

RADIO TEST REPORT

Test Report No. 15169644H-A-R2

Customer	Murata Manufacturing Co., Ltd.
Description of EUT	W-LAN + Bluetooth Module
Model Number of EUT	1PJ
FCC ID	VPYLBEE5ZZ1PJ
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	April 3, 2024
Remarks	*Wireless LAN (2.4 GHz band) and Bluetooth Low Energy part(s) *Radiated Spurious Emission only *For Permissive Change

Representative Test Engineer	Approved By
T. Nakagawa	T. Shimada
Tomohisa Nakagawa Engineer	Takumi Shimada Engineer ACCREDITED
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed	d is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 15169644H-A-R2 Page 2 of 33

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15169644H-A

This report is a revised version of 15169644H-A-R1. 15169644H-A-R1 is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents		
- (Original)	15169644H-A	March 8, 2024	-		
1	15169644H-A-R1	April 2, 2024	SECTION 4: Operation of EUT during testing 4.1: Operating Mode(s) for WLAN -Addition of below explanatory note for power setting *The test was performed at higher power setting that is more stringent than the previous application (date of grant: May 24, 2021).		
1	15169644H-A-R1	April 2, 2024	SECTION 4: Operation of EUT during testing 4.1: Operating Mode(s) for BT LE -Correction of power setting written in FW → minus_1dBfrom0_bdaddr_no tag33 153_minus0.3 (d9a957a8941bb09470601acc79fb579f)		
1	15169644H-A-R1	April 2, 2024	SECTION 4: Operation of EUT during testing 4.2: Configuration and Peripherals -Replacement of configuration diagram -Correction of cable name of cable No.1 Signal and DC Cable → Signal Cable		
2	15169644H-A-R2	April 3, 2024	SECTION 4: Operation of EUT during testing 4.2: Configuration and Peripherals -Replacement of configuration and peripherals.		

Test Report No. 15169644H-A-R2 Page 3 of 33

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard	
AC	Alternating Current	IEC	International Electrotechnical Commission	
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers	
AM	Amplitude Modulation	IF	Intermediate Frequency	
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference	
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada	
Ant, ANT	Antenna	ISO	International Organization for Standardization	
AP	Access Point	JAB	Japan Accreditation Board	
ASK	Amplitude Shift Keying	LAN	Local Area Network	
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System	
AV	Average	MCS	Modulation and Coding Scheme	
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement	
BR	Bluetooth Basic Rate	N/A	Not Applicable	
BT	Bluetooth	NIST	National Institute of Standards and Technology	
BT LE	Bluetooth Low Energy	NS	No signal detect.	
BW	BandWidth	NSA	Normalized Site Attenuation	
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program	
CCK	Complementary Code Keying	OBW	Occupied Band Width	
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing	
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter	
CW	Continuous Wave	PCB	Printed Circuit Board	
DBPSK	Differential BPSK	PER	Packet Error Rate	
DC	Direct Current	PHY	Physical Layer	
D-factor	Distance factor	PK	Peak	
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise	
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence	
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density	
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation	
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak	
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying	
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width	
EN	European Norm	RDS	Radio Data System	
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment	
EU	European Union	RF	Radio Frequency	
EUT	Equipment Under Test	RMS	Root Mean Square	
Fac.	Factor	RSS	Radio Standards Specifications	
FCC	Federal Communications Commission	Rx	Receiving	
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer	
FM	Frequency Modulation	SG	Signal Generator	
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio	
FSK	Frequency Shift Keying	TR	Test Receiver	
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting	
GNSS	Global Navigation Satellite System	VBW	Video BandWidth	
GPS	Global Positioning System	Vert.	Vertical	
Hori.	Horizontal	WLAN	Wireless LAN	
	1			

CONTENTS	PAGE	
SECTION 1: Customer Information	5	5
SECTION 2: Equipment Under Test (EUT)		5
SECTION 3: Test Specification, Procedures & Results	6	j
SECTION 4: Operation of EUT during testing		
SECTION 5: Radiated Spurious Emission		
APPENDIX 1: Test Data		
Radiated Spurious Emission	14	1
APPENDIX 2: Test Instruments	31	ı
APPENDIX 3: Photographs of Test Setup		
Radiated Spurious Emission		
Worst Case Position		
Worst Case Position	3;	Ċ

Test Report No. 15169644H-A-R2 Page 5 of 33

SECTION 1: Customer Information

Company Name	Murata Manufacturing Co., Ltd.
Address	1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan
Telephone Number	+81-50-1737-2801
Contact Person	Kenji Hayashikoshi

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	W-LAN + Bluetooth Module
Model Number	1PJ
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	February 16, 2024
Test Date	February 19, 2024

2.2 Product Description

General Specification

Rating	Typ: DC 3.3 V / Min: DC 3.135 V / Max: DC 3.465 V
--------	---

Radio Specification

WLAN (IEEE802.11b/11g/11n-20)

, (.======:,,,	··-···································			
Equipment Type	Transceiver			
Frequency of Operation	2412 MHz to 2462 MHz			
Type of Modulation	DSSS, OFDM			
Antenna Gain	1.6 dBi			

Bluetooth (Low Energy)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	GFSK
Antenna Gain	1.6 dBi

^{*} WLAN and Bluetooth do not transmit simultaneously.

Test Report No. 15169644H-A-R2 Page 6 of 33

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Spurious	FCC: KDB 558074 D01	FCC: Section15.247(d)	3.0 dB	Complied	Radiated
Emission	15.247		4880.0 MHz,		(above 30 MHz)
Restricted	Meas Guidance v05r02		AV, Vertical		*1)
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5			
		RSS-Gen 8.9			
		RSS-Gen 8.10			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Module regardless of input voltage.

Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

The antenna is not removable from the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

No addition, exclusion nor deviation has been made from the standard.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

^{*1)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

Test Report No. 15169644H-A-R2 Page 7 of 33

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement	Frequency range		Unit	Calculated
distance			Uncertainty (+/-)	
3 m	9 kHz to 30 MHz	dB	3.3	
10 m			dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	dB	4.8
		Vertical	dB	5.0
	200 MHz to 1000 MHz	Horizontal	dB	5.1
		Vertical	dB	6.2
10 m	30 MHz to 200 MHz	Horizontal	dB	4.8
		Vertical	dB	4.8
	200 MHz to 1000 MHz	Horizontal	dB	4.9
		Vertical	dB	5.0
3 m	1 GHz to 6 GHz	Test Receiver	dB	5.1
		Spectrum Analyzer	dB	4.9
	6 GHz to 18 GHz	Test Receiver	dB	5.4
		Spectrum Analyzer	dB	5.2
1 m	10 GHz to 18 GHz	Spectrum analyzer	dB	5.0
	18 GHz to 26.5 GHz	Spectrum analyzer	Spectrum analyzer dB	
	26.5 GHz to 40 GHz	Spectrum analyzer	dB	4.9
0.5 m	26.5 GHz to 40 GHz	Spectrum analyzer	dB	4.9
10 m	1 GHz to 18 GHz	Test Receiver	dB	5.4

Test Report No. 15169644H-A-R2 Page 8 of 33

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 15169644H-A-R2 Page 9 of 33

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

[WLAN]

Mode	Remarks*				
IEEE 802.11b (11b)	1 Mbps, PN9				
IEEE 802.11n 20 MHz BW (11n-20)	MCS 0, PN9				

^{*}The worst condition was determined based on the test result of Maximum Peak Output Power (Mid Channel)

*Power of the EUT was set by the software as follows;

Power Setting: 9.70 dBm*

*The test was performed at higher power setting that is more stringent than the

previous application (date of grant: May 24, 2021).

Software: Qualcomm Radio Control Toolkit 3.0.276.0

(Date: February 19, 2024, Storage location: Driven by connected PC)

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing -

Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009.

*The Details of Operating Mode(s)

Test Item	Operating Mode	Tested Frequency
Radiated Spurious Emission (Below 1 GHz)	Tx 11n-20 *1)	2437 MHz
Radiated Spurious Emission (Above 1 GHz)	Tx 11b *2)	2412 MHz
	Tx 11n-20	2437 MHz
		2462 MHz

^{*1)} The mode was tested as a representative, because it had the highest power at antenna terminal test.

IBT LE1

נטו בבן						
Mode	Remarks*					
Bluetooth Low Energy (BT LE)	Maximum Packet Size, PRBS9					
*Dower of the CLIT was not by the poftware as follows:						

*Power of the EUT was set by the software as follows;

Power Setting: minus_1dBfrom0_bdaddr_no tag33 153_minus0.3

(d9a957a8941bb09470601acc79fb579f)

Software: Qualcomm Radio Control Toolkit 3.0.276.0

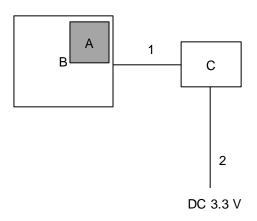
(Date: February 19, 2024, Storage location: Driven by connected PC)

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The Details of Operating Mode(s)


Test Item	Operating Mode	Tested Frequency
Radiated Spurious Emission (Below 1 GHz)	Tx BT LE *1)	2440 MHz
Radiated Spurious Emission (Above 1 GHz),	Tx BT LE	2402 MHz 2440 MHz
		2480 MHz

^{*1)} Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

^{*2)} Since 11g and 11n-20 have the same modulation method and no differences in transmitting specification, test was performed on the representative mode that had the highest peak output power

Test Report No. 15169644H-A-R2 Page 10 of 33

4.2 Configuration and Peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	W-LAN + Bluetooth	1PJ	dc:fe:23:6a:ae	Murata Manufacturing	EUT
	Module		(MAC address)	Co., Ltd.	
В	Jig board	D28	-	Murata Manufacturing	-
				Co., Ltd.	
С	Jig board	P2ML11420	-	Murata Manufacturing	-
	_			Co., Ltd.	

List of Cables Used

No.	Name	Length (m)	Shield	Remarks	
			Cable	Connector	
1	Signal Cable	0.1	Unshielded	Unshielded	-
2	DC Cable	3.0	Unshielded	Unshielded	-

Test Report No. 15169644H-A-R2 Page 11 of 33

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

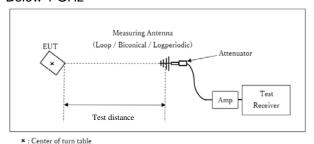
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

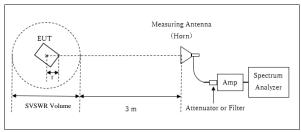
Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

and odiside the restricted band of roc 13.2037 Table 6 of 133-Gen 6.16 (13LD).								
Frequency	Below 1 GHz	Above 1 GHz		20 dBc				
Instrument Used	Test Receiver	Spectrum Analyzer		Spectrum Analyzer				
Detector	QP	PK	AV	PK				
IF Bandwidth	BW 120 kHz	RBW: 1 MHz VBW: 3 MHz	For WLAN RBW: 1 MHz VBW: 1/T Detector: Power Averaging (RMS) For BT LE RBW: 1 MHz VBW: 3 MHz Detector: Power Averaging (RMS) Trace: 100 trace Duty Factor was added to The results.	RBW: 100 kHz VBW: 300 kHz				

