Report No.: 70720301-RP1 Page 1 of 27

FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4: 2003

TEST REPORT

For

RFID Wirstband Tag

Model: SYTAG245-TM-C01

Data Applies To: SYTAG245-TM-A01, SYTAG245-TM-AA1, SYTAG245-TM-A03, SYTAG245-TM-AA3, SYTAG245-TM-B01, SYTAG245-TM-BA1, SYTAG245-TM-CA1, SYTAG245-TM-CO3, SYTAG245-TM-CA3

Issued for

SYRIS Technology Corp.

21F-2,NO,12,Sec.1,Taichung Gang Rd.Taichung city ,Taiwan (403)

Issued by

Compliance Certification Services Inc. Hsinchu Lab.

Rm. 258, Bldg. 17, NO.195, Sec.4 Chung HsingRd., ChuTung Chen, Hsinchu, Taiwan 310, R.O.C

> TEL: (03) 591-0068 FAX: (03) 582-5720

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

Report No.: 70720301-RP1
Page 2 of 27

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	08/21/2008	Initial Issue	All Page 27	Jason Chang

Report No.: 70720301-RP1
Page 3 of 27

TABLE OF CONTENTS

TITLE	PAGE NO.
1. TEST REPORT CERTIFICATION	4
2. EUT DESCRIPTION	5
2.1 DESCRIPTION OF EUT & POWER	5
3. DESCRIPTION OF TEST MODES	6
4. TEST METHODOLOGY	6
5. FACILITIES AND ACCREDITATIONS	6
5.1 FACILITIES	6
5.2 EQUIPMENT	6
5.3 LABORATORY ACCREDITATIONS LISTINGS	7
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	7
6. CALIBRATION AND UNCERTAINTY	8
6.1 MEASURING INSTRUMENT CALIBRATION	8
6.2 MEASUREMENT UNCERTAINTY	8
7. SETUP OF EQUIPMENT UNDER TEST	9
8. APPLICABLE LIMITS AND TEST RESULTS	10
8.1 RADIATED EMISSIONS	10
8.1.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS	
8.1.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz	14
8.1.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz	15-17
8.1.4 RESTRICTED BAND EDGES	
8.2 POWERLINE CONDUCTED EMISSIONS	22-23
9. ANTENNA REQUIREMENT	24
9.1 STANDARD APPLICABLE	24
9.2 ANTENNA CONNECTED CONSTRUCTION	24
ADDENINIV CETUD DUOTOC	25 27

Report No.: 70720301-RP1 Page ____4 __of ___27

1. TEST REPORT CERTIFICATION

Applicant : SYRIS Technology Corp.

Address : 21F-2,NO,12,Sec.1,Taichung Gang Rd.Taichung

city, Taiwan (403)

Equipment Under Test: RFID Wirstband Tag

Model : SYTAG245-TM-C01

Data Applies To : SYTAG245-TM-A01, SYTAG245-TM-AA1,

SYTAG245-TM-A03, SYTAG245-TM-AA3,

SYTAG245-TM-B01, SYTAG245-TM-BA1,

SYTAG245-TM-CA1, SYTAG245-TM-C03,

SYTAG245-TM-CA3

Tested Date : July 20, 2007 ~ August 10, 2008

APPLICABLE STANDARD			
STANDARD	TEST RESULT		
FCC Part 15 Subpart C:2006 AND ANSI C63.4:2003	No non-compliance noted		

Approved by:

Reviewed by:

Jason Chang

Team Leader of Hsinchu Laboratory Compliance Certification Services Inc.

Team/Leader of Hsinchu Laboratory ompliance Certification Services Inc.

WE HEREBY CERTIFY THAT: The measurements shown in the attachment were made in accordance with the procedures indicated, and the energy emitted by the equipment was found to be within the limits applicable. We assume full responsibility for the accuracy and completeness of these measurements and vouch for the qualifications of all persons taking them.

