

**FCC 47 CFR PART 15 SUBPART C
ISED RSS-247 Issue 2**

CERTIFICATION TEST REPORT

For

WLAN+Bluetooth Module

MODEL NUMBER: LBEE5PK2AE

PROJECT NUMBER: 4790016144.1

REPORT NUMBER: 4790016144.1-AE-2

FCC ID: VPYLB2AE

IC: 772C-LB2AE

ISSUE DATE: Jun. 28, 2022

Prepared for

Murata Manufacturing Co., Ltd.

Prepared by

UL-CCIC COMPANY LIMITED

No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China

Tel: +86 512-6808 6400

Fax: +86 512-6808 4099

Website: www.ul.com

Form-ULID-008536-7 V1.0

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	06/28/2022	Initial Issue	

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS	4
2. TEST METHODOLOGY	6
3. FACILITIES AND ACCREDITATION	6
4. CALIBRATION AND UNCERTAINTY	7
4.1. MEASURING INSTRUMENT CALIBRATION.....	7
4.2. MEASUREMENT UNCERTAINTY.....	7
5. EQUIPMENT UNDER TEST	8
5.1. DESCRIPTION OF EUT.....	8
5.2. MAXIMUM OUTPUT POWER.....	9
5.3. PACKET TYPE CONFIGURATION.....	9
5.4. CHANNEL LIST	9
5.5. TEST CHANNEL CONFIGURATION	10
5.6. WORST-CASE CONFIGURATIONS.....	10
5.7. THE WORSE CASE POWER SETTING PARAMETER.....	10
5.8. DESCRIPTION OF AVAILABLE ANTENNAS.....	11
5.9. TEST ENVIRONMENT	11
5.10. DESCRIPTION OF TEST SETUP	12
5.11. MEASURING INSTRUMENT AND SOFTWARE USED	13
6. ANTENNA PORT TEST RESULTS	14
6.1. ON TIME AND DUTY CYCLE.....	14
6.2. 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH.....	17
6.3. CONDUCTED OUTPUT POWER	28
6.4. CARRIER FREQUENCY SEPARATION.....	30
6.5. NUMBER OF HOPPING FREQUENCIES.....	34
6.6. TIME OF OCCUPANCY (DWELL TIME)	38
6.7. CONDUCTED BANDEdge AND SPURIOUS EMISSIONS	43
6.8. RADIATED TEST RESULTS.....	67
6.8.1. LIMITS AND PROCEDURE.....	67
6.8.2. TEST ENVIRONMENT.....	74
6.8.3. RESTRICTED BANDEdge.....	74
6.8.4. SPURIOUS EMISSIONS	99
7. AC POWER LINE CONDUCTED EMISSIONS	186
8. ANTENNA REQUIREMENTS.....	189

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Murata Manufacturing Co., Ltd.
Address: 10-1, Higashikotari 1-chome, Nagaokakyo-shi, Kyoto 617-8555, Japan

Manufacturer Information

Company Name: Murata Manufacturing Co., Ltd.
Address: 10-1, Higashikotari 1-chome, Nagaokakyo-shi, Kyoto 617-8555, Japan

EUT Description

Product Name: WLAN+Bluetooth Module
Model Name: LBEE5PK2AE
Sample Number: 4059724
Data of Receipt Sample: Jul. 12, 2021
Date Tested: Jul. 23, 2021 ~ Jun. 27, 2022

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	PASS
ISED RSS-247 Issue 2	PASS
ISED RSS-GEN Issue 5	PASS

Summary of Test Results			
Clause	Test Items	FCC/ISED Rules	Test Results
1	20dB Bandwidth and 99% Occupied Bandwidth	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a) RSS-Gen Clause 6.7	Pass
2	Conducted Output Power	FCC 15.247 (b) (1) RSS-247 Clause 5.1 (b)	Pass
3	Carrier Hopping Channel Separation	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (b)	Pass
4	Number of Hopping Frequency	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass
5	Time of Occupancy (Dwell Time)	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass
6	Conducted Bandedge	FCC 15.247 (d) RSS-247 Clause 5.5	Pass
7	Radiated Bandedge and Spurious	FCC 15.247 (d) FCC 15.209 FCC 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass
8	Conducted Emission Test for AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	Pass
9	Antenna Requirement	FCC 15.203 RSS-GEN Clause 6.8	Pass

Note:

The measurement result for the sample received is <Pass> according to < ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15C, ISED RSS-GEN, ISED RSS-247> when <Accuracy Method> decision rule is applied.

Prepared By:

Tom Tang

Tom Tang

Reviewed By:

Leon Wu

Leon Wu

Authorized By:

Chris Zhong

Chris Zhong
Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	<p>A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA.</p> <p>FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.</p> <p>IC (IC Designation No.: 25056; CAB No.: CN0073) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.</p>
---------------------------	--

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.1dB
Radiation Emission test (include Fundamental emission) (9kHz-30MHz)	3.4dB
Radiation Emission test (include Fundamental emission) (30MHz-1GHz)	3.4dB
Radiation Emission test (1GHz to 26GHz) (include Fundamental emission)	3.9dB (1GHz-18GHz) 4.2dB (18GHz-26.5GHz)
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.	

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	WLAN+Bluetooth Module		
Model No.:	LBEE5PK2AE		
Technology	Bluetooth – BR & EDR		
Transmit Frequency Range	2402 MHz ~ 2480 MHz		
Mode	Basic Rate	Enhanced Data Rate	
Modulation	GFSK	Δ /4-DQPSK	8DPSK
Packet Type (Maximum Payload):	DH5	2DH5	3DH5
Data Rate	1 Mbps	2 Mbps	3 Mbps
Rated Input	DC 3.3V		
Test software of EUT:	Cybluetooth (manufacturer declare)		
Antenna Type:	Type 1: PCB Antenna Type 2: External Dipole Antenna		
Antenna Gain:	Type 1: 3.0 dBi for 2.4G band; 3.3 dBi for 5G band Type 2: 3.4 dBi for 2.4G band; 4.75 dBi for 5G band Note: 1. The product has only one transmission chain and two antenna types are provided. 2. This data is provided by customer and our lab isn't responsible for this data.		

5.2. MAXIMUM OUTPUT POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Output Power (dBm)
GFSK	2402 ~ 2480	0-78[79]	6.77
$\Pi/4$ -DQPSK	2402 ~ 2480	0-78[79]	4.29
8DPSK	2402 ~ 2480	0-78[79]	6.25

5.3. PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)
GFSK	DH1	27
	DH3	183
	DH5	339
$\Pi/4$ -DQPSK	2-DH1	54
	2-DH3	367
	2-DH5	679
8DPSK	3-DH1	83
	3-DH3	552
	3-DH5	1021

5.4. CHANNEL LIST

Channel	Frequency (MHz)						
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
$\Pi/4$ -DQPSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
8DPSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
GFSK	Hopping	2402 MHz ~ 2480 MHz
$\Pi/4$ -DQPSK	Hopping	2402 MHz ~ 2480 MHz
8DPSK	Hopping	2402 MHz ~ 2480 MHz

5.6. WORST-CASE CONFIGURATIONS

Test Mode	Modulation Technology	Modulation Type	Data Rate	Packet Type
BR	FHSS	GFSK	1Mbit/s	DH5
EDR	FHSS	$\Pi/4$ -DQPSK	2Mbit/s	2DH5
EDR	FHSS	8DPSK	3Mbit/s	3-DH5

5.7. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5 MHz Band				
Test Software		Cybluetool		
Test Mode	Transmit Antenna Number	Test Software Setting Value		
		CH 00	CH 39	CH 78
GFSK	1	Index 0	Index 0	Index 0
$\Pi/4$ -DQPSK	1	Index 0	Index 0	Index 0
8DPSK	1	Index 0	Index 0	Index 0

5.8. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2400-2483.5	PCB Antenna	3.0
		External Dipole Antenna	3.4

Note: This data is provided by customer and our lab isn't responsible for this data.

Test Mode	Transmit and Receive Mode	Description
GFSK	<input checked="" type="checkbox"/> 1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
8DPSK	<input checked="" type="checkbox"/> 1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

5.9. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests	
Relative Humidity	55 ~ 65%	
Atmospheric Pressure:	101kPa	
Temperature	TN	23 ~ 28°C
Voltage:	VL	N/A
	VN	DC 3.3V
	VH	N/A

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

5.10. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Description
1	Laptop	ThinkPad	E590	/
2	DC Power Supply	Tektronix	PWS2326	INPUT: AC 230V OUTPUT: 0-32V, 6A

I/O PORT

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	RJ45	RJ45	LAN	100cm Length	/

ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	/	/	/	/

TEST SETUP

The EUT can work in an engineer mode with a software through a table PC.

