication Module

Model No. : LBWA1ZZSNE-460

FCC ID : VPYLBNSN460

Test regulation : FCC47CFR 2.1093

Test Result : Complied

Reported SAR(1g) Value : The highest reported SAR(1g)
FCC Part15.247 Body : 0.300W/kg

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
2. The results in this report apply only to the sample tested.
3. This sample tested is in compliance with the limits of the above regulation.
4. The test results in this report are traceable to the national or international standards.
5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
6. This report is a revised version of 10180434H-B. 10180434H-B is replaced with this report.

Date of test: January 31, 2014

**Representative
test engineer:**

Yoshinori Ishida
Engineer of WiSE Japan,
UL Verification Service

Approved by :

Takahiro Hatake
Leader of WiSE Japan
UL Verification Service

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation.
*As for the range of Accreditation in NVLAP, you may refer to the WEB address,
<http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap>

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

13-EM-F0429

REVISION HISTORY

Original Test Report No.: 10180434H-B

CONTENTS	PAGE
SECTION 1: Customer information.....	4
SECTION 2: Equipment under test (E.U.T.).....	4
2.1 Identification of E.U.T.....	4
2.2 Product description.....	4
SECTION 3 : Test standard information	5
3.1 Test Specification	5
3.2 Procedure.....	5
3.3 Exposure limit	6
3.4 Test Location	6
SECTION 4 : Test result.....	7
4.1 Stand-alone SAR result.....	7
SECTION 5 : Description of the operating mode	8
5.1 Output power operating modes.....	8
5.2 Output power measurement results.....	9
5.3 SAR testing operating modes	10
5.4 Confirmation after SAR testing	11
SECTION 6 SAR test exclusion considerations	12
6.1 Standalone SAR test exclusion considerations	12
SECTION 7: Description of the Body setup.....	13
7.1 Test position for Body setup.....	13
SECTION 8 : Test surrounding	14
8.1 Measurement uncertainty	14
SECTION 9 : Measurement results	15
9.1 WLAN Body SAR (2.4G)	15
SECTION 10 Test instruments.....	16
APPENDIX 1 : SAR Measurement data	17
1. Evaluation procedure	17
2. Measurement data	18
APPENDIX2 : System Validation	21
1. System validation result Body 2450MHz	21
2. System Validation Dipole (D2450V2,S/N:713).....	23
3. Validation uncertainty.....	31
APPENDIX 3 : System specifications	32
1. Configuration and peripherals.....	32
2. Specifications.....	33
3. Dosimetric E-Field Probe Calibration (EX3DV4, S/N: 3825).....	37
APPENDIX 4: Photographs of test setup	48
1. Photographs of EUT	48
2. Information of host device	48
3. Antenna position	49
4. Photographs of setup.....	50

SECTION 1: Customer information

Company Name : Murata Manufacturing Company, Ltd.
Address : 10-1, Higashikotari 1-chome, Nagaokakyo-shi, Kyoto 617-8555 Japan
Telephone Number : +81-75-955-6375
Facsimile Number : +81- 75-955-6634
Contact Person : Takaharu Kawakatsu

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Communication Module
Model No. : LBWA1ZZSNE-460
Serial No. : 001
Rating : DC3.3V
Receipt Date of Sample : January 8, 2014
Country of Mass-production : Japan
Condition of EUT : Production prototype
(Not for Sale: This sample is equivalent to mass-produced items.)
Modification of EUT : No Modification by the test lab

2.2 Product description

Radio Specification

Radio Type : Transceiver
Frequency of Operation : 2412-2462MHz
Modulation : DSSS
Power Supply (radio part input) : DC1.8V/3.3V
Antenna type : Chip Antenna
Antenna Gain : 0.45dBi

SECTION 3 : Test standard information

3.1 Test Specification

Title : **FCC47CFR 2.1093**

Radiofrequency radiation exposure evaluation: portable devices.

: **IEEE Std 1528-2003:**

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices.

: **Published RF exposure KDB procedures**

<input checked="" type="checkbox"/> KDB450824 D01(v01r01)	SAR Prob Cal and Ver Meas
<input checked="" type="checkbox"/> KDB450824 D02(v01r01)	Dipole SAR Validation Verification
<input checked="" type="checkbox"/> KDB447498D01(v05r01)	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
<input type="checkbox"/> KDB447498D02(v02)	SAR Measurement Procedures for USB Dongle Transmitters
<input type="checkbox"/> KDB648474D04(v01r01)	SAR Evaluation Considerations for Wireless Handsets
<input type="checkbox"/> KDB941225D01(v02)	SAR Measurement Procedures for 3G Devices
<input type="checkbox"/> KDB941225D02(v02r02)	3GPP R6 HSPA and R7 HSPA+ SAR Guidance
<input type="checkbox"/> KDB941225D03(v01)	Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE
<input type="checkbox"/> KDB941225D04(v01)	Evaluating SAR for GSM/(E)GPRS Dual Transfer Mode
<input type="checkbox"/> KDB941225D05(v02r02)	SAR for LTE Devices
<input type="checkbox"/> KDB941225D06(v01r01)	SAR test procedures for devices incorporating SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities (Hot Spot SAR)
<input type="checkbox"/> KDB941225D07(v01r01)	SAR Evaluation Procedures for UMPC Mini-Tablet Devices
<input type="checkbox"/> KDB 616217 D04(v01r01)	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers
<input checked="" type="checkbox"/> KDB865664 D01(v01r02)	SAR Measurement Requirements for 100MHz to 6 GHz
<input checked="" type="checkbox"/> KDB248227 D01(v01r02)	SAR Measurement Procedures for 802.11a//b/g Transmitters

Reference

[1]ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.

[2]SPEAG uncertainty document (AN 15-7/AN19-17) for DASY 5 System from SPEAG (Schmid & Partner Engineering AG).

3.2 Procedure

Transmitter	WLAN
Test Procedure	Published RF exposure KDB procedures SAR
Category	FCC47CFR 2.1093

Note: UL Japan, Inc. 's SAR Work Procedures 13-EM-W0429 and 13-EM-W0430

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

3.3 Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

Spatial Average (averaged over the whole body)	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
0.4	8.0	20.0

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Spatial Average (averaged over the whole body)	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
0.08	1.6	4.0

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

**NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE
SPATIAL PEAK(averaged over any 1g of tissue) LIMIT
1.6 W/kg**

3.4 Test Location

*Shielded room for SAR testings
UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN
Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN
Telephone: +81 596 24 8999
Facsimile: +81 596 24 8124

SECTION 4 : Test result

4.1 Stand-alone SAR result

Reported SAR

Measured SAR is scaled to the maximum tune-up tolerance limit by the following formulas.

Reported SAR = Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

Maximum tune-up tolerance limit is 33.96mW(15.31dBm) by the specification from a customer.

Refer to the "Tune-up procedure for WLAN" for Maximum tune-up tolerance limit.

Mode	Measured power [mW]*1	Maximum tune-up tolerance limit [mW]	Measured SAR [W/kg]	Reported SAR [W/kg]
WLAN 11b	29.79	33.96	0.263	0.300

Note

*1 The sample used by the SAR test is within the tune-up tolerance but not more than 2 dB lower than the maximum tune-up tolerance limit. That is, measured power is included the tune-up tolerance range.

SECTION 5 : Description of the operating mode

5.1 Output power operating modes

Mode	Duty cycle	Frequency Band	Test Frequency	Modulation
IEEE802.11b	100%	2412-2462MHz	2412MHz (1ch) 2437MHz(6ch) 2462MHz(11ch)	DSSS (DBPSK.DQPSK.CCK)
WLAN				
*Power of the EUT was set by the software as follows; Software/version: GainSpan FW : GEPS 2.3.5(WPS) Power setting: AT+EXTPA=1 AT+WP=10				
*The above setting is the worst case. Any conditions under the normal use do not exceed the condition of setting. In addition, end users cannot change the settings of the output power of the product.				

