

RF EXPOSURE LAB, LLC

2867 Progress Place, Suite 4D • Escondido, CA 92029 • U.S.A.
TEL (760) 737-3131 • FAX (760) 737-9131
<http://www.rfexposurelab.com>

CERTIFICATE OF COMPLIANCE SAR EVALUATION

Way Systems, Inc.
200 Unicorn Park
Woburn, MA 01801

Dates of Test: July 18-20, 2007
Test Report Number: SAR.20070701
Revision A

FCC ID:	VLNWAY5000
Model(s):	WAY5000
Test Sample:	Pre-Production Unit same as Production
Serial No.:	SAR1
Equipment Type:	Wireless Handset
Classification:	Portable Transmitter Next to Head & Body
TX Frequency Range:	824.2 – 848.8 MHz, 1850.2 – 1909.8 MHz
Frequency Tolerance:	± 25 ppm
Maximum RF Output:	850 MHz – 32.9 dBm, 1900 MHz – 28.8 dBm Conducted
Signal Modulation:	GMSK
Antenna Type (Length):	Internal(Tyco P/N 1513836-1 Rev. 2)
Battery:	BAK P/N BANEXLI (BAK063450A)
Application Type:	Certification
FCC Rule Parts:	Part 22 & 24

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2003 & OET Bulletin 65 Supp. C (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application has been denied FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Jay M. Moulton
Vice President

Certificate # 2387.01

Table of Contents

1. Introduction	3
SAR Definition [5].....	3
2. SAR Measurement Setup	4
Robotic System.....	4
System Hardware	4
System Description	4
E-Field Probe	6
3. Robot Specifications	7
4. Probe and Dipole Calibration	8
5. Phantom & Simulating Tissue Specifications	9
SAM Phantom.....	9
Brain & Muscle Simulating Mixture Characterization	9
Device Holder	9
6. Definition of Reference Points.....	10
Ear Reference Point.....	10
Device Reference Points	10
7. Test Configuration Positions	11
Positioning for Cheek/Touch [5].....	11
Positioning for Ear / 15° Tilt [5].....	12
Body Worn Configurations	13
8. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2].....	14
Uncontrolled Environment.....	14
Controlled Environment	14
9. Measurement Uncertainty	15
10. System Validation	16
Tissue Verification.....	16
Test System Verification	16
11. SAR Test Data Summary	17
Procedures Used To Establish Test Signal.....	17
Device Test Condition	17
12. FCC 3G Measurement Procedures – June 2006	18
12.1 Procedures Used to Establish RF Signal for SAR.....	18
12.2 SAR Measurement Conditions for UMTS.....	18
SAR Data Summary – 835 MHz Right Head	19
SAR Data Summary – 835 MHz Left Head.....	20
SAR Data Summary – 835 MHz Body	21
SAR Data Summary – 1900 MHz Right Head	22
SAR Data Summary – 1900 MHz Left Head	23
SAR Data Summary – 1900 MHz Body	24
12.1 Test Equipment List	25
13.1 Conclusion	26
14.1 References	27
Appendix A – System Validation Plots and Data	28
Appendix B – SAR Test Data Plots.....	39
Appendix C – SAR Test Setup Photos	74
Appendix D – Probe Calibration Data Sheets	83
Appendix E – Dipole Calibration Data Sheets	124
Appendix F – Phantom Calibration Data Sheets	147

1. Introduction

This measurement report shows compliance of the Way Systems, Inc. Model WAY5000 FCC ID: UXMWAY5000 with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1]

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], FCC OET Bulletin 65 Supp. C – 2001 [4], and IEEE Std.1528 – 2003 Recommended Practice [5] were employed.

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where:

σ = conductivity of the tissue (S/m)

ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

The measurements are conducted utilizing the ALSAS-10-U automated dosimetric assessment system. The ALSAS-10-U is designed and manufactured by Aprel Laboratories in Nepean, Ontario, Canada. The system utilizes a Robcomm 3 robot manufactured by ThermoCRS located in Michigan USA.

System Hardware

The system consists of a six axis articulated arm, controller for precise probe positioning (0.05 mm repeatability), a power supply, a teach pendent for teaching area scans, near field probe, an IBM Pentium 4™ 2.66 GHz PC with Windows XP Pro™, and custom software developed to enable communications between the robot controller software and the host operating system.

An amplifier is located on the articulated arm, which is isolated from the custom designed end effector and robot arm. The end effector provides the mechanical touch detection functionality and probe connection interface. The amplifier is functionally validated within the manufacturer's site and calibrated at NCL Calibration Laboratories. A Data Acquisition Card (DAC) is used to collect the signal as detected by the isotropic e-field probe. The DAC manufacturer calibrates the DAC to NIST standards. A formal validation is executed using all mechanical and electronic components to prove conformity of the measurement platform as a whole.

System Description

The ALSAS-10-U has been designed to measure devices within the compliance environment to meet all recognized standards. The system also conforms to standards, which are currently being developed by the scientific and manufacturing community.

The course scan resolution is defined by the operator and reflects the requirements of the standard to which the device is being tested. Precise measurements are made within the predefined course scan area and the values are logged.

The user predefines the sample rate for which the measurements are made so as to ensure that the full duty-cycle of a pulse modulation device is covered during the sample. The following algorithm is an example of the function used by the system for linearization of the output for the probe.

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

The Aprel E-Field probe is evaluated to establish the diode compression point.

A complex algorithm is then used to calculate the values within the measured points down to a resolution of 1mm. The data from this process is then used to provide the co-ordinates from which the cube scan is created for the determination of the 1 g and 10 g averages.

Cube scan averaging consists of a number of complex algorithms, which are used to calculate the one, and ten gram averages. The basis for the cube scan process is centered on the location where the maximum measured SAR value was found. When a secondary peak value is found which is within 60% of the initial peak value, the system will report this back to the operator who can then assess the need for further analysis of both the peak values prior to the one and ten-gram cube scan averaging process. The algorithm consists of 3D cubic Spline, and Lagrange extrapolation to the surface, which form the matrix for calculating the measurement output for the one and ten gram average values. The resolution for the physical scan integral is user defined with a final calculated resolution down to 1mm.

In-depth analysis for the differential of the physical scanning resolution for the cube scan analysis has been carried out, to identify the optimum setting for the probe positioning steps, and this has been determined at 8mm increments on the X, & Y planes. The reduction of the physical step increment increased the time taken for analysis but did not provide a better uncertainty or return on measured values.

The final output from the system provides data for the area scan measurements, physical and splined (1mm resolution) cube scan with physical and calculated values (1mm resolution).

The overall uncertainty for the methodology and algorithms the ALSAS-10-U used during the SAR calculation was evaluated using the data from IEEE 1528 f3 algorithm:

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a + 2z)^2} \right)$$

The probe used during the measurement process has been assessed to provide values for diode compression. These values are calculated during the probe calibration exercise and are used in the mathematical calculations for the assessment of SAR.

A bilinear 2D interpolation algorithm is used to interpolate the area scan to 1mm resolution. Points adjacent to the phantom surface are extrapolated using a 4th order polynomial function that has been fitted to measured points. A linear 3D interpolation is used to get a 1mm SAR grid from a measured cube with a larger resolution. The averaging (integration) procedure to get the 1-g SAR is accomplished by finding the peak point in the interpolated zoom scan cube; then, the mean average of an 11x11x11 point cube is calculated and the peak point is at the center of the cube starting at the 0mm point (phantom surface).

E-Field Probe

The E-field probe used by RF Exposure Lab, LLC, has been fully calibrated and assessed for isotropic, and boundary effect. The probe utilizes a triangular sensor arrangement as detailed in the diagram below right.

The SAR is assessed with the probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (Z height). The diagram above right shows how the center of the sensor is defined with the location of the diode placed at the center of the dipole. The 5mm default in the Z axis is the optimum height for assessing SAR where the boundary effect is at its least, with the probe located closest to the phantom surface (boundary).

The manufacturer specified precision of the robot is ± 0.05 mm and the precision of the APREL bottom detection device is ± 0.1 mm. These precisions are calibrated and tested in the manufacturing process of the bottom detection device. A constant distance is maintained because the surface of the phantom is dynamically detected for each point. The surface detection algorithm corrects the position of the robot so that the probe rests on the surface of the phantom. The probe is then moved to the measurement location 2.44 mm above the phantom surface resulting in the probe center location to be at 4.0 mm above the phantom surface. Therefore, the probe sensor will be at 4.0 mm above the phantom surface ± 0.1 mm for each SAR location.

The probe boundary effect compensation cannot be disabled in the ALSAS-10U testing system. The probe tip will always be at least half a probe tip diameter from the phantom surface. For frequencies up to 3 GHz, the probe diameter is 5 mm. With the sensor offset set at 1.54 mm (default setting), the sensor to phantom gap will be 4.0 mm which is greater than half the probe tip diameter. For frequencies greater than 3 GHz, the probe diameter is 3 mm. With the sensor offset set at 0.56 mm (default setting), the sensor to phantom gap will be 3.0 mm which is greater than half the probe tip diameter.

The separation of the first 2 measurement points in the zoom scan is specified in the test setup software. The user must specify a zoom scan resolution of less than 6 mm in the z-axis to have the first two measurements within 1 cm of the surface. The z-axis is set to 4 mm as shown on each of the data sheets in Appendix B.

3. Robot Specifications

Specifications

Positioner:	ThermoCRS, Robot Model: Robocomm 3
Repeatability:	0.05 mm
No. of axis:	6

Data Acquisition Card (DAC) System

Cell Controller

Processor:	Pentium 4™
Clock Speed:	2.66 GHz
Operating System:	Windows XP Pro™

Data Converter

Features:	Signal Amplifier, End Effector, DAC
Software:	ALSAS 10-U Software

E-Field Probe

Model:	Various See Probe Calibration Sheet
Serial Number:	Various See Probe Calibration Sheet
Construction:	Triangular Core Touch Detection System
Frequency:	10MHz to 6GHz

Phantom

Phantom:	Uniphantom, Right Phantom, Left Phantom
----------	---

4. Probe and Dipole Calibration

See Appendix D and E.

5. Phantom & Simulating Tissue Specifications

SAM Phantom

The Aprel system utilizes three separate phantoms. Each phantom for SAR assessment testing is a low loss dielectric shell, with shape and dimensions derived from the anthropomorphic data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM phantom shell is bisected along the mid sagittal plane into right and left halves. The perimeter sidewalls of each phantom half is extended to allow filling with liquid to a depth of 15 cm that is sufficient to minimize reflections from the upper surface [5]. See photos in Appendix C.

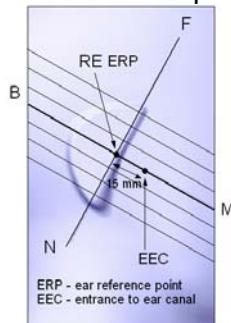
Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a glycol based chemical and saline solution. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following tables. Other head and body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

Table 5.1 Typical Composition of Ingredients for Tissue

Ingredients	Simulating Tissue			
	835 MHz Head	835 MHz Muscle	1900 MHz Head	1900 MHz Muscle
Mixing Percentage				
Water	51.07	52.40	54.88	69.91
DGBE	0.00	0.00	44.91	29.96
Sugar	47.31	45.00	0.00	0.00
Salt	1.15	1.40	0.21	0.13
Bactericide	0.24	0.10	0.00	0.00
HEC	0.23	1.00	0.00	0.00
Dielectric Constant	Target	41.50	55.20	40.00
Conductivity (S/m)	Target	0.90	0.97	1.40
				1.52

Device Holder



In combination with the SAM phantom, the mounting device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can easily, accurately, and repeatably be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, and uni-phantom).

6. Definition of Reference Points

Ear Reference Point

Figure 6.2 shows the front, back and side views of the SAM Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

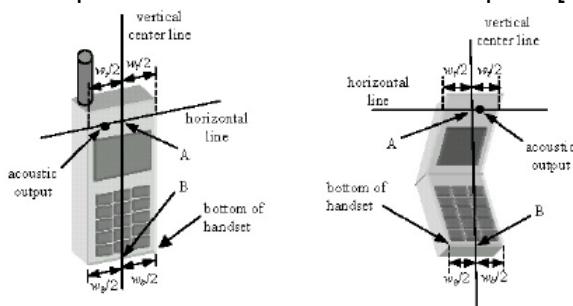

Figure 6.1 Close-up side view of ERP's

Figure 6.2 Front, back and side view of SAM

Device Reference Points

Two imaginary lines on the device need to be established: the vertical centerline and the horizontal line. The test device is placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" is then located at the same level as the center of the ear reference point. The test device is positioned so that the "vertical centerline" is bisecting the front surface of the device at its top and bottom edges, positioning the "ear reference point" on the outer surface of both the left and right head phantoms on the ear reference point [5].

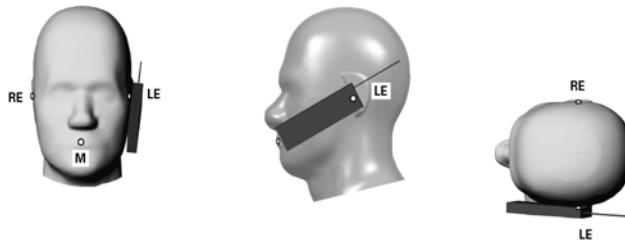


Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points

7. Test Configuration Positions


Positioning for Cheek/Touch [5]

1. Position the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7.1), such that the plane defined by the vertical center line and the horizontal line of the device is approximately parallel to the sagittal plane of the phantom.

Figure 7.1 Front, Side and Top View of Cheek/Touch Position

2. Translate the device towards the phantom along the line passing through RE and LE until the device touches the ear.
3. While maintaining the device in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
4. Rotate the device around the vertical centerline until the device (horizontal line) is symmetrical with respect to the line NF.
5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the device contact with the ear, rotate the device about the line NF until any point on the device is in contact with a phantom point below the ear (cheek). See Figure 7.2.

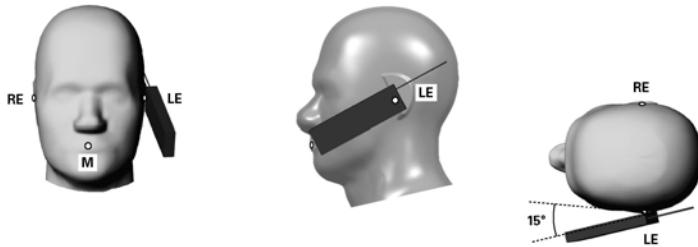


Figure 7.2 Side view w/ relevant markings

Positioning for Ear / 15° Tilt [5]

With the test device aligned in the Cheek/Touch Position":

1. While maintaining the orientation of the device, retracted the device parallel to the reference plane far enough to enable a rotation of the device by 15 degrees.
2. Rotate the device around the horizontal line by 15 degrees.
3. While maintaining the orientation of the device, move the device parallel to the reference plane until any part of the device touches the head. (In this position, point A is located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna, the angle of the device shall be reduced. The tilted position is obtained when any part of the device is in contact with the ear as well as a second part of the device is in contact with the head (see Figure 7.3).