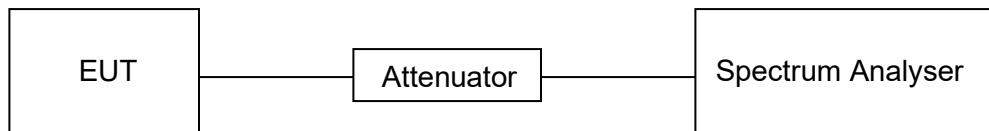
SETUP DIAGRAM FOR TESTS

5.11. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions (Instrument)							
Used	Equipment	Manufacturer	Model No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.
<input checked="" type="checkbox"/>	EMI Test Receiver	R&S	ESR3	126700	2020-12-05	2021-12-04	2022-12-03
<input checked="" type="checkbox"/>	Two-Line V-Network	R&S	ENV216	126701	2020-12-05	2021-12-04	2022-12-03
<input checked="" type="checkbox"/>	Artificial Mains Networks	R&S	ENY81	126711	2020-10-13	2021-10-12	2022-10-11
Software							
Used	Description		Manufacturer	Name	Version		
<input checked="" type="checkbox"/>	Test Software for Conducted disturbance		R&S	EMC32	Ver. 9.25		
Radiated Emissions (Instrument)							
Used	Equipment	Manufacturer	Model No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.
<input checked="" type="checkbox"/>	Spectrum Analyzer	Keysight	N9010B	155727	2021-05-09	2022-04-09	2023-04-08
<input checked="" type="checkbox"/>	EMI test receiver	R&S	ESR26	126703	2020-12-05	2021-12-04	2022-12-03
<input checked="" type="checkbox"/>	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZB 1513	155456	2018-06-15	2021-06-03	2024-06-02
<input checked="" type="checkbox"/>	Receiver Antenna (30MHz-1GHz)	SunAR RF Motion	JB1	177821	2019-01-19	2022-01-18	2025-01-17
<input checked="" type="checkbox"/>	Receiver Antenna (1GHz-18GHz)	R&S	HF907	126705	2019-01-27	2022-02-28	2025-02-27
<input checked="" type="checkbox"/>	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBHA9170	126706	2019-02-29	2022-02-28	2025-02-27
<input checked="" type="checkbox"/>	Pre-amplification (To 18GHz)	Compliance Direction System Inc.	PAP-1G18-50	178825	2021-03-26	2022-03-01	2023-02-28
<input checked="" type="checkbox"/>	Pre-amplification (To 26.5GHz)	R&S	SCU-26D	135391	2020-12-05	2021-12-04	2022-12-03
<input checked="" type="checkbox"/>	Band Reject Filter	Wainwright	WRCJV8-2350-2400-2483.5-2533.5-40SS	1	2021-05-09	2022-05-08	2023-05-07
<input checked="" type="checkbox"/>	Highpass Filter	Wainwright	WHKX10-2700-3000-18000-40SS	2	2021-05-09	2022-05-08	2023-05-07
Software							
Used	Description		Manufacturer	Name	Version		
<input checked="" type="checkbox"/>	Test Software for Radiated disturbance		Tonscend	TS+	Ver. 2.5		
Other instruments							
Used	Equipment	Manufacturer	Model No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.
<input checked="" type="checkbox"/>	Spectrum Analyzer	Keysight	N9010B	155368	2021-05-09	2022-05-08	2023-05-07
<input checked="" type="checkbox"/>	Power Meter	Keysight	U2021XA	155370	2021-05-09	2022-05-08	2023-05-07

6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

TEST RESULTS TABLE

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (kHz)	Final VBW (kHz)
DH5	2.89	3.75	0.7707	77.07	1.13	0.35	0.5
2DH5	1.98	3.75	0.5280	52.80	2.77	0.51	1.0
3DH5	2.89	3.75	0.7707	77.07	1.13	0.35	0.5

Note: 1) Duty Cycle Correction Factor=10log(1/x).

2) Where: x is Duty Cycle (Linear)

3) Where: T is On Time (transmit duration)

TEST GRAPHS

DH5 ON TIME AND DUTY CYCLE MID CH (WORSE CASE)

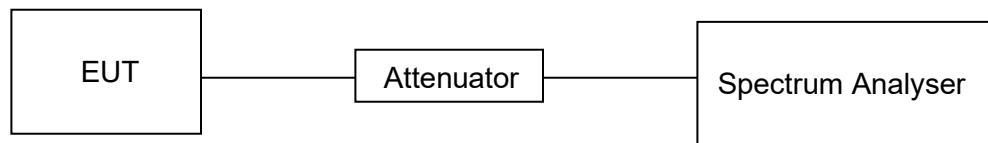
2DH5 ON TIME AND DUTY CYCLE MID CH (WORSE CASE)

6.2. 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

FCC Part15 (15.247), Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	None; for reporting purposes only.	2400-2483.5

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 6.9.2.

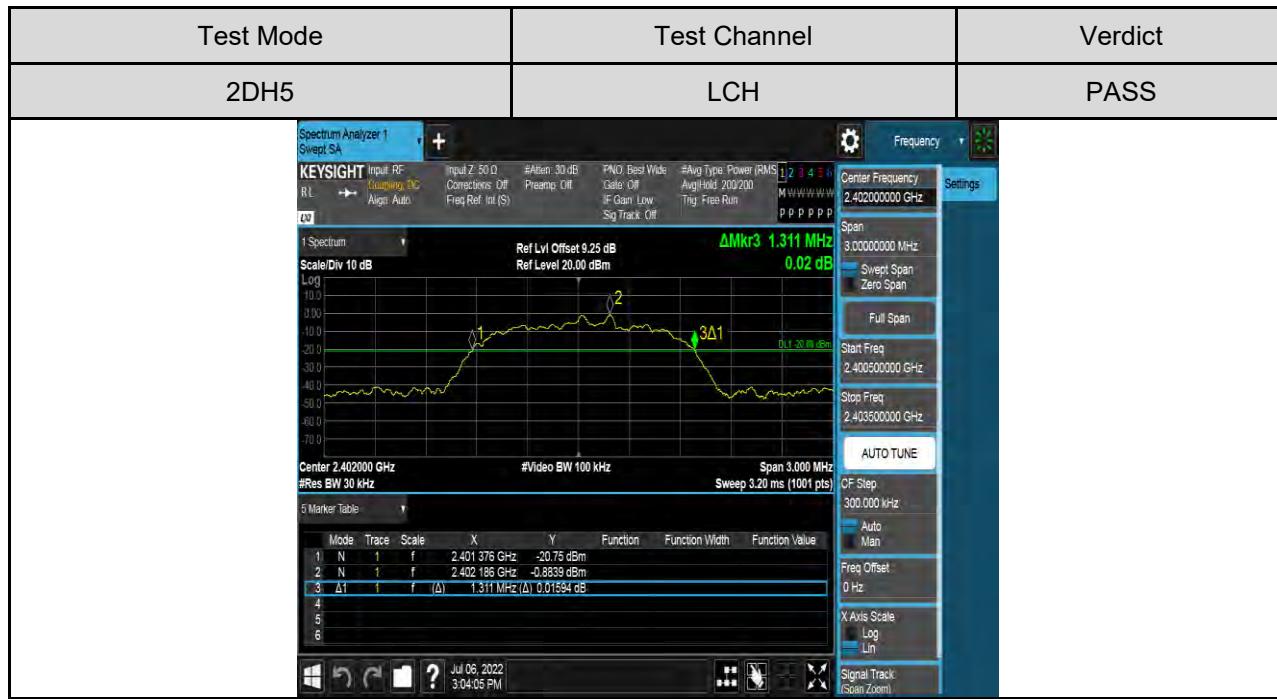
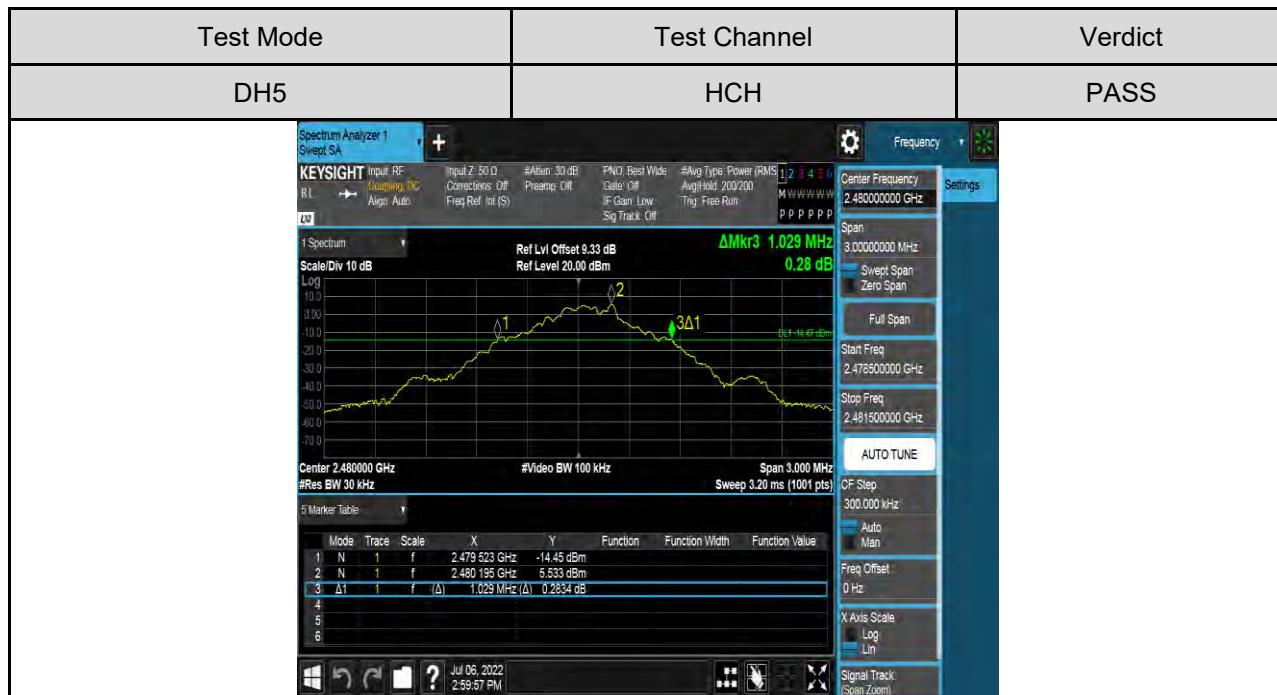
Connect the EUT to the spectrum analyser and use the following settings:

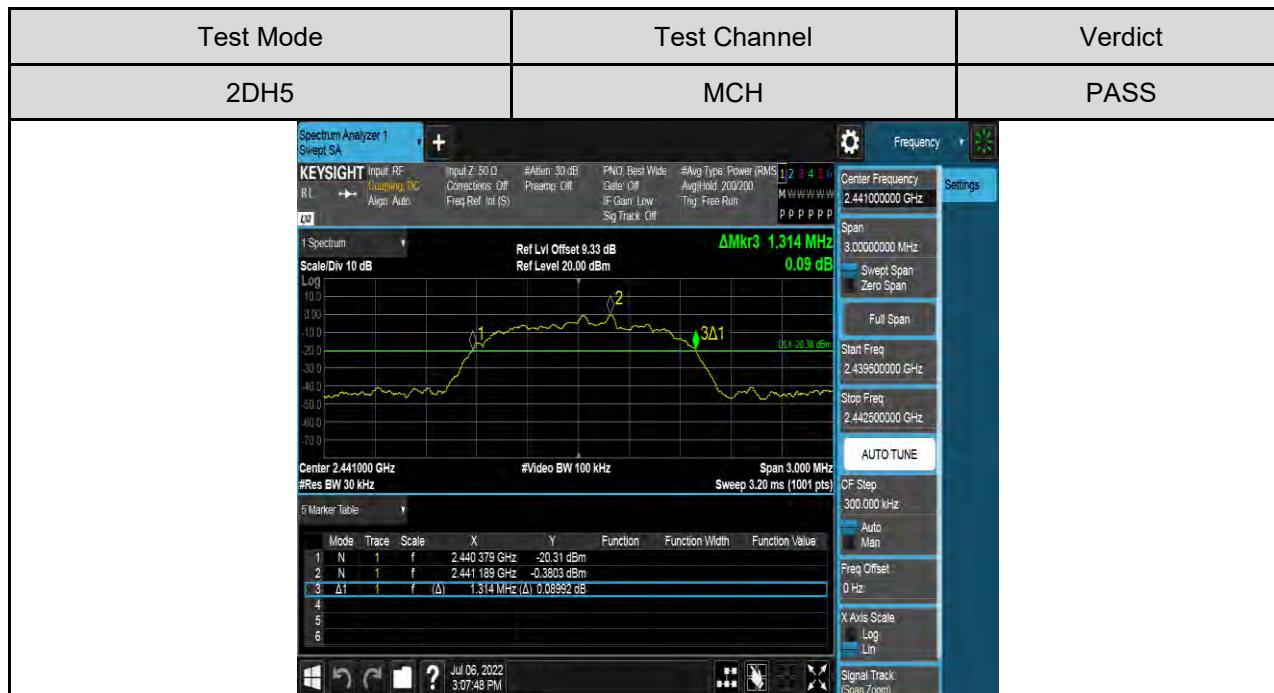
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 20 dB Bandwidth: approximately $3 \times$ RBW For 99 % Occupied Bandwidth: $\geq 3 \times$ RBW
Span	Approximately 2 to 5 times the OBW
Trace	Max hold
Sweep	Auto couple

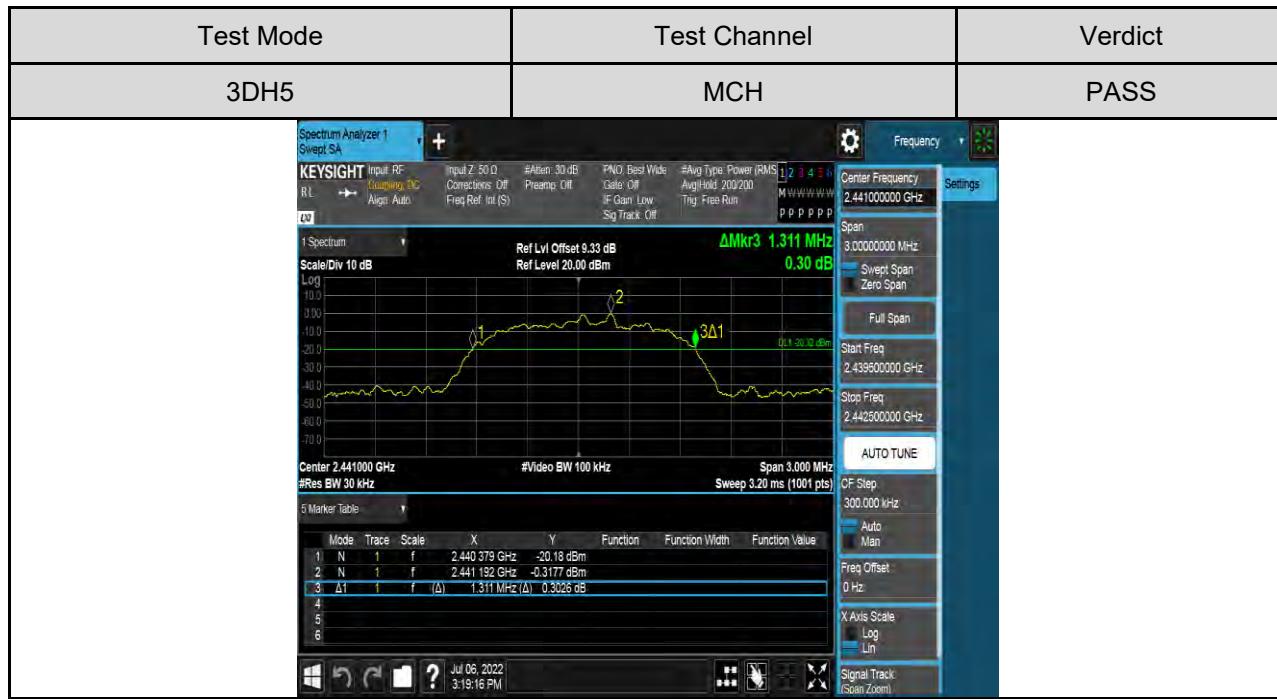
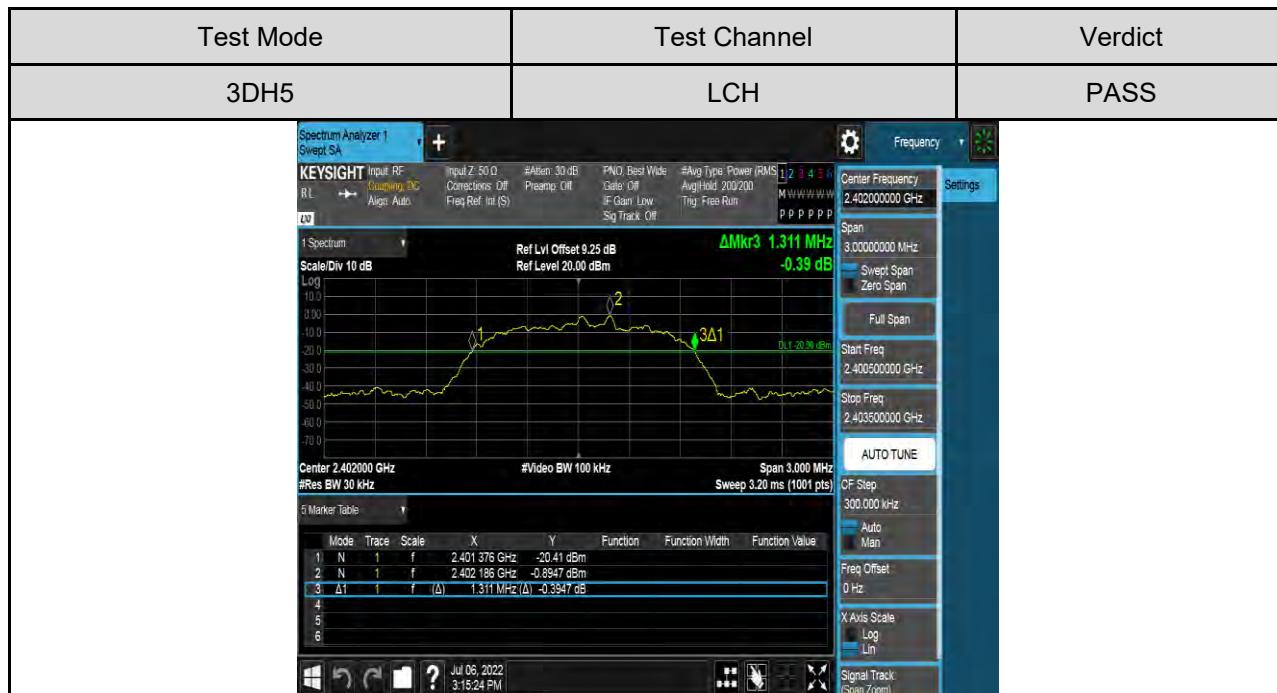
Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