Test Report No. 15169644H-A-R2 Page 12 of 33


Figure 2: Test Setup

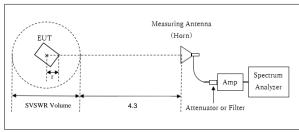
Below 1 GHz

Test Distance: 3 m

1 GHz to 6 GHz

r: Radius of an outer periphery of EUT

×: Center of turn table

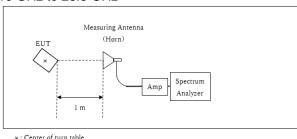

Distance Factor: $20 \times \log (3.95 \text{ m} / 3.0 \text{ m}) = 2.39 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 3.95 m

SVSWR Volume: 2.0 m

(SVSWR Volume has been calibrated based on CISPR 16-1-4.)

r = 0.05 m

6 GHz to 10 GHz


- r = 0.05 m
- r: Radius of an outer periphery of EUT
- ×: Center of turn table

Distance Factor: $20 \times \log (4.95 \text{ m} / 3.0 \text{ m}) = 4.35 \text{ dB}$ * Test Distance: (4.3 + SVSWR Volume /2) - r = 4.95 m

SVSWR Volume: 1.4 m

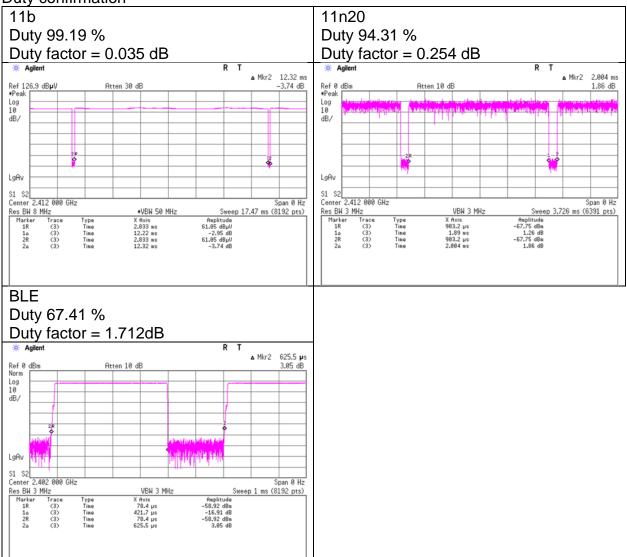
(SVSWR Volume has been calibrated based on CISPR 16-1-4.)

10 GHz to 26.5 GHz

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.


Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX **Test Result** : Pass

APPENDIX 1: Test Data

Duty confirmation

Test Report No. 15169644H-A-R2 Page 14 of 33

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date February 18, 2024 February 19, 2024 23 deg. C / 50 % RH 20 deg. C / 60 % RH Temperature / Humidity Engineer Tomohisa Nakagawa Tetsuro Yoshida (1 GHz to 10 GHz) (10 GHz to 26.5 GHz)

Mode Tx 11b 2412 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	53.0	44.9	27.5	5.4	32.4	-	53.5	45.4	73.9	53.9	20.4	8.5	
Hori.	4824.0	40.5	33.5	31.4	7.6	31.4	-	48.0	41.1	73.9	53.9	25.9	12.9	Floor noise
Hori.	7236.0	35.4	29.3	35.7	10.8	32.3	-	49.5	43.4	73.9	53.9	24.4	10.5	Floor noise
Hori.	9648.0	35.5	28.3	35.8	11.5	33.0	-	49.9	42.6	73.9	53.9	24.0	11.3	Floor noise
Vert.	2390.0	51.1	42.6	27.5	5.4	32.4	-	51.6	43.1	73.9	53.9	22.3	10.8	
Vert.	4824.0	40.9	33.1	31.4	7.6	31.4	-	48.4	40.7	73.9	53.9	25.5	13.2	Floor noise
Vert.	7236.0	36.2	29.6	35.7	10.8	32.3	-	50.3	43.7	73.9	53.9	23.6	10.2	Floor noise
Vert.	9648.0	35.5	29.2	35.8	11.5	33.0	-	49.8	43.5	73.9	53.9	24.1	10.4	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.0	98.5	27.5	5.4	32.4	99.0	-	-	Carrier
Hori.	2400.0	44.7	27.5	5.4	32.4	45.2	79.0	33.8	
Vert.	2412.0	98.4	27.5	5.4	32.4	98.9	-	-	Carrier
Vert.	2400.0	42.9	27.5	5.4	32.4	43.4	78.9	35.5	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB Distance factor: 6 GHz - 10 GHz 20log (4.3 m / 3.0 m) = 4.35 dB

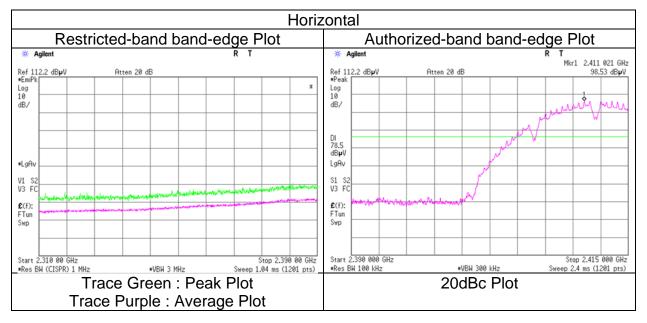
10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

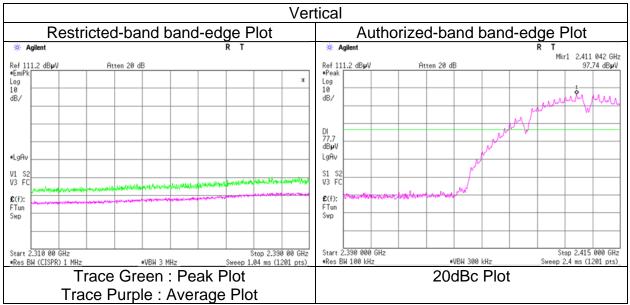
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber


Date Temperature / Humidity


23 deg. C / 50 % RH Engineer Tomohisa Nakagawa (1 GHz to 6 GHz) Mode Tx 11b 2412 MHz

Ise EMC Lab.