Figure 7.3 Front, Side and Top View of Ear/15° Tilt Position

Body Worn Configurations

Body-worn operating configurations are tested with the accessories attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then, when multiple accessories that contain metallic components are supplied with the device, the device is tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration where a separation distance between the back of the device and the flat phantom is used. All test position spacings are documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

8. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

9. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c_i^1 (1-g)	c_i^1 (10-g)	Standard Uncertainty (1-g) %	Standard Uncertainty (10-g) %
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	•3	$(1-cp)^{1/2}$	$(1-cp)^{1/2}$	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	•3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	•3	1	1	0.6	0.6
Linearity	4.7	rectangular	•3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	•3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	•3	1	1	0.5	0.5
Integration Time	1.7	rectangular	•3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	•3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	•3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	•3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	•3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	4.2	rectangular	•3	1	1	2.4	2.4
Phantom and Setup							
Phantom Uncertainty (shape & thickness tolerance)	3.4	rectangular	•3	1	1	2.0	2.0
Liquid Conductivity (target)	5.0	rectangular	•3	0.7	0.5	2.0	1.4
Liquid Conductivity (meas.)	0.5	normal	1	0.7	0.5	0.4	0.3
Liquid Permittivity (target)	5.0	rectangular	•3	0.6	0.5	1.7	1.4
Liquid Permittivity (meas.)	1.0	normal	1	0.6	0.5	0.6	0.5
Combined Uncertainty		RSS				9.6	9.4
Combined Uncertainty (coverage factor=2)		Normal (k=2)				19.1	18.8

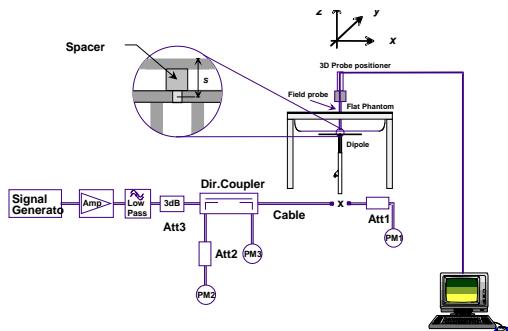
10. System Validation

Tissue Verification

Table 10.1 Measured Tissue Parameters

		1900 MHz Body		1900 MHz Head		835 MHz Body	
Date(s)		Jul. 18, 2007		Jul. 19, 2007		Jul. 19, 2007	
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured
Dielectric Constant: ϵ	53.30	51.74	40.00	39.69	55.20	54.89	
Conductivity: σ	1.52	1.54	1.400	1.41	0.970	0.95	
		835 MHz Head					
Date(s)		Jul. 19, 2007					
Liquid Temperature (°C)	20.0	Target	Measured				
Dielectric Constant: ϵ	41.50	40.15					
Conductivity: σ	0.90	0.91					

See Appendix A for data printout.


Test System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit. Power is extrapolated to 1 watt. (Graphic Plots Attached)

Table 10.2 System Dipole Validation Target & Measured

	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Deviation (%)
18-Jul-2007	1900 MHz	40.636	39.36	- 3.14
19-Jul-2007	1900 MHz	40.636	38.55	- 5.13
19-Jul-2007	835 MHz	9.820	9.79	- 0.31

See Appendix A for data plots.

Figure 10.1 Dipole Validation Test Setup

11. SAR Test Data Summary

See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots.
See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was placed into simulated transmit mode using the manufacturer's test codes. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR. When test modes are not available or inappropriate for testing a device, the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

The device is battery operated. Each SAR measurement was taken with a fully charged battery. In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated.

12. FCC 3G Measurement Procedures – June 2006

Power measurements were performed using a base station simulator under average power.

12.1 Procedures Used to Establish RF Signal for SAR

The handset was placed into a simulated call using a base station simulator in a screen room. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR. SAR measurements were taken with a fully charged battery. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5% occurred, the tests were repeated.

12.2 SAR Measurement Conditions for UMTS

12.2.1 Output Power Verification

Maximum output power is verified on the High, Middle, and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all “1s”. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes) should be tabulated in the test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations should be clearly identified.

12.2.2 Body SAR Measurements

SAR for body exposure configurations are measured using the 12.2 kbps RMC with the TPC bits configured to all “1s”.

12.2.3 Devices with HSDPA

Body SAR is not required for devices with HSDPA capabilities, when the maximum average output of each RF channel with HSDPA active is less than $\frac{1}{4}$ dB higher than that measured in 12.2 kbps RMC without HSDPA. Otherwise, SAR for HSDPA is measured using FRC (fixed reference channel) in the body exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC.

SAR Data Summary – 835 MHz Right Head

MEASUREMENT RESULTS							
Antenna Position	Position	Frequency		Modulation	Begin / End Power		SAR (W/kg)
		MHz	Ch.		(dBm)	Battery	
Internal	Touch	836.6	190	GMSK	33.03	32.99	Standard 0.553
	Tilt	836.6	190	GMSK	33.00	32.95	Standard 0.356
Muscle 1.6 W/kg (mW/g) averaged over 1 gram							

1. Battery is fully charged for all tests.
Power Measured Conducted ERP EIRP
2. SAR Measurement
Phantom Configuration Left Head Uniphantom Right Head
SAR Configuration Head Body
3. Test Signal Call Mode Test Code Base Station Simulator
4. Test Configuration With Belt Clip Without Belt Clip N/A

Jay M. Moulton
Vice President

Note: When the mid channel is 3 dB or more below the limit, the low and high channel are not required to be tested.

SAR Data Summary – 835 MHz Left Head

MEASUREMENT RESULTS							
Antenna Position	Position	Frequency		Modulation	Begin / End Power		SAR (W/kg)
		MHz	Ch.		(dBm)	Battery	
Internal	Touch	836.6	190	GMSK	32.99	32.94	Standard 0.517
	Tilt	836.6	190	GMSK	32.97	32.93	Standard 0.279
Muscle 1.6 W/kg (mW/g) <small>averaged over 1 gram</small>							

1. Battery is fully charged for all tests.
 Power Measured Conducted ERP EIRP
2. SAR Measurement
 Phantom Configuration Left Head Uniphantom Right Head
 SAR Configuration Head Body
3. Test Signal Call Mode Test Code Base Station Simulator
4. Test Configuration With Belt Clip Without Belt Clip N/A

Jay M. Moulton
Vice President

Note: When the mid channel is 3 dB or more below the limit, the low and high channel are not required to be tested.

SAR Data Summary – 835 MHz Body

MEASUREMENT RESULTS							
Antenna Position	Position	Frequency		Modulation	Begin / End Power		SAR (W/kg)
		MHz	Ch.		(dBm)	Battery	
Internal	Touch	824.2	128	GMSK	33.01	32.99	Standard 0.900
	Touch	836.6	190	GMSK	32.95	32.92	Standard 0.905
	Touch	848.8	251	GMSK	32.98	32.95	Standard 0.643
				Muscle 1.6 W/kg (mW/g) <small>averaged over 1 gram</small>			

1. Battery is fully charged for all tests.
 Power Measured Conducted ERP EIRP
2. SAR Measurement
 Phantom Configuration Left Head Uniphantom Right Head
 SAR Configuration Head Body
3. Test Signal Call Mode Test Code Base Station Simulator
4. Test Configuration With Belt Clip Without Belt Clip N/A

Jay M. Moulton
 Vice President

Note: When the mid channel is 3 dB or more below the limit, the low and high channel are not required to be tested.

SAR Data Summary – 1900 MHz Right Head

MEASUREMENT RESULTS							
Antenna Position	Position	Frequency		Modulation	Begin / End Power		SAR (W/kg)
		MHz	Ch.		(dBm)	Battery	
Internal	Touch	1880.0	661	GMSK	28.81	28.78	Standard
	Tilt	1880.0	661	GMSK	28.78	28.76	Standard
Muscle 1.6 W/kg (mW/g) averaged over 1 gram							

1. Battery is fully charged for all tests.
Power Measured Conducted ERP EIRP
2. SAR Measurement
Phantom Configuration Left Head Uniphantom Right Head
SAR Configuration Head Body
3. Test Signal Call Mode Test Code Base Station Simulator
4. Test Configuration With Belt Clip Without Belt Clip N/A

Jay M. Moulton
Vice President

Note: When the mid channel is 3 dB or more below the limit, the low and high channel are not required to be tested.

SAR Data Summary – 1900 MHz Left Head

MEASUREMENT RESULTS							
Antenna Position	Position	Frequency		Modulation	Begin / End Power		SAR (W/kg)
		MHz	Ch.		(dBm)	Battery	
Internal	Touch	1880.0	661	GMSK	28.85	28.80	Standard 0.378
	Tilt	1880.0	661	GMSK	28.80	28.78	Standard 0.368
Muscle 1.6 W/kg (mW/g) averaged over 1 gram							

1. Battery is fully charged for all tests.
Power Measured Conducted ERP EIRP
2. SAR Measurement
Phantom Configuration Left Head Uniphantom Right Head
SAR Configuration Head Body
3. Test Signal Call Mode Test Code Base Station Simulator
4. Test Configuration With Belt Clip Without Belt Clip N/A

Jay M. Moulton
Vice President

Note: When the mid channel is 3 dB or more below the limit, the low and high channel are not required to be tested.

SAR Data Summary – 1900 MHz Body

MEASUREMENT RESULTS							
Antenna Position	Position	Frequency		Modulation	Begin / End Power		SAR (W/kg)
		MHz	Ch.		(dBm)	Battery	
Internal	Touch	1850.2	512	GMSK	28.94	28.90	Standard 0.881
	Touch	1880.0	661	GMSK	28.76	28.72	Standard 0.874
	Touch	1908.8	810	GMSK	28.89	28.84	Standard 0.895
Muscle 1.6 W/kg (mW/g) <small>averaged over 1 gram</small>							

1. Battery is fully charged for all tests.
 Power Measured Conducted ERP EIRP
2. SAR Measurement
 Phantom Configuration Left Head Uniphantom Right Head
 SAR Configuration Head Body
3. Test Signal Call Mode Test Code Base Station Simulator
4. Test Configuration With Belt Clip Without Belt Clip N/A

Jay M. Moulton
 Vice President

Note: When the mid channel is 3 dB or more below the limit, the low and high channel are not required to be tested.

12.1 Test Equipment List

Table 12.1 Equipment Specifications

Type	Calibration Due Date	Serial Number
ThermoCRS Robot	N/A	RAF0338198
ThermoCRS Controller	N/A	RCF0338224
ThermoCRS Teach Pendant (Joystick)	N/A	STP0334405
IBM Computer, 2.66 MHz P4	N/A	8189D8U KCPR08N
Aprel E-Field Probe ALS-E020	02/14/2008	RFE-215
Aprel E-Field Probe ALS-E030	04/09/2008	AL-E3P1
Aprel Dummy Probe	N/A	023
Aprel Left Phantom	N/A	RFE-267
Aprel Right Phantom	N/A	RFE-268
Aprel UniPhantom	N/A	RFE-273
Aprel Validation Dipole ALS-D-450-S-2	04/30/2009	RFE-362
Aprel Validation Dipole ALS-D-835-S-2	02/16/2008	RFE-274
Aprel Validation Dipole ALS-D-1900-S-2	02/15/2008	RFE-277
Aprel Validation Dipole ALS-D-2450-S-2	02/17/2008	RFE-278
Aprel Validation Dipole ALS-D-BB-S-2	05/23/2009	5258-235-00801
Agilent (HP) 437B Power Meter	12/04/2007	3125U08837
Agilent (HP) 8481B Power Sensor	12/04/2007	3318A05384
Advantest R3261A Spectrum Analyzer	12/04/2007	31720068
Agilent (HP) 8350B Signal Generator	01/30/2008	2749A10226
Agilent (HP) 83525A RF Plug-In	01/30/2008	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	01/30/2008	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	01/30/2008	2904A00595
Aprel Dielectric Probe Assembly	N/A	0011
Microwave Power Devices 510-10E Amplifier	03/09/2008	6063-001
Microwave Power Devices 1020-9E Amplifier	03/09/2008	5618-1
Agilent 8960 Series 10 E5515C	01/30/2009	GB42361377
Brain Equivalent Matter (450 MHz)	N/A	N/A
Brain Equivalent Matter (835 MHz)	N/A	N/A
Brain Equivalent Matter (1900 MHz)	N/A	N/A
Brain Equivalent Matter (2450 MHz)	N/A	N/A
Muscle Equivalent Matter (450 MHz)	N/A	N/A
Muscle Equivalent Matter (835 MHz)	N/A	N/A
Muscle Equivalent Matter (1900 MHz)	N/A	N/A
Muscle Equivalent Matter (2450 MHz)	N/A	N/A
Muscle Equivalent Matter (5200 MHz)	N/A	N/A
Muscle Equivalent Matter (5800 MHz)	N/A	N/A

13.1 Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

14.1 References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 – 1999, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 – 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, July 2001.
- [5] IEEE Standard 1528 – 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003.