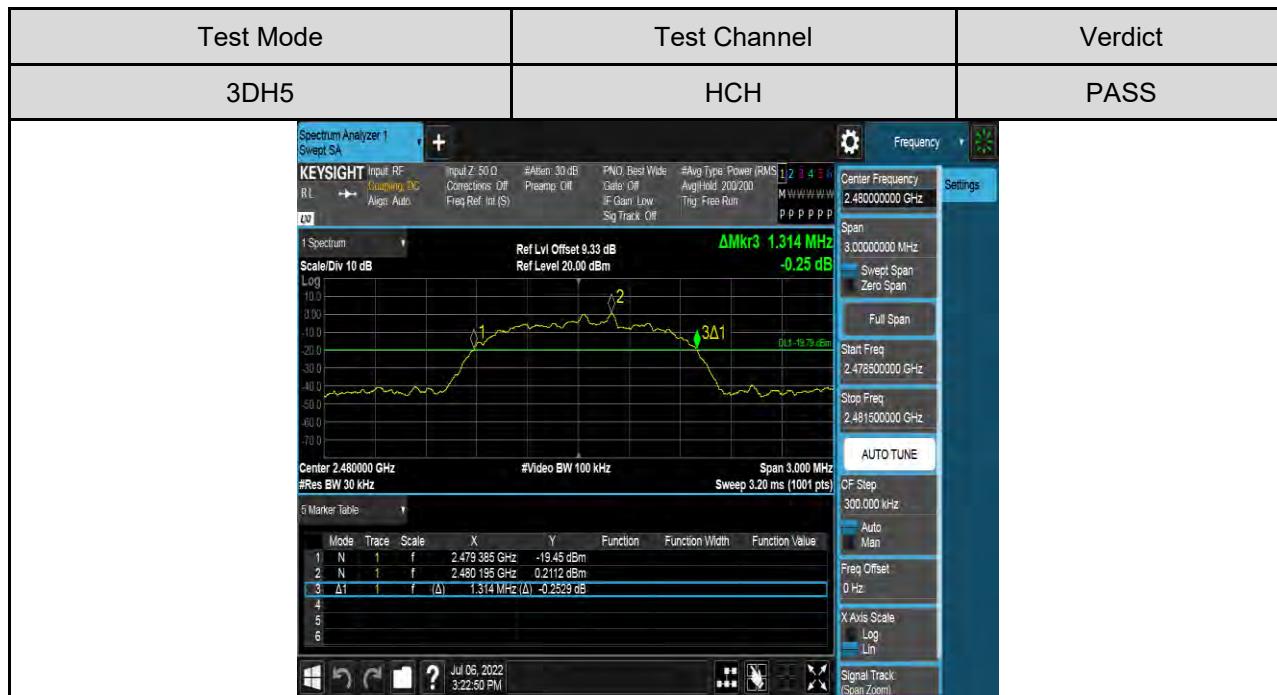
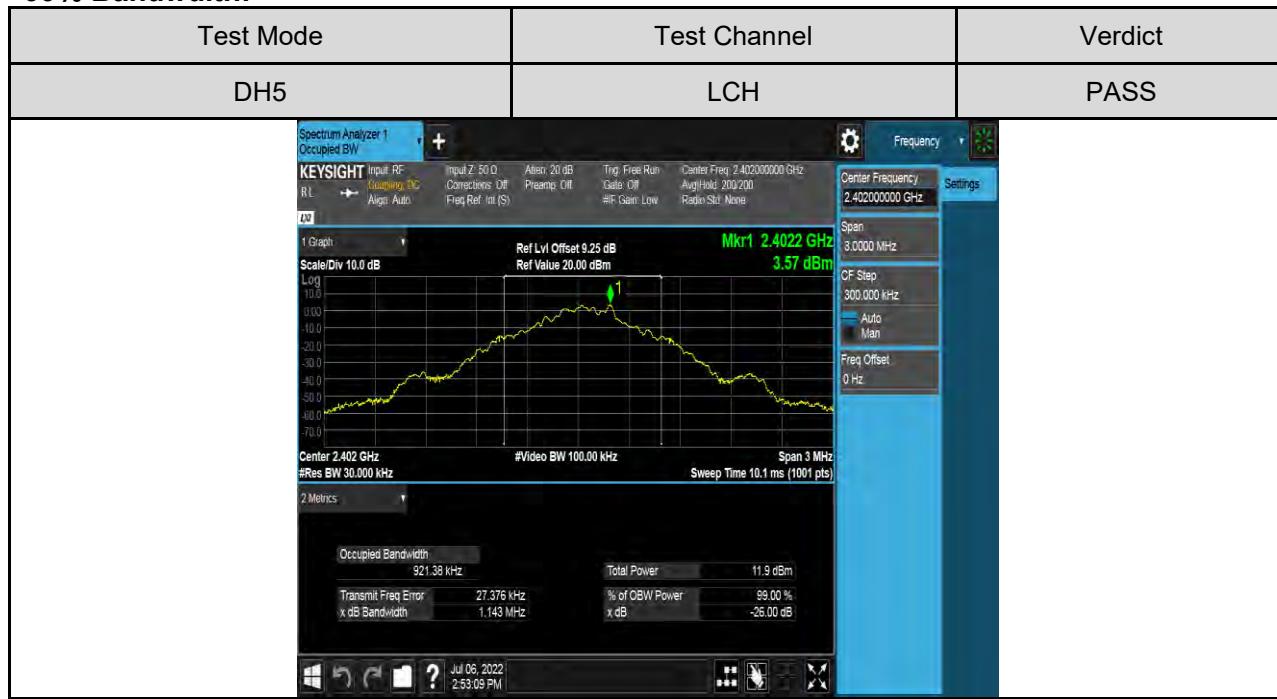
TEST SETUP