Report No.: 70720301-RP1 Page ___5 __of ___27

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	RFID Wirstband Tag	
Model Number	SYTAG245-TM-C01	
Data Applies To	SYTAG245-TM-A01, SYTAG245-TM-AA1, SYTAG245-TM-A03, SYTAG245-TM-AA3, SYTAG245-TM-B01, SYTAG245-TM-BA1, SYTAG245-TM-CA1, SYTAG245-TM-CO3, SYTAG245-TM-CA3	
Frequency Range	2401.4MHz to 2480.18MHz $f = 2401.4 + nMHz$, $n = 62,377$	
Field Strength	$91.54 \text{ dB}\mu\text{V/m}$	
Channel Spacing	0.25MHz	
Channel Number	316 Channels	
Transmit Data Rate	250 kbps	
Type of Modulation	MSK / GFSK	
Frequency Selection	by software / firmware	
Antenna Type Multilayer Chip Antenna, Antenna Gain : 2 dBi		
Power Source 3VDC (LITHIUM Battery Powered) Model No:CR2032		

The difference of the series model

Model	Difference	
SYTAG245-TM-A01	Built-in two temperature sensors, Replaceable Wristband	
SYTAG245-TM-AA1	Built-in two temperature sensors, Elastic Wristband	
SYTAG245-TM-A03	Built-in temperature sensor, Replaceable Wristband	
SYTAG245-TM-AA3	Built-in temperature sensor, Elastic Wristband	
SYTAG245-TM-B01	No temperature sensor, Replaceable Wristband	
SYTAG245-TM-BA1	No temperature sensor, Elastic Wristband	
SYTAG245-TM-C01	Built-in two temperature sensors, Replaceable Wristband, MEMS INERTIAL SENSOR	
SYTAG245-TM-CA1	Built-in two temperature sensors, Elastic Wristband, MEMS INERTIAL SENSOR	
SYTAG245-TM-C03	Built-in temperature sensor, Replaceable Wristband, MEMS INERTIAL SENSOR	
SYTAG245-TM-CA3	Built-in temperature sensor, Elastic Wristband, MEMS INERTIAL SENSOR	

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: VLD-SYTAG245-TM filing to comply with Section 15.207, 15.209 and 15.249 of the FCC Part 15, Subpart C Rules.
- 3. For more details, please refer to the User's manual of the EUT.

Report No.: 70720301-RP1 Page <u>6</u> of <u>27</u>

3. DESCRIPTION OF TEST MODES

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2401.40
Middle	2440.89
High	2480.18

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CRF 47 2.1046, 2046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.249.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at Rm.258, Bldg.17, NO.195, Sec. 4, Chung Hsing Rd., Chu-Tung Chen. Hsin-Chu, Taiwan 310 R.O.C.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Report No.: 70720301-RP1 Page ___7 __ of ___27

5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 0240 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: 90585 and 90584).

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 90585, 90584
Japan	VCCI	3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-1229/1189 C-1250/1294
Taiwan	TAF	FCC Method-47 CFR Part 15 Subpart C,D,E CISPR 11, FCC METHOD-47 CFR Part 18, EN 55011, CNS 13803, CISPR 13, CNS 13439, FCC Method-47 CFR Part 15 Subpart B, CISPR 14-1, EN 55014-1, CNS 13783-1, EN 55015, CNS 14115, CISPR 22, EN 55022, VCCI CNS 13438, EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 0240
Taiwan	BSMI	CNS 13803, CNS 13438, CNS 13439, CNS 13783-1, CNS 14115	SL2-IS-E-0002 SL2-IN-E-0002 SL2-A1-E-0002 SL2-R1-E-0002 SL2-R2-E-0002 SL2-L1-E-0002
Canada	Industry Canada	RSS-GEN Issue 2	Canada IC 4417-1, IC-4417-2

^{*} No part of this report may be used to claim or imply product endorsement by TAF or any agency of the US Government.