February 18, 2024

No.3

The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15169644H-A-R2 Page 16 of 33

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date February 18, 2024 February 19, 2024 23 deg. C / 50 % RH 20 deg. C / 60 % RH Temperature / Humidity Tetsuro Yoshida Engineer Tomohisa Nakagawa (10 GHz to 26.5 GHz) (1 GHz to 10 GHz)

Mode Tx 11b 2437 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4874.0	40.4	34.2	31.4	7.6	31.4	-	47.9	41.7	73.9	53.9	26.0	12.2	Floor noise
Hori.	7311.0	36.5	29.1	35.6	10.8	32.3	-	50.6	43.2	73.9	53.9	23.3	10.7	Floor noise
Hori.	9748.0	35.7	29.1	36.0	11.6	33.0	-	50.3	43.7	73.9	53.9	23.6	10.2	Floor noise
Vert.	4874.0	40.9	34.6	31.4	7.6	31.4	-	48.5	42.2	73.9	53.9	25.5	11.7	Floor noise
Vert.	7311.0	36.0	29.0	35.6	10.8	32.3	-	50.1	43.2	73.9	53.9	23.8	10.8	Floor noise
Vert.	9748.0	35.0	29.0	36.0	11.6	33.0	-	49.5	43.6	73.9	53.9	24.4	10.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB

> 6 GHz - 10 GHz 20log (4.3 m / 3.0 m) = 4.35 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

Test Report No. 15169644H-A-R2 Page 17 of 33

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date February 18, 2024 February 19, 2024 23 deg. C / 50 % RH 20 deg. C / 60 % RH Temperature / Humidity Tomohisa Nakagawa Tetsuro Yoshida Engineer (10 GHz to 26.5 GHz) (1 GHz to 10 GHz)

Mode Tx 11b 2462 MHz

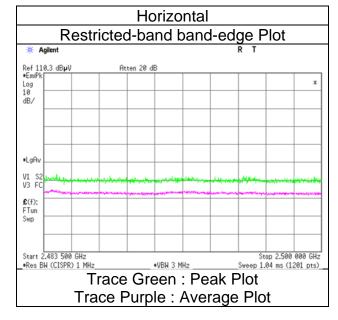
Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	52.6	43.2	27.4	5.5	32.4	-	53.0	43.7	73.9	53.9	20.9	10.2	
Hori.	3282.8	42.0	36.2	28.3	5.9	32.0	-	44.3	38.4	73.9	53.9	29.6	15.5	
Hori.	4924.0	39.6	33.5	31.5	7.6	31.4	-	47.3	41.1	73.9	53.9	26.6	12.8	Floor noise
Hori.	7386.0	36.0	30.0	35.6	10.9	32.4	-	50.1	44.0	73.9	53.9	23.8	9.9	Floor noise
Hori.	9848.0	36.1	29.9	36.2	11.6	33.0	-	50.9	44.6	73.9	53.9	23.0	9.3	Floor noise
Vert.	2483.5	51.6	43.0	27.4	5.5	32.4	-	52.0	43.5	73.9	53.9	21.9	10.4	
Vert.	3282.8	42.0	35.1	28.3	5.9	32.0	-	44.2	37.3	73.9	53.9	29.7	16.6	
Vert.	4924.0	40.1	33.0	31.5	7.6	31.4	-	47.7	40.6	73.9	53.9	26.2	13.3	Floor noise
Vert.	7386.0	36.2	30.1	35.6	10.9	32.4	-	50.3	44.1	73.9	53.9	23.6	9.8	Floor noise
Vert.	9848.0	35.5	30.3	36.2	11.6	33.0	-	50.2	45.1	73.9	53.9	23.7	8.9	Floor noise

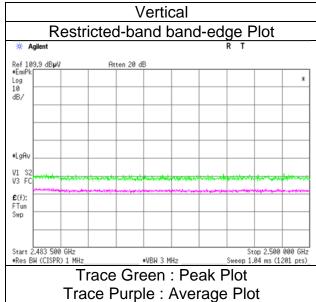
Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(Above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB

> 6 GHz - 10 GHz 20log (4.3 m / 3.0 m) = 4.35 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB


^{*}QP detector was used up to 1GHz.


Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.3 February 18, 2024 23 deg. C / 50 % RH Tomohisa Nakagawa (1 GHz to 6 GHz) Tx 11b 2462 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 15169644H-A-R2 Page 19 of 33

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

No.3 Date February 18, 2024 February 19, 2024 23 deg. C / 50 % RH 20 deg. C / 60 % RH Temperature / Humidity Tetsuro Yoshida Engineer Tomohisa Nakagawa (1 GHz to 10 GHz) (10 GHz to 26.5 GHz)