5.2 Output power measurement results

Output power measurement for WLAN

1) WLAN (11b)

[IEEE802.11b] Rate Check

Rate [Mbps]	Freq. [MHz]	Reading [dBm]	Cable Loss [dB]	Atten. [dB]	Result	
		AVG			[dBm] AVG	[mW] AVG
1.0	2437	3.26	0.75	10.01	14.02	25.23
2.0	2437	3.38	0.75	10.01	14.14	25.94
5.5	2437	3.43	0.75	10.01	14.19	26.24
11.0	2437	3.53	0.75	10.01	14.29	26.85

:Worst data rate

IEEE802.11b 1Mbps

Ch	Frequency [MHz]	P/M Reading	Cable Loss [dB]	Atten. [dB]	Result	
		AVG			[dBm] AVG	[mW] AVG
1	2412	2.88	0.75	10.01	13.64	23.12
6	2437	3.26	0.75	10.01	14.02	25.23
11	2462	3.98	0.75	10.01	14.74	29.79

:SAR test channel

IEEE802.11b 11Mbps

Ch	Frequency [MHz]	P/M Reading	Cable Loss [dB]	Atten. [dB]	Result	
		AVG			[dBm] AVG	[mW] AVG
1	2412	2.82	0.75	10.01	13.58	22.80
6	2437	3.53	0.75	10.01	14.29	26.85
11	2462	4.05	0.75	10.01	14.81	30.27

:SAR test channel

Correlation of output power with radio test report (Test report No.: 10180434H-A)

IEEE802.11b 11Mbps (Output power(time average) of radio test report)

Ch	Frequency [MHz]	P/M Reading	Cable Loss [dB]	Atten. [dB]	Result [dBm] AVG
		AVG			
11	2462	3.91	0.75	10.07	14.73

IEEE802.11b 11Mbps (This time)

Ch	Frequency [MHz]	P/M Reading	Cable Loss [dB]	Atten. [dB]	Result [dBm] AVG	Deviation [dB]
		AVG				
11	2462	4.05	0.75	10.01	14.81	0.08

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

5.3 SAR testing operating modes

The operating mode for SAR testing was decided by the output power

1) SAR measurement for WLAN

Decision of SAR test channel

The operating mode for SAR testing was decided by the output power

Mode	GHz	Channel	"Default Test Channel"		
			FCC 15.247		UNII
			802.11b	802.11g	
802.11 b/g/n20	2.412	1	√	Δ	
	2.437	6	√	Δ	
	2.462	11	√	Δ	

√ = "default test channels"

Δ = Possible 802.11g channels with maximum average output $\frac{1}{4}$ dB ≥ the "default test channels"

Mode	Test Frequency	Modulation	Crest factor	Note
IEEE802.11b	2462MHz(11ch)	DBPSK(1Mbps) CCK(11Mbps)	1	*1
WLAN				
*Power of the EUT was set by the software as follows; Software/version: GainSpan FW : GEPS 2.3.5(WPS) Power setting: AT+EXTPA=1 AT+WP=10				
*The above setting is the worst case. Any conditions under the normal use do not exceed the condition of setting. In addition, end users cannot change the settings of the output power of the product.				

*1 The other channel was not required since maximum average output power channel SAR value is less than 0.8W/kg.

5.4 Confirmation after SAR testing

It was checked that the power drift [W] is within +/-5%. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

DASY5 system calculation Power drift value[dB] = $20\log(E_a)/(E_b)$

Before SAR testing : E_b [V/m]

After SAR testing : E_a [V/m]

Limit of power drift[W] = +/-5%

$X[dB] = 10\log(P) = 10\log(1.05/1) = 10\log(1.05) - 10\log(1) = 0.212$ dB

from E-filed relations with power.

$p = E^2/\eta = E^2/$

Therefore, The correlation of power and the E-filed

$XdB = 10\log(P) = 10\log(E)^2 = 20\log(E)$

Therefore,

The calculated power drift of DASY5 System must be the less than +/-0.212dB.

SECTION 6 SAR test exclusion considerations

The host device is “Body composition monitor”.

SAR test was performed only at the front position as WLAN communication is possible only when the users get on the host device. Body SAR test was performed as there is a possibility that users may bring their body close to the front position of the host device. (ex. In case weight of baby is measured.)

Please refer to Appendix 4 about the host device.

6.1 Standalone SAR test exclusion considerations

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$

for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

$f(\text{GHz})$ is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

WLAN 2.4GHz

Band	Standalone SAR tested	Position	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *4	Min distance *2	Calculation of exclusion *3
WLAN(2.4 GHz band)	<input checked="" type="checkbox"/>	Front	11b CCK(11Mbps)	2462 [MHz] (11ch)	15.31 [dBm] 33.96 [mW] 34 [mW]*5	12 [mm]	4.4

*1 The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.

*2 When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Refer to Appendix 4.

*3 $[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$

If it is Calculation of exclusion ≤ 3.0 standalone SAR test is excluded.

*4 Maximum tune-up tolerance limit is 33.96mW(15.31dBm) by the specification from a customer.

*5 Maximum tune-up tolerance limit(mW) is rounded to one decimal place.

SECTION 7: Description of the Body setup

7.1 Test position for Body setup

i) Procedure for SAR testing

-The tested procedure was performed according to the KDB447498 D01 (Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies)

ii) Test mode

WLAN	Data transmission mode (11b)
-------------	-------------------------------------

iii) Test position

No.	Position	Test distance	WLAN		
			Tested	Antenna	Separation from user
1	Front	0mm	<input checked="" type="checkbox"/>	Fixed	12mm

SECTION 8 : Test surrounding

8.1 Measurement uncertainty

The uncertainty budget has been determined for the DASY5 measurement system according to the SPEAG documents[2] and is given in the following Table.

<0.3 – 3GHz range>

Error Description	Uncertainty value ±	Probability distribution	divisor	(ci) lg	Standard (lg)	vi or v _{eff}
Measurement System						
Probe calibration	± 6.00	Normal	1	1	± 6.00	∞
Axial isotropy of the probe	± 4.7	Rectangular	$\sqrt{3}$	0.7	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	$\sqrt{3}$	0.7	± 3.9	∞
Boundary effects	± 2.0	Rectangular	$\sqrt{3}$	1	± 1.2	∞
Probe linearity	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Modulation response	± 2.4	Rectangular	$\sqrt{3}$	1	± 1.4	∞
Readout electronics	± 0.3	Normal	1	1	± 0.3	∞
Response time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5	∞
Integration time	± 2.6	Rectangular	$\sqrt{3}$	1	± 1.5	∞
RF ambient Noise	± 3.0	Rectangular	$\sqrt{3}$	1	± 1.7	∞
RF ambient Reflections	± 3.0	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Probe Positioner	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5	∞
Probe positioning	± 6.7	Rectangular	$\sqrt{3}$	1	± 3.9	∞
MaxSAR Eval.	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Test Sample Related						
Device positioning	± 2.9	Normal	1	1	± 2.9	1
Device holder uncertainty	± 3.6	Normal	1	1	± 3.6	1
Power drift	± 5.0	Rectangular	$\sqrt{3}$	1	± 2.9	∞
Power Scaling	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.64	± 1.8	∞
Liquid conductivity (meas.)	± 2.4	Rectangular	1	0.64	± 1.5	∞
Liquid permittivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (meas.)	- 2.8	Rectangular	1	0.6	- 1.7	∞
Liquid conductivity - temp.unc (below 2deg.C.)	± 1.7	Rectangular	$\sqrt{3}$	0.78	± 0.8	∞
Liquid permittivity - temp.unc (below 2deg.C.)	± 0.3	Rectangular	$\sqrt{3}$	0.23	± 0.0	∞
Combined Standard Uncertainty						
± 11.839						
Expanded Uncertainty (k=2)						
± 23.7						

SECTION 9 : Measurement results

9.1 WLAN Body SAR (2.4G)

(1)Method of measurement

Step.1 The searching for the worst data rate

The test was performed at the worst power channel.

Note:

1)The other channel was not required since maximum average output power channel SAR value is less than 0.8W/kg.
 2) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg.

When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is $>$ 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

(2)Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the HP85070D dielectric probe kit.

The dielectric parameters measurement is reported in each correspondent section.

