

Masimo Corporation

AIR01 Receiver

FCC 15.225:2018 13.56 MHz Radio

Report # MASI0519.5

NVLAP LAB CODE: 200676-0

CERTIFICATE OF TEST

Last Date of Test: December 14, 2018

Masimo Corporation

Model: AIR01 Receiver

Radio Equipment Testing

Standards

Specification	Method	
FCC 15.225:2018	ANSI C63.10:2013	

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.4	Field Strength of Fundamental	Yes	Pass	
6.4	Field Strength of Spurious Emissions Less Than 30 MHz	Yes	Pass	
6.5	Field Strength of Spurious Emissions Greater Than 30 MHz	Yes	Pass	
6.8	Frequency Stability	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

Report No. MASI0519.5 3/25

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

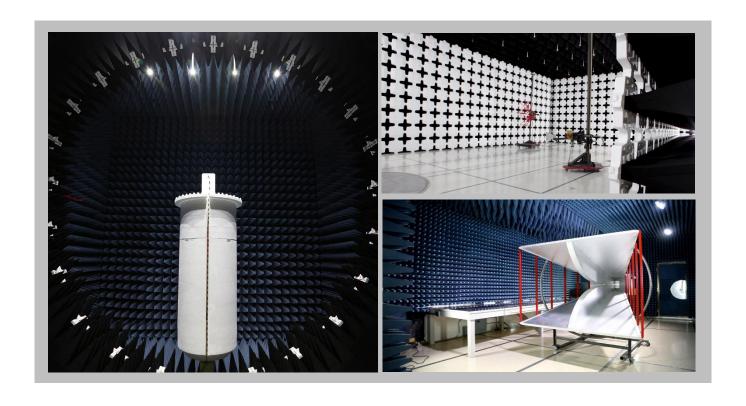
Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

Report No. MASI0519.5 4/25


FACILITIES

California Labs OC01-17 41 Tesla	Minnesota Labs MN01-10 9349 W Broadway Ave.	New York Labs NY01-04 4939 Jordan Rd.	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400	Texas Labs TX01-09 3801 E Plano Pkwy	Washington Labs NC01-05 19201 120th Ave NE			
Irvine, CA 92618 (949) 861-8918	Brooklyn Park, MN 55445 (612)-638-5136	Elbridge, NY 13060 (315) 554-8214	Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 98011 (425)984-6600			
	NVLAP							
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0			
	Innovation, Science and Economic Development Canada							
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1	2834G-1	2834F-1			
	BSMI							
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
	VCCI							
A-0029	A-0109	N/A	A-0108	A-0201	A-0110			
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA								
US0158	US0175	N/A	US0017	US0191	US0157			

Report No. MASI0519.5 5/25

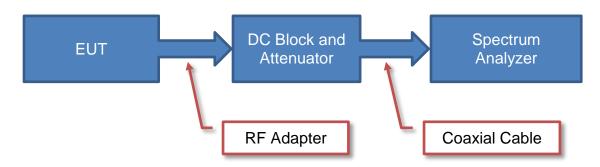
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

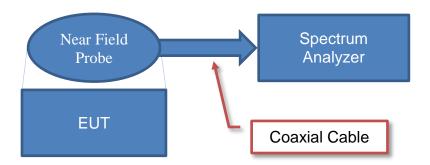
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

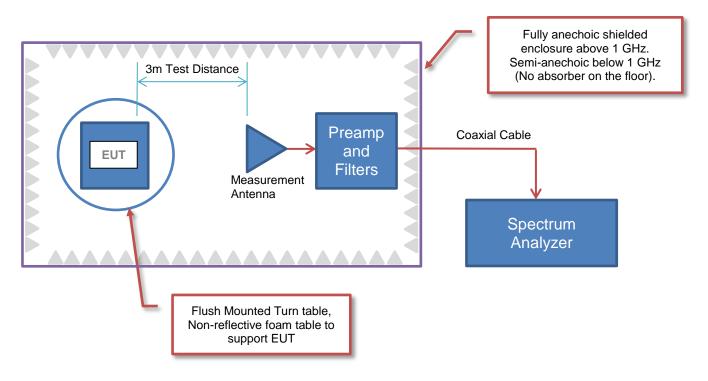
A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. MASI0519.5 6/25


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. MASI0519.5 7/25

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Masimo Corporation
Address:	52 Discovery
City, State, Zip:	Irvine, CA 92618
Test Requested By:	Anami Joshi
Model:	AIR01 Receiver
First Date of Test:	December 10, 2018
Last Date of Test:	December 14, 2018
Receipt Date of Samples:	December 10, 2018
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

AIR01 Technology Board snaps on to AIR01 Sensor (no cable). This assembly of AIR01 Technology Board and AIR01 Sensor is battery powered. This assembly connects to AIR01 Receiver over Bluetooth LE. AIR01 Receiver has a cable (less than 0.3m) that connects to patient port of Rad-97.

Testing Objective:

To demonstrate compliance of the 13.56 MHz radio to FCC Part 15.225 specifications.