Appendix A – System Validation Plots and Data

```
*****
Test Result for UIM Dielectric Parameter
Thu 19/Jul/2007 11:56:47
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
*****
Freq FCC_eH FCC_sH Test_e Test_s
0.8050 41.66 0.90 40.32 0.90
0.8150 41.60 0.90 40.25 0.90
0.8250 41.55 0.90 40.21 0.91
0.8350 41.50 0.90 40.15 0.91
0.8450 41.50 0.91 40.14 0.91
0.8550 41.50 0.92 40.13 0.92
0.8650 41.50 0.93 40.12 0.93
```

```
*****
Test Result for UIM Dielectric Parameter
Thu 19/Jul/2007 10:12:47
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
*****
Freq FCC_eB FCC_sB Test_e Test_s
0.8050 55.32 0.97 55.11 0.92
0.8150 55.28 0.97 55.09 0.93
0.8250 55.24 0.97 54.95 0.93
0.8350 55.20 0.97 54.89 0.95
0.8450 55.17 0.98 54.82 0.96
0.8550 55.14 0.99 54.78 0.97
0.8650 55.11 1.01 54.71 0.98
```

Test Result for UIM Dielectric Parameter
Thu 19/Jul/2007 07:45:10
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM

Freq	FCC_eH	FCC_sH	Test_e	Test_s
1.8700	40.00	1.40	39.71	1.38
1.8800	40.00	1.40	39.70	1.39
1.8900	40.00	1.40	39.69	1.40
1.9000	40.00	1.40	39.69	1.41
1.9100	40.00	1.40	39.67	1.41
1.9200	40.00	1.40	39.67	1.42
1.9300	40.00	1.40	39.66	1.42

Test Result for UIM Dielectric Parameter
Wed 18/Jul/2007 08:23:34
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM

Freq	FCC_eB	FCC_sB	Test_e	Test_s
1.8700	53.30	1.52	51.91	1.51
1.8800	53.30	1.52	51.92	1.52
1.8900	53.30	1.52	51.88	1.53
1.9000	53.30	1.52	51.74	1.54
1.9100	53.30	1.52	51.72	1.55
1.9200	53.30	1.52	51.70	1.57
1.9300	53.30	1.52	51.65	1.58

SAR Test Report

By Operator : Jay
Measurement Date : 19-Jul-2007
Starting Time : 19-Jul-2007 11:36:51 PM
End Time : 19-Jul-2007 11:51:57 PM
Scanning Time : 906 secs

Product Data

Device Name : Validation
Serial No. : 835
Type : Dipole
Model : ALS-D-835-S-2
Frequency : 835.00 MHz
Max. Transmit Pwr : 0.1 W
Drift Time : 0 min(s)
Length : 161 mm
Width : 3.6 mm
Depth : 89.8 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 0.863 W/kg
Power Drift-Finish: 0.878 W/kg
Power Drift (%) : 1.686

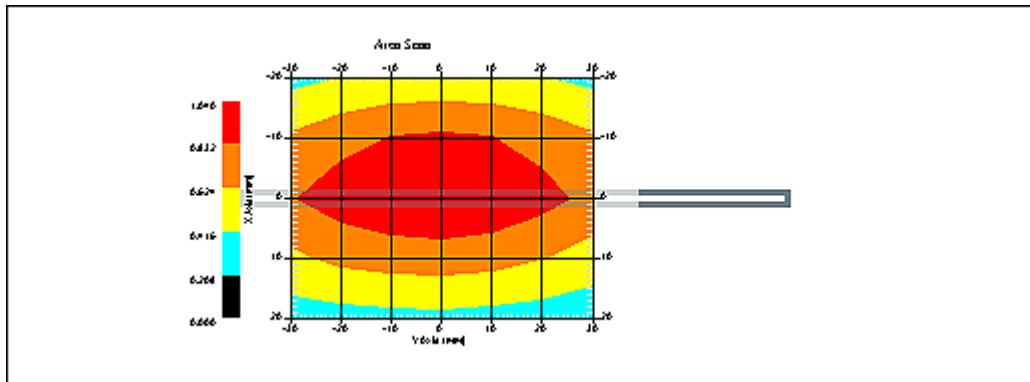
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

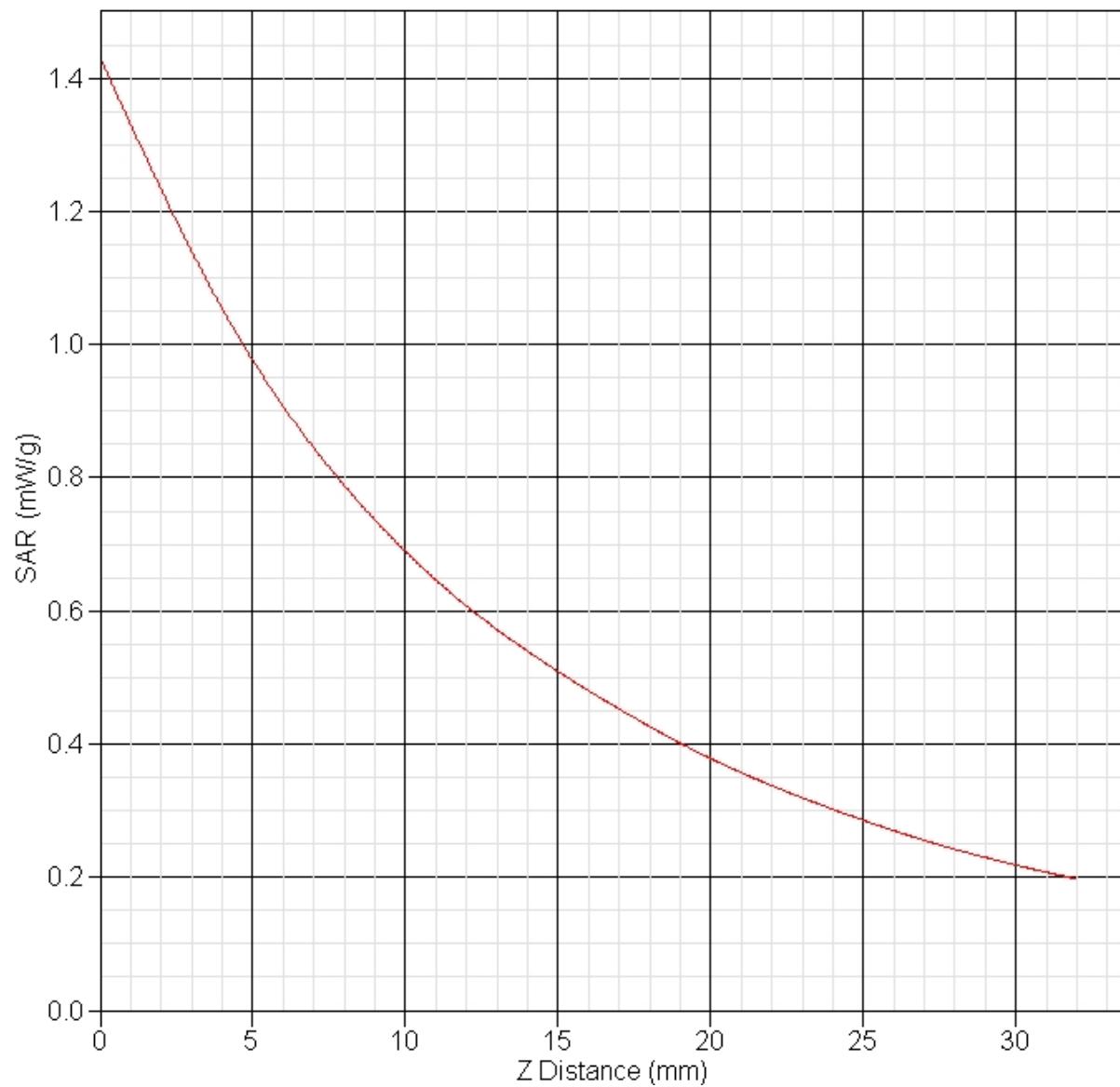
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 19-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 54.89 F/m
Sigma : 0.95 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 835.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 6.3
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 19-Jul-2007
Set-up Time : 9:34:32 AM
Area Scan : 5x7x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch
Separation : 0
Channel : Mid

1 gram SAR value : 0.979 W/kg
10 gram SAR value : 0.652 W/kg
Area Scan Peak SAR : 1.039 W/kg
Zoom Scan Peak SAR : 1.431 W/kg

SAR-Z Axis
at Hotspot x:0.20 y:-0.15

SAR Test Report

By Operator : Jay
Measurement Date : 19-Jul-2007
Starting Time : 19-Jul-2007 08:04:12 AM
End Time : 19-Jul-2007 08:17:36 AM
Scanning Time : 804 secs

Product Data

Device Name : Validation
Serial No. : 1900
Type : Dipole
Model : ALS-D-1900-S-2
Frequency : 1900.00 MHz
Max. Transmit Pwr : 0.1 W
Drift Time : 0 min(s)
Length : 68 mm
Width : 3.6 mm
Depth : 39.5 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 2.124 W/kg
Power Drift-Finish: 2.222 W/kg
Power Drift (%) : 4.624

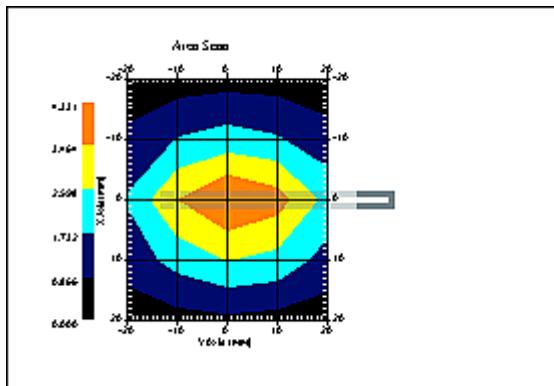
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

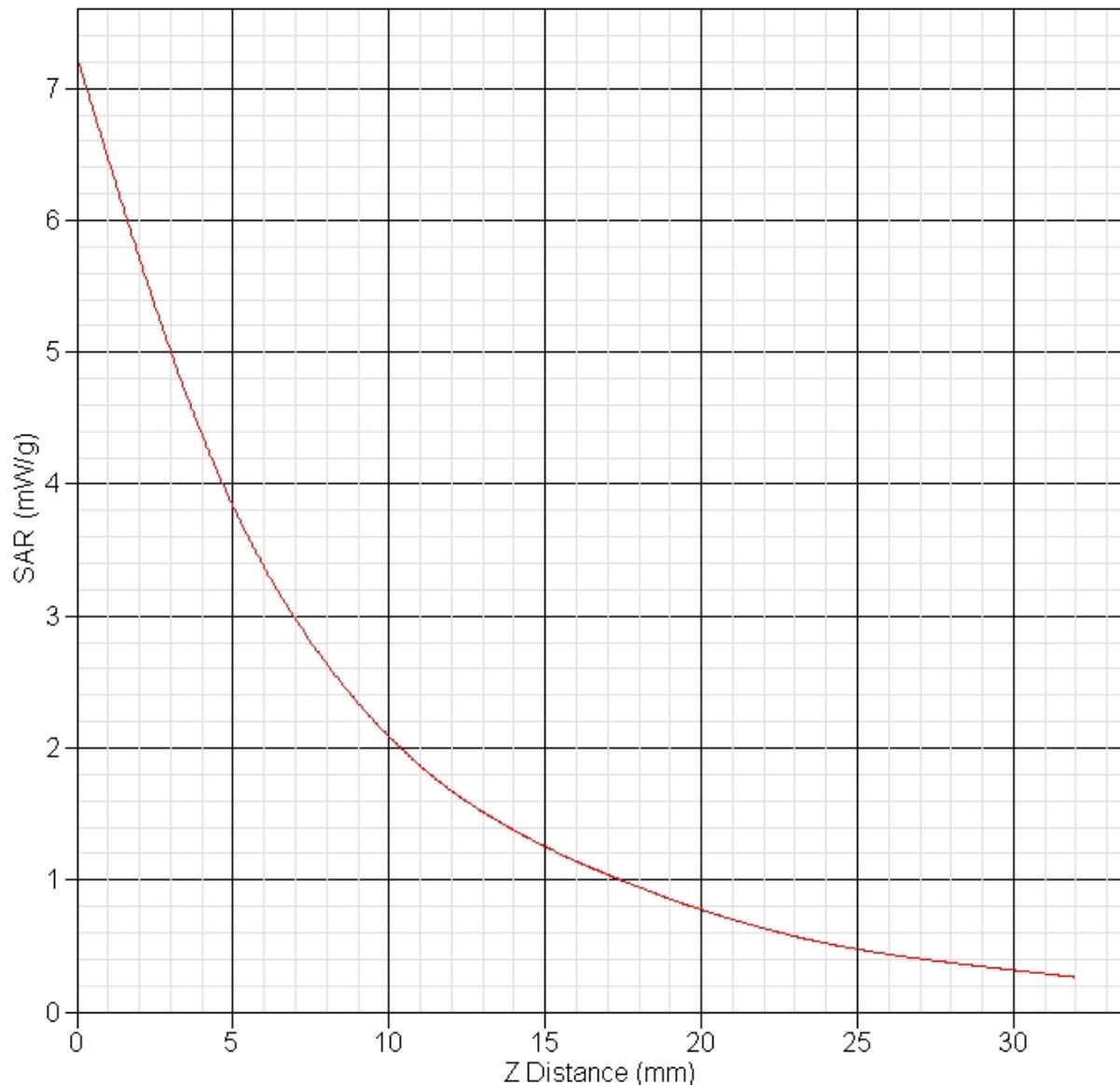
Type : HEAD
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 19-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 39.69 F/m
Sigma : 1.41 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 1900.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.9
Probe Sensitivity: 1.20 1.20 1.20 $\mu\text{V}/(\text{V}/\text{m})^2$
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 19-Jul-2007
Set-up Time : 8:39:41 AM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch
Separation : 0
Channel : Mid

1 gram SAR value : 3.855 W/kg
10 gram SAR value : 1.961 W/kg
Area Scan Peak SAR : 4.331 W/kg
Zoom Scan Peak SAR : 7.246 W/kg

SAR-Z Axis
at Hotspot x:0.29 y:-0.20

SAR Test Report

By Operator : Jay
Measurement Date : 18-Jul-2007
Starting Time : 18-Jul-2007 08:30:43 AM
End Time : 18-Jul-2007 08:46:01 AM
Scanning Time : 918 secs

Product Data

Device Name : Validation
Serial No. : 1900
Type : Dipole
Model : ALS-D-1900-S-2
Frequency : 1900.00 MHz
Max. Transmit Pwr : 0.1 W
Drift Time : 0 min(s)
Length : 68 mm
Width : 3.6 mm
Depth : 39.5 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 2.718 W/kg
Power Drift-Finish: 2.776 W/kg
Power Drift (%) : 2.129

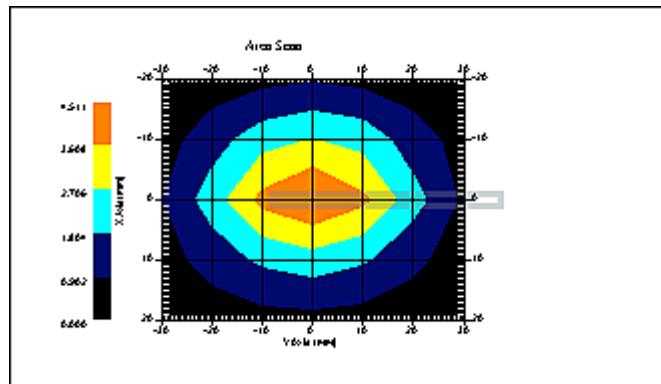
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