DIELECTRIC PARAMETERS MEASUREMENT RESULTS											
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
-	-	-	-	-	2000	ϵ_r	53.3	-	-	-	*1
						σ [mho/m]	1.52	-	-	-	
31-Jan	24	38	MSL 2450	23.5	2412	ϵ_r	52.8	51.5	-2.3	+/-5	*2
						σ [mho/m]	1.91	1.98	3.7	+/-5	
31-Jan	24	38	MSL 2450	23.5	2437	ϵ_r	52.7	51.4	-2.5	+/-5	*2
						σ [mho/m]	1.94	2.00	3.1	+/-5	
31-Jan	24	38	MSL 2450	23.5	2450	ϵ_r	52.7	51.3	-2.6	+/-5	*1
						σ [mho/m]	1.95	2.01	2.9	+/-5	
31-Jan	24	38	MSL 2450	23.5	2462	ϵ_r	52.7	51.2	-2.8	+/-5	*2
						σ [mho/m]	1.97	2.02	2.5	+/-5	
-	-	-	-	-	3000	ϵ_r	52.0	-	-	-	*1
						σ [mho/m]	2.73	-	-	-	

ϵ_r : Relative Permittivity / σ : Cductivity

*1 The Target value is a parameter defined in KDB 865664D01.

*2 The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

(3)Result of Body SAR

BODY SAR MEASUREMENT RESULTS												
Frequency		Modulation	Measured power		Maximum tune-up tolerance limit		Phantom Section	EUT Set-up Conditions			Measured SAR(1g) [W/kg]	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]	Maximum of multi-peak	Maximum of multi-peak
Step.1 Searching for the worst data rate												
11	2462	11b 11Mbps	14.81	30.27	15.31	33.96	Flat	Fixed	Front	0	0.267	0.300
11	2462	11b 1Mbps	14.74	29.79	15.31	33.96	Flat	Fixed	Front	0	0.263	0.300

*1 Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

SECTION 10 Test instruments

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MNA-01	Network Analyzer	Agilent/HP	E8358A	US41080381	SAR	2013/09/09 * 12
MNCK-01	Type N Calibration Kit	Agilent	85032F	MY41495257	SAR	2013/09/07 * 12
MDPK-01	Dielectric probe kit	Agilent	85070D	702	SAR	2013/09/09 * 12
COTS-MSAR-02	S-Parameter Network Analyzer	Agilent	—	—	SAR	-
MPM-15	Power Meter	Agilent	N1914A	MY53060017	SAR	2013/06/05 * 12
MPSE-20	Power sensor	Agilent	N8482H	MY53050001	SAR	2013/06/05 * 12
MPSE-21	Power sensor	Agilent	N8482H	MY52460010	SAR	2013/06/05 * 12
MHDC-22	Directional Coupler	Agilent	87300B	14893A	SAR(2-18GHz)	Pre Check
MRFA-24	Pre Amplifier	R&K	R&K CGA020M602-2633R	B30550	SAR	2013/06/06 * 12
MSG-13	Signal Generator	Rohde & Schwarz	SMA 100A	103764	SAR	2013/06/05 * 12
MDA-07	Dipole Antenna	Schmid&Partner Engineering AG	D2450V2	713	SAR(D2450)	2013/09/10 * 12
MDAE-01	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	509	SAR	2013/07/16 * 12
MPB-07	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	3825	SAR	2013/12/13 * 12
MPF-02	2mmOval Flat Phantom ELI 4.0	Schmid&Partner Engineering AG	QD OVA 001BA (ELI4.0)	1045	SAR	2013/05/25 * 12
MDH-01	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	-	SAR	Pre Check
MOS-10	Digital thermometer	HANNA	Checktemp-2	MOS-10	SAR	2013/08/23 * 12
MOS-26	Thermo-Hygrometer	CUSTOM	CTH-201	A08Q29	SAR	2013/05/16 * 12
COTS-MSAR-03	Dasy5	Schmid&Partner Engineering AG	DASY5	-	SAR	-
MRBT-02	SAR robot	Schmid&Partner Engineering AG	TX60 Lspeag	F10/5E3LA1/A/01	SAR	2013/04/25 * 12
MAT-22	Attenuator(10dB) 1-18GHz	Orient Microwave	BX10-0476-00	-	Power Measurement	2013/03/21 * 12
MPM-13	Power Meter	Anritsu	ML2495A	0824014	Power Measurement	2013/11/15 * 12
MPSE-18	Power sensor	Anritsu	MA2411B	0738174	Power Measurement	2013/11/15 * 12
MSL2450					Daily check	Target value ± 5%
SAR room					Daily check	Ambient Noise<0.012W/kg

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

APPENDIX 1 : SAR Measurement data

1. Evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and the horizontal grid spacing was 15 mm x 15 mm, 12 mm x 12 mm or 10mm x 10mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of 30mm x 30mm x 30mm or more was assessed by measuring 7 x 7 x 7 points at least for below 3GHz and a volume of 28 mm x 28mm x 22.5mm or more was assessed by measuring 8 x 8 x 6(ratio step method (*1)) points at least for 5GHz band.

And for any secondary peaks found in the Step2 which are within 2dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

(1). The data at the surface were extrapolated, since the center of the dipoles is 1mm(EX3DV4) away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

(2). The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions) [4], [5]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

(3). All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the E-field at the same location as in Step 1.

***1. Ratio step method parameters used:**

The first measurement point: 2mm from the phantom surface, the initial grid separation: 2mm, subsequent graded grid ratio: 1.5

These parameters comply with the requirement of the KDB 865664.

In the section of SAR Scan Procedures-Zoom Scan, in KDB 865664 D02v01: SAR Measurement Requirements for 100MHz to 6GHz, the graded grids requirement is as follows;

"When graded grids are used (z), the first measurement point should be within 3mm of the phantom surface for measurements below 4.5GHz and within 2mm at or above 4.5GHz. The initial grid separation, closest to the phantom, should be 2.0mm. A subsequent graded ratio of 1.5 is recommended and less than 2.0 is required."

2. Measurement data

i) WLAN Body

WLAN 11b 11Mbps Front 2462MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2462$ MHz; $\sigma = 2.017$ S/m; $\epsilon_r = 51.211$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(7.23, 7.23, 7.23); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn509; Calibrated: 2013/07/16

Phantom: ELI 4.0; Type: QDOVA001BA;

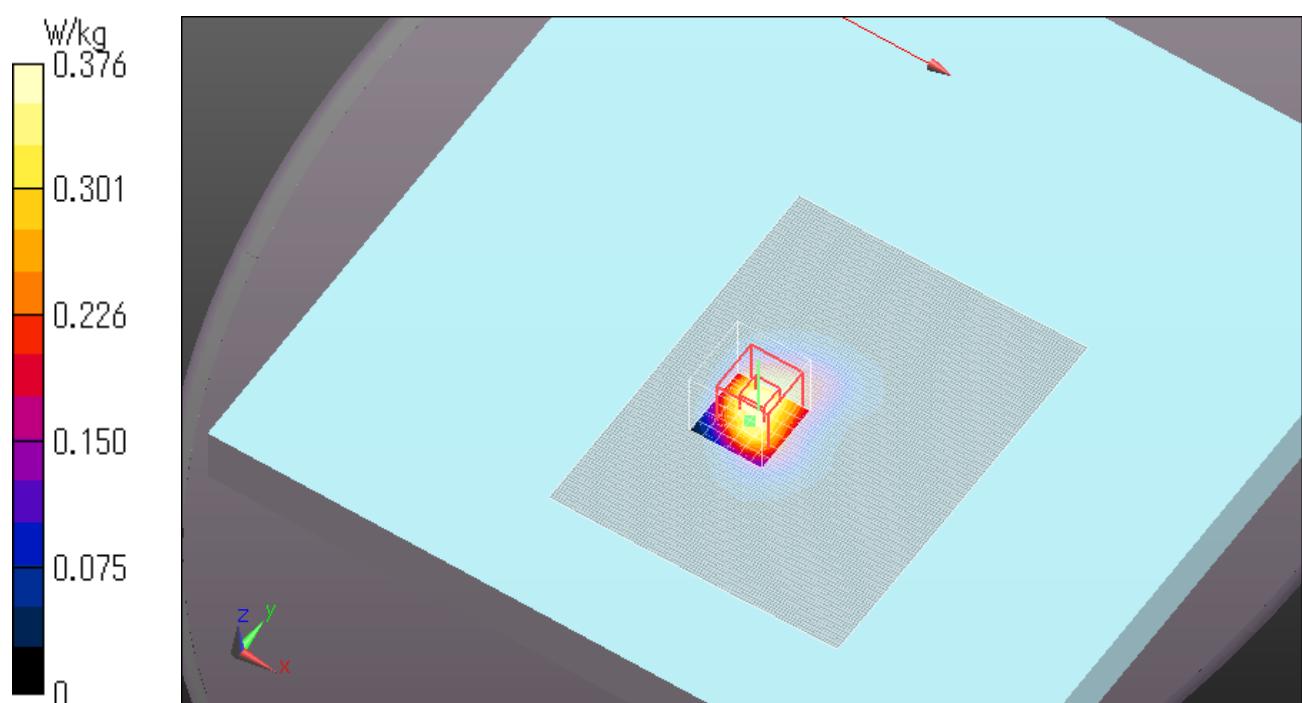
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (101x131x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.435 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.851 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 0.518 W/kg