Report No. MASI0519.5 8/25

CONFIGURATIONS

Configuration MASI0519-1

Software/Firmware Running during test				
Description	Version			
AIR01 Receiver	V1001			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
AIR01 Receiver	Masimo Corporation	26896 Rev.A	RX-RF-2

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Host Laptop	Hewlett Packard	HSNIO4C	5CGB271JH4			
Host Laptop Power Adapter	Masimo Corporation	TPN-CAD6	1588-3003			

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Receiver Cable	No	0.15m	No	AIR01 Receiver	Unterminated	
USB Cable	Yes	1.8m	No	AIR01 Receiver	Host Laptop	
DC Cable	Yes	1.4m	No	Host Laptop	Host Laptop Power Adapter	
AC Cable	No	0.9m	No	Host Laptop Power Adapter	AC Mains	

Report No. MASI0519.5 9/25

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2018-12-10	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2018-12-10	Field Strength of Spurious Emissions Less than 30MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2018-12-14	Field Strength of Spurious Emissions Greater than 30MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2018-12-14	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Report No. MASI0519.5 10/25

POWER SETTINGS

No adjustable power settings were provided. The EUT was tested using power settings pre-defined by the manufacturer.

Report No. MASI0519.5 11/25

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2018.07.27

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 13.56 MHz

POWER SETTINGS INVESTIGATED

USB via 120VAC/60Hz

CONFIGURATIONS INVESTIGATED

MASI0519 - 1

FREQUENCY RANGE INVESTIGATED

Chart Francisco Cold In	Otan Farmura	OO MILL
Start Frequency 19 kHz	Stop Frequency	130 MHz
Start i requeries Citi 12	Olop i loquolloj	100 1111 12

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna - Loop	EMCO	6502	AZB	22-Aug-2017	24 mo
Cable	Northwest EMC	3 kHz - 1 GHz RE Cables	OCB	1-Aug-2018	12 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7-Aug-2018	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.4, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

Report No. MASI0519.5 12/25

FIELD STRENGTH OF FUNDAMENTAL

																											EmiR5	2010 0	200					CI 2018.07.2			
W	ork	Orde	r:		MAS	3105	19						Da	te:		10-	Dec	-20°	18					1	/					-			-OM-EOU	2010.07.2	Ť		
		rojec				one					Te	mpe					20.3					_	- 6	-	_	1	€			7	1	_		-			
Seria		b Sit			RX-	C08				D	arom		midi				3.2% 119 r												ytan	-							
Seria	ai inu			IR0	1 Re	ceiv	- <u>-</u> ⁄er			D	arom	etric	PIE	5		10	1191	пра					16	sie	u b	y : [[\	/lair	ь	yıaı						_		
Conf		ratio	n: 1																																_		
		tome					ora	tion	1																												
		ndee					· · · ·	100																											_		
		owe	_		via 1 smitti					Цτ																									_		
Operat	ting	Mod	e: ' '	ans	orrittu	ny a	at i	5.5	O IVI	1 12																											
)evi:	ation	. N	one																															_		
																																			_		
C	:omi	nent		one																																	
			•																																		
Test Spec	ifica	tion	s														-	Test	t Me	etho	d																
FCC 15.22																				63.1		013													_		
Run #		2		Te	st Di	ista	nce	e (m	1)		3		nte	nna	Hei	aht	(s)				1	(m)					Re	sul	ts			Pa	ass		_		
									,							J	(-)					()													_		
80 -	Н		-	_			Н		+								1		_		_		_	Н	_		_										
60 -	Н						Ш										Ш				_		_	Ш	_												
														Г					٦																		
40 -														┸					L																		
10																																					
Ę	+						Н	+	+															Н	_		_										
A																																					
W/Nab 20 -																																					
•																																					
0 -																																		1			
-20 -	\vdash								+								+				+										Н						
							lĬ				T																										
-40 -																																					
12	.56		12.	/6		12	.96			13.	16		13.3	6		13.			13	3.76			13.96	Ó		14.	16		14	4.36	Ó		14	.56			
																MH	1Z											Pk	(٠	A۷	1	•	QP			
																		Po	larity/	,																	
Freq	Λ-	nplitude		Fac	tor	٨٠٠	enna	Ho:-	sht.	۸~:	muth	To-	t Dista	nce		ternal nuatio		Tran	sduc		-	etector			ance stmen	,	٨٨٠	usted		Spec	n Lie	nit		pared to Spec.			
(MHz)		dBuV)		(dl			(met		Ji it		rees)		neters			dB))[]	'	ype		DE	etector			dB)			ıV/m)			uV/m			(dB)			
													0.0					D	- 0:	VID.		00														mmer	
12.999 14.060		5.3 5.1		11 11			1. 1.				6.0 6.0		3.0			0.0			o Gi			QP QP			0.0			3.2 3.4			9.5 9.5			52.7 52.9		JT Ver JT Ver	
13.560		53.1		11	.5		1.	0		4	6.0		3.0		(0.0		Par t	o GI	ND		QP		-4	0.0		2	4.6		8	4.0		-	59.4	EU	JT Ver	t
13.560		52.2		11			1.				5.0		3.0			0.0			o GI			QP OB			0.0			3.7			4.0			60.3		JT on S JT Hor	
13.560 13.560		50.4 50.1		11 11			1. 1.				2.0 2.0		3.0			0.0 0.0			to GI			QP QP			0.0			1.9 1.6			4.0 4.0			62.1 62.4		JT Ver	
13.560		50.1		11	.5		1.	0		20	7.0		3.0		(0.0	- 1	erp	to E	UT		QP		-4	0.0		2	1.6		8	4.0		-	62.4	EU	JT Ver	t
13.199		5.3		11			1. 1.				6.0		3.0			0.0			to Gi			QP OP			0.0			3.2			0.5			63.7		JT Ver JT on S	
13.560 13.777		48.6 5.1		11 11			1.				24.0 6.0		3.0			0.0			to E to Gl			QP QP			0.0			0.1 3.4			4.0 0.5			63.9 63.9		JT Ver	
13.560		48.5		11	.5		1.	0		14	7.0		3.0		(0.0		Par	to El	UT		QP		-4	0.0		2	0.0		8	4.0		-	64.0	EU	JT on S	Side
13.560 13.560		47.7 44.6		11 11			1. 1.				08.0 26.0		3.0			0.0 0.0			to E to El			QP QP			0.0			9.2 6.1			4.0 4.0			64.8 67.9		JT Hor JT Hor	
13.568		44.6 11.1		11			1.				6.0		3.0			0.0			to Et			QP QP			0.0			7.4			4.0 0.5			67.9 67.9		JT Ver	
13.546		7.9		11			1.				6.0		3.0			0.0			o GI			QP			0.0			0.6			0.5			71.1		JT Ver	