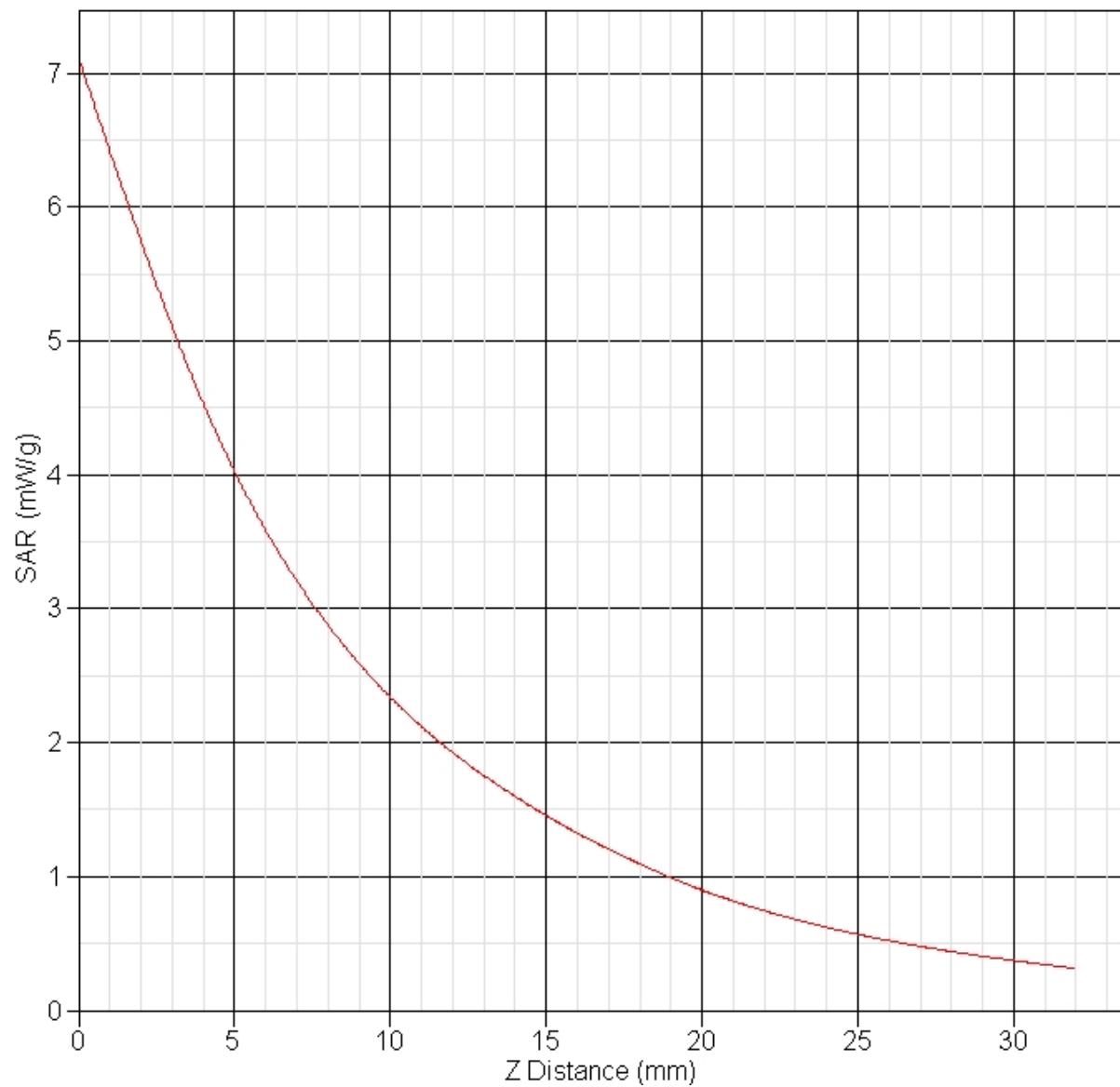
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 18-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 51.74 F/m
Sigma : 1.54 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 1900.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 5
Probe Sensitivity: 1.20 1.20 1.20 $\mu\text{V}/(\text{V}/\text{m})^2$
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 18-Jul-2007
Set-up Time : 8:39:41 AM
Area Scan : 5x7x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch
Separation : 0
Channel : Mid

1 gram SAR value : 3.936 W/kg
10 gram SAR value : 2.073 W/kg
Area Scan Peak SAR : 4.511 W/kg
Zoom Scan Peak SAR : 7.116 W/kg

SAR-Z Axis
at Hotspot x:0.21 y:-0.17

Appendix B – SAR Test Data Plots

SAR Test Report

By Operator : Jay
Measurement Date : 19-Jul-2007
Starting Time : 19-Jul-2007 03:42:09 PM
End Time : 19-Jul-2007 04:00:31 PM
Scanning Time : 1102 secs

Product Data

Device Name : Way Systems
Serial No. : SAR 1
Type : Std Form Cell Phone
Model : WAY5000
Frequency : 835.00 MHz
Max. Transmit Pwr : 1.95 W
Drift Time : 0 min(s)
Length : 124 mm
Width : 57 mm
Depth : 28 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 0.424 W/kg
Power Drift-Finish: 0.414 W/kg
Power Drift (%) : -2.350

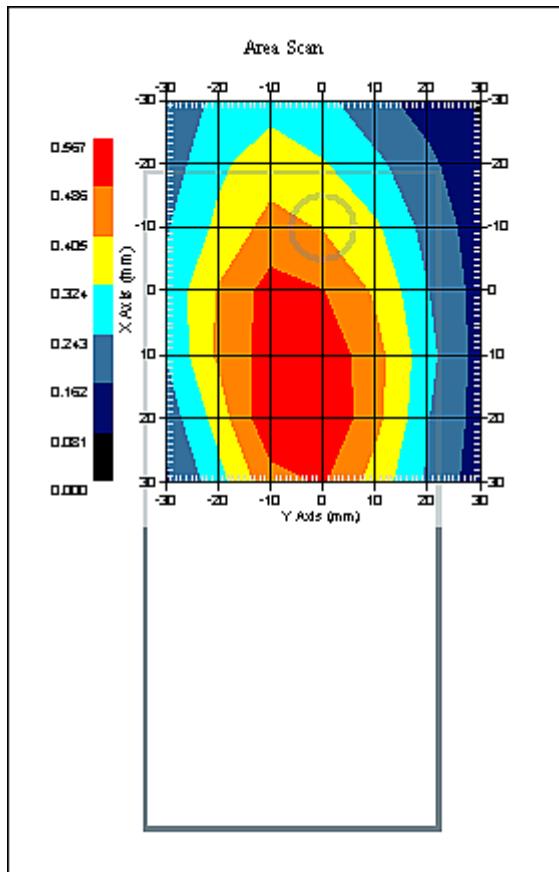
Phantom Data

Name : APREL-SAM Right Ear
Type : SAM-Right
Size (mm) : 280 x 280 x 280
Serial No. : User Define
Location : Right
Description : Polygon Right

Tissue Data

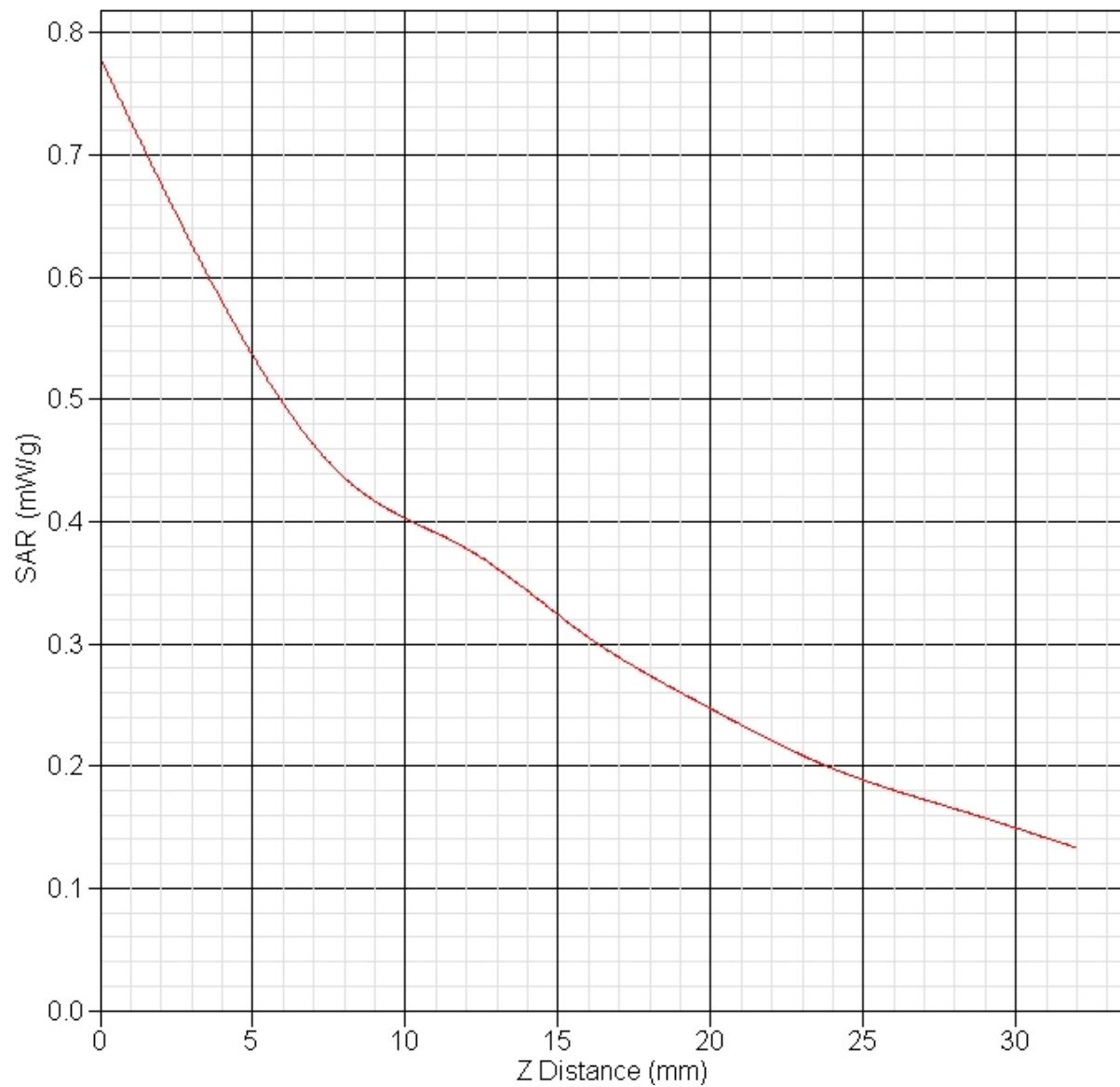
Type : HEAD
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 19-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 40.15 F/m
Sigma : 0.91 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 835.00 MHz
Duty Cycle Factor: 0.125
Conversion Factor: 6.2
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 0.125
 Scan Type : Complete
 Tissue Temp. : 20.00 °C
 Ambient Temp. : 23.00 °C
 Set-up Date : 19-Jul-2007
 Set-up Time : 11:41:54 AM
 Area Scan : 7x7x1 : Measurement x=10mm, y=10mm, z=4mm
 Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch
 Separation : 0
 Channel : Mid

1 gram SAR value : 0.553 W/kg
 10 gram SAR value : 0.392 W/kg
 Area Scan Peak SAR : 0.567 W/kg
 Zoom Scan Peak SAR : 0.780 W/kg

SAR-Z Axis
at Hotspot x:22.12 y:-7.88

SAR Test Report

By Operator : Jay
Measurement Date : 19-Jul-2007
Starting Time : 19-Jul-2007 03:20:49 PM
End Time : 19-Jul-2007 03:38:46 PM
Scanning Time : 1077 secs

Product Data

Device Name : Way Systems
Serial No. : SAR 1
Type : Std Form Cell Phone
Model : WAY5000
Frequency : 835.00 MHz
Max. Transmit Pwr : 1.95 W
Drift Time : 0 min(s)
Length : 124 mm
Width : 57 mm
Depth : 28 mm
Antenna Type : Internal
Orientation : 15° Tilt
Power Drift-Start : 0.334 W/kg
Power Drift-Finish: 0.320 W/kg
Power Drift (%) : -4.144

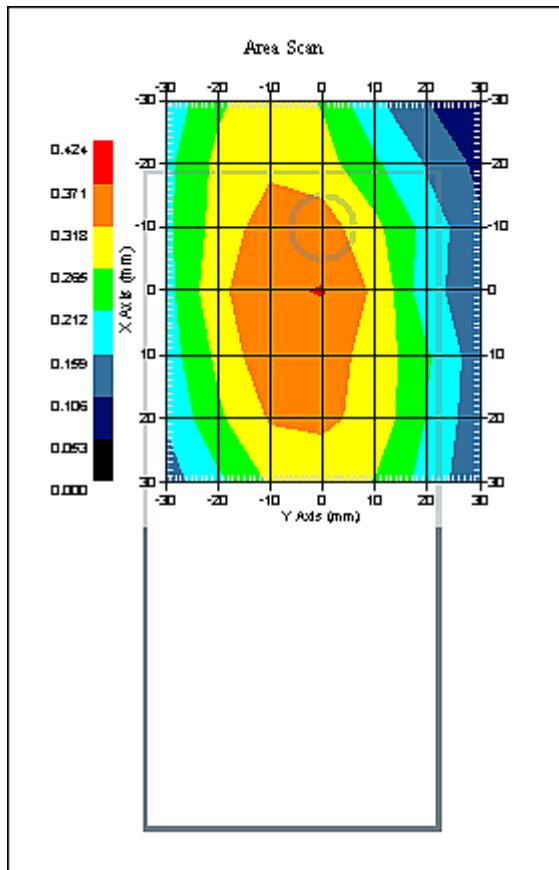
Phantom Data

Name : APREL-SAM Right Ear
Type : SAM-Right
Size (mm) : 280 x 280 x 280
Serial No. : User Define
Location : Right
Description : Polygon Right

Tissue Data

Type : HEAD
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 19-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 40.15 F/m
Sigma : 0.91 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 835.00 MHz
Duty Cycle Factor: 0.125
Conversion Factor: 6.2
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 0.125
 Scan Type : Complete
 Tissue Temp. : 20.00 °C
 Ambient Temp. : 23.00 °C
 Set-up Date : 19-Jul-2007
 Set-up Time : 11:41:54 AM
 Area Scan : 7x7x1 : Measurement x=10mm, y=10mm, z=4mm
 Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : 15° Tilt
 Separation : 0
 Channel : Mid

1 gram SAR value : 0.356 W/kg
 10 gram SAR value : 0.254 W/kg
 Area Scan Peak SAR : 0.374 W/kg
 Zoom Scan Peak SAR : 0.490 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 19-Jul-2007
Starting Time : 19-Jul-2007 04:17:41 PM
End Time : 19-Jul-2007 04:36:01 PM
Scanning Time : 1100 secs