SAR(1 g) = 0.267 W/kg; SAR(10 g) = 0.142 W/kg

Maximum value of SAR (measured) = 0.376 W/kg

Date: 2014/01/31

Ambient Temp. : 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

WLAN 11b 11Mbps Front 2462MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2462$ MHz; $\sigma = 2.017$ S/m; $\epsilon_r = 51.211$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

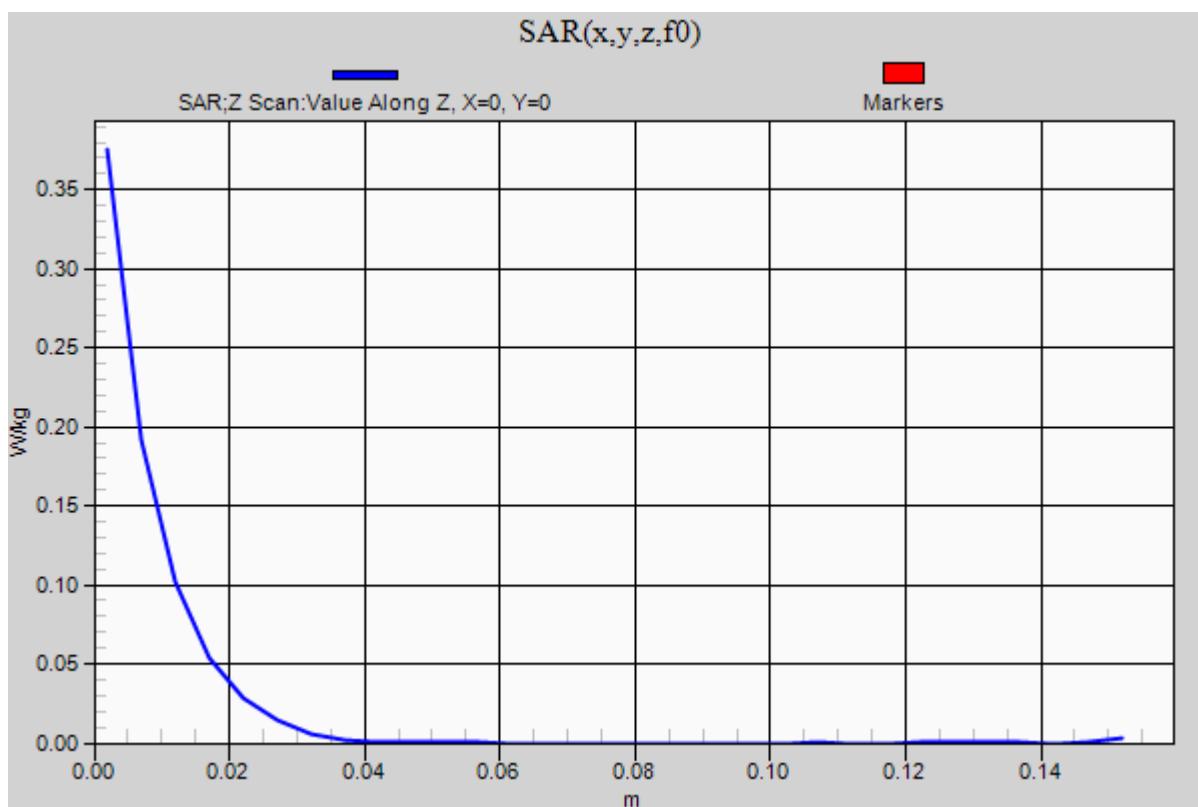
DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(7.23, 7.23, 7.23); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn509; Calibrated: 2013/07/16

Phantom: ELI 4.0; Type: QDOVA001BA;


Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 0.375 W/kg

Date: 2014/01/31

Ambient Temp. : 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

WLAN 11b 1Mbps Front 2462MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2462$ MHz; $\sigma = 2.017$ S/m; $\epsilon_r = 51.211$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(7.23, 7.23, 7.23); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn509; Calibrated: 2013/07/16

Phantom: ELI 4.0; Type: QDOVA001BA;

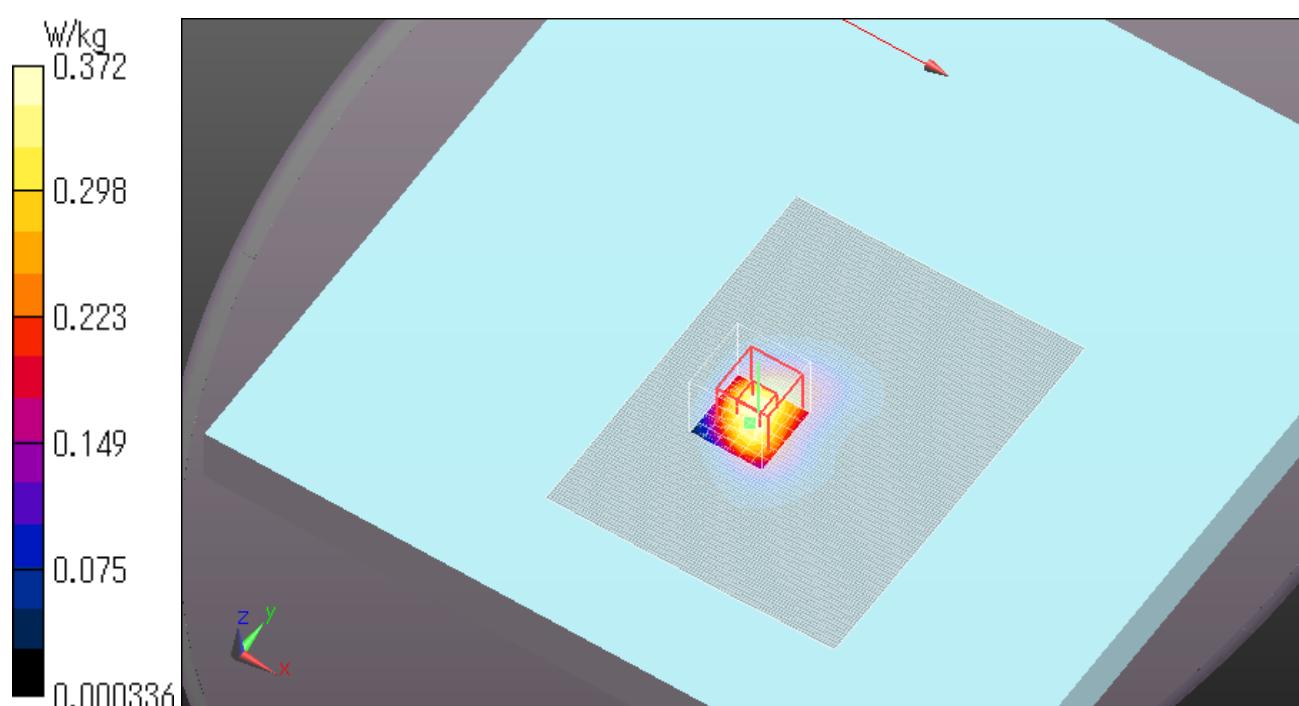
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (101x131x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.435 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.708 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 0.506 W/kg

SAR(1 g) = 0.263 W/kg; SAR(10 g) = 0.141 W/kg

Maximum value of SAR (measured) = 0.372 W/kg

Date: 2014/01/31

Ambient Temp. : 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

APPENDIX2 : System Validation

1. System validation result Body 2450MHz

Simulated Tissue Liquid Parameter confirmation

DIELECTRIC PARAMETERS MEASUREMENT RESULTS											
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
31-Jan	24	38	MSL 2450	23.5	2450	εr	52.7	51.3	-2.6	+/-5	*1
						σ [mho/m]	1.95	2.01	2.9	+/-5	

εr: Relative Permittivity / σ : Conductivity

*1 The Target value is a parameter defined in KDB 865664D01.