Report No. MASI0519.5 13/25

FIELD STRENGTH OF SPURIOUS EMISSIONS < 30MHz

PSA-ESCI 2018.07.27

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 13.56 MHz

POWER SETTINGS INVESTIGATED

USB via 120VAC/60Hz

CONFIGURATIONS INVESTIGATED

MASI0519 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 9 kHz	Stop Frequency	I30 MHz
Start i requerity 19 km2	Stop i requericy	130 MH 12

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna - Loop	EMCO	6502	AZB	22-Aug-2017	24 mo
Cable	Northwest EMC	3 kHz - 1 GHz RE Cables	OCB	1-Aug-2018	12 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7-Aug-2018	12 mo
•					

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.4, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

Report No. MASI0519.5 14/25

FIELD STRENGTH OF SPURIOUS **EMISSIONS < 30MHz**

27.121

27.120

27.119

27.118

6.5

5.7

5.4

5.1

9.8

9.8

9.8

9.8

159.0

164.0

109.0

87.0

3.0

3.0

3.0

3.0

1.0

1.0

1.0

1.0

27.120 13.4 9.8 1.0 215.0 3.0 0.0 Perp to EUT QP -40.0 -16.8 29.5 -46.3 EUT Ver 27.120 13.3 9.8 1.0 18.0 3.0 0.0 Perp to EUT QP -40.0 -16.9 29.5 -46.4 EUT Hor											EmiR5 2018.09.26		PSA-ESCI 2018.07.27	<u>, </u>
Serial Number: RX-PF-2 Barometric Press. 1019 mbar Tested by: Mark Baytan	Wo									11	, _			
Serial Number: RX-PF-2 Barometric Press. 1019 mbar Tested by: Mark Baytan					Te					1	<	7/-		
EUT; AIROT Recover Configuration: 1 Customers: Masimo Corporation Attendees: Nighi Ngune EUT Power: USB via 120/AC/60Hz Operating Mode: Tensmitting at 13.56 MHz Deviations: None Comments: St Specifications ANSI C63.10:2013 ANSI C63.10:2013 ANSI C63.10:2013 Fig. (MHz) MHz IPK • AV • OP Fig. (MHz) Fig. (MH														
Continue Masimo Corporation Attendees Napin Nguyee Service USB via 120 MC/60Hz	Serial				Barom	etric Pres.:	1019	9 mbar		Tested by:	Mark Bayta	an		_
Customers Masimo Corporation Altendaces Nghi Nguyen Septiment Nghi Nguyen Septiment Nghi Nguyen Septiment Nghi Nguyen				ceiver										_
Autendees Nghi Nguyen	Confi	iguration:	1											_
Pass	C	Customer:	Masimo C	Corporation										_
Deviations	Α	ttendees:	Nghi Nguy	yen										_
Deviations: None	EU	JT Power:												_
None St Specifications Test Method ANSI C63.10.2013	Operati	ing Mode:	Transmitti	ing at 13.56	MHz									_
Set Sepecifications Test Method ANSI C63.10.2013 Antenna Height (a) Test Distance (m) 3 Antenna Height (a) Test Distance (m) 3 Antenna Height (a) Test Distance (m) 3 Antenna Height (a) Test Distance (m) Test Distan	De	eviations:	None											_
ANSI C63.10:2013 ANSI C63.10	Co	omments:												_
ANSI C63.10:2013 ANSI C63.10	est Sneci	ifications						Test Meth	nd					
Run # 3 Test Distance (m) 3 Antenna Height(s) 1(m) Results Pass														-
Total Companed to Total Companed to Total Distance														_
10	Run #	3	Test Di	istance (m)	3	Antenna	Height(s)	1(m)		Results	Pa	ass	_
Total Tota	50 ┌													
Total Tota														
Total Tota	40													
Treed (MHz) MHz Trees Distance (MHz)	40													
Treed (MHz) MHz Trees Distance (MHz)														
Treed (MHz) MHz Trees Distance (MHz)	30				$\overline{}$									
Test Distance (BBuV) Test Distance (GBuV)	00					<u> </u>								
Test Distance (BBuV) Test Distance (GBuV)														
-10	20													
-10														
-10	E 10													
-10	5 10													
-10	<u> </u>													
-10	8 0 년													
-20 -30 -40 0 1 MHz Polarity/ Transducer Type Detector Detector Adjusted (dBuV/m) (dBu														
-20 -30 -40 0 1 MHz Polarity/ Transducer Type Detector Detector Adjusted (dBuV/m) (dBu														
-30 -40 -40 -40 -40 -40 -40 -40	-10				 									
-30 -40 -40 -40 -40 -40 -40 -40														
-30 -40 -40 -40 -40 -40 -40 -40	-20													