Product Data

Device Name : Way Systems
Serial No. : SAR 1
Type : Std Form Cell Phone
Model : WAY5000
Frequency : 835.00 MHz
Max. Transmit Pwr : 1.95 W
Drift Time : 0 min(s)
Length : 124 mm
Width : 57 mm
Depth : 28 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 0.416 W/kg
Power Drift-Finish: 0.403 W/kg
Power Drift (%) : -3.124

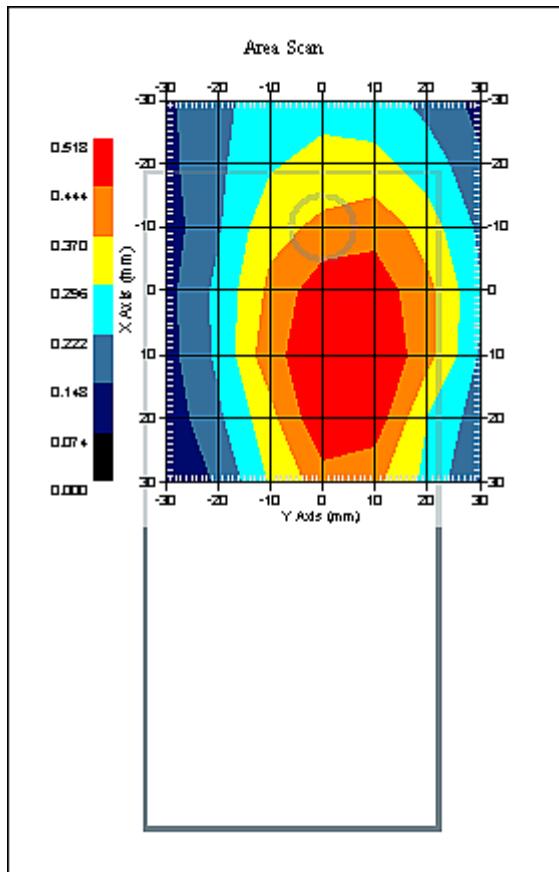
Phantom Data

Name : APREL-SAM Left Ear
Type : SAM-Left
Size (mm) : 280 x 280 x 280
Serial No. : User Define
Location : Left
Description : Polygon Left

Tissue Data

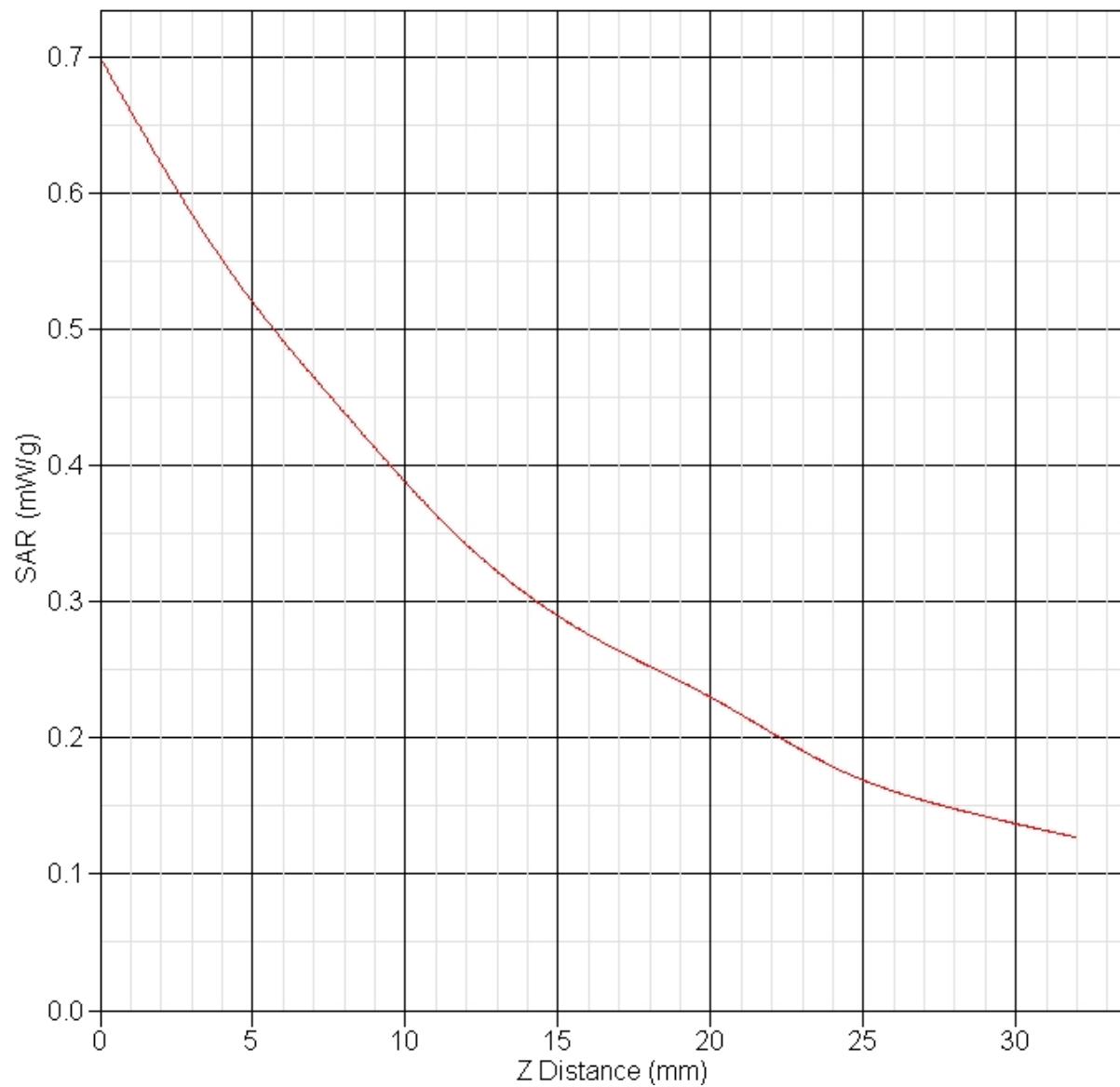
Type : HEAD
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 19-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 40.15 F/m
Sigma : 0.91 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 835.00 MHz
Duty Cycle Factor: 0.125
Conversion Factor: 6.2
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 0.125
 Scan Type : Complete
 Tissue Temp. : 20.00 °C
 Ambient Temp. : 23.00 °C
 Set-up Date : 19-Jul-2007
 Set-up Time : 11:41:54 AM
 Area Scan : 7x7x1 : Measurement x=10mm, y=10mm, z=4mm
 Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch
 Separation : 0
 Channel : Mid

1 gram SAR value : 0.517 W/kg
 10 gram SAR value : 0.359 W/kg
 Area Scan Peak SAR : 0.517 W/kg
 Zoom Scan Peak SAR : 0.700 W/kg

SAR-Z Axis
at Hotspot x:20.03 y:1.72

SAR Test Report

By Operator : Jay
Measurement Date : 19-Jul-2007
Starting Time : 19-Jul-2007 04:37:45 PM
End Time : 19-Jul-2007 04:56:14 PM
Scanning Time : 1109 secs

Product Data

Device Name : Way Systems
Serial No. : SAR 1
Type : Std Form Cell Phone
Model : WAY5000
Frequency : 835.00 MHz
Max. Transmit Pwr : 1.95 W
Drift Time : 0 min(s)
Length : 124 mm
Width : 57 mm
Depth : 28 mm
Antenna Type : Internal
Orientation : 15° Tilt
Power Drift-Start : 0.277 W/kg
Power Drift-Finish: 0.272 W/kg
Power Drift (%) : -1.805

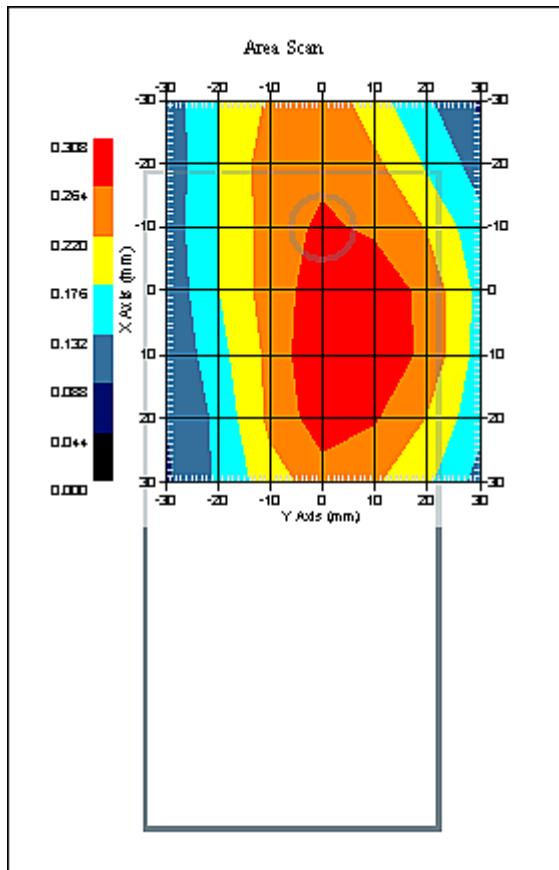
Phantom Data

Name : APREL-SAM Left Ear
Type : SAM-Left
Size (mm) : 280 x 280 x 280
Serial No. : User Define
Location : Left
Description : Polygon Left

Tissue Data

Type : HEAD
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 19-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 40.15 F/m
Sigma : 0.91 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 835.00 MHz
Duty Cycle Factor: 0.125
Conversion Factor: 6.2
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 0.125
 Scan Type : Complete
 Tissue Temp. : 20.00 °C
 Ambient Temp. : 23.00 °C
 Set-up Date : 19-Jul-2007
 Set-up Time : 11:41:54 AM
 Area Scan : 7x7x1 : Measurement x=10mm, y=10mm, z=4mm
 Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : 15° Tilt
 Separation : 0
 Channel : Mid

1 gram SAR value : 0.279 W/kg
 10 gram SAR value : 0.200 W/kg
 Area Scan Peak SAR : 0.305 W/kg
 Zoom Scan Peak SAR : 0.360 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 19-Jul-2007
Starting Time : 19-Jul-2007 01:15:59 PM
End Time : 19-Jul-2007 01:34:09 PM
Scanning Time : 1090 secs

Product Data

Device Name : Way Systems
Serial No. : SAR 1
Type : Std Form Cell Phone
Model : WAY5000
Frequency : 835.00 MHz
Max. Transmit Pwr : 1.95 W
Drift Time : 0 min(s)
Length : 124 mm
Width : 57 mm
Depth : 28 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 1.000 W/kg
Power Drift-Finish: 0.971 W/kg
Power Drift (%) : -2.880

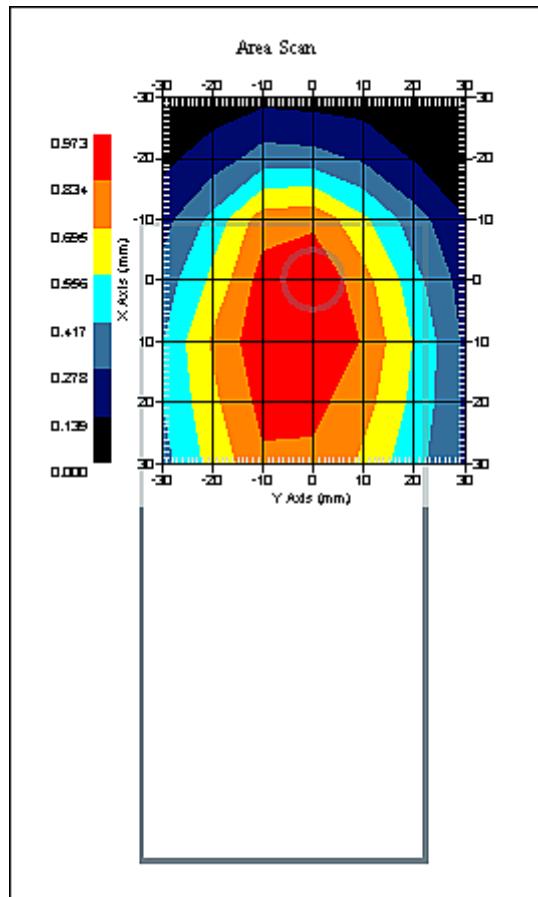
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 19-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 54.89 F/m
Sigma : 0.95 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 835.00 MHz
Duty Cycle Factor: 0.25
Conversion Factor: 6.3
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 0.25
 Scan Type : Complete
 Tissue Temp. : 20.00 °C
 Ambient Temp. : 23.00 °C
 Set-up Date : 19-Jul-2007
 Set-up Time : 11:41:54 AM
 Area Scan : 7x7x1 : Measurement x=10mm, y=10mm, z=4mm
 Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch
 Separation : 0
 Channel : Low

1 gram SAR value : 0.900 W/kg
 10 gram SAR value : 0.643 W/kg
 Area Scan Peak SAR : 0.972 W/kg
 Zoom Scan Peak SAR : 1.101 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 19-Jul-2007
Starting Time : 19-Jul-2007 12:56:21 PM
End Time : 19-Jul-2007 01:14:23 PM
Scanning Time : 1082 secs

Product Data

Device Name : Way Systems
Serial No. : SAR 1
Type : Std Form Cell Phone
Model : WAY5000
Frequency : 835.00 MHz
Max. Transmit Pwr : 1.95 W
Drift Time : 0 min(s)
Length : 124 mm
Width : 57 mm
Depth : 28 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 1.032 W/kg
Power Drift-Finish: 0.992 W/kg
Power Drift (%) : -3.876

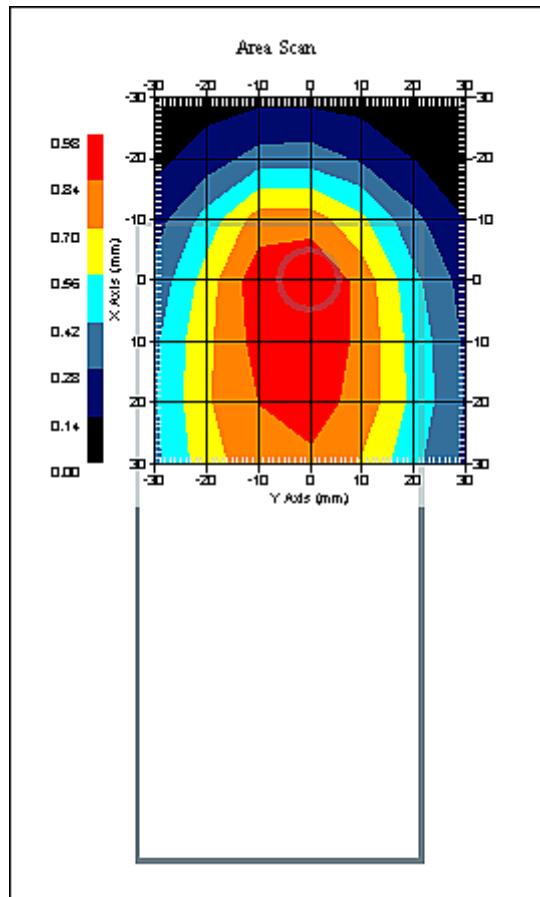
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