Mode Tx 11n-20 2412 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	55.0	44.7	27.5	5.4	32.4	0.3	55.5	45.5	73.9	53.9	18.5	8.4	*1)
Hori.	4824.0	39.5	33.3	31.4	7.6	31.4	-	47.0	40.8	73.9	53.9	26.9	13.1	Floor noise
Hori.	7236.0	35.7	29.9	35.7	10.8	32.3	-	49.8	44.0	73.9	53.9	24.1	9.9	Floor noise
Hori.	9648.0	36.0	29.6	35.8	11.5	33.0	-	50.4	44.0	73.9	53.9	23.5	10.0	Floor noise
Vert.	2390.0	51.2	42.6	27.5	5.4	32.4	0.3	51.7	43.4	73.9	53.9	22.2	10.5	*1)
Vert.	4824.0	40.7	30.6	31.4	7.6	31.4	-	48.2	38.1	73.9	53.9	25.7	15.8	Floor noise
Vert.	7236.0	36.4	29.6	35.7	10.8	32.3	-	50.5	43.7	73.9	53.9	23.4	10.2	Floor noise
Vert.	9648.0	35.8	30.1	35.8	11.5	33.0	-	50.1	44.4	73.9	53.9	23.8	9.5	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.0	96.0	27.5	5.4	32.4	96.5	-	-	Carrier
Hori.	2400.0	57.4	27.5	5.4	32.4	57.9	76.5	18.6	
Vert.	2412.0	95.1	27.5	5.4	32.4	95.6	-	-	Carrier
Vert.	2400.0	54.7	27.5	5.4	32.4	55.2	75.6	20.4	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB 6 GHz - 10 GHz 20log (4.3 m / 3.0 m) = 4.35 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

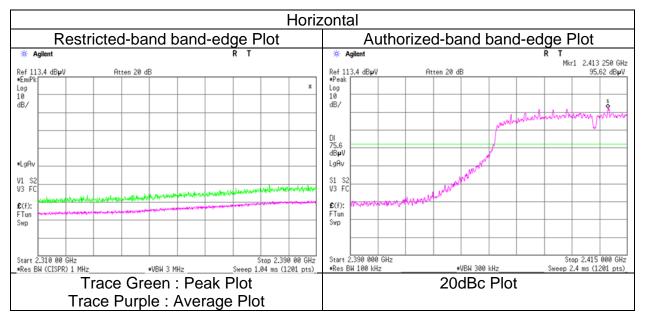
^{*1)} Not Out of Band emission(Leakage Power)

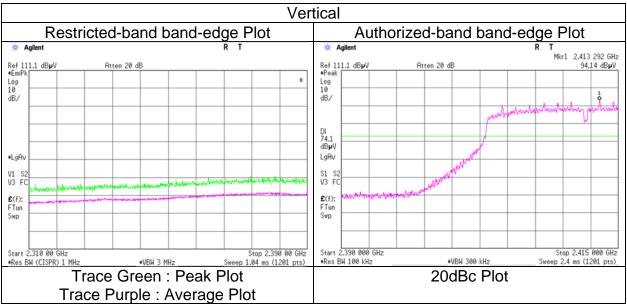
Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber

Date Temperature / Humidity

Engineer Tomohisa Nakagawa


(1 GHz to 10 GHz) Tx 11n-20 2412 MHz Mode


Ise EMC Lab.

February 18, 2024

23 deg. C / 50 % RH

No.3

The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15169644H-A-R2 Page 21 of 33

Radiated Spurious Emission

No.3

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date February 18, 2024 February 19, 2024 23 deg. C / 50 % RH 20 deg. C / 60 % RH Temperature / Humidity Tomohisa Nakagawa Tetsuro Yoshida Engineer

(10 GHz to 26.5 GHz, Below 1 GHz) (1 GHz to 10 GHz)

Mode Tx 11n-20 2437 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	50.1	22.7		9.9	7.2	32.2		7.7	_	40.0		32.3	-	
Hori.	68.8	22.6		9.0	7.5	32.2		7.0	-	40.0		33.0	-	
Hori.	112.8	29.3	-	10.6	8.0	32.1	-	15.9	-	43.5	-	27.7		
Hori.	137.6	25.3	-	11.7	8.3	32.1	-	13.2	-	43.5	-	30.3		
Hori.	368.8	21.4	-	15.0	10.1	32.0	-	14.6	-	46.0	-	31.4	-	Floor noise
Hori.	469.7	21.4	-	17.0	10.8	32.0	-	17.2	-	46.0	-	28.8	-	Floor noise
Hori.	4874.0	40.7	33.6	31.4	7.6	31.4	-	48.3	41.2	73.9	53.9	25.6	12.7	Floor noise
Hori.	7311.0	36.0	29.6	35.6	10.8	32.3	-	50.1	43.7	73.9	53.9	23.8	10.2	Floor noise
Hori.	9748.0	37.0	29.2	36.0	11.6	33.0	-	51.5	43.8	73.9	53.9	22.4	10.1	Floor noise
Vert.	50.1	30.8	-	9.9	7.2	32.2	-	15.8	-	40.0	-	24.2	-	
Vert.	68.8	29.0	-	9.0	7.5	32.2	-	13.4	-	40.0	-	26.6	-	
Vert.	112.8	31.4	-	10.6	8.0	32.1	-	18.0	-	43.5	-	25.6	-	
Vert.	137.6	31.9	-	11.7	8.3	32.1	-	19.8	-	43.5	-	23.7	-	
Vert.	368.8	21.6	-	15.0	10.1	32.0	-	14.8	-	46.0	-	31.2	-	Floor noise
Vert.	469.7	21.3	-	17.0	10.8	32.0	-	17.1	-	46.0	-	28.9	-	Floor noise
Vert.	4874.0	40.1	32.5	31.4	7.6	31.4	-	47.6	40.0	73.9	53.9	26.3	13.9	Floor noise
Vert.	7311.0	36.2	29.5	35.6	10.8	32.3	-	50.3	43.6	73.9	53.9	23.6	10.3	Floor noise
Vert.	9748.0	35.9	30.2	36.0	11.6	33.0	-	50.5	44.8	73.9	53.9	23.4	9.1	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz

1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB

6 GHz - 10 GHz 20log (4.3 m / 3.0 m) = 4.35 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Test Report No. 15169644H-A-R2 Page 22 of 33