-40 0 1 1 10 100 MHz ■ PK ◆ AV ● QP Freq (MHz) Amplitude (dBuV) (dB) Antenna Height (meters) Antenna Height (degrees) Test Distance (meters) (dB) Test Distance (meters) (dB) Test Distance (meters) Trype Detector Type Detector Distance Adjusted (dBuV/m) (dB) Compared to Spec. Limit (dBuV/m) Compared to Spec. (dB) Commer 27.120 13.8 9.8 1.0 16.0 3.0 0.0 Perp to EUT QP -40.0 -16.4 29.5 -45.9 EUT on 3 27.120 13.3 9.8 1.0 18.0 3.0 0.0 Perp to EUT QP -40.0 -16.8 29.5 -46.3 EUT Ver 27.121 7.8 9.8 1.0 143.0 3.0 0.0 Perp to EUT QP -40.0 -16.9 29.5 -46.4 EUT Ver 27.121 7.8 9.8 1.0 143.0 3.0 0.0 Perp to EUT QP -40.0 -16.9 29.5 -46.4 EUT Ver 27.121 7.8 9.8 1.0 143.0 3.0 0.0 Perp to EUT QP -40.0 -22.4 29.5 -51.9 EUT Ver 27.121 7.8 9.8 1.0 139.0 3.0 0.0 Perp to EUT QP -40.0 -22.4 29.5 -51.9 EUT Ver 27.119 6.5 9.8 1.0 139.0 3.0 0.0 Par to EUT QP -40.0 -23.7 29.5 -53.2 EUT Ver 27.119	-													
-40 0 1 1 10 100 MHz ■ PK ◆ AV ● QP Freq (MHz) Amplitude (dBuV) (dB) Antenna Height (meters) Antenna Height (degrees) Test Distance (meters) (dB) Test Distance (meters) (dB) Test Distance (meters) Trype Detector Type Detector Distance Adjusted (dBuV/m) (dB) Compared to Spec. Limit (dBuV/m) Compared to Spec. (dB) Commer 27.120 13.8 9.8 1.0 16.0 3.0 0.0 Perp to EUT QP -40.0 -16.4 29.5 -45.9 EUT on 3 27.120 13.3 9.8 1.0 18.0 3.0 0.0 Perp to EUT QP -40.0 -16.8 29.5 -46.3 EUT Ver 27.121 7.8 9.8 1.0 143.0 3.0 0.0 Perp to EUT QP -40.0 -16.9 29.5 -46.4 EUT Ver 27.121 7.8 9.8 1.0 143.0 3.0 0.0 Perp to EUT QP -40.0 -16.9 29.5 -46.4 EUT Ver 27.121 7.8 9.8 1.0 143.0 3.0 0.0 Perp to EUT QP -40.0 -22.4 29.5 -51.9 EUT Ver 27.121 7.8 9.8 1.0 139.0 3.0 0.0 Perp to EUT QP -40.0 -22.4 29.5 -51.9 EUT Ver 27.119 6.5 9.8 1.0 139.0 3.0 0.0 Par to EUT QP -40.0 -23.7 29.5 -53.2 EUT Ver 27.119											_			
Test Distance (MHz) MHz Test Distance (MHz) Test Distance	-30													
Test Distance (MHz) MHz Test Distance (MHz) Test Distance														
Test Distance (MHz) MHz Test Distance (MHz) Test Distance	-40													
Freq Amplitude Factor Antenna Height Azimuth Test Distance Attenuation Attenuation Attenuation Type Detector Distance Adjustment Adj)			1				10				100	
Freq (MHz)	·						мы-	,						
Freq (MHz)							IVITA	<u>-</u>			■ PK	AV	QP	
Freq (MHz)								Polarity/						
(MHz) (dBuV) (dB) (meters) (degrees) (meters) (dB) (dB) (dB) (dBuV/m) (dBuV/m) (dBuV/m) (dB) Commer Commer 27.120 13.8 9.8 1.0 16.0 3.0 0.0 Perp to EUT QP -40.0 -16.4 29.5 -45.9 EUT on 20.0 27.120 13.4 9.8 1.0 215.0 3.0 0.0 Perp to EUT QP -40.0 -16.8 29.5 -46.3 EUT Ver 27.120 13.3 9.8 1.0 18.0 3.0 0.0 Perp to EUT QP -40.0 -16.9 29.5 -46.3 EUT Ver 27.121 7.8 9.8 1.0 143.0 3.0 0.0 Par to EUT QP -40.0 -22.4 29.5 -51.9 EUT Ver 27.119 6.5 9.8 1.0 139.0 3.0 0.0 Par to GND QP -40.0 -23.7 29.5 -53.2 EUT Ver <th>_</th> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>Transducer</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_		_					Transducer						
Commer C								Туре	Detector					
27.120 13.8 9.8 1.0 16.0 3.0 0.0 Perp to EUT QP -40.0 -16.4 29.5 -45.9 EUT on 3 27.120 13.4 9.8 1.0 215.0 3.0 0.0 Perp to EUT QP -40.0 -16.8 29.5 -46.3 EUT Ver 13.3 9.8 1.0 18.0 3.0 0.0 Perp to EUT QP -40.0 -16.9 29.5 -46.4 EUT Wer 14.12 14.12 15	(MHZ)	(ubuv)	(db)	(meters)	(degrees)	(meters)	(db)			(db)	(ubuv/III)	(ubuv/III)	(db)	Commen
27.120 13.4 9.8 1.0 215.0 3.0 0.0 Perp to EUT QP -40.0 -16.8 29.5 -46.3 EUT Ver 27.120 13.3 9.8 1.0 18.0 3.0 0.0 Perp to EUT QP -40.0 -16.9 29.5 -46.4 EUT Hor 27.121 7.8 9.8 1.0 143.0 3.0 0.0 Par to EUT QP -40.0 -22.4 29.5 -51.9 EUT Ver 27.119 6.5 9.8 1.0 139.0 3.0 0.0 Par to GND QP -40.0 -23.7 29.5 -53.2 EUT Ver	27.120	13.8	9.8	1.0	16.0	3.0	0.0	Perp to EUT	QP	-40.0	-16.4	29.5	-45.9	EUT on S
27.121 7.8 9.8 1.0 143.0 3.0 0.0 Par to EUT QP -40.0 -22.4 29.5 -51.9 EUT Ver 27.119 6.5 9.8 1.0 139.0 3.0 0.0 Par to GND QP -40.0 -23.7 29.5 -53.2 EUT Ver	27.120							Perp to EUT						EUT Vert
27.119 6.5 9.8 1.0 139.0 3.0 0.0 Par to GND QP -40.0 -23.7 29.5 -53.2 EUT Ver	27.120													EUT Horz
	27.121													EUT Vert