Report No.: 70720301-RP1 Page 8 of 27

6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 1000 MHz	+/- 3.2 dB
Radiated Emission, 1 to 26.5 GHz	+/- 3.2 dB
Power Line Conducted Emission	+/- 2.1 dB

Uncertainty figures are valid to a confidence level of 95%

Report No.: 70720301-RP1 Page 9 of 27

7. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	Notebook PC	HP	nx6130	CNU543274R	DoC
2	Reader	SYRIS	SYRD245-2U-G	08123050	
3	USB-Debug-Interface	TEXAS	SmartRF04EB		

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

- 1. Setup all computers like the setup diagram.
- 2. Open SmartRF04prog (Chipcon SmartRF04prog Flash Programmer)
- 3. TX mode
 - Open code file
 - Select Low/Middle/High
 - (1) TM-TX 62.hex (2041.4MHz)
 - (2) TM-TX 220.hex (2440.89MHz)
 - (3) TM-TX 377.hex (2480.18MHz)
 - Perform actions.
- 4. RX mode
 - Open code file
 - Select Select Low/Middle/High
 - (1) TM-RX 62.hex (2041.4MHz)
 - (2) TM-RX 220.hex (2440.89MHz)
 - (3) TM-RX 377.hex (2480.18MHz)
 - Perform actions.
- 5. All of the functions are under run.
- 6. Start test.

Report No.: 70720301-RP1
Page 10 of 27

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 RADIATED EMISSIONS

8.1.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS

LIMITS

§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

Report No.: 70720301-RP1 Page 11 of 27

In The section 15.249 (a):

Except as provided in paragraph (b) of this section, the field strength of emissions from intentional

radiators operated within these frequency bands shall comply with the following:

Funda	mental Frequency (MHz)	Field Strength of Fundamental Field St (microvolts/meter)	Measurement Distance (meters)
	902 – 928	50	500
24	400 - 2483.5	50	500
5	5725 - 5875	50	500
24	1000 - 24250	250	2500

§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional

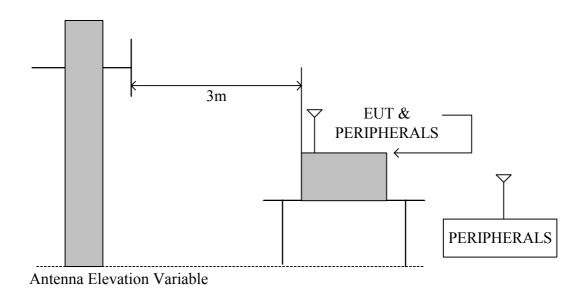
radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

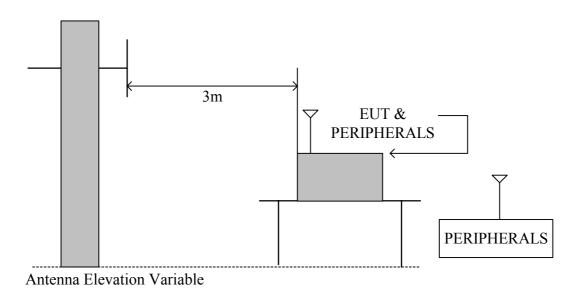
^{***} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, However, operation within these frequency bands is permitted under other sections of this Part, e-g, Sections 15.231 and 15.241.

§ 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST EQUIPMENT


The following test equipment is utilized in making the measurements contained in this report.