DIELECTRIC PARAMETERS MEASUREMENT RESULTS											
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
31-Jan	24	38	MSL 2450	23.5	2450	εr	52.2	51.3	-1.7	+/-6	*2 *3
						σ [mho/m]	2.00	2.01	0.4	+/-6	

εr: Relative Permittivity / σ : Conductivity

*2 The target value is the calibrated dipole Body TSL parameters. (D2450V2 SN:713, Measured Body TSL parameters)

*3 The limit is for deviation provided by manufacturer.

System validation result (for calibration by manufacture)

SYSTEM VALIDATION													
Date	Frequency [MHz]	SAR 1g [W/kg]				Target Value(1W)	Deviation [%]	Limit [%]	Remark				
		Forward Power 250mW		Conversion 1W									
		Measured		Calculation									
31-Jan	2450.00	13.30		53.20		50.40	5.6	+/-10	*4				

*4 The taget value is the parameter defined in SAR mesured x 4(12.6 x 4 = 50.4) in manufacturer calibrated dipole (D2450V2 SN:713)

Please refer to " SAR result with Body TSL of Appendix 2 2. System Check Dipole (D2450V2,S/N: 713)".

Body 2450MHz System Validation DATA / Dipole2.4GHz / Forward Conducted Power : 250mW

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.007$ S/m; $\epsilon_r = 51.324$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(7.23, 7.23, 7.23); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn509; Calibrated: 2013/07/16

Phantom: ELI 4.0; Type: QDOVA001BA;

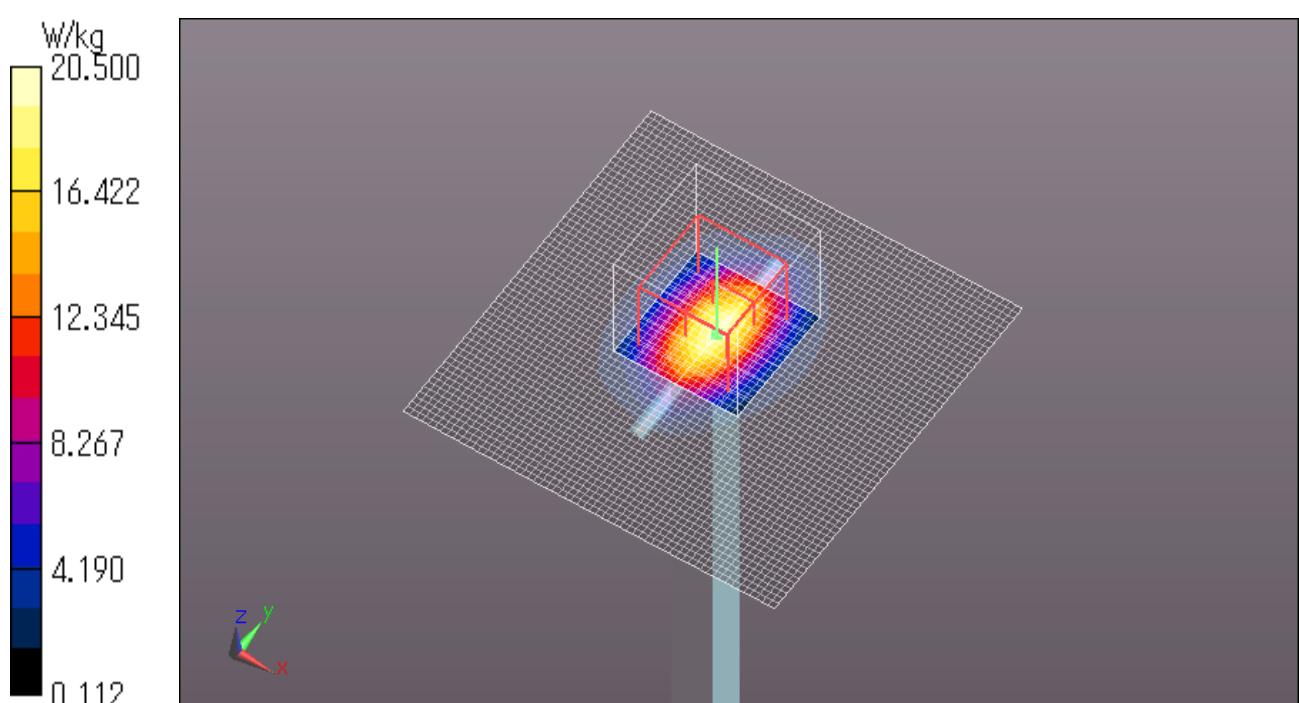
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 20.6 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.8 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.07 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

Date: 2014/01/31

Ambient Temp. : 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

2. System Validation Dipole (D2450V2,S/N:713)

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client UL Japan (PTT)

Certificate No: D2450V2-713_Sep13

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 713

Calibration procedure(s) QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: September 10, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:	Name	Function	Signature
	Israe El-Naouq	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: September 10, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-713_Sep13

Page 1 of 8

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.6 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.7 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.89 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.4 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω + 0.7 $j\Omega$
Return Loss	- 34.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω + 2.8 $j\Omega$
Return Loss	- 30.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 05, 2002

DASY5 Validation Report for Head TSL

Date: 10.09.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713

Communication System: UID 0 - CW; Frequency: 2450 MHz
Medium parameters used: $f = 2450$ MHz; $\sigma = 1.83$ S/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³

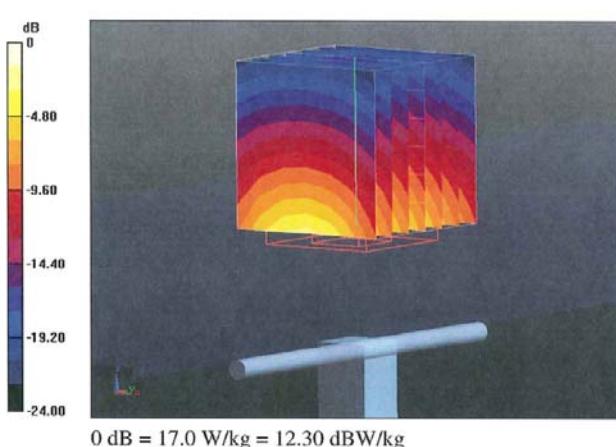
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

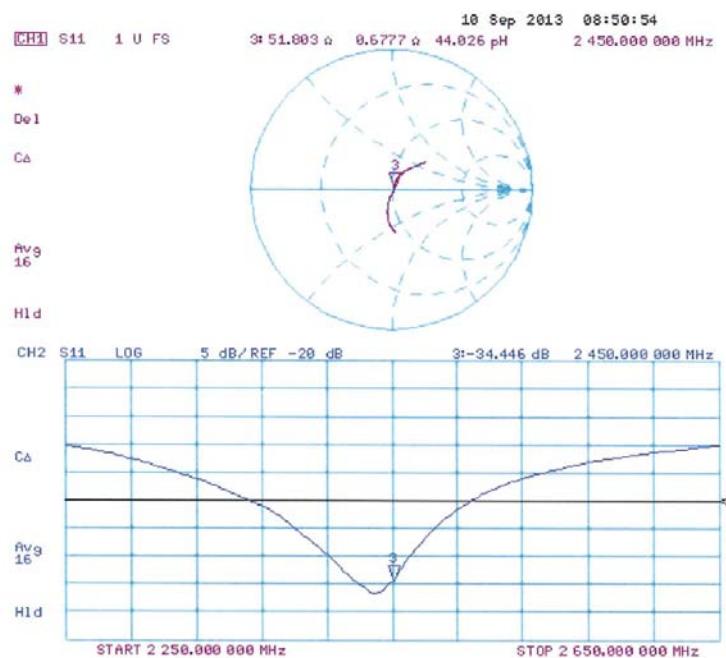
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.095 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.05 W/kg

Maximum value of SAR (measured) = 17.0 W/kg

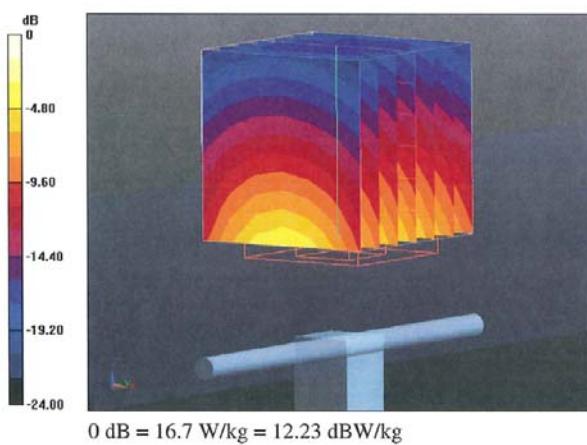
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