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

No.3 Date February 18, 2024 February 19, 2024 Temperature / Humidity 23 deg. C / 50 % RH 20 deg. C / 60 % RH Tomohisa Nakagawa Tetsuro Yoshida Engineer (10 GHz to 26.5 GHz) (1 GHz to 10 GHz)

Mode Tx 11n-20 2462 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	52.2	43.8	27.4	5.5	32.4	0.3	52.6	44.5	73.9	53.9	21.3	9.4	*1)
Hori.	3282.8	42.6	37.2	28.3	5.9	32.0	0.3	44.8	39.7	73.9	53.9	29.1	14.2	
Hori.	4924.0	41.1	33.3	31.5	7.6	31.4	-	48.8	41.0	73.9	53.9	25.1	12.9	Floor noise
Hori.	7386.0	35.7	29.2	35.6	10.9	32.4	-	49.7	43.3	73.9	53.9	24.2	10.6	Floor noise
Hori.	9848.0	35.7	29.2	36.2	11.6	33.0	-	50.4	44.0	73.9	53.9	23.5	9.9	Floor noise
Vert.	2483.5	50.3	41.6	27.4	5.5	32.4	0.3	50.7	42.3	73.9	53.9	23.2	11.6	*1)
Vert.	3282.8	44.0	37.0	28.3	5.9	32.0	0.3	46.3	39.5	73.9	53.9	27.6	14.4	
Vert.	4924.0	39.2	31.8	31.5	7.6	31.4	-	46.8	39.5	73.9	53.9	27.1	14.4	Floor noise
Vert.	7386.0	35.8	29.5	35.6	10.9	32.4	-	49.8	43.5	73.9	53.9	24.1	10.4	Floor noise
Vert.	9848.0	36.2	29.5	36.2	11.6	33.0	-	51.0	44.3	73.9	53.9	22.9	9.7	Floor noise

vert. 948.0 36.2 29.5 36.2 11.6 33.0 - 51.0 44.3 7

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

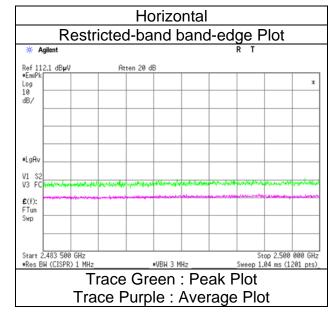
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

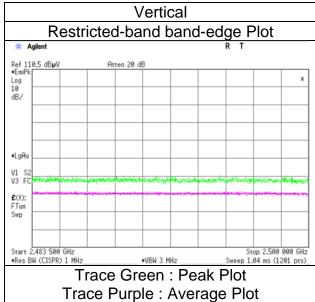
*QP detector was used up to 1 GHz.

*1) Not Out of Band emission(Leakage Power)

1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB Distance factor:

> 6 GHz - 10 GHz 20log (4.3 m / 3.0 m) = 4.35 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB


Radiated Spurious Emission (Reference Plot for band-edge)


Test place Semi Anechoic Chamber Date Temperature / Humidity

Engineer

Mode

Ise EMC Lab. No.3 February 18, 2024 23 deg. C / 50 % RH Tomohisa Nakagawa (1 GHz to 10 GHz) Tx 11n-20 2462 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 15169644H-A-R2 Page 24 of 33

Radiated Spurious Emission

No.3

February 19, 2024

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date February 18, 2024 23 deg. C / 50 % RH Temperature / Humidity Engineer

20 deg. C / 60 % RH Tetsuro Yoshida Tomohisa Nakagawa (10 GHz to 26.5 GHz) (1 GHz to 10 GHz)

Mode Tx BT LE 2402 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	48.2	35.4	27.5	5.4	32.4	1.7	48.7	37.6	73.9	53.9	25.2	16.3	*1)
Hori.	4804.0	47.3	37.6	31.4	7.6	31.4	1.7	54.8	46.8	73.9	53.9	19.1	7.1	
Hori.	7206.0	36.0	29.6	35.6	10.8	32.3	-	50.1	43.7	73.9	53.9	23.8	10.2	Floor noise
Hori.	9608.0	35.6	29.6	35.7	11.5	32.9	-	49.8	43.8	73.9	53.9	24.1	10.1	Floor noise
Vert.	2390.0	46.9	35.6	27.5	5.4	32.4	1.7	47.4	37.8	73.9	53.9	26.5	16.1	*1)
Vert.	4804.0	46.4	37.7	31.4	7.6	31.4	1.7	53.9	47.0	73.9	53.9	20.0	6.9	
Vert.	7206.0	36.2	29.9	35.6	10.8	32.3	-	50.2	44.0	73.9	53.9	23.7	9.9	Floor noise
Vert.	9608.0	36.0	28.5	35.7	11.5	32.9	-	50.2	42.7	73.9	53.9	23.7	11.2	Floor noise
Result (QP	/ PK) = Read	ing + Ant Fa	ctor + Loss	Cable+Atter	nuator+Filter	+Distance f	actor(above	1 GHz)) - Ga	in(Amplifier)				

20dBc Data Sheet

Toubo but									
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	101.1	27.5	5.4	32.4	101.6	-	-	Carrier
Hori.	2400.0	45.8	27.5	5.4	32.4	46.3	81.6	35.3	
Vert.	2402.0	101.0	27.5	5.4	32.4	101.5	-	-	Carrier
\/ort	2400.0	45.4	27.5	5.4	32.4	45 Q	81.5	35.6	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

20log (3.95 m / 3.0 m) = 2.39 dB 1 GHz - 6 GHz 6 GHz - 10 GHz 20log (4.3 m / 3.0 m) = 4.35 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