Manufacturer or Type	Model No.	Serial No.	Date of Calibration	Calibration Period	Remark
CHASE BILOG ANTENNA	CBL6112B	2817	August 28, 2007	1 Year	FINAL
R/S SPECTRUM ANALYZER	FSEK30	835253/002	October 25, 2007	1 Year	FINAL
AGILENT SPECTRUM ANALYZER	E4446A	MY433601.32	June 24, 2008	1 Year	FINAL
R/S EMI TEST RECEIVER	ESCS30	835418/008	September 02, 2006	1 Year	FINAL
OPEN SITE		No.2	May 07, 2008	1 Year	FINAL
BELDEN N TYPE COAXIAL CABLE	9913-30M	001	August 21, 2007	1 Year	FINAL
Horn Antenna	AH-118	10089	August 30, 2007	1 Year	FINAL
Horn Antenna	AH-840	03077	February 25, 2008	1 Year	FINAL
Agilent Pre-amplifier	8449B	3008A01471	December 25, 2007	1 Year	FINAL
HP Amplifier	8447D	1937A02748	December 25, 2007	1 Year	FINAL
HP High pass filter	84300/80038	002	CAL. ON USE	1 Year	FINAL
HP High pass filter	84300/80039	003	CAL. ON USE	1 Year	FINAL
Loop Antenna ETS-LINDGREN	6502	2356	June 15, 2008	1 Year	FINAL


Report No.: 70720301-RP1
Page 12 of 27

TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 to 1GHz.

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

Report No.: 70720301-RP1 Page 13 of 27

TEST PROCEDURE

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. White measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. White measuring the radiated emission above 1GHz, the EUT was set 1 meters away from the interference-receiving antenna
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

No non-compliance noted

Report No.: 70720301-RP1
Page 14 of 27

8.1.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz

Product Name	RFID Wirstband Tag	Test Date	2008/08/12
Model	SYTAG245-TM-C01	Test By	Gundam Lin
Test Mode	Normal operating	TEMP & Humidity	25.6°C, 65%

	Horizontal										
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Meter Reading at 3m (dBμV)	Limits (dBµV/m)	Emission Level at 3m (dBµV/m)	Margin Limit (dB)					
32.91	50.91	-32.88	18.03	40.00	-21.97	32.91					
119.24	52.93	-35.06	17.87	43.50	-25.63	119.24					
256.98	50.68	-32.54	18.14	46.00	-27.86	256.98					
430.61	45.05	-29.64	15.40	46.00	-30.60	430.61					
629.46	45.14	-25.91	19.23	46.00	-26.77	629.46					
815.70	45.12	-23.43	21.68	46.00	-24.32	815.70					
936.95	44.89	-22.00	22.89	46.00	-23.11	936.95					
1000.00	43.91	-15.87	28.04	74.00	-45.96	1000.00					
			Vertical								
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Meter Reading at 3m (dBµV)	Limits (dBµV/m)	Emission Level at 3m (dBµV/m)	Margin Limit (dB)					
43.58	50.39	-33.11	17.28	40.00	-22.72	43.58					
68.80	53.30	-36.08	17.22	40.00	-22.78	68.80					
148.34	46.32	-32.53	13.78	43.50	-29.72	148.34					
259.89	47.26	-32.50	14.75	46.00	-31.25	259.89					
342.34	49.66	-30.69	18.97	46.00	-27.03	342.34					
608.12	44.99	-26.09	18.90	46.00	-27.10	608.12					
753.62	44.37	-23.72	20.64	46.00	-25.36	753.62					
1000.00	43.74	-15.87	27.87	74.00	-46.13	1000.00					

Remark: Emission level $(dB\mu V/m)$ = Antenna Factor (dB/m) + Cable loss (dB) + Meter Reading $(dB\mu V)$.

Report No.: 70720301-RP1 Page 15 of 27

8.1.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz

Product Name	RFID Wirstband Tag	Test Date	2008/08/01
Model	SYTAG245-TM-C01	Test By	Gundam Lin
Test Mode	TX (CH Low)	TEMP & Humidity	31.6°C, 55%