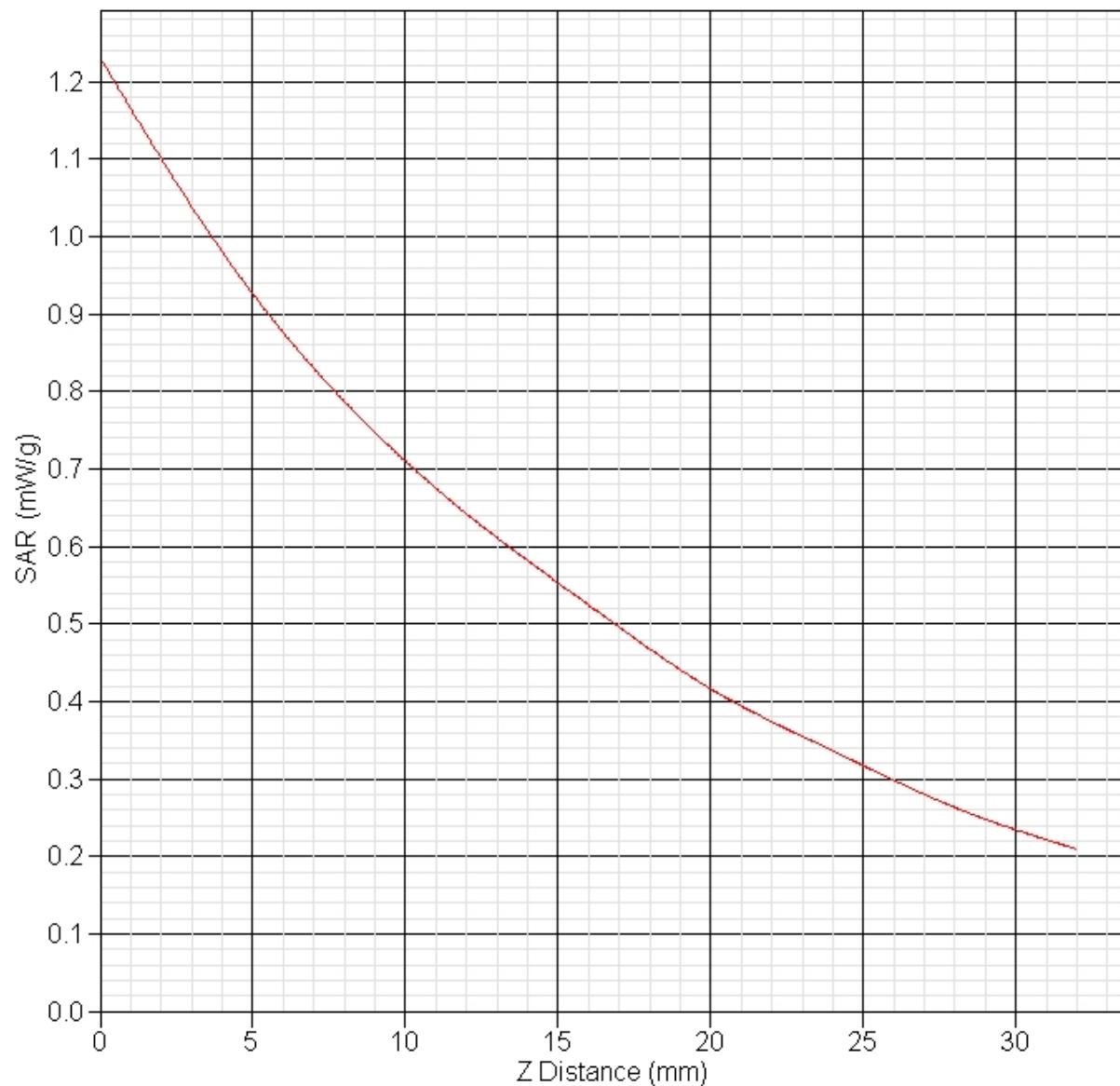
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 19-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 54.89 F/m
Sigma : 0.95 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 835.00 MHz
Duty Cycle Factor: 0.25
Conversion Factor: 6.3
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 0.25
 Scan Type : Complete
 Tissue Temp. : 20.00 °C
 Ambient Temp. : 23.00 °C
 Set-up Date : 19-Jul-2007
 Set-up Time : 11:41:54 AM
 Area Scan : 7x7x1 : Measurement x=10mm, y=10mm, z=4mm
 Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch
 Separation : 0
 Channel : Mid

1 gram SAR value : 0.905 W/kg
 10 gram SAR value : 0.612 W/kg
 Area Scan Peak SAR : 0.979 W/kg
 Zoom Scan Peak SAR : 1.231 W/kg

SAR-Z Axis
at Hotspot x:8.33 y:-0.21

SAR Test Report

By Operator : Jay
Measurement Date : 19-Jul-2007
Starting Time : 19-Jul-2007 01:37:35 PM
End Time : 19-Jul-2007 01:55:48 PM
Scanning Time : 1093 secs

Product Data

Device Name : Way Systems
Serial No. : SAR 1
Type : Std Form Cell Phone
Model : WAY5000
Frequency : 835.00 MHz
Max. Transmit Pwr : 1.95 W
Drift Time : 0 min(s)
Length : 124 mm
Width : 57 mm
Depth : 28 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 0.806 W/kg
Power Drift-Finish: 0.790 W/kg
Power Drift (%) : -1.985

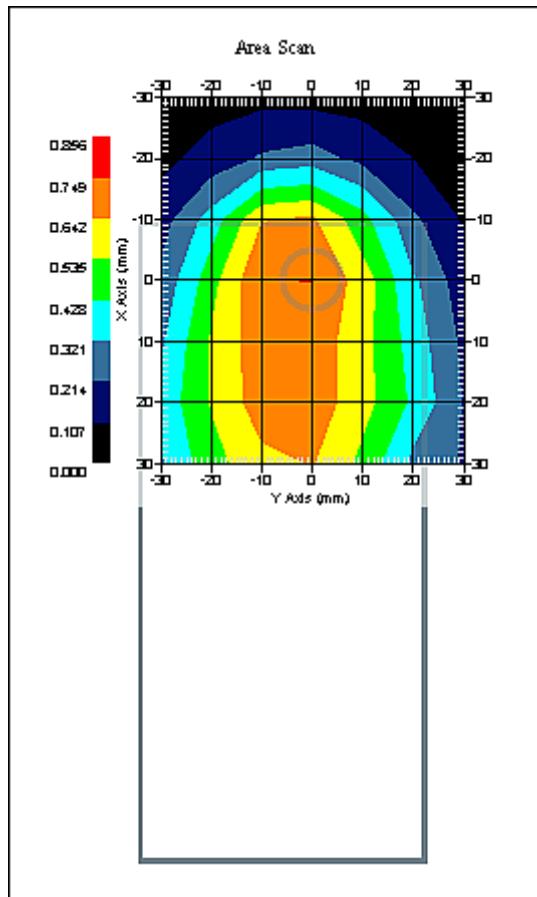
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 19-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 54.89 F/m
Sigma : 0.95 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 835.00 MHz
Duty Cycle Factor: 0.25
Conversion Factor: 6.3
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 0.25
 Scan Type : Complete
 Tissue Temp. : 20.00 °C
 Ambient Temp. : 23.00 °C
 Set-up Date : 19-Jul-2007
 Set-up Time : 11:41:54 AM
 Area Scan : 7x7x1 : Measurement x=10mm, y=10mm, z=4mm
 Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch
 Separation : 0
 Channel : High

1 gram SAR value : 0.643 W/kg
 10 gram SAR value : 0.386 W/kg
 Area Scan Peak SAR : 0.750 W/kg
 Zoom Scan Peak SAR : 0.940 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 19-Jul-2007
Starting Time : 19-Jul-2007 08:32:08 AM
End Time : 19-Jul-2007 08:48:07 AM
Scanning Time : 959 secs

Product Data

Device Name : Way Systems
Serial No. : SAR 1
Type : Std Form Cell Phone
Model : WAY5000
Frequency : 1900.00 MHz
Max. Transmit Pwr : 0.76 W
Drift Time : 0 min(s)
Length : 124 mm
Width : 57 mm
Depth : 28 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 0.336 W/kg
Power Drift-Finish: 0.348 W/kg
Power Drift (%) : 3.692

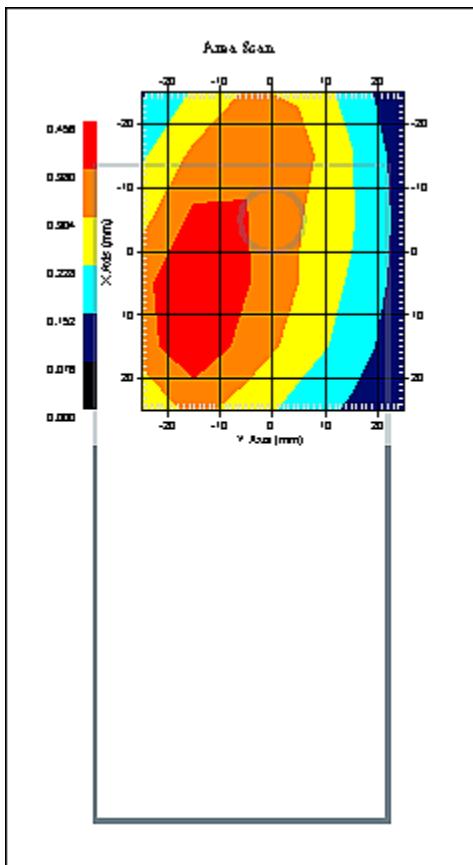
Phantom Data

Name : APREL-SAM Right Ear
Type : SAM-Right
Size (mm) : 280 x 280 x 280
Serial No. : User Define
Location : Right
Description : Polygon Right

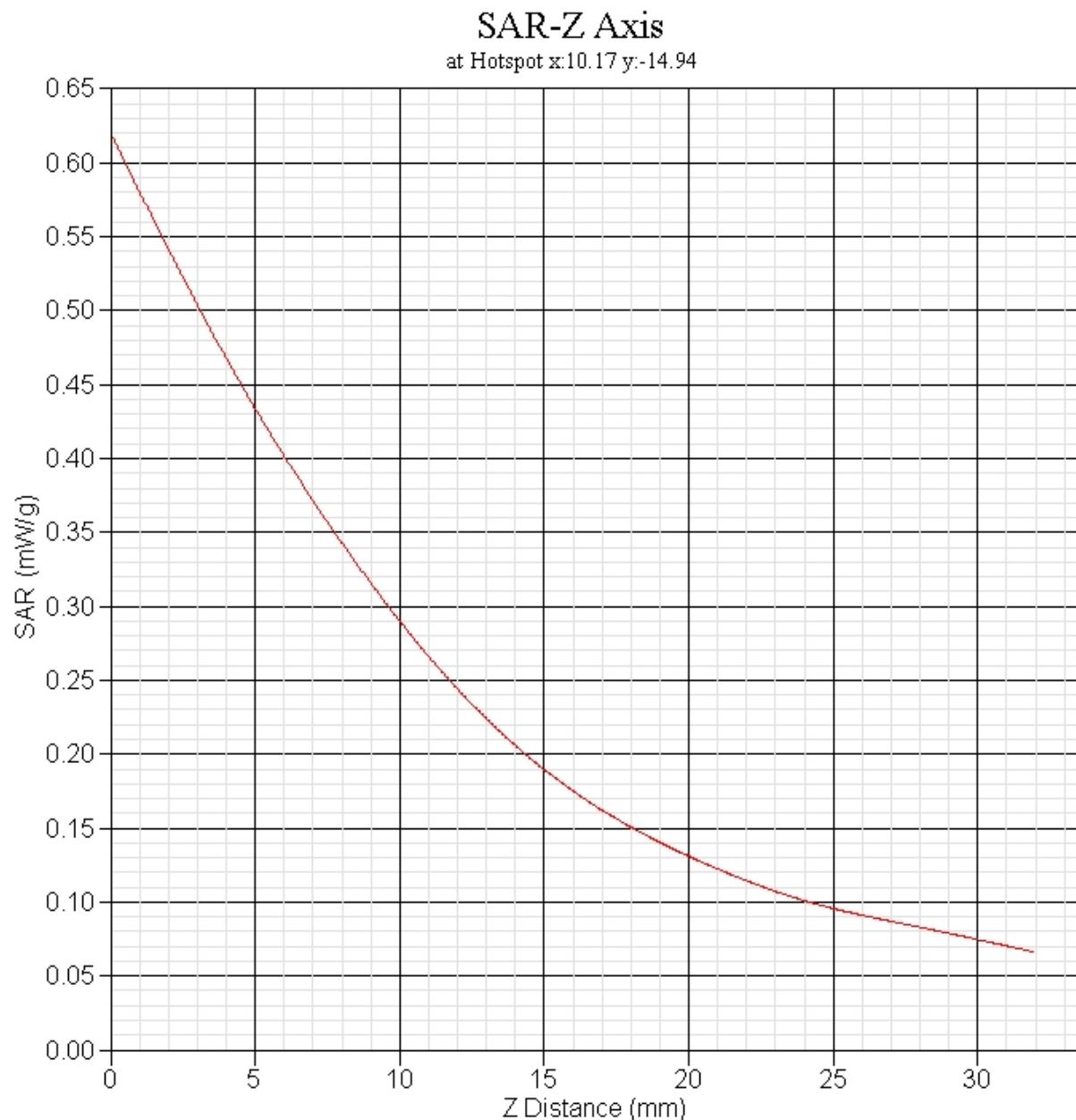
Tissue Data

Type : HEAD
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 19-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 39.69 F/m
Sigma : 1.41 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 1900.00 MHz
Duty Cycle Factor: 0.125
Conversion Factor: 4.9
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data


Crest Factor : 0.125
 Scan Type : Complete
 Tissue Temp. : 20.00 °C
 Ambient Temp. : 23.00 °C
 Set-up Date : 19-Jul-2007
 Set-up Time : 11:16:55 AM
 Area Scan : 6x6x1 : Measurement x=10mm, y=10mm, z=4mm
 Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch
 Separation : 0
 Channel : Mid