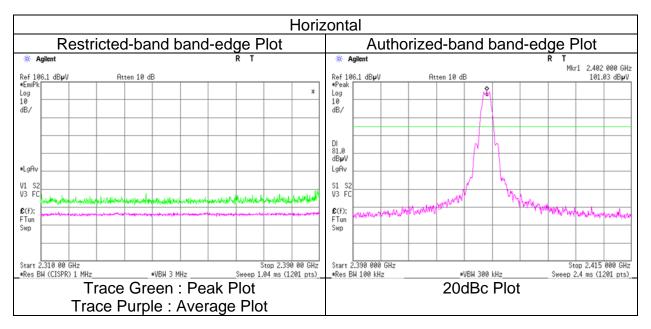
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

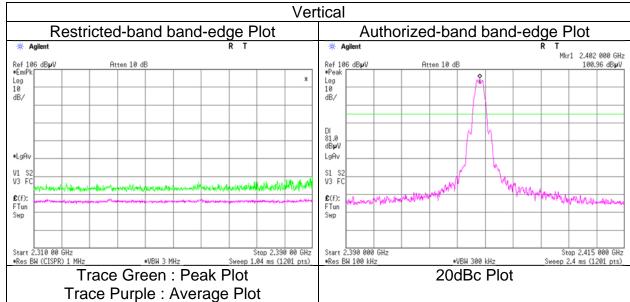
^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber

Date Temperature / Humidity


Mode


23 deg. C / 50 % RH Engineer Tomohisa Nakagawa (1 GHz to 6 GHz) Tx BT LE 2402 MHz

Ise EMC Lab.

February 18, 2024

No.3

The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15169644H-A-R2 Page 26 of 33

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date February 18, 2024 February 19, 2024 Temperature / Humidity 23 deg. C / 50 % RH 20 deg. C / 60 % RH Tomohisa Nakagawa Tetsuro Yoshida Engineer

(10 GHz to 26.5 GHz, Below 1 GHz) (1 GHz to 10 GHz)

Mode Tx BT LE 2440 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	52.4	25.7	-	9.7	7.3	32.2	-	10.5	-	40.0	-	29.5	-	
Hori.	61.4	24.4	-	9.2	7.4	32.2	-	8.8	-	40.0	-	31.2	-	
Hori.	88.5	26.3	-	9.4	7.8	32.1	-	11.4	-	43.5	-	32.1	-	
Hori.	276.8	21.4	-	13.2	9.5	32.0	-	12.1	-	46.0	-	33.9	-	Floor noise
Hori.	408.1	21.3	-	16.0	10.4	32.0	-	15.7	-	46.0	-	30.3	-	Floor noise
Hori.	493.6	21.4	-	17.6	10.9	32.0	-	17.9	-	46.0	-	28.1	-	Floor noise
Hori.	4880.0	47.2	41.0	31.4	7.6	31.4	1.7	54.8	50.3	73.9	53.9	19.1	3.6	
Hori.	7320.0	35.8	29.4	35.6	10.8	32.3	-	49.9	43.5	73.9	53.9	24.0	10.4	Floor noise
Hori.	9760.0	35.5	28.7	36.0	11.6	33.0	-	50.1	43.3	73.9	53.9	23.8	10.6	Floor noise
Vert.	52.4	27.0	-	9.7	7.3	32.2	-	11.8	-	40.0	-	28.2	-	
Vert.	61.4	27.5	-	9.2	7.4	32.2	-	11.9	-	40.0	-	28.1	-	
Vert.	88.5	26.9	-	9.4	7.8	32.1	-	12.0	-	43.5	-	31.5	-	
Vert.	276.8	21.3	-	13.2	9.5	32.0	-	12.0	-	46.0	-	34.0	-	Floor noise
Vert.	408.1	21.3	-	16.0	10.4	32.0	-	15.7	-	46.0	-	30.3	-	Floor noise
Vert.	493.6	21.4	-	17.6	10.9	32.0	-	17.9	-	46.0	-	28.1	-	Floor noise
Vert.	4880.0	46.7	41.6	31.4	7.6	31.4	1.7	54.2	50.9	73.9	53.9	19.7	3.0	
Vert.	7320.0	35.8	30.8	35.6	10.8	32.3	-	50.0	44.9	73.9	53.9	24.0	9.0	Floor noise
Vert.	9760.0	35.8	28.7	36.0	11.6	33.0	-	50.4	43.2	73.9	53.9	23.5	10.7	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB Distance factor:

6 GHz - 10 GHz 20log (4.3 m / 3.0 m) = 4.35 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}QP detector was used up to 1GHz.

Test Report No. 15169644H-A-R2 Page 27 of 33

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date February 18, 2024 February 19, 2024 23 deg. C / 50 % RH 20 deg. C / 60 % RH Temperature / Humidity Tetsuro Yoshida Engineer Tomohisa Nakagawa (10 GHz to 26.5 GHz) (1 GHz to 10 GHz)

Mode Tx BT LE 2480 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	57.1	44.4	27.4	5.5	32.4	1.7	57.5	46.6	73.9	53.9	16.4	7.3	*1)
Hori.	4960.0	47.8	40.2	31.6	7.6	31.4	1.7	55.5	49.6	73.9	53.9	18.4	4.3	
Hori.	7440.0	36.9	29.0	35.5	10.9	32.4	1.7	50.9	44.7	73.9	53.9	23.0	9.2	
Hori.	9920.0	35.6	29.6	36.2	11.6	33.1	1.7	50.4	46.0	73.9	53.9	23.5	7.9	
Vert.	2483.5	55.9	40.8	27.4	5.5	32.4	1.7	56.4	43.0	73.9	53.9	17.5	10.9	*1)
Vert.	4960.0	46.1	40.1	31.6	7.6	31.4	1.7	53.9	49.5	73.9	53.9	20.0	4.4	
Vert.	7440.0	36.6	30.2	35.5	10.9	32.4	1.7	50.6	45.9	73.9	53.9	23.3	8.0	
Vert.	9920.0	36.2	29.3	36.2	11.6	33.1	1.7	51.0	45.8	73.9	53.9	22.9	8.1	

veril. 9920.0 36.2 29.3 36.2 11.5 35.1 1.7 51.0 45.6 7

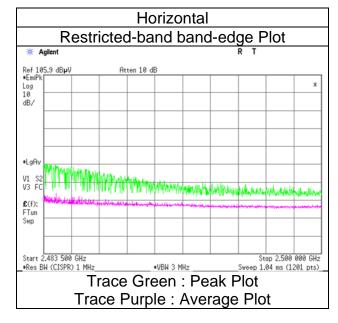
Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz) - Gain(Amplifier)