Report No. MASI0519.5 15/25

Par to EUT

Par to EUT

Par to GND Par to GND

0.0

0.0

0.0

0.0

QP QP

QP QP

QP

-40.0

-40.0

-40.0

-40.0

-23.7

-24.5

-24.8

-25.1

29.5

29.5

29.5

29.5

-53.2

-54.0

-54.3

-54.6

EUT on Side

EUT Horz

EUT Horz

EUT on Side

FIELD STRENGTH OF SPURIOUS EMISSIONS GREATER THAN 30 MHZ

PSA-ESCI 2018.07.27

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 13.56 MHz

POWER SETTINGS INVESTIGATED

USB via 120VAC/60Hz

CONFIGURATIONS INVESTIGATED

MASI0519 - 1

FREQUENCY RANGE INVESTIGATED

	Start Frequency 30 MHz		Stop Frequency	1000 MHz
--	------------------------	--	----------------	----------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	PAD	10-Jul-2018	12 mo
Cable	ESM Cable Corp.	30-1GHz cables	OCW	10-May-2018	12 mo
Antenna - Biconilog	EMCO	3142	AXB	5-Apr-2018	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAY	30-Nov-2018	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Report No. MASI0519.5 16/25

FIELD STRENGTH OF SPURIOUS EMISSIONS GREATER THAN 30 MHZ

											EmiR5 2018.09.26		PSA-ESCI 2018.07.27	<u>-</u>
v	Vork Orde		/ASI0519			Date:		ec-2018			1		2	
	Projec		None			perature:		9.1 °C	1	- 3	- 1	- Aller		
	Job Sit		OC07	_		Humidity:		1% RH	0					
Seri	ial Numbe		RX-RF-2	В	aromet	ric Pres.:	102	4 mbar		Tested by:	Johnny Ca	ndelas		_
<u> </u>			Receiver											_
Col	nfiguratio	n: 1	o Corporati											=
	Attendee			on										_
	FIIT Dowe	r HSB v	ia 120VAC/	60Hz										_
		_	nitting at 13											_
Opera	ating Mod	e:	illuliy at 10).JU IVII IZ										
		None												_
	Deviation	s:												
		None												_
(Comment	s:												
Test Sne	cification	s						Test Meth	od					=
FCC 15.2	25:2018							ANSI C63.						_
1 00 10.2	20.2010							7 11 10 1 000.	10.2010					
Run :	# 1	Tes	t Distance	(m)	3	Antenna	Height(s	5)	1 to 4(m)		Results	Pa	ass	_
00														
80														
70														
60	-													
≥ ⁵⁰														
≶														
w//\ng p														
쁑														
30						•								
20														
20						• •								
					•									
10	1													
^														
0	10						100						1000	
													1000	
							MH	4			■ PK	◆ AV	QP	
								Polarity/						
							External	Transducer		Distance			Compared to	