	Measurement Distance at 3m Horizontal polarity									-
Freq. (MHz)	Reading (dBµV)	AF (dBµV)	Cable (dB)	Pre-amp (dB)	Filter (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Mark (P/Q/A)	Height (Meter)
2401.40	78.52	29.78	3.77	35.26	0.00	76.81	114.00	-37.19	P	1.00
4802.83	51.20	33.55	5.59	35.66	0.37	55.04	74.00	-18.96	P	1.00
4802.83	26.57	33.55	5.59	35.66	0.37	30.41	54.00	-23.59	A	1.00
7204.21	58.55	38.33	7.01	35.88	0.93	68.94	74.00	-5.06	P	1.00
7204.21	21.30	38.33	7.01	35.88	0.93	31.69	54.00	-22.31	A	1.00
9605.60	47.99	39.02	7.77	36.08	0.53	59.22	74.00	-14.78	P	1.00
9605.60	19.39	39.02	7.77	36.08	0.53	30.62	54.00	-23.38	A	1.00
12007.00	46.59	41.21	9.77	35.49	0.45	62.53	74.00	-11.47	P	1.00
12007.00	14.62	41.21	9.77	35.49	0.45	30.56	54.00	-23.44	A	1.00
		N	Measuren	nent Dista	nce at 3n	n Vertic	al polarity	1	T	T
Freq. (MHz)	Reading (dBµV)	AF (dBμV)	Cable (dB)	Pre-amp (dB)	Filter (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Mark (P/Q/A)	Height (Meter)
2401.40	93.25	29.78	3.77	35.26	0.00	91.54	114.00	-22.46	P	1.00
4802.83	53.65	33.55	5.59	35.66	0.37	57.49	74.00	-16.51	P	1.00
4802.83	26.75	33.55	5.59	35.66	0.37	30.59	54.00	-23.41	A	1.00
7204.21	61.57	38.33	7.01	35.88	0.93	71.96	74.00	-2.04	P	1.00
7204.21	21.77	38.33	7.01	35.88	0.93	32.16	54.00	-21.84	A	1.00
9605.60	48.56	39.02	7.77	36.08	0.53	59.79	74.00	-14.21	P	1.00
9605.60	19.20	39.02	7.77	36.08	0.53	30.43	54.00	-23.57	A	1.00
12007.00	46.39	41.21	9.77	35.49	0.45	62.33	74.00	-11.67	P	1.00
12007.00	15.29	41.21	9.77	35.49	0.45	31.23	54.00	-22.77	A	1.00

Remark:

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow:

Level = Reading + AF + Cable - Preamp + Filter, Margin = Level-Limit

- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Report No.: 70720301-RP1 Page <u>16</u> of <u>27</u>

Product Name	RFID Wirstband Tag	Test Date	2008/08/01
Model	SYTAG245-TM-C01	Test By	Gundam Lin
Test Mode	TX (CH Middle)	TEMP & Humidity	31.6°C, 55%

	Measurement Distance at 3m Horizontal polarity									
Freq. (MHz)	Reading (dBµV)	AF (dBμV)	Cable (dB)	Pre-amp (dB)	Filter (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Mark (P/Q/A)	Height (Meter)
2440.89	78.73	29.75	3.81	35.28	0.00	77.01	114.00	-36.99	P	1.00
4881.87	50.67	33.69	5.65	35.68	0.29	54.62	74.00	-19.38	P	1.00
4881.87	26.31	33.69	5.65	35.68	0.29	30.26	54.00	-23.74	A	1.00
7322.77	57.21	38.64	7.06	35.93	0.82	67.80	74.00	-6.20	P	1.00
7322.77	21.07	38.64	7.06	35.93	0.82	31.66	54.00	-22.34	A	1.00
9763.56	49.07	38.89	7.87	36.21	0.58	60.19	74.00	-13.81	P	1.00
9763.56	19.33	38.89	7.87	36.21	0.58	30.45	54.00	-23.55	A	1.00
12204.45	46.96	41.45	9.83	35.17	0.38	63.44	74.00	-10.56	P	1.00
12204.45	14.20	41.45	9.83	35.17	0.38	30.68	54.00	-23.32	A	1.00
		N	Measuren	nent Dista	nce at 3n	n Vertic	al polarity	<i>I</i>	T	
Freq. (MHz)	Reading (dBµV)	AF (dBμV)	Cable (dB)	Pre-amp (dB)	Filter (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Mark (P/Q/A)	Height (Meter)
2440.89	93.13	29.75	3.81	35.28	0.00	91.41	114.00	-22.59	P	1.00
4881.87	52.50	33.69	5.65	35.68	0.29	56.45	74.00	-17.55	P	1.00
4881.87	26.35	33.69	5.65	35.68	0.29	30.30	54.00	-23.70	A	1.00
7322.77	60.61	38.64	7.06	35.93	0.82	71.20	74.00	-2.80	P	1.00
7322.77	21.39	38.64	7.06	35.93	0.82	31.98	54.00	-22.02	A	1.00
9763.56	49.45	38.89	7.87	36.21	0.58	60.57	74.00	-13.43	P	1.00
9763.56	19.11	38.89	7.87	36.21	0.58	30.23	54.00	-23.77	A	1.00
12204.45	47.31	41.45	9.83	35.17	0.38	63.79	74.00	-10.21	P	1.00
12204.45	14.19	41.45	9.83	35.17	0.38	30.67	54.00	-23.33	A	1.00