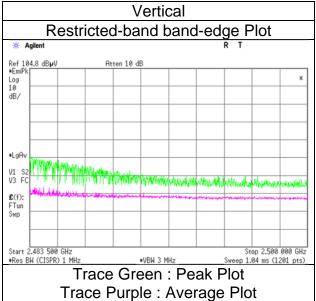
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB

6 GHz - 10 GHz 20log (4.3 m / 3.0 m) = 4.35 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.


^{*1)} Not Out of Band emission(Leakage Power)


Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.3 February 18, 2024 23 deg. C / 50 % RH Tomohisa Nakagawa (1 GHz to 6 GHz) Tx BT LE 2480 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

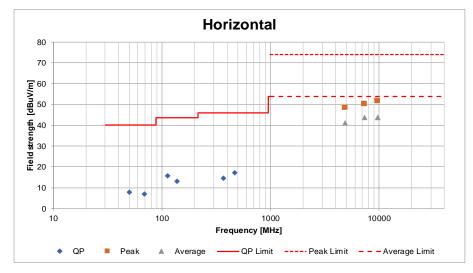
Test Report No. 15169644H-A-R2 Page 29 of 33

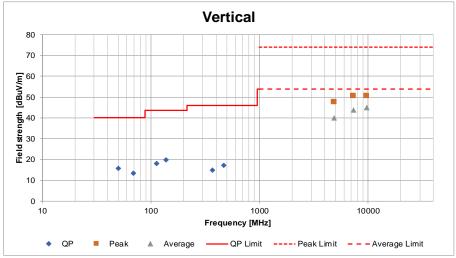
Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

Test place Semi Anechoic Chamber Date Temperature / Humidity

Engineer

Mode


Ise EMC Lab. No.3 February 18, 2024 23 deg. C / 50 % RH


Tomohisa Nakagawa (1 GHz to 10 GHz) Tx 11n-20 2437 MHz

No.3

February 19, 2024 20 deg. C / 60 % RH Tetsuro Yoshida

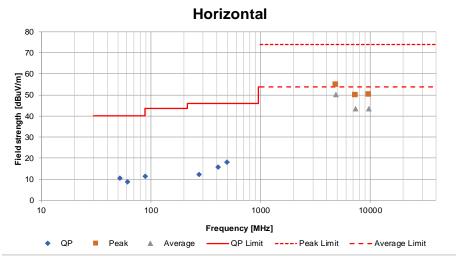
(10 GHz to 26.5 GHz, Below 1 GHz)

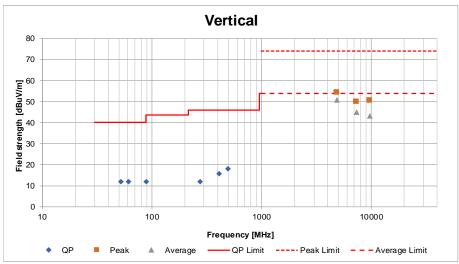
^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.

Test Report No. 15169644H-A-R2 Page 30 of 33

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

Test place Semi Anechoic Chamber Date Temperature / Humidity


Engineer


Mode

Ise EMC Lab. No.3 February 18, 2024 23 deg. C / 50 % RH Tomohisa Nakagawa (1 GHz to 10 GHz) Tx BT LE 2440 MHz

No.3 February 19, 2024 20 deg. C / 60 % RH Tetsuro Yoshida

(10 GHz to 26.5 GHz, Below 1 GHz)

^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.

Test Report No. 15169644H-A-R2 Page 31 of 33

APPENDIX 2: Test Instruments

Test Equipment

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	141266	Log periodic Antenna(200- 1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-191	08/10/2023	12
RE	141296	High Pass Filter 3.5- 18.0GHz	UL Japan	HPF SELECTOR	002	09/01/2023	12
RE	141323	Coaxial cable	UL Japan	-	-	09/10/2023	12
RE	141507	Horn Antenna 1- 18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	258	11/20/2023	12
RE	141513	Horn Antenna 15- 40GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9170	BBHA9170306	07/19/2023	12
RE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	01/31/2024	12
RE	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	-	-
RE	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2023	12
RE	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/07/2023	12
RE	141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	01/26/2024	12
RE	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	11/20/2023	12
RE	142008	AC3_Semi Anechoic Chamber (NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/11/2023	24
RE	142013	AC3_Semi Anechoic Chamber (SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	10/18/2023	12
RE	142183	Measure	KOMELON	KMC-36	-	10/20/2023	12
RE	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/23/2023	12
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	197990	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHBB 9124 + BBA 9106	01365	11/29/2023	12
RE	234602	Microwave Cable	Huber+Suhner	SF126E/ 11PC35/11PC35/ 1000M,5000M	537063/126E / 537074/126E	03/16/2023	12
RE	238713	Double Ridge Horn Antenna	Schwarzbeck Mess-Elektronik OHG	BBHA 9120 C	688	08/10/2023	12
RE	244709	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202103	01/25/2024	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated Emission