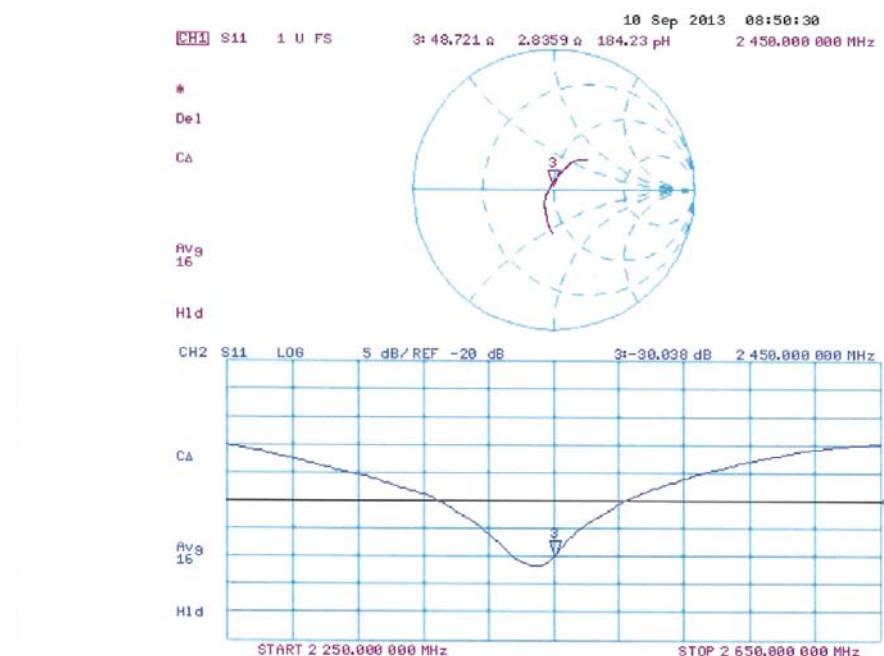
Date: 10.09.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713


Communication System: UID 0 - CW; Frequency: 2450 MHz
Medium parameters used: $f = 2450$ MHz; $\sigma = 2$ S/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

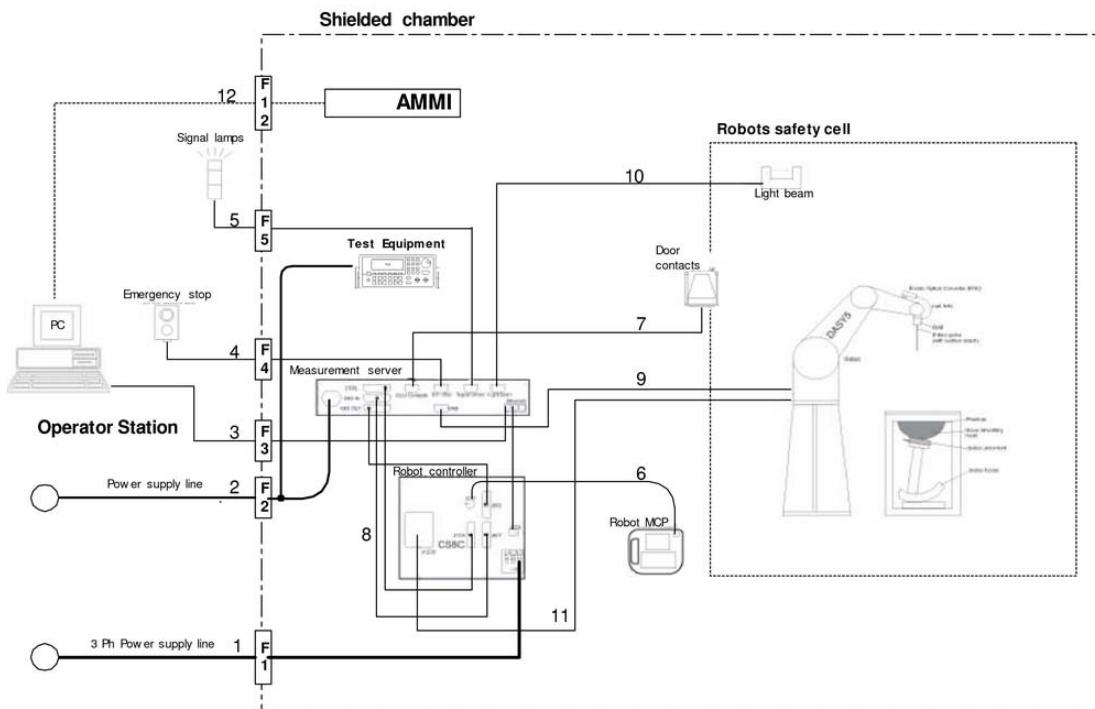
DASY52 Configuration:


- Probe: ES3DV3 - SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 94.095 V/m; Power Drift = 0.03 dB
Peak SAR (extrapolated) = 26.1 W/kg
SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.89 W/kg
Maximum value of SAR (measured) = 16.7 W/kg

Impedance Measurement Plot for Body TSL


3. Validation uncertainty

The uncertainty budget has been determined for the DASY5 measurement system according to the SPEAG documents[2] and is given in the following Table.

Note: This uncertainty budget for validation is worst-case.

APPENDIX 3 : System specifications

1. Configuration and peripherals

The DASY5 system for performing compliance tests consist of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software.
An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for The digital communication to the DAE and for the analog signal from the optical surface detection.
The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of The robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

2. Specifications

a) Robot TX60L

Number of Axes	:	6
Nominal Load	:	2 kg
Maximum Load	:	5kg
Reach	:	920mm
Repeatability	:	+/-0.03mm
Control Unit	:	CS8c
Programming Language	:	VAL3
Weight	:	52.2kg
Manufacture	:	Stäubli Robotics

b) E-Field Probe

Model	:	EX3DV4
Serial No.	:	3825
Construction	:	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycol ether)
Frequency	:	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	:	+/-0.3 dB in HSL (rotation around probe axis) +/-0.5 dB in tissue material (rotation normal probe axis)
Dynamic Range	:	10uW/g to > 100 mW/g; Linearity +/-0.2 dB(noise: typically < 1uW/g)
Dimensions	:	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5mm (Body: 12 mm)
Application	:	Typical distance from probe tip to dipole centers: 1 mm Highprecision dosimetric measurement in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6GHz with precision of better 30%.
Manufacture	:	Schmid & Partner Engineering AG

EX3DV4 E-field Probe

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

c)Data Acquisition Electronic (DAE4)

Features : Signal amplifier, multiplexer, A/D converter and control logic
Serial optical link for communication with DASY5 embedded system (fully remote controlled)
Two step probe touch detector for mechanical surface detection and emergency robot stop

Measurement Range : -100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV)

Input Offset voltage : < 5 μ V (with auto zero)

Input Resistance : 200 M Ω

Input Bias Current : < 50 fA

Battery Power : > 10 h of operation (with two 9.6 V NiMH accus)

Dimension : 60 x 60 x 68 mm

Manufacture : Schmid & Partner Engineering AG

d)Electro-Optic Converter (EOC)

Version : EOC 61

Description : for TX60 robot arm, including proximity sensor

Manufacture : Schmid & Partner Engineering AG

e)DASY5 Measurement server

Features : Intel ULV Celeron 400MHz
128MB chip disk and 128MB RAM
16 Bit A/D converter for surface detection system
Vacuum Fluorescent Display
Robot Interface
Serial link to DAE (with watchdog supervision)
Door contact port (Possibility to connect a light curtain)
Emergency stop port (to connect the remote control)
Signal lamps port
Light beam port
Three Ethernet connection ports
Two USB 2.0 Ports
Two serial links
Expansion port for future applications

Dimensions (L x W x H) : 440 x 241 x 89 mm

Manufacture : Schmid & Partner Engineering AG

f) Light Beam Switches

Version : LB5

Dimensions (L x H) : 110 x 80 mm

Thickness : 12 mm

Beam-length : 80 mm

Manufacture : Schmid & Partner Engineering AG

g)Software

Item : Dosimetric Assesment System DASY5

Type No. : SD 000 401A, SD 000 402A

Software version No. : DASY52, Version 52.6 (1)