1 gram SAR value : 0.433 W/kg
 10 gram SAR value : 0.258 W/kg
 Area Scan Peak SAR : 0.456 W/kg
 Zoom Scan Peak SAR : 0.620 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 19-Jul-2007
Starting Time : 19-Jul-2007 08:51:13 AM
End Time : 19-Jul-2007 09:07:08 AM
Scanning Time : 955 secs

Product Data

Device Name : Way Systems
Serial No. : SAR 1
Type : Std Form Cell Phone
Model : WAY5000
Frequency : 1900.00 MHz
Max. Transmit Pwr : 0.76 W
Drift Time : 0 min(s)
Length : 124 mm
Width : 57 mm
Depth : 28 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 0.447 W/kg
Power Drift-Finish: 0.431 W/kg
Power Drift (%) : -3.508

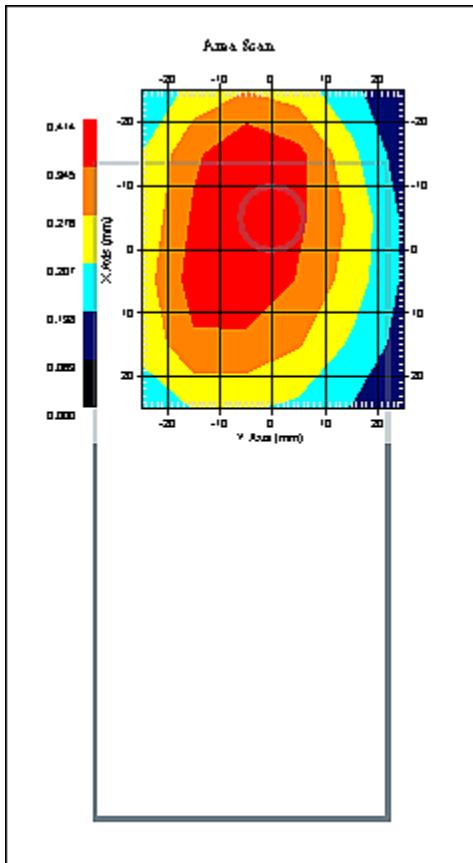
Phantom Data

Name : APREL-SAM Right Ear
Type : SAM-Right
Size (mm) : 280 x 280 x 280
Serial No. : User Define
Location : Right
Description : Polygon Right

Tissue Data

Type : HEAD
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 19-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 39.69 F/m
Sigma : 1.41 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 1900.00 MHz
Duty Cycle Factor: 0.125
Conversion Factor: 4.9
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 0.125
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 19-Jul-2007
Set-up Time : 11:16:55 AM
Area Scan : 6x6x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : 15° Tilt
Separation : 0
Channel : Mid

1 gram SAR value : 0.404 W/kg
10 gram SAR value : 0.240 W/kg
Area Scan Peak SAR : 0.413 W/kg
Zoom Scan Peak SAR : 0.700 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 19-Jul-2007
Starting Time : 19-Jul-2007 10:07:45 AM
End Time : 19-Jul-2007 10:31:22 AM
Scanning Time : 1417 secs

Product Data

Device Name : Way Systems
Serial No. : SAR 1
Type : Std Form Cell Phone
Model : WAY5000
Frequency : 1900.00 MHz
Max. Transmit Pwr : 0.76 W
Drift Time : 0 min(s)
Length : 124 mm
Width : 57 mm
Depth : 28 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 0.325 W/kg
Power Drift-Finish: 0.318 W/kg
Power Drift (%) : -2.086

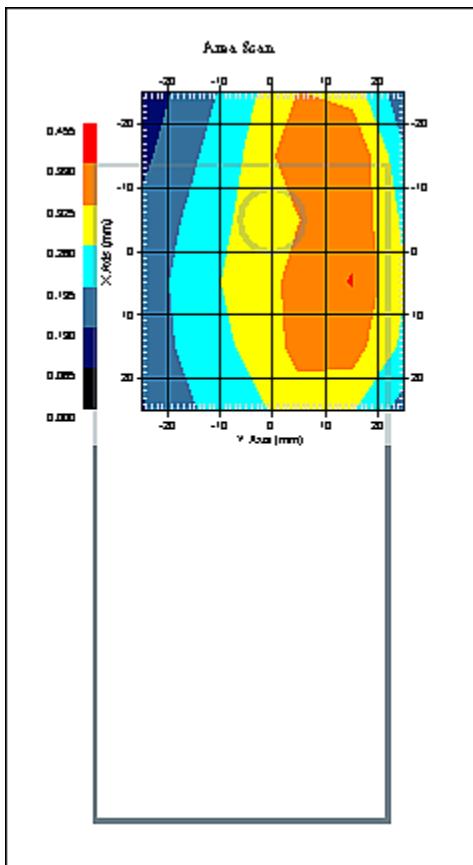
Phantom Data

Name : APREL-SAM Left Ear
Type : SAM-Left
Size (mm) : 280 x 280 x 280
Serial No. : User Define
Location : Left
Description : Polygon Left

Tissue Data

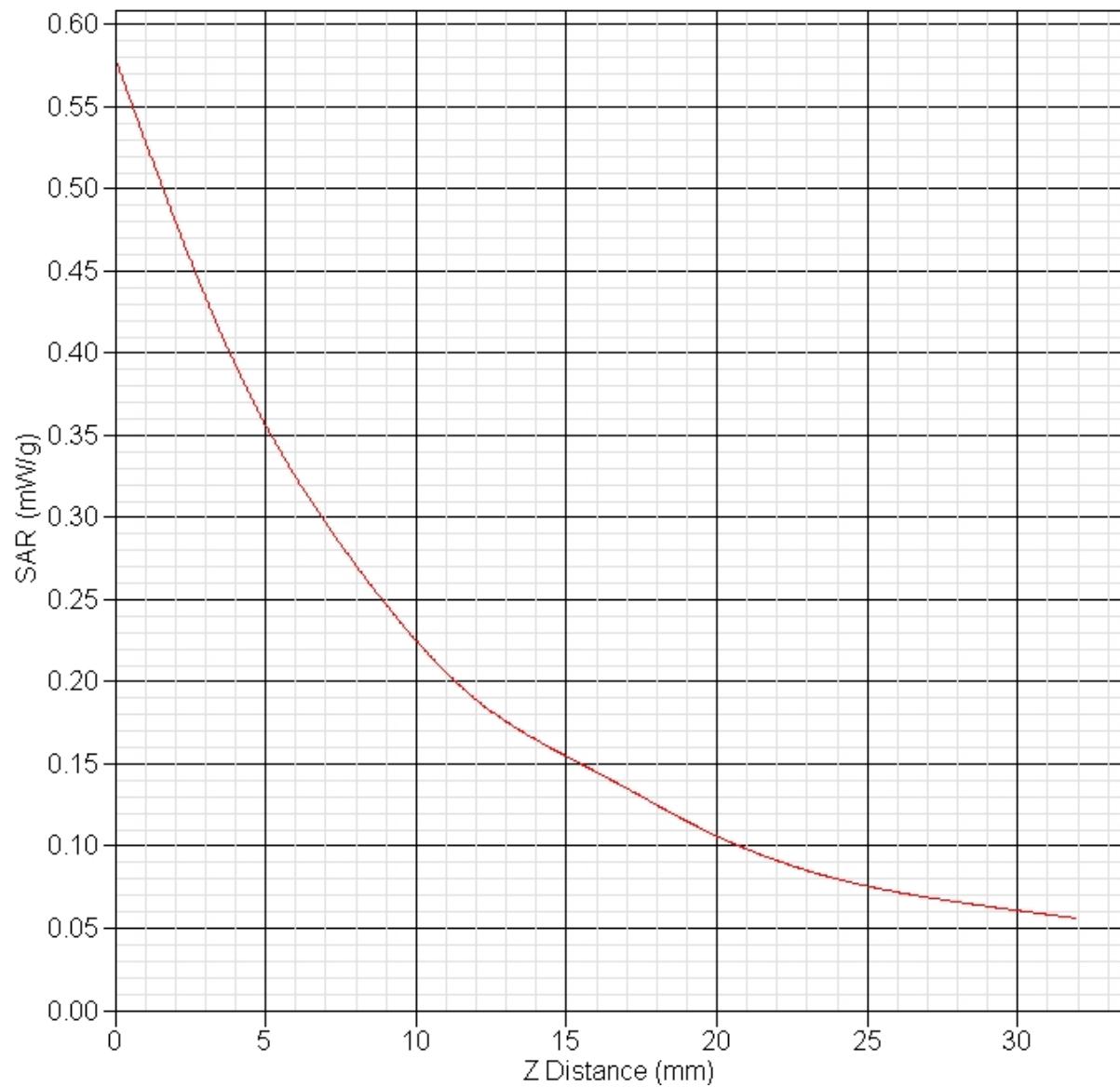
Type : HEAD
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 19-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 39.69 F/m
Sigma : 1.41 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 1900.00 MHz
Duty Cycle Factor: 0.125
Conversion Factor: 4.9
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 0.125
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 19-Jul-2007
Set-up Time : 11:16:55 AM
Area Scan : 6x6x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch
Separation : 0
Channel : Mid

1 gram SAR value : 0.378 W/kg
10 gram SAR value : 0.235 W/kg
Area Scan Peak SAR : 0.392 W/kg
Zoom Scan Peak SAR : 0.580 W/kg

SAR-Z Axis
at Hotspot x:18.01 y:14.78

SAR Test Report

By Operator : Jay
Measurement Date : 19-Jul-2007
Starting Time : 19-Jul-2007 10:32:47 AM
End Time : 19-Jul-2007 10:48:16 AM
Scanning Time : 929 secs

Product Data

Device Name : Way Systems
Serial No. : SAR 1
Type : Std Form Cell Phone
Model : WAY5000
Frequency : 1900.00 MHz
Max. Transmit Pwr : 0.76 W
Drift Time : 0 min(s)
Length : 124 mm
Width : 57 mm
Depth : 28 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 0.372 W/kg
Power Drift-Finish: 0.357 W/kg
Power Drift (%) : -4.032

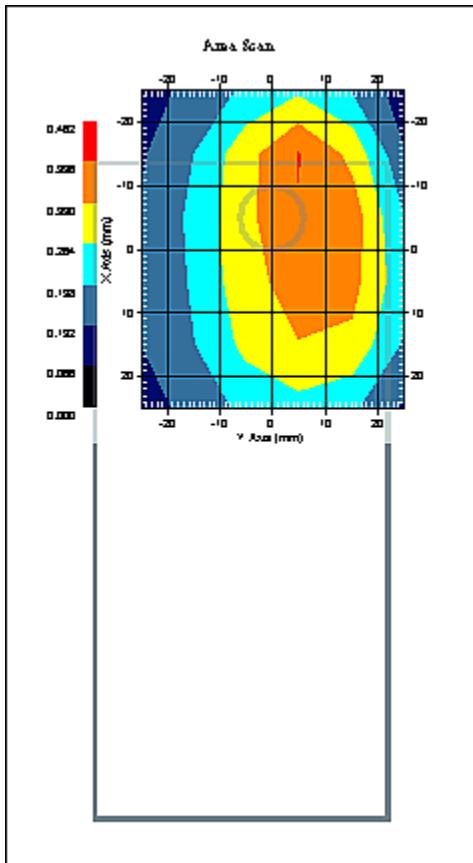
Phantom Data

Name : APREL-SAM Left Ear
Type : SAM-Left
Size (mm) : 280 x 280 x 280
Serial No. : User Define
Location : Left
Description : Polygon Left

Tissue Data

Type : HEAD
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 19-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 39.69 F/m
Sigma : 1.41 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 1900.00 MHz
Duty Cycle Factor: 0.125
Conversion Factor: 4.9
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 0.125
 Scan Type : Complete
 Tissue Temp. : 20.00 °C
 Ambient Temp. : 23.00 °C
 Set-up Date : 19-Jul-2007
 Set-up Time : 11:16:55 AM
 Area Scan : 6x6x1 : Measurement x=10mm, y=10mm, z=4mm
 Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : 15° Tilt
 Separation : 0
 Channel : Mid

1 gram SAR value : 0.368 W/kg
 10 gram SAR value : 0.222 W/kg
 Area Scan Peak SAR : 0.399 W/kg
 Zoom Scan Peak SAR : 0.580 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 18-Jul-2007
Starting Time : 18-Jul-2007 12:43:37 PM
End Time : 18-Jul-2007 01:06:14 PM
Scanning Time : 1357 secs

Product Data

Device Name : Way Systems
Serial No. : SAR 1
Type : Std Form Cell Phone
Model : WAY5000
Frequency : 1900.00 MHz
Max. Transmit Pwr : 0.76 W
Drift Time : 0 min(s)
Length : 124 mm
Width : 57 mm
Depth : 28 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 0.840 W/kg
Power Drift-Finish: 0.804 W/kg
Power Drift (%) : -4.286

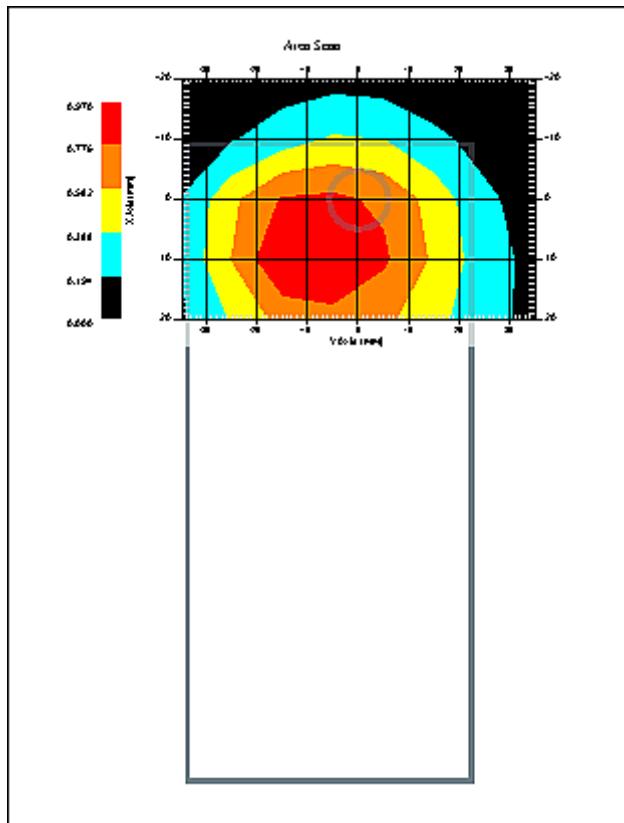
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 18-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 51.74 F/m
Sigma : 1.54 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 1900.00 MHz
Duty Cycle Factor: 0.25
Conversion Factor: 5
Probe Sensitivity: 1.20 1.20 1.20 $\mu\text{V}/(\text{V}/\text{m})^2$
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 0.25
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 18-Jul-2007
Set-up Time : 11:16:55 AM
Area Scan : 5x8x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.881 W/kg
10 gram SAR value : 0.510 W/kg
Area Scan Peak SAR : 0.968 W/kg
Zoom Scan Peak SAR : 1.431 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 18-Jul-2007
Starting Time : 18-Jul-2007 12:13:40 PM
End Time : 18-Jul-2007 12:36:26 PM
Scanning Time : 1366 secs