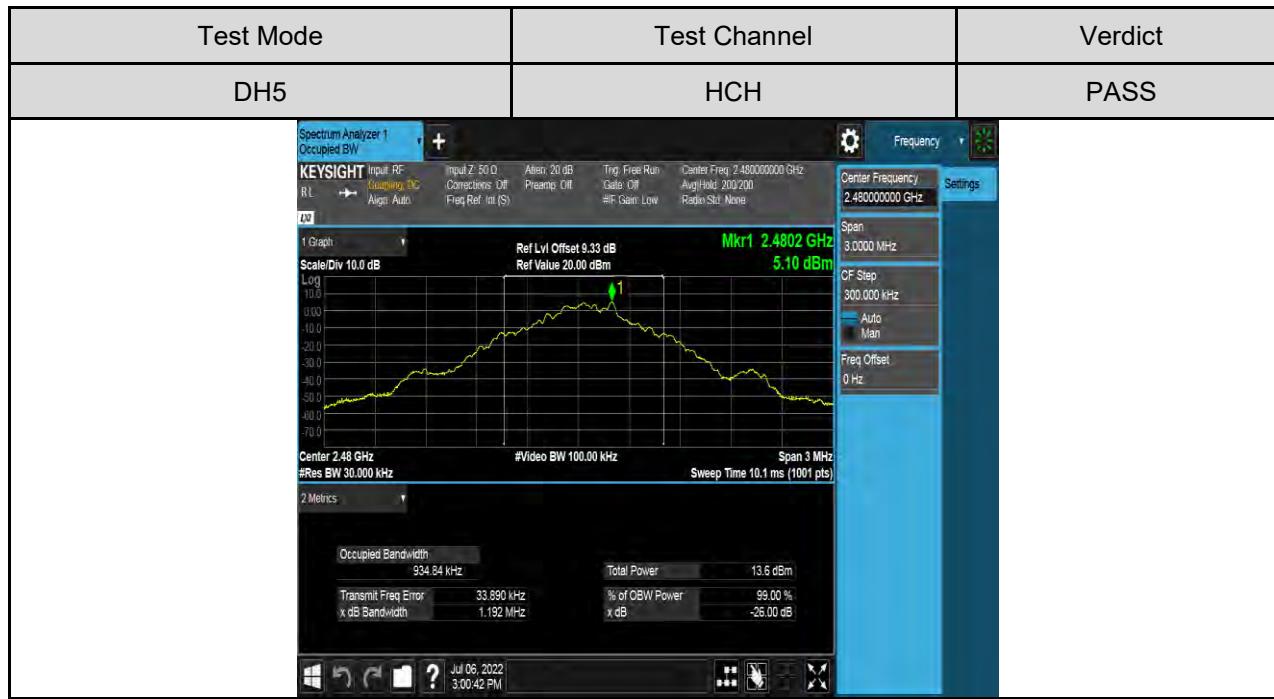


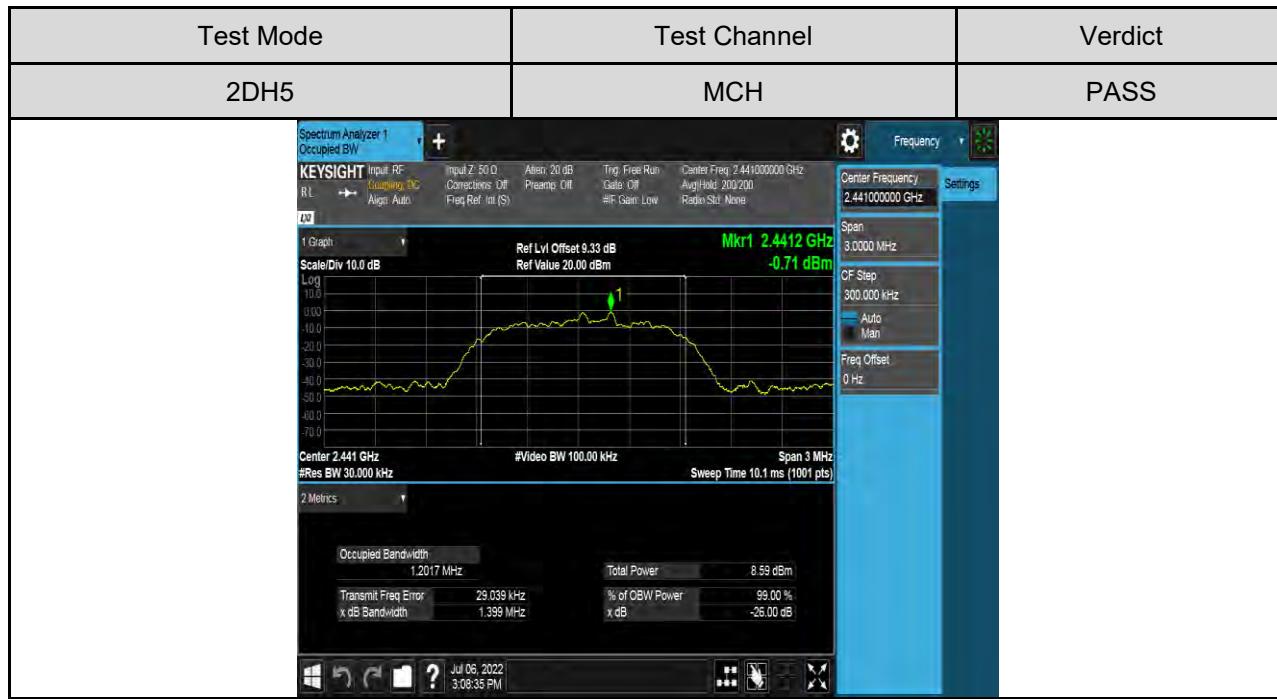



TEST ENVIRONMENT

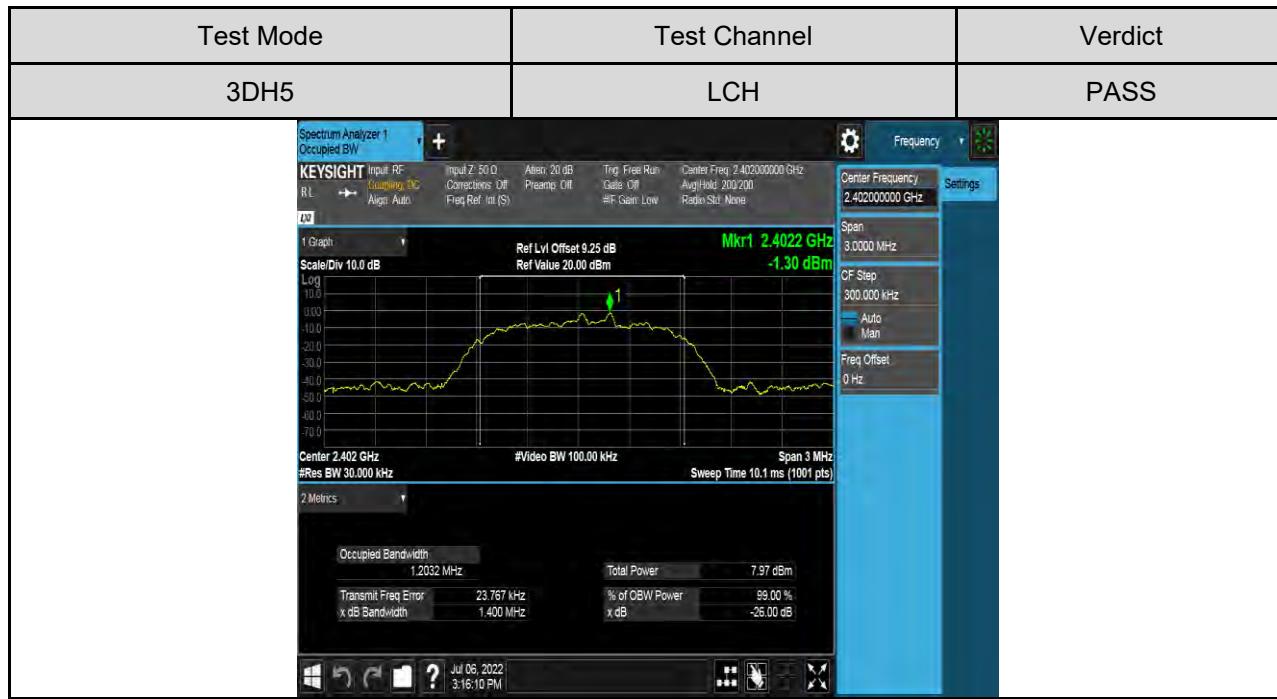
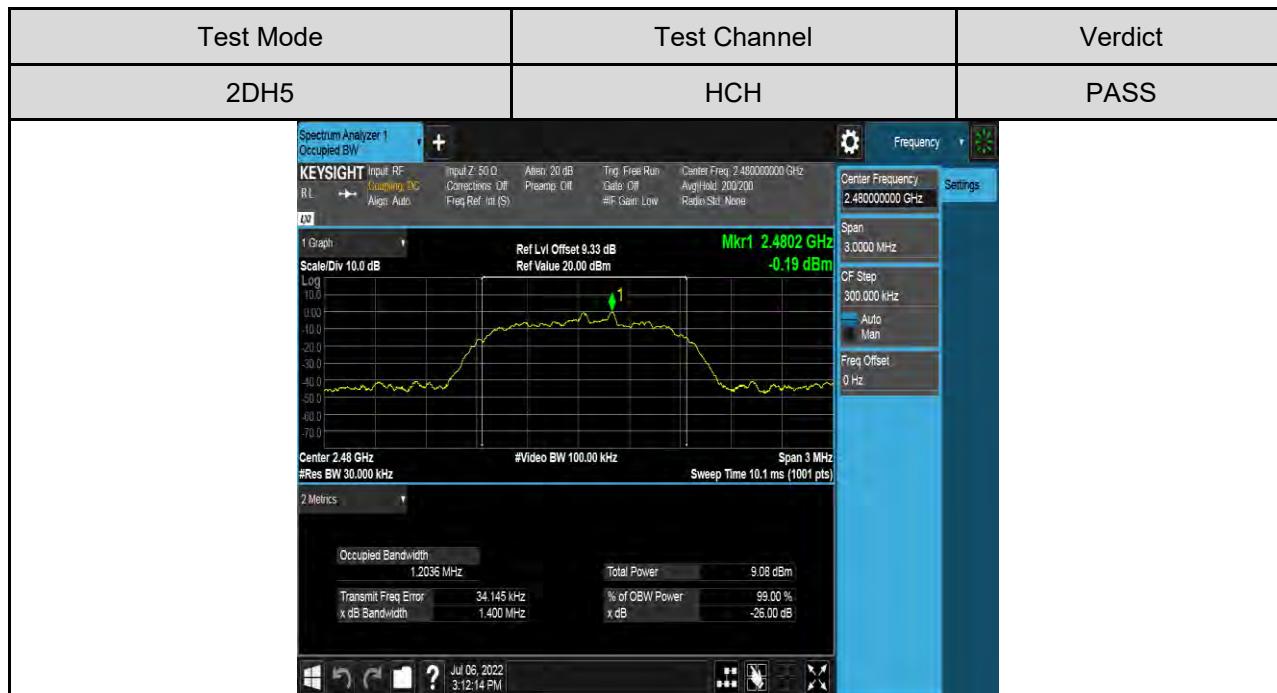


Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

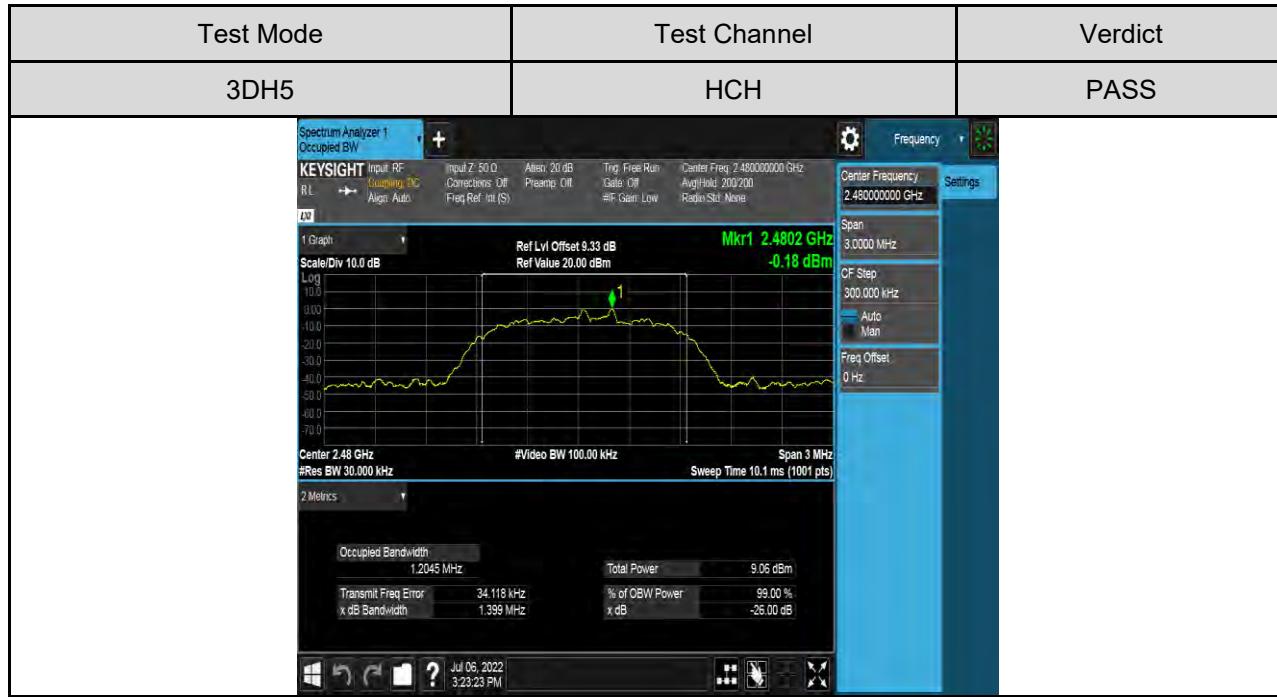


TEST RESULTS TABLE



Test Mode	Test Channel (MHz)	20dB bandwidth (MHz)	99% bandwidth (MHz)	Result
DH5	2412	1.035	0.92138	Pass
	2457	1.029	0.93356	Pass
	2462	1.029	0.93484	Pass
2DH5	2412	1.311	1.2020	Pass
	2447	1.314	1.2017	Pass
	2462	1.311	1.2036	Pass
3DH5	2412	1.311	1.2032	Pass
	2447	1.311	1.2038	Pass
	2462	1.314	1.2045	Pass


TEST GRAPHS
20dB Bandwidth:






99% Bandwidth:

6.3. CONDUCTED OUTPUT POWER

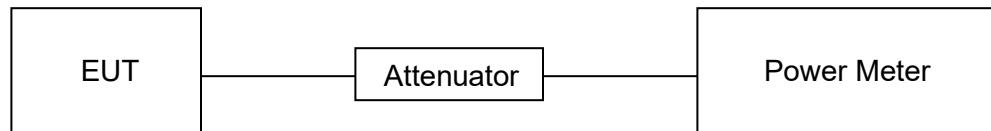
LIMITS

FCC Part15 (15.247), Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (b) (1) ISED RSS-247 Clause 5.4 (b)	Output Power	Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel: 1 watt or 30 dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel: 125 mW or 21 dBm	2400-2483.5

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.


Measure the power of each channel.

PK Detector used for PK result.

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

TEST SETUP

TEST RESULTS TABLE

Test Mode	Test Channel	Maximum Conducted Output Power (PK)		LIMIT
		dBm	dBm	
DH5	LCH	5.20		21
	MCH	5.77		21
	HCH	6.77		21
2DH5	LCH	3.25		21
	MCH	3.81		21
	HCH	4.29		21
3DH5	LCH	3.10		21
	MCH	3.76		21
	HCH	4.25		21

6.4. CARRIER FREQUENCY SEPARATION

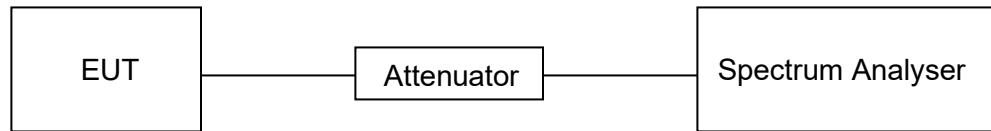
LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1) ISED RSS-247 Clause 5.1 (b)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.

Connect the EUT to the spectrum analyzer and use the following settings:


Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
RBW	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	\geq RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.


Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

TEST SETUP**TEST RESULTS TABLE**

Test Mode	Test Channel	Result (MHz)	Result
DH5	Hop	1.002	Pass
2DH5	Hop	1.008	Pass
3DH5	Hop	1.029	Pass

TEST GRAPHS

Test Mode	Test Channel	Verdict
3DH5	Hop	PASS

6.5. NUMBER OF HOPPING FREQUENCIES

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2		
Section	Test Item	Limit
CFR 47 15.247 (a) (1) III ISED RSS-247 Clause 5.1 (d)	Number of Hopping Frequency	at least 15 hopping channels

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.3.


Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To clearly identify the individual channels, set the RBW to less than 30 % of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	\geq RBW
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

TEST SETUP**TEST RESULTS TABLE**

Test Mode	Test Channel	Result (Num)	Result
DH5	Hop	79	Pass
2DH5	Hop	79	Pass
3DH5	Hop	79	Pass

TEST GRAPHS

Test Mode	Test Channel	Verdict
DH5	Hop	PASS

Test Mode	Test Channel	Verdict
2DH5	Hop	PASS

Test Mode	Test Channel	Verdict
3DH5	Hop	PASS

6.6. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2		
Section	Test Item	Limit
CFR 47 15.247 (a) (1) III ISED RSS-247 Clause 5.1 (d)	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	\geq RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

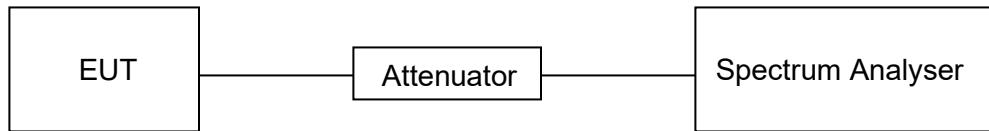
For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: $\text{Burst Width} * (1600/2) * 31.6 / (\text{channel number})$

DH3/3DH3 Dwell Time: $\text{Burst Width} * (1600/4) * 31.6 / (\text{channel number})$

DH5/3DH5 Dwell Time: $\text{Burst Width} * (1600/6) * 31.6 / (\text{channel number})$

For AFHSS Mode (20 Channel):


DH1/3DH1 Dwell Time: $\text{Burst Width} * (800/2) * 8 / (\text{channel number})$

DH3/3DH3 Dwell Time: $\text{Burst Width} * (800/4) * 8 / (\text{channel number})$

DH5/3DH5 Dwell Time: $\text{Burst Width} * (800/6) * 8 / (\text{channel number})$

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

TEST SETUP**TEST RESULTS TABLE**

FHSS Mode				
Packet	Channel	Burst Width [ms/hop/ch]	Dwell Time [ms]	Results
DH1	Hop	0.37	118.40	PASS
DH3	Hop	1.62	259.20	PASS
DH5	Hop	2.87	306.13	PASS
3DH1	Hop	0.37	118.40	PASS
3DH3	Hop	1.62	259.20	PASS
3DH5	Hop	2.87	306.13	PASS

AFHSS Mode				
Packet	Channel	Burst Width [ms/hop/ch]	Dwell Time [ms]	Results
DH1	Hop	0.37	14.99	PASS
DH3	Hop	1.62	32.81	PASS
DH5	Hop	2.87	38.75	PASS
3DH1	Hop	0.37	14.99	PASS
3DH3	Hop	1.62	32.81	PASS
3DH5	Hop	2.87	38.75	PASS

Note:

Through pre-testing all the test modes, but only the data of the worst case is included in this test report.

TEST GRAPHS

Test Mode	Test Channel	Verdict
DH1	Hop	PASS

Test Mode	Test Channel	Verdict
DH3	Hop	PASS

Test Mode	Test Channel	Verdict
DH5	Hop	PASS

Test Mode	Test Channel	Verdict
3DH1	Hop	PASS

Test Mode	Test Channel	Verdict
3DH3	Hop	PASS

Test Mode	Test Channel	Verdict
3DH5	Hop	PASS

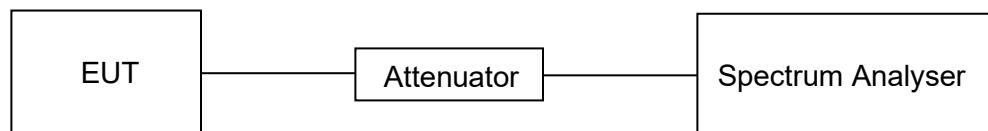
6.7. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

FCC Part15 (15.247), Subpart C		
Section	Test Item	Limit
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:


Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	$\geq 3 \times$ RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	$\geq 3 \times$ RBW
measurement points	\geq span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

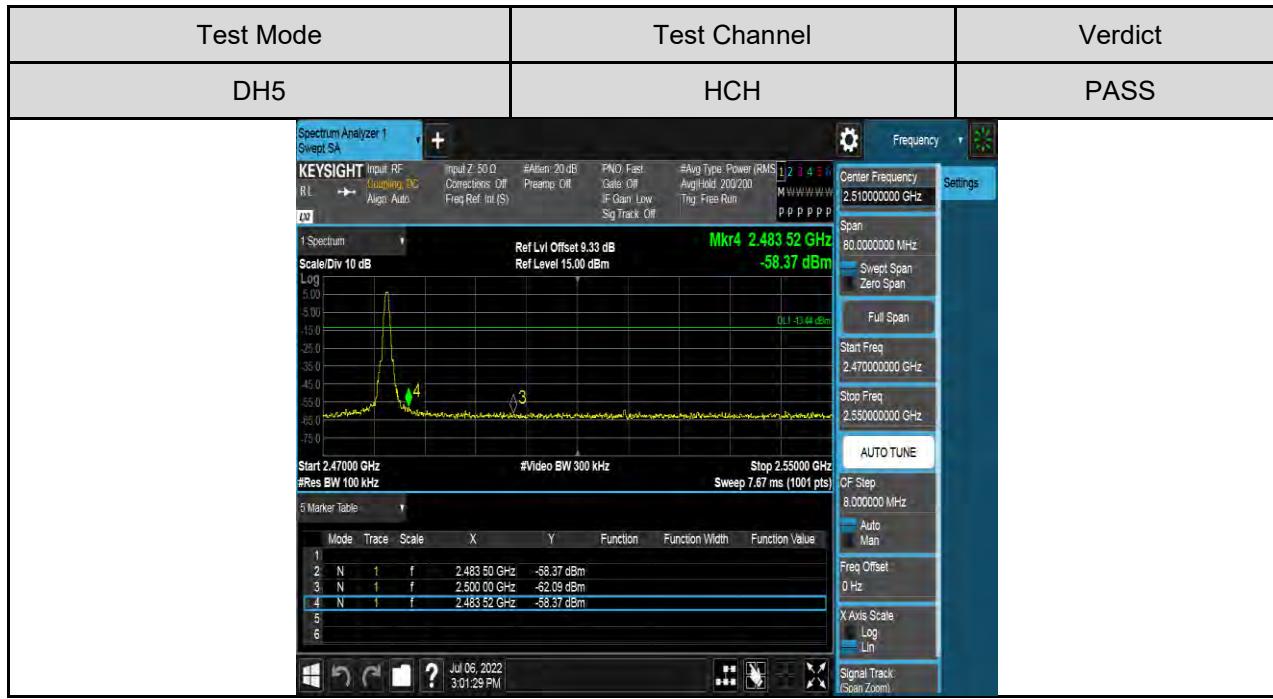
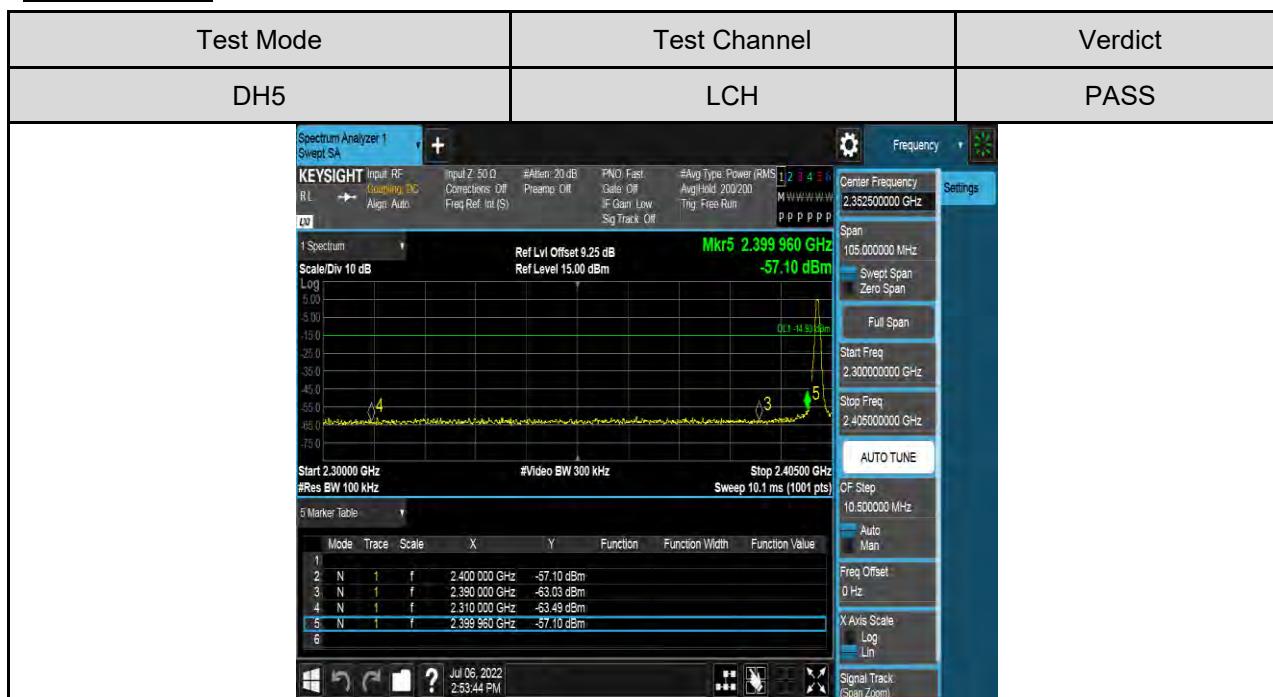
TEST ENVIRONMENT