Freq	Amplitude			-		Test Distance	Attenuation		Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meter	rs) (de	grees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
40.686	40.5	-4.8	1.0	2	95.0	3.0	0.0	Vert	QP	0.0	35.7	40.0	-4.3	EUT on Side
54.249	39.2	-9.0			49.0	3.0	0.0	Vert	QP	0.0	30.2	40.0	-9.8	EUT on Side
40.685	30.1	-4.8			44.0	3.0	0.0	Horz	QP	0.0	25.3	40.0	-14.7	EUT on Side
40.683	27.9	-4.8			03.0	3.0	0.0	Vert	QP OB	0.0	23.1	40.0	-16.9	EUT Vert EUT Horiz
40.683 67.805	27.1 31.2	-4.8 -10.:			03.0 35.0	3.0 3.0	0.0 0.0	Vert Vert	QP QP	0.0 0.0	22.3 20.9	40.0 40.0	-17.7 -19.1	EUT Horiz EUT on Side
54.246	26.2	-9.0			34.0	3.0	0.0	Horz	QP	0.0	17.2	40.0	-22.8	EUT on Side
40.686	20.6	-4.8		2	38.0	3.0	0.0	Horz	QP	0.0	15.8	40.0	-24.2	EUT Vert
40.683	19.9	-4.8			22.0	3.0	0.0	Horz	QP	0.0	15.1	40.0	-24.9	EUT Horiz
81.368	20.4	-10.4			3.0	3.0	0.0	Vert	QP OB	0.0	10.0	40.0	-30.0	EUT on Side
81.363 67.805	19.5 19.0	-10.4 -10.3			56.0 41.0	3.0 3.0	0.0 0.0	Horz Horz	QP QP	0.0 0.0	9.1 8.7	40.0 40.0	-30.9 -31.3	EUT on Side EUT on Side
57.005	19.0	- 10.	1.0	2.		5.0	0.0	11012	Q,	0.0	0.7	70.0	01.0	_5. 5.1 5146

Report No. MASI0519.5 17/25

XMit 2017.12.1

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Thermometer	Omega Engineering, Inc.	HH311	DUC	8-Nov-17	8-Nov-20
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPHS-32-3.5-SCT/AC	TBE	19-Nov-18	19-Nov-19
Attenuator	Fairview Microwave	SA18E-20	TKS	31-Jan-18	31-Jan-19
Probe - Near Field Set	EMCO	7405	IPI	NCR	NCR
Block - DC	Aeroflex	INMET 8535	AMO	23-Mar-18	23-Mar-19
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	20-Nov-18	20-Nov-19

TEST DESCRIPTION

A near-field probe was placed near the transmitter. A low-loss coaxial cable was used to connect the near-field probe to the spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

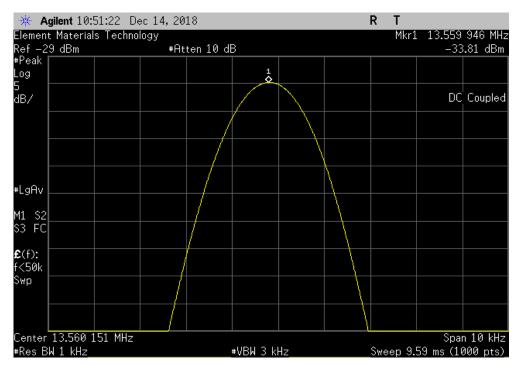
Measurements were made on the single transmit frequency as called out on the data sheets. Testing was done while the EUT was continuously polling.

The primary supply voltage was varied from 85 % to 115% of the nominal voltage while at ambient temperature. Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range of -20 ° to +50° C and at 10°C intervals.

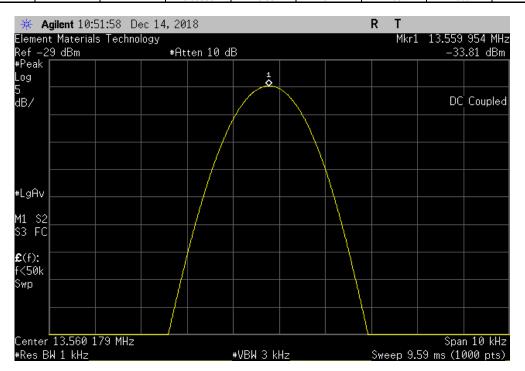
The requirement of a frequency tolerance of $\pm 0.01\%$ is equivalent to 100 ppm. The formula to check for compliance is:

ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000

Report No. MASI0519.5


								TbtTx 2018.09.13	XMit 2017.1
	AIR01 Receiver						Work Order:		
Serial Number:	RX-RF-2							14-Dec-18	
Customer:	Masimo Corporation						Temperature:		
	Nghi Nguyen						Humidity:	50.7% RH	
Project:	None					E	Barometric Pres.:		
	Johnny Candelas		Power	: USB via 120VAC/60Hz	Z		Job Site:	OC13	
TEST SPECIFICATI	IONS			Test Method					
FCC 15.225:2018				ANSI C63.10:2013					
COMMENTS									
Transmitting at 13.	.56 MHz								
	M TEST STANDARD								
None									
Configuration #	1		for d.	Later					
-		Signature	3						
					Measured	Assigned	Error	1 114	
								Limit	
13.56 MHz					Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
						Value (MHz)	(ppm)		Results
	Voltage: 115%					Value (MHz)	(ppm)		Results
	Voltage: 115% Voltage: 100%				Value (MHz)	` '		(ppm)	
					Value (MHz) 13.559946	13.56	4	(ppm) 100	Pass
	Voltage: 100%				13.559946 13.559954	13.56 13.56	4 3.4	(ppm) 100 100	Pass Pass
	Voltage: 100% Voltage: 85%				13.559946 13.559954 13.559945	13.56 13.56 13.56	4 3.4 4.1	(ppm) 100 100 100	Pass Pass Pass
	Voltage: 100% Voltage: 85% Temperature: +50°C				13.559946 13.559954 13.559945 13.559845	13.56 13.56 13.56 13.56	4 3.4 4.1 11.4	(ppm) 100 100 100 100	Pass Pass Pass Pass
	Voltage: 100% Voltage: 85% Temperature: +50°C Temperature: +40°C				13.559946 13.559954 13.559945 13.559945 13.559845 13.559864	13.56 13.56 13.56 13.56 13.56	4 3.4 4.1 11.4 10	(ppm) 100 100 100 100 100 100	Pass Pass Pass Pass Pass
	Voltage: 100% Voltage: 85% Temperature: +50°C Temperature: +40°C Temperature: +30°C				13.559946 13.559954 13.559945 13.559945 13.559845 13.559864 13.559904	13.56 13.56 13.56 13.56 13.56 13.56	4 3.4 4.1 11.4 10 7.1	100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass
	Voltage: 100% Voltage: 85% Temperature: +50°C Temperature: +40°C Temperature: +30°C Temperature: +20°C				Value (MHz) 13.559946 13.559954 13.559945 13.559845 13.559864 13.559904 13.559944	13.56 13.56 13.56 13.56 13.56 13.56	4 3.4 4.1 11.4 10 7.1 4.1	(ppm) 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass
	Voltage: 100% Voltage: 85% Temperature: +50°C Temperature: +40°C Temperature: +20°C Temperature: +20°C				Value (MHz) 13.559946 13.559945 13.559845 13.559864 13.559904 13.559904 13.559984	13.56 13.56 13.56 13.56 13.56 13.56 13.56	4 3.4 4.1 11.4 10 7.1 4.1 1.2	(ppm) 100 100 100 100 100 100 100 100 100 1	Pass Pass Pass Pass Pass Pass Pass Pass

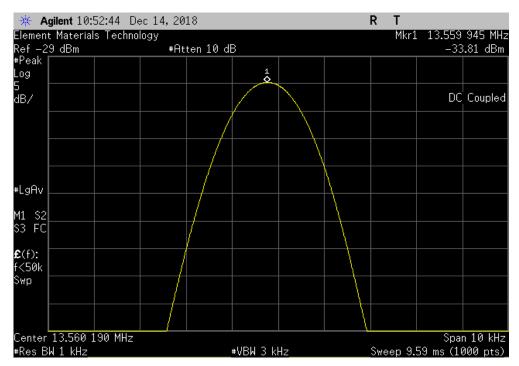
Report No. MASI0519.5 19/25



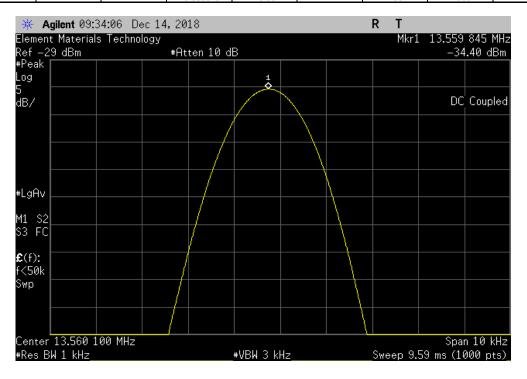
13.56 MHz, Voltage: 115%

| Measured Assigned Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.559946 13.56 4 100 Pass

	13.50	6 MHz, Voltage: 1	100%		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.559954	13.56	3.4	100	Pass



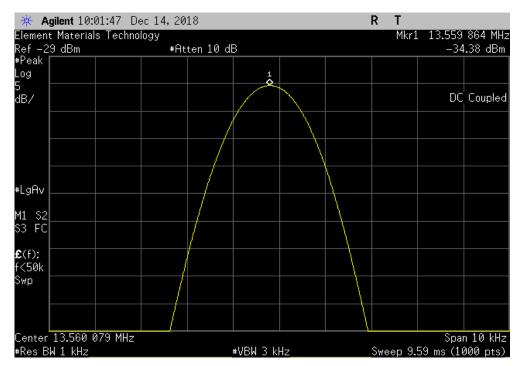
Report No. MASI0519.5 20/25



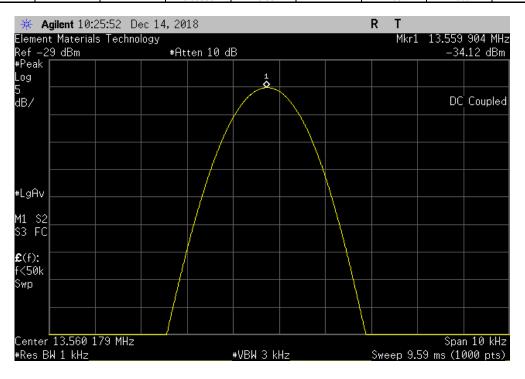
13.56 MHz, Voltage: 85%

| Measured Assigned Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.559945 | 13.56 | 4.1 | 100 | Pass