Manufacture / Origin : Schmid & Partner Engineering AG

h)Robot Control Unit

Weight : 70 Kg

AC Input Voltage : selectable

Manufacturer : Staubli Robotics

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

i) Phantom and Device Holder

Phantom

Type	:	SAM Twin Phantom V4.0
Description	:	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.
Material	:	Vinylester, glass fiber reinforced (VE-GF)
Shell Material	:	Fiberglass
Thickness	:	2.0 +/-0.2 mm
Dimensions	:	Length: 1000 mm Width: 500 mm Height: adjustable feet
Volume	:	Approx. 25 liters
Manufacture	:	Schmid & Partner Engineering AG
 Type	:	2mm Flat phantom ELI4.0
Description	:	Phantom for compliance testing of handheld and body-mounted wireless Devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4.5 and higher and is compatible with all SPEAG dosimetric probes and dipoles.
Material	:	Vinylester, glass fiber reinforced (VE-GF)
Shell Thickness	:	2.0 +/-0.2 mm (sagging: <1%)
Filling Volume	:	approx. 30 liters
Dimensions	:	Major ellipse axis: 600 mm Minor axis: 400 mm
Manufacture	:	Schmid & Partner Engineering AG

Device Holder

In combination with the Twin SAM Phantom V4.0/V4.0c or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Material	:	POM
-----------------	---	-----

Laptop Extensions kit

Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM, ELI4 Phantoms.

Material	:	POM, Acrylic glass, Foam
-----------------	---	--------------------------

Urethane

For this measurement, the urethane foam was used as device holder.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Faxsimile: +81 596 24 8124

i) Simulated Tissues (Liquid)

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for required for routine SAR evaluation.

Mixture (%)	Frequency (MHz)									
	450		900		1800		1950		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.91	46.21	40.29	50.75	55.24	70.17	55.41	69.79	55.0	68.64
Sugar	56.93	51.17	57.90	48.21	-	-	-	-	-	-
Cellulose	0.25	0.18	0.24	0.00	-	-	-	-	-	-
Salt (NaCl)	3.79	2.34	1.38	0.94	0.31	0.39	0.08	0.2	-	-
Preventol	0.12	0.08	0.18	0.10	-	-	-	-	-	-
DGMBE	-	-	-	-	44.45	29.44	44.51	30.0	45.0	31.37
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Note:DGMBE(Diethyleneglycol-monobutyl ether)

The simulated tissue (liquid) of 1800MHz was used for the test frequency of 1700MHz to 1800MHz.

Mixture (%)	Frequency(MHz)	
	650&750	1450
Tissue Type	Head and Body	Head and Body
Water	35-58%	52-75%
Sugar	40-60%	-
Cellulose	<0.3%	-
Salt (NaCl)	0-6%	<1%
Preventol	0.1-0.7%	-
DGMBE	-	25-48%

Mixture (%)	Frequency(MHz)	
	5800	
Tissue Type	Head	Body
Water	64.0	78.0
Mineral Oil	18.0	11.0
Emulsifiers	15.0	9.0
Additives and salt	3.0	2.0

3. Dosimetric E-Field Probe Calibration (EX3DV4, S/N: 3825)

Calibration Laboratory of
 Schmid & Partner
 Engineering AG
 Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 C Service suisse d'étalonnage
 S Servizio svizzero di taratura
 Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client **UL Japan (PTT)**

Certificate No: **EX3-3825_Dec13**

CALIBRATION CERTIFICATE

Object **EX3DV4 - SN:3825**

Calibration procedure(s) **QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6
 Calibration procedure for dosimetric E-field probes**

Calibration date: **December 13, 2013**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: December 14, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3825_Dec13

Page 1 of 11

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not affect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z$: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the $NORM_x$ (no uncertainty required).

EX3DV4 – SN:3825

December 13, 2013

Probe EX3DV4

SN:3825

Manufactured: September 6, 2011
Calibrated: December 13, 2013

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

EX3DV4- SN:3825

December 13, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3825

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	0.43	0.39	0.43	$\pm 10.1\%$
DCP (mV) ^B	100.5	105.0	99.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB $\sqrt{\mu\text{V}}$	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	198.2	$\pm 2.2\%$
		Y	0.0	0.0	1.0		196.8	
		Z	0.0	0.0	1.0		147.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3825

December 13, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3825

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.84	9.84	9.84	0.27	0.95	± 12.0 %
835	41.5	0.90	9.58	9.58	9.58	0.29	0.97	± 12.0 %
900	41.5	0.97	9.44	9.44	9.44	0.80	0.50	± 12.0 %
1750	40.1	1.37	8.13	8.13	8.13	0.42	0.74	± 12.0 %
1810	40.0	1.40	7.90	7.90	7.90	0.75	0.56	± 12.0 %
1900	40.0	1.40	7.93	7.93	7.93	0.79	0.57	± 12.0 %
2000	40.0	1.40	7.94	7.94	7.94	0.56	0.65	± 12.0 %
2450	39.2	1.80	7.25	7.25	7.25	0.39	0.76	± 12.0 %
2600	39.0	1.96	7.06	7.06	7.06	0.45	0.75	± 12.0 %
5200	36.0	4.66	5.17	5.17	5.17	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.87	4.87	4.87	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.82	4.82	4.82	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.61	4.61	4.61	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.57	4.57	4.57	0.40	1.80	± 13.1 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3825

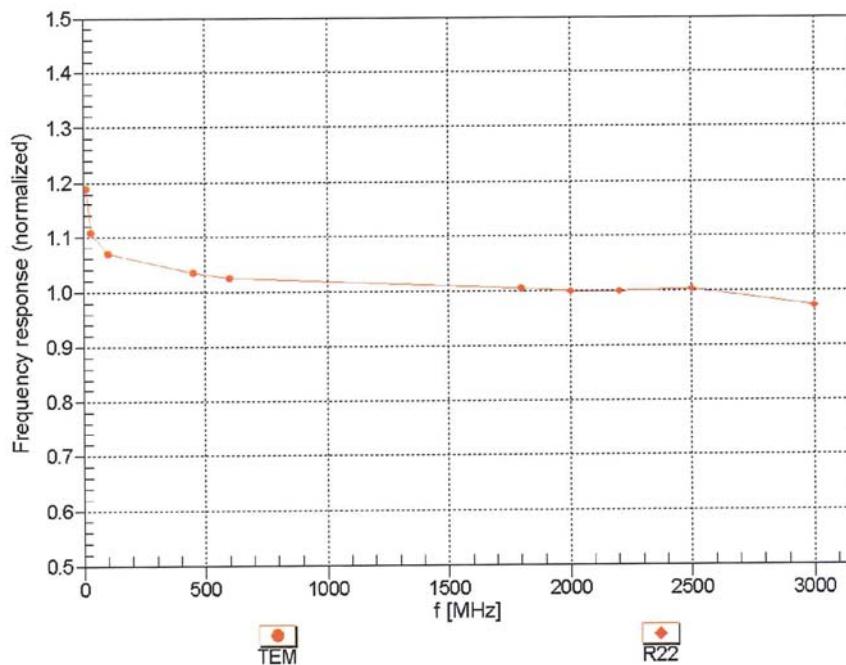
December 13, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3825

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.44	9.44	9.44	0.80	0.61	± 12.0 %
835	55.2	0.97	9.41	9.41	9.41	0.42	0.86	± 12.0 %
900	55.0	1.05	9.23	9.23	9.23	0.62	0.67	± 12.0 %
1750	53.4	1.49	7.86	7.86	7.86	0.46	0.69	± 12.0 %
1810	53.3	1.52	7.77	7.77	7.77	0.48	0.71	± 12.0 %
1900	53.3	1.52	7.66	7.66	7.66	0.49	0.72	± 12.0 %
2000	53.3	1.52	7.83	7.83	7.83	0.27	0.97	± 12.0 %
2450	52.7	1.95	7.23	7.23	7.23	0.79	0.55	± 12.0 %
2600	52.5	2.16	7.02	7.02	7.02	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.38	4.38	4.38	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.23	4.23	4.23	0.50	1.90	± 13.1 %
5500	48.6	5.65	3.92	3.92	3.92	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.90	3.90	3.90	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.05	4.05	4.05	0.50	1.90	± 13.1 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