Remark:

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow:

Level = Reading + AF + Cable - Preamp + Filter, Margin = Level-Limit

- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

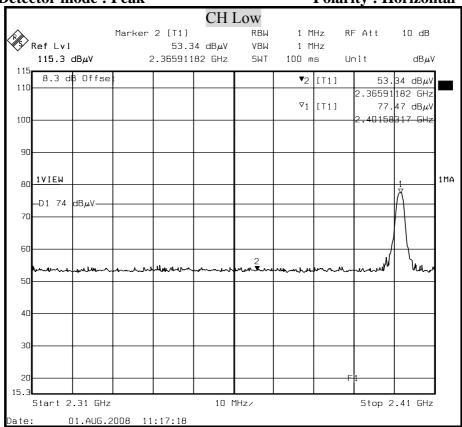
Report No.: 70720301-RP1 Page 17 of 27

Product Name	RFID Wirstband Tag	Test Date	2008/08/01
Model	SYTAG245-TM-C01	Test By	Gundam Lin
Test Mode	TX (CH High)	TEMP & Humidity	31.6°C, 55%

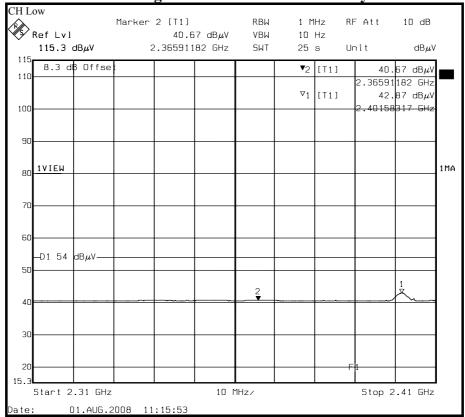
	Measurement Distance at 3m Horizontal polarity									
Freq. (MHz)	Reading (dBµV)	AF (dBμV)	Cable (dB)	Pre-amp (dB)	Filter (dB)	Level	Limit (dBµV/m)	Margin (dB)	Mark (P/Q/A)	Height (Meter)
2480.18	77.53	29.72	3.85	35.29	0.00	75.80	114.00	-38.20	P	1.00
4960.11	50.69	33.83	5.70	35.69	0.21	54.74	74.00	-19.26	P	1.00
4960.11	26.15	33.83	5.70	35.69	0.21	30.20	54.00	-23.80	A	1.00
7440.05	57.81	38.94	7.11	35.98	0.72	68.61	74.00	-5.39	P	1.00
7440.05	20.70	38.94	7.11	35.98	0.72	31.50	54.00	-22.50	A	1.00
9920.72	48.93	38.76	7.96	36.34	0.63	59.95	74.00	-14.05	P	1.00
9920.72	19.38	38.76	7.96	36.34	0.63	30.40	54.00	-23.60	A	1.00
12400.90	46.88	41.68	9.88	34.86	0.32	63.90	74.00	-10.10	P	1.00
12400.90	13.68	41.68	9.88	34.86	0.32	30.70	54.00	-23.30	A	1.00
		N	Measuren	nent Dista	ince at 3n	n Vertic	al polarity	1	1	T
Freq. (MHz)	Reading (dBµV)	AF (dBμV)	Cable (dB)	Pre-amp (dB)	Filter (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Mark (P/Q/A)	Height (Meter)
2480.18	90.58	29.72	3.85	35.29	0.00	88.85	114.00	-25.15	P	1.00
4960.11	53.87	33.83	5.70	35.69	0.21	57.92	74.00	-16.08	P	1.00
4960.11	26.26	33.83	5.70	35.69	0.21	30.31	54.00	-23.69	A	1.00
7440.05	57.36	38.94	7.11	35.98	0.72	68.16	74.00	-5.84	P	1.00
7440.05	20.92	38.94	7.11	35.98	0.72	31.72	54.00	-22.28	A	1.00
9920.72	48.62	38.76	7.96	36.34	0.63	59.64	74.00	-14.36	P	1.00
9920.72	19.35	38.76	7.96	36.34	0.63	30.37	54.00	-23.63	A	1.00
	47.29	41.68	9.88	34.86	0.32	64.31	74.00	-9.69	P	1.00
12400.90	47.29	41.00	7.00	54.00	0.52	04.51	7 1.00	<u> </u>		1.00