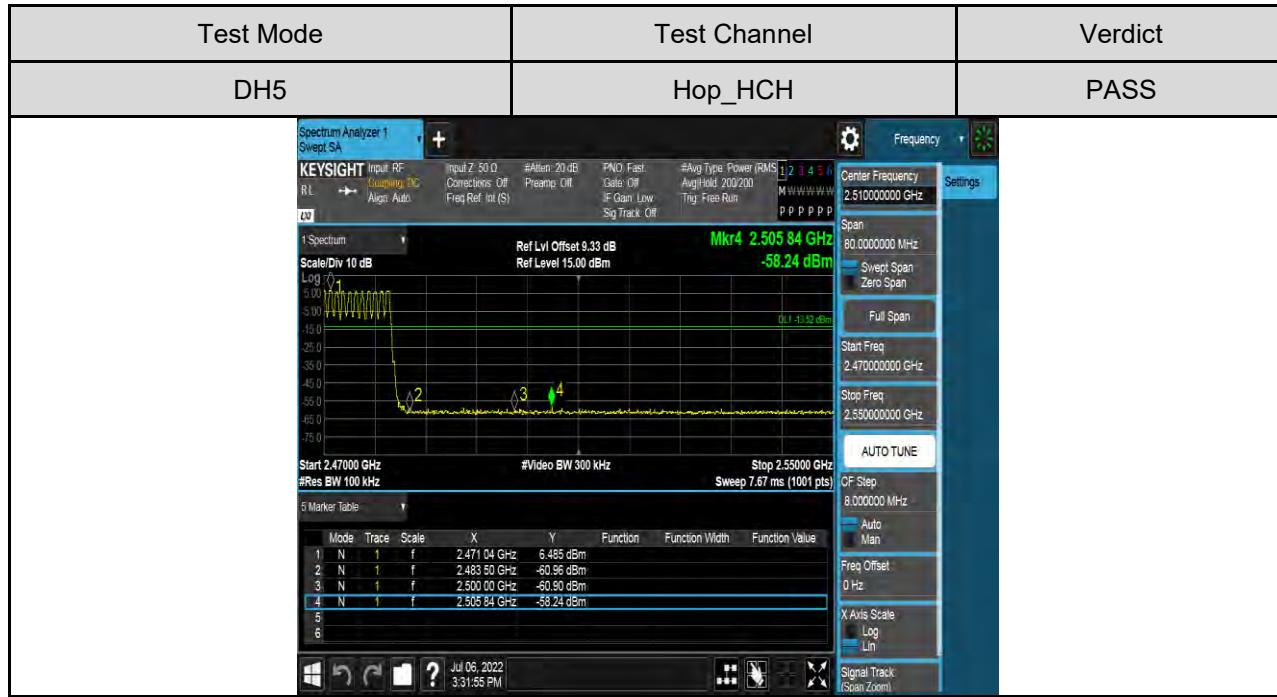
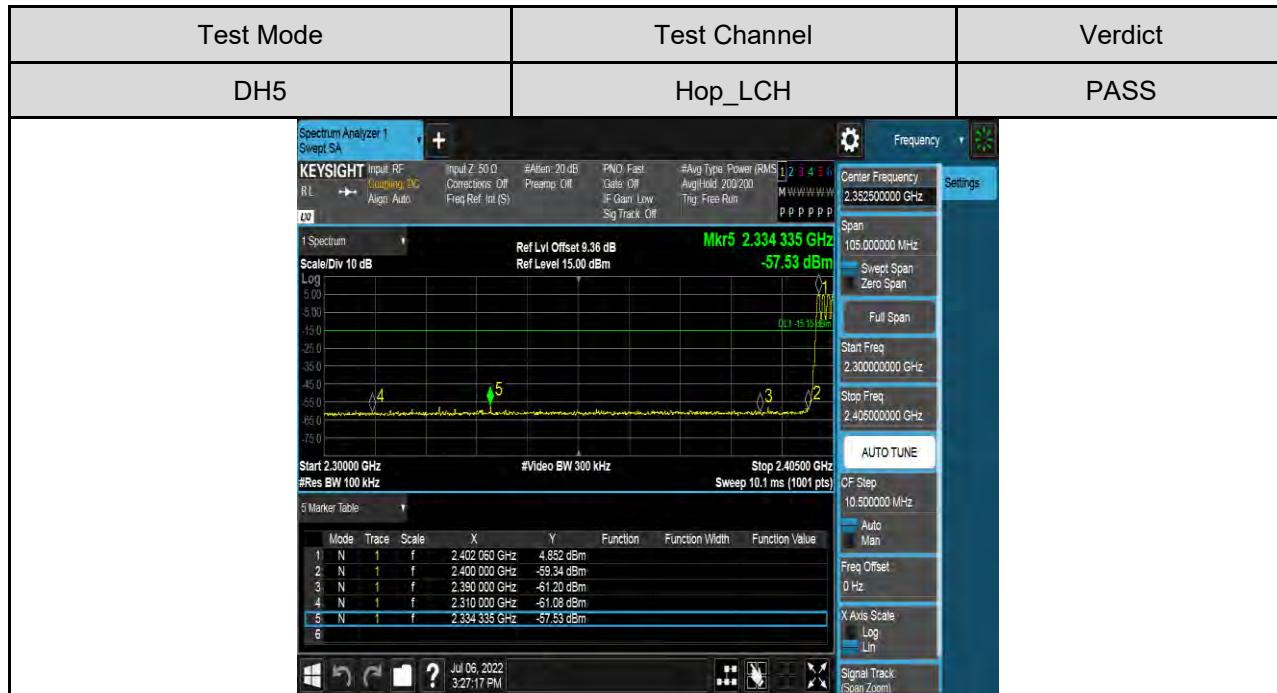
Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

PART 1: REFERENCE LEVEL MEASUREMENTTEST RESULTS TABLE

Test Mode	Test Channel	Result[dBm]
DH5	LCH	5.07
	MCH	5.57
	HCH	6.56
2DH5	LCH	0.22
	MCH	0.81
	HCH	1.34
3DH5	LCH	0.19
	MCH	0.76
	HCH	1.30

TEST GRAPHS

PART 2: CONDUCTED BANDEDGE**TEST RESULTS TABLE**

Test Mode	Test Channel	Result	Verdict
DH5	LCH	Refer to the Test Graph	PASS
	HCH	Refer to the Test Graph	PASS
2DH5	LCH	Refer to the Test Graph	PASS
	HCH	Refer to the Test Graph	PASS
3DH5	LCH	Refer to the Test Graph	PASS
	HCH	Refer to the Test Graph	PASS

TEST GRAPHS