	13.56 M	1Hz, Temperature	e: +50°C		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.559845	13.56	11.4	100	Pass



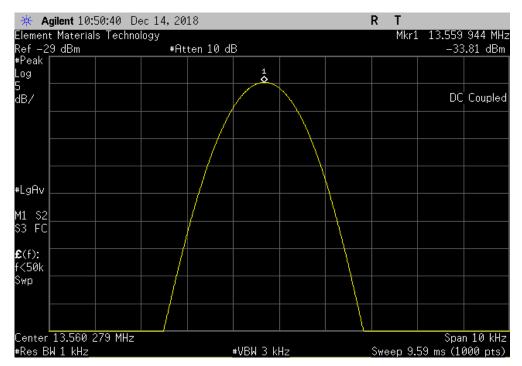
Report No. MASI0519.5 21/25



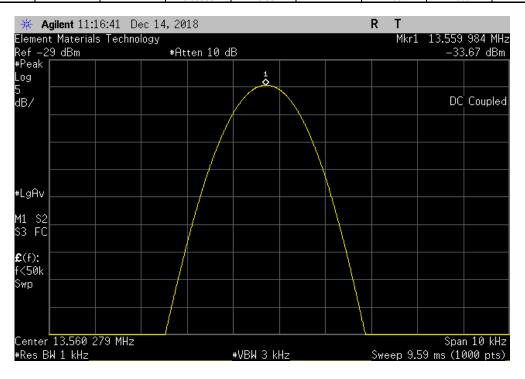
13.56 MHz, Temperature: +40°C

| Measured Assigned Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.559864 13.56 10 100 Pass

13.56 MHz, Temperature: +30°C						
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		13.559904	13.56	7.1	100	Pass



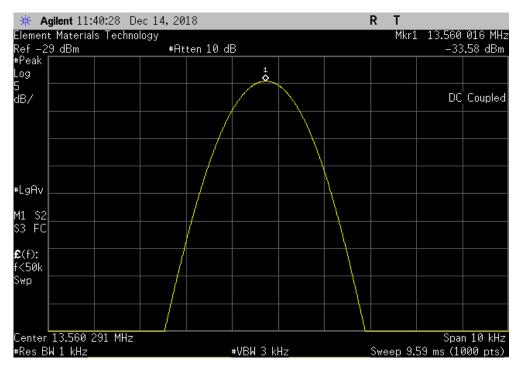
Report No. MASI0519.5 22/25



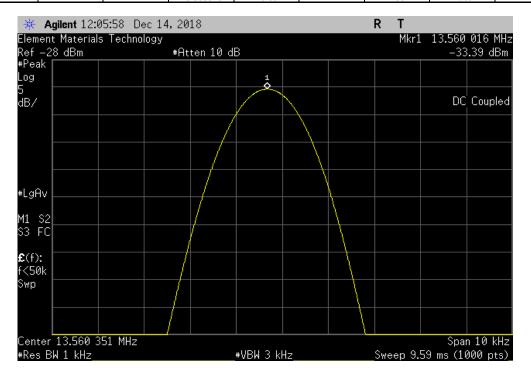
13.56 MHz, Temperature: +20°C

| Measured Assigned Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.559944 | 13.56 | 4.1 | 100 | Pass

13.56 MHz, Temperature: +10°C							
		Measured	Assigned	Error	Limit		
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
		13.559984	13.56	1.2	100	Pass	



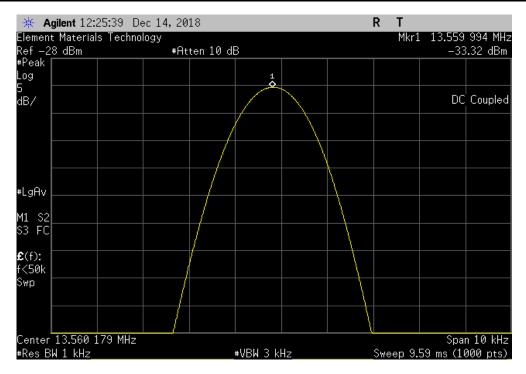
Report No. MASI0519.5 23/25



13.56 MHz, Temperature: 0°C

| Measured Assigned Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.560016 13.56 1.2 100 Pass

13.56 MHz, Temperature: -10°C						
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		13.560016	13.56	1.2	100	Pass



Report No. MASI0519.5 24/25

TbtTx 2018.09.13 XMit 2017.12.13

13.56 MHz, Temperature: -20°C									
	Measured Assigned Error Limit								
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
			13.559994	13.56	0.4	100	Pass		

Report No. MASI0519.5 25/25