Product Data

Device Name : Way Systems
Serial No. : SAR 1
Type : Std Form Cell Phone
Model : WAY5000
Frequency : 1900.00 MHz
Max. Transmit Pwr : 0.76 W
Drift Time : 0 min(s)
Length : 124 mm
Width : 57 mm
Depth : 28 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 0.849 W/kg
Power Drift-Finish: 0.814 W/kg
Power Drift (%) : -4.123

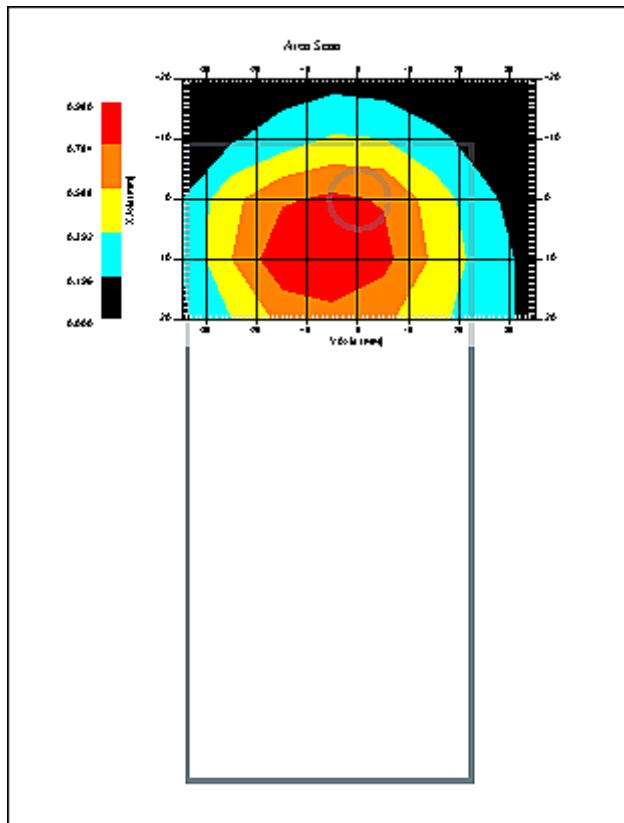
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 18-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 51.74 F/m
Sigma : 1.54 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 1900.00 MHz
Duty Cycle Factor: 0.25
Conversion Factor: 5
Probe Sensitivity: 1.20 1.20 1.20 $\mu\text{V}/(\text{V}/\text{m})^2$
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 0.25
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 18-Jul-2007
Set-up Time : 11:16:55 AM
Area Scan : 5x8x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Mid

1 gram SAR value : 0.874 W/kg
10 gram SAR value : 0.508 W/kg
Area Scan Peak SAR : 0.979 W/kg
Zoom Scan Peak SAR : 1.441 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 18-Jul-2007
Starting Time : 18-Jul-2007 01:07:21 PM
End Time : 18-Jul-2007 01:23:10 PM
Scanning Time : 949 secs

Product Data

Device Name : Way Systems
Serial No. : SAR 1
Type : Std Form Cell Phone
Model : WAY5000
Frequency : 1900.00 MHz
Max. Transmit Pwr : 0.76 W
Drift Time : 0 min(s)
Length : 124 mm
Width : 57 mm
Depth : 28 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 0.843 W/kg
Power Drift-Finish: 0.815 W/kg
Power Drift (%) : -3.321

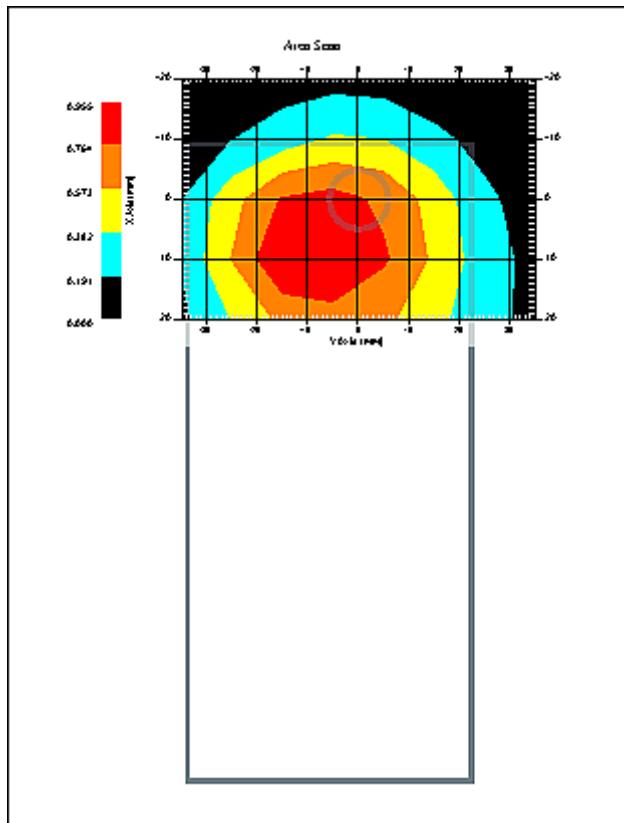
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

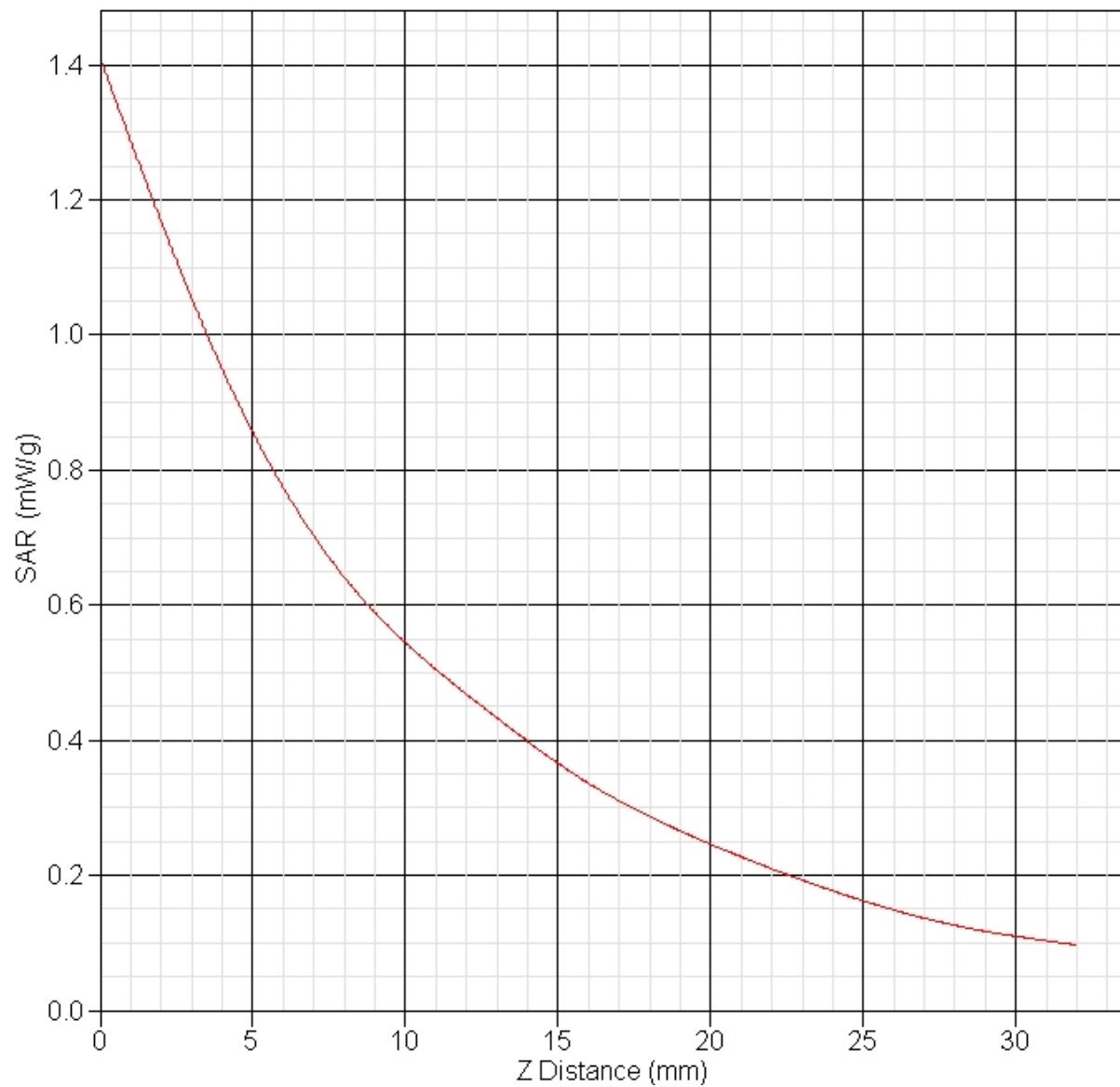
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 18-Jul-2007
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 49.00 RH%
Epsilon : 51.74 F/m
Sigma : 1.54 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215
Last Calib. Date : 14-Feb-2007
Frequency : 1900.00 MHz
Duty Cycle Factor: 0.25
Conversion Factor: 5
Probe Sensitivity: 1.20 1.20 1.20 $\mu\text{V}/(\text{V}/\text{m})^2$
Compression Point: 95.00 mV
Offset : 1.56 mm

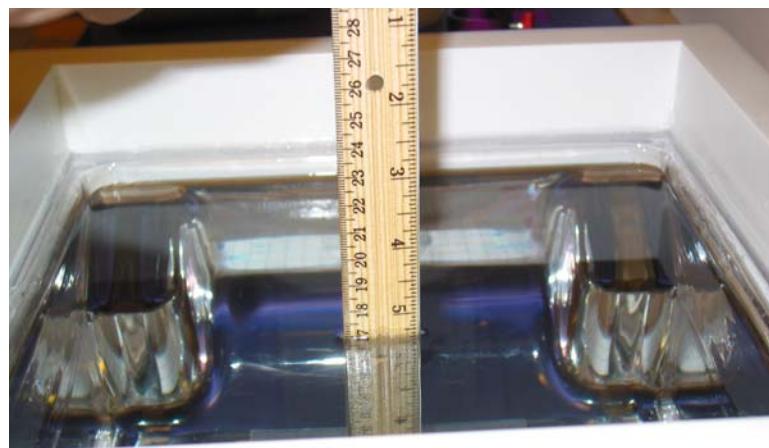
Measurement Data

Crest Factor : 0.25
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 18-Jul-2007
Set-up Time : 11:16:55 AM
Area Scan : 5x8x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch
Separation : 0
Channel : High

1 gram SAR value : 0.895 W/kg
10 gram SAR value : 0.534 W/kg
Area Scan Peak SAR : 0.953 W/kg
Zoom Scan Peak SAR : 1.411 W/kg


SAR-Z Axis
at Hotspot x:10.23 y:-7.17

Appendix C – SAR Test Setup Photos

System Body Configuration

Body Tissue Depth

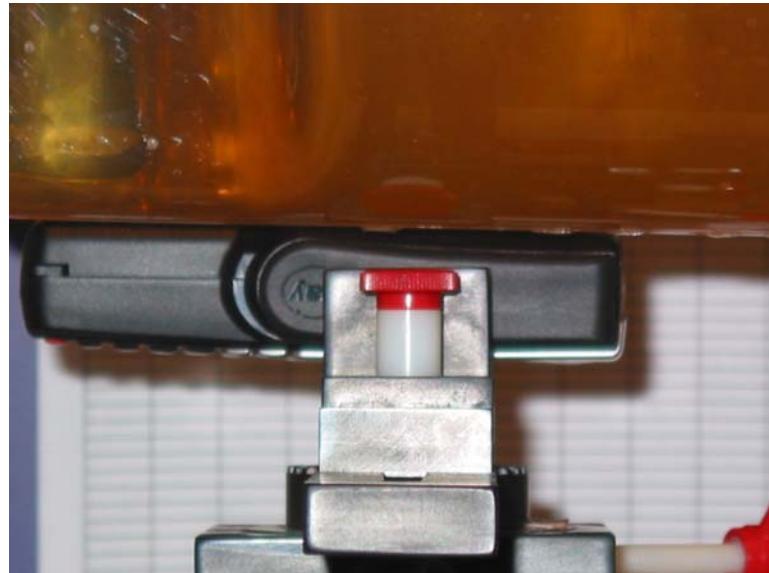
Right Head Touch Position Front View

Right Head Touch Position Side View

Right Head Tilt Position Front View

Right Head Tilt Position Side View

Left Head Touch Position Front View


Left Head Touch Position Side View

Left Head Tilt Position Front View

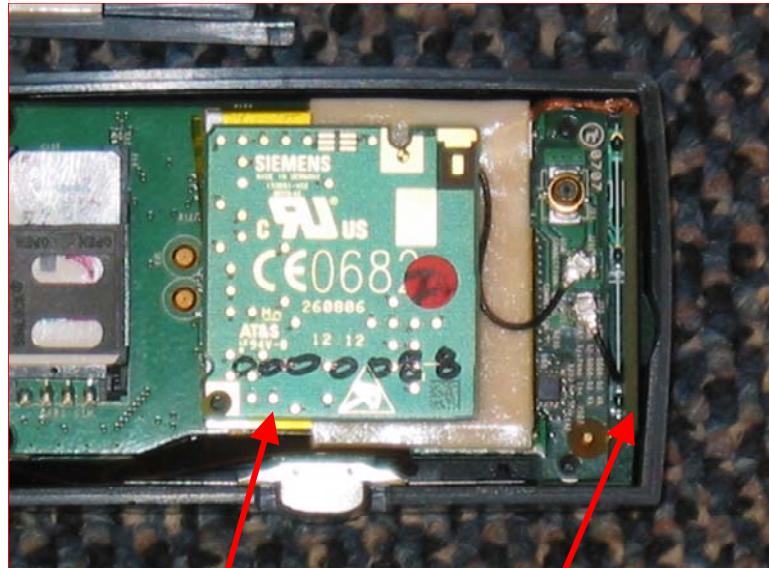
Left Head Tilt Position Side View

Body Position Front View

Body Position Side View

Front of Unit

Back of Unit


Back of Unit with Battery Cover Off

Back of Unit with Battery Removed

Back of Unit with Cover Removed

RF Module and Antenna