Remark:

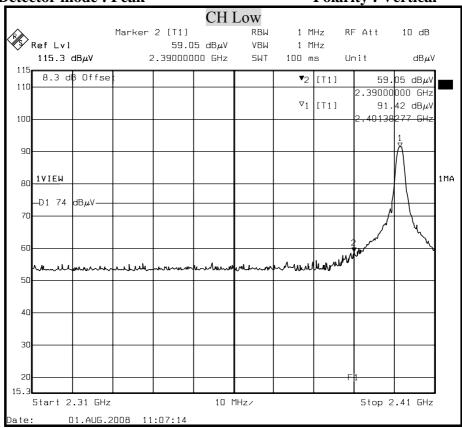
- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- ${\it 3. The result basic equation calculation is as follow:}$


Level = Reading + AF + Cable - Preamp + Filter, Margin = Level-Limit

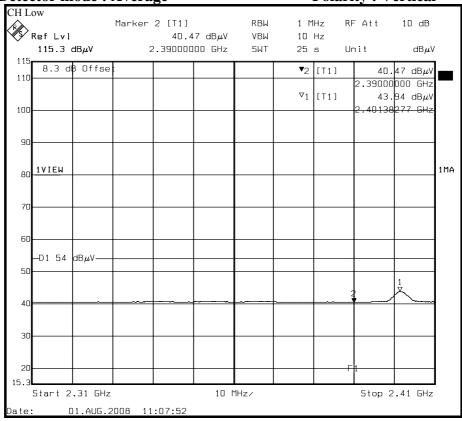
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.


Report No.: 70720301-RP1 Page 18 of 27

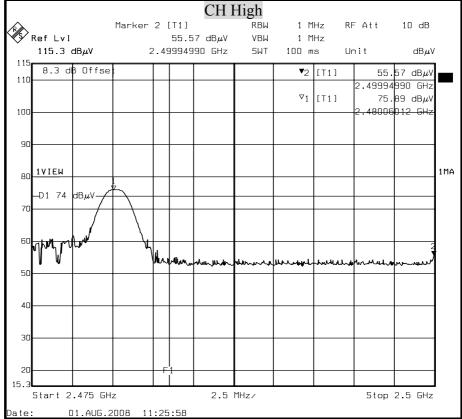
8.1.4 RESTRICTED BAND EDGES

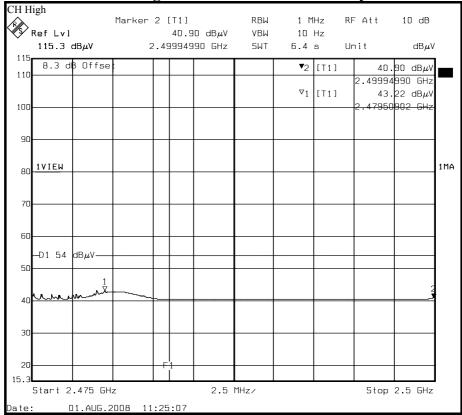


Detector mode: Average Polarity: Horizontal

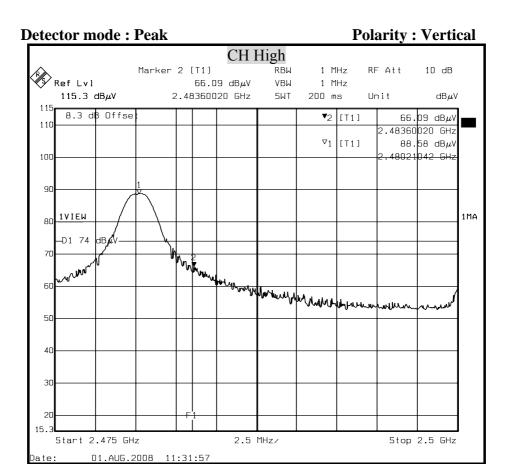


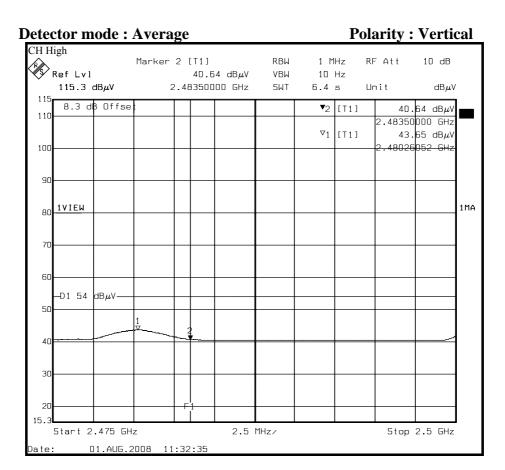
Report No.: 70720301-RP1 Page 19 of 27





Report No.: 70720301-RP1 Page <u>20</u> of <u>27</u>





Report No.: 70720301-RP1 Page 21 of 27

Report No.: 70720301-RP1 Page 22 of 27

8.2 POWERLINE CONDUCTED EMISSIONS

LIMITS

 \S 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted limit (dBµv)				
	Quasi-peak	Average			
0.15 - 0.5	66 to 56	56 to 46			
0.5 - 5	56	46			
5 - 30	60	50			

TEST EQUIPMENT

The following test equipment is used during the conducted powerline tests:

Manufacturer or Type	Model No.	Serial No.	Date of Calibration	Calibration Period	Remark
ECOM L.I.S.N	3810/2	9801-1850	February 26, 2008	1 Year	FINAL
CHASE L.I.S.N	NNLK 8129	8129118	January 26, 2008	1 Year	FINAL
R & S TEST RECEIVER	ESHS30	838550/003	January 31, 2008	1 Year	FINAL
KEENE SHIELDED ROOM	5983	No.1	N/A	N/A	FINAL
R & S PULSE LIMIT	EHS3Z2	357.8810.52	July 10, 2008	1 Year	FINAL
N TYPE COAXIAL CABLE			August 21, 2007	1 Year	FINAL
50Ω TERMINATOR			July 10, 2008	1 Year	FINAL

Report No.: 70720301-RP1 Page 23 of 27

TEST SETUP

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80cm above the horizontal ground plane. The EUT IS CONFIGURED IN ACCORDANCE WITH ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both quasi-peak detection and average detection measurements.

Line conducted data is recorded for both NEUTRAL and LINE.

TEST RESULTS

No non-compliance noted

Since this EUT is powered by Battery, this test item is not applicable.

Report No.: 70720301-RP1
Page 24 of 27

9. ANTENNA REQUIREMENT

9.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

9.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is **Multilayer Chip** antenna. The maximum Gain of the antenna only 2dBi.