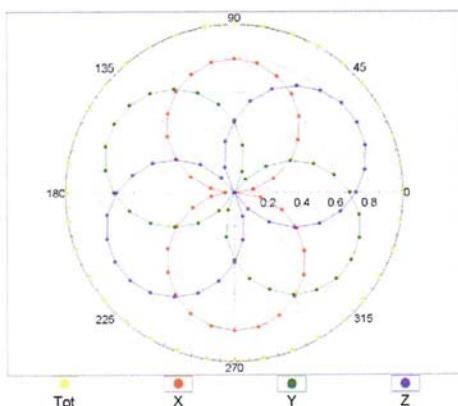

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

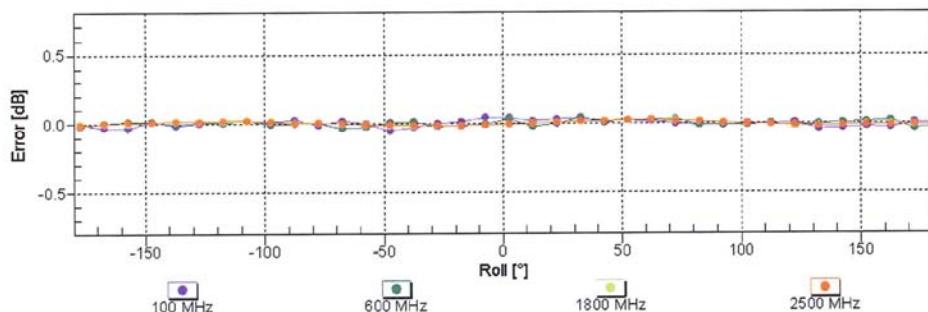
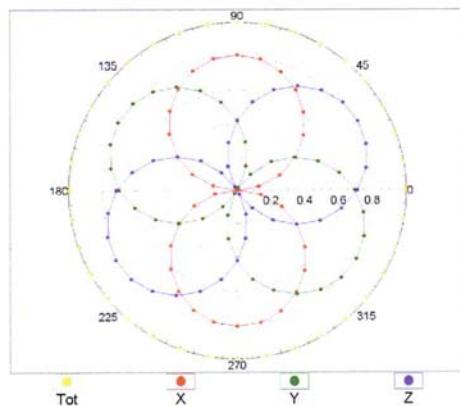
EX3DV4- SN:3825

December 13, 2013

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

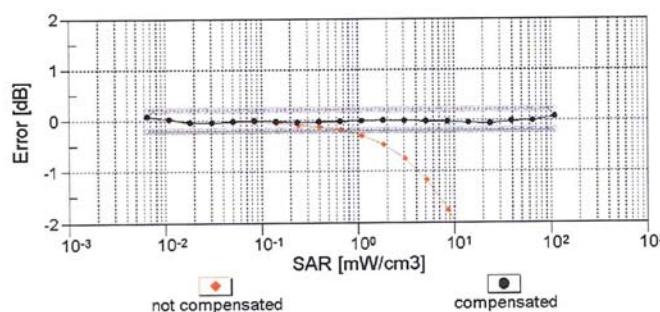
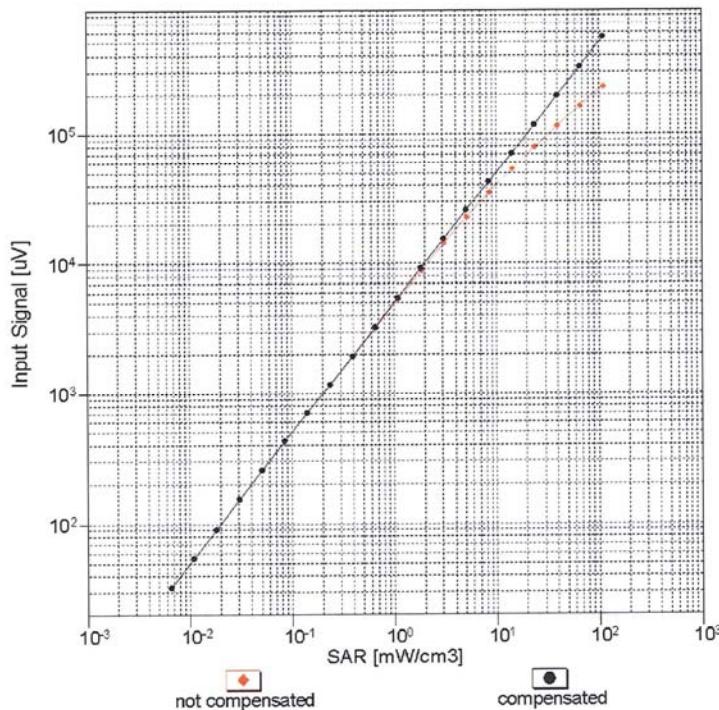
EX3DV4- SN:3825



December 13, 2013

Receiving Pattern (ϕ), $\theta = 0^\circ$

$f=600$ MHz, TEM

$f=1800$ MHz, R22

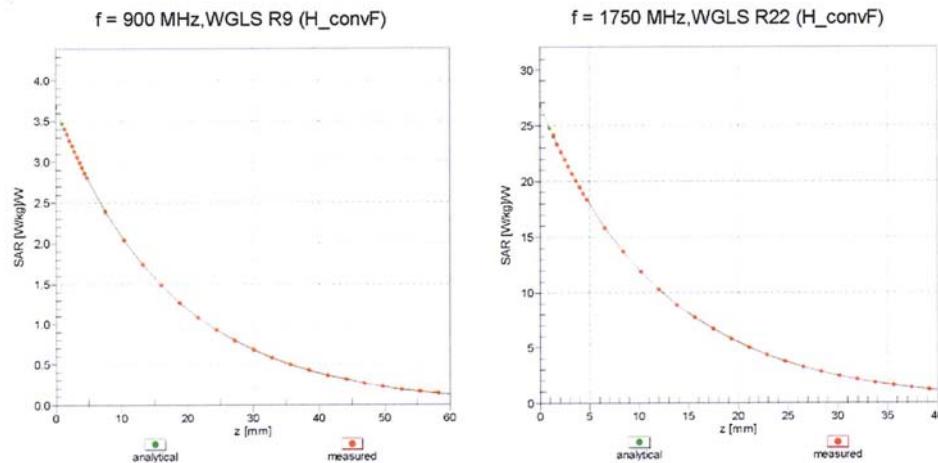



Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

EX3DV4- SN:3825

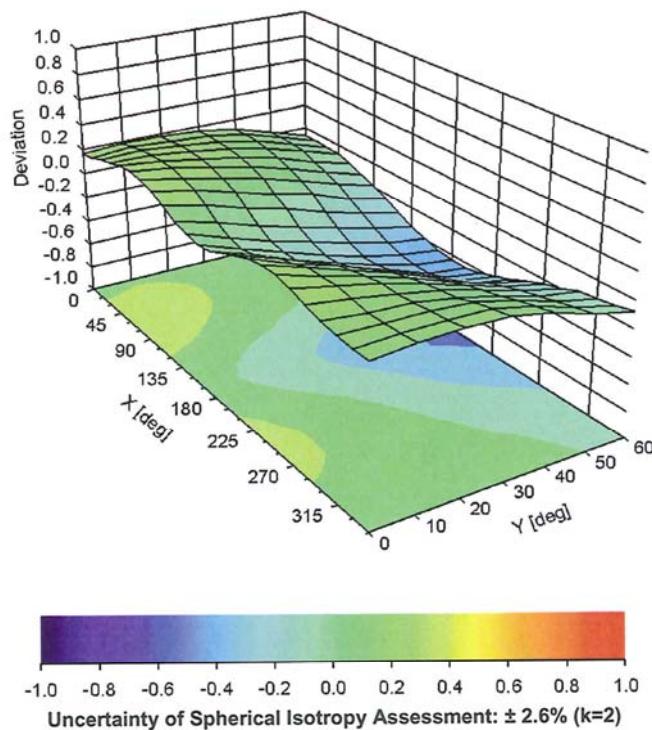
December 13, 2013

Dynamic Range f(SAR_{head})
(TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

EX3DV4– SN:3825


December 13, 2013

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$

EX3DV4- SN:3825

December 13, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3825

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-27.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm