# **EcoTech Marine**

# RF Module 10169

Report No. ECTE0002

Report Prepared By



www.nwemc.com 1-888-EMI-CERT

© 2009 Northwest EMC, Inc



22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

#### **Certificate of Test**

Last Date of Test: October 08, 2009 EcoTech Marine Model: RF Module 10169

| Emissions                        |                       |                                |           |  |
|----------------------------------|-----------------------|--------------------------------|-----------|--|
| Test Description                 | Specification         | Test Method                    | Pass/Fail |  |
| Spurious Radiated Emissions      | FCC 15.247 (DTS):2009 | ANSI C63.4:2003 KDB No. 558074 | Pass      |  |
| Spurious Conducted Emissions     | FCC 15.247 (DTS):2009 | ANSI C63.4:2003 KDB No. 558074 | Pass      |  |
| Occupied Bandwidth               | FCC 15.247 (DTS):2009 | ANSI C63.4:2003 KDB No. 558074 | Pass      |  |
| Output Power                     | FCC 15.247 (DTS):2009 | ANSI C63.4:2003 KDB No. 558074 | Pass      |  |
| Band Edge Compliance             | FCC 15.247 (DTS):2009 | ANSI C63.4:2003 KDB No. 558074 | Pass      |  |
| Power Spectral Density           | FCC 15.247 (DTS):2009 | ANSI C63.4:2003 KDB No. 558074 | Pass      |  |
| AC Powerline Conducted Emissions | FCC 15.207:2009       | ANSI C63.4:2003                | Pass      |  |

Modifications made to the product

See the Modifications section of this report

#### **Test Facility**

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR

Phone: (763) 425-2281 Fax: (763) 424-3469

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

Approved By:

Don Facteau, IS Manager

RAJVN

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

# **Revision History**

Revision 06/29/09

| Revision<br>Number | Description | Date | Page Number |
|--------------------|-------------|------|-------------|
|                    |             |      |             |
| 00                 | None        |      |             |

#### **Barometric Pressure**

The recorded barometric pressure has been normalized to sea level.



# Accreditations and Authorizations

#### **FCC**

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.



#### **NVLAP**

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.



NVLAP LAB CODE 200629-0 NVLAP LAB CODE 200630-0 NVLAP LAB CODE 200676-0 NVLAP LAB CODE 200761-0 NVLAP LAB CODE 200881-0

#### **Industry Canada**

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)



#### **CAB**

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.



#### **NEMKO**

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).





# Accreditations and Authorizations

#### Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).



#### **VCCI**

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294, Brooklyn Park: R-3125, C-3464, and T-1634).



#### **BSMI**

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.



#### **GOST**

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification



#### **KCC**

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)



#### SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/



## **Northwest EMC Locations**





Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339<sup>th</sup> Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796







Rev 11/17/06

#### Party Requesting the Test

| Company Name:            | EcoTech Marine      |
|--------------------------|---------------------|
| Address:                 | 1349 Lynn Ave.      |
| City, State, Zip:        | Bethlehem, PA 18015 |
| Test Requested By:       | Justin Lawyer       |
| Model:                   | RF Module 10169     |
| First Date of Test:      | October 7, 2009     |
| Last Date of Test:       | October 8, 2009     |
| Receipt Date of Samples: | October 6, 2009     |
| Equipment Design Stage:  | Preproduction       |
| Equipment Condition:     | No Damage           |

#### Information Provided by the Party Requesting the Test

| <b>Functional Desc</b> | ription of the EUT (Equipment Under Test): |
|------------------------|--------------------------------------------|
| 2.4 GHz DTS trar       | nsceiver module                            |

| Testing Objective:                                                                        |
|-------------------------------------------------------------------------------------------|
| Seeking to demonstrate compliance with FCC 15.247 requirements for full modular approval. |

Revision 9/21/05

#### **CONFIGURATION 1 ECTE0002**

| EUT         |                |                   |               |
|-------------|----------------|-------------------|---------------|
| Description | Manufacturer   | Model/Part Number | Serial Number |
| RF Module   | EcoTech Marine | 10169             | FCC #1        |

| Peripherals in test setup boundary                       |                 |         |      |  |
|----------------------------------------------------------|-----------------|---------|------|--|
| Description Manufacturer Model/Part Number Serial Number |                 |         |      |  |
| Test Board                                               | EcoTech Marine  | Unknown | None |  |
| AC Adapter                                               | Triad Magnetics | Unknown | 0819 |  |

| Remote Equipment Outside of Test Setup Boundary          |          |        |         |  |
|----------------------------------------------------------|----------|--------|---------|--|
| Description Manufacturer Model/Part Number Serial Number |          |        |         |  |
| Remote PC                                                | Dell     | Mini 9 | 779HGJ1 |  |
| USB Adapter                                              | Trendnet | TU-85  | None    |  |

| Cables                                                                                                 |        |            |         |              |              |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|--------------|--------------|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1 | Connection 2 |
| DC Power                                                                                               | PA     | 1.5m       | PA      | Test Board   | AC Adapter   |
| Serial                                                                                                 | Yes    | 1.2m       | No      | Test Board   | USB Adapter  |
| USB Adapter                                                                                            | PA     | 0.2m       | PA      | USB Adapter  | Remote PC    |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |              |              |

#### **CONFIGURATION 3 ECTE0002**

| EUT         |                |                   |               |  |
|-------------|----------------|-------------------|---------------|--|
| Description | Manufacturer   | Model/Part Number | Serial Number |  |
| RF Module   | EcoTech Marine | 10169             | FCC #5        |  |

| Peripherals in test setup boundary                       |                 |         |      |  |  |
|----------------------------------------------------------|-----------------|---------|------|--|--|
| Description Manufacturer Model/Part Number Serial Number |                 |         |      |  |  |
| Test Board                                               | EcoTech Marine  | Unknown | None |  |  |
| AC Adapter                                               | Triad Magnetics | Unknown | 0819 |  |  |

| Remote Equipment Outside of Test Setup Boundary          |      |        |         |  |  |
|----------------------------------------------------------|------|--------|---------|--|--|
| Description Manufacturer Model/Part Number Serial Number |      |        |         |  |  |
| Remote PC                                                | Dell | Mini 9 | 779HGJ1 |  |  |
| USB Adapter Trendnet TU-85 None                          |      |        |         |  |  |

| Cables                                                                                                 |        |            |         |              |              |  |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|--------------|--------------|--|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1 | Connection 2 |  |
| DC Power                                                                                               | PA     | 1.5m       | PA      | Test Board   | AC Adapter   |  |
| Serial                                                                                                 | Yes    | 1.2m       | No      | Test Board   | USB Adapter  |  |
| USB Adapter                                                                                            | PA     | 0.2m       | PA      | USB Adapter  | Remote PC    |  |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |              |              |  |



# Configurations

#### **CONFIGURATION 4 ECTE0002**

| EUT         |                |                   |               |
|-------------|----------------|-------------------|---------------|
| Description | Manufacturer   | Model/Part Number | Serial Number |
| RF Module   | EcoTech Marine | 10169             | FCC #2        |

| Peripherals in test setup boundary |                 |                   |               |  |  |  |  |
|------------------------------------|-----------------|-------------------|---------------|--|--|--|--|
| Description                        | Manufacturer    | Model/Part Number | Serial Number |  |  |  |  |
| Test Board                         | EcoTech Marine  | Unknown           | None          |  |  |  |  |
| AC Adapter                         | Triad Magnetics | Unknown           | 0819          |  |  |  |  |
| Linear AC Adapter                  | CUI Stack       | DTR050100-P1      | None          |  |  |  |  |
| Remote PC                          | Dell            | Mini 9            | 779HGJ1       |  |  |  |  |
| USB Adapter                        | Trendnet        | TU-85             | None          |  |  |  |  |

| Cables       |                                                                                                        |            |         |              |                   |  |  |
|--------------|--------------------------------------------------------------------------------------------------------|------------|---------|--------------|-------------------|--|--|
| Cable Type   | Shield                                                                                                 | Length (m) | Ferrite | Connection 1 | Connection 2      |  |  |
| DC Power     | PA                                                                                                     | 1.5m       | PA      | Test Board   | AC Adapter        |  |  |
| DC Power     | PA                                                                                                     | 1.5m       | PA      | Test Board   | Linear AC Adapter |  |  |
| Serial       | Yes                                                                                                    | 1.2m       | No      | Test Board   | USB Adapter       |  |  |
| USB Adapter  | PA                                                                                                     | 0.2m       | PA      | USB Adapter  | Remote PC         |  |  |
| PA = Cable i | PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |            |         |              |                   |  |  |

|      | Equipment modifications |                                           |                                      |                                                                     |                                                         |  |  |  |  |
|------|-------------------------|-------------------------------------------|--------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| Item | Date                    | Test                                      | Modification                         | Note                                                                | Disposition of EUT                                      |  |  |  |  |
| 1    | 10/7/2009               | Spurious<br>Radiated<br>Emissions         | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |  |  |  |  |
| 2    | 10/8/2009               | Occupied<br>Bandwidth                     | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |  |  |  |  |
| 3    | 10/8/2009               | Output<br>Power                           | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |  |  |  |  |
| 4    | 10/8/2009               | Band Edge<br>Compliance                   | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |  |  |  |  |
| 5    | 10/8/2009               | Power<br>Spectral<br>Density              | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |  |  |  |  |
| 6    | 10/8/2009               | Spurious<br>Conducted<br>Emissions        | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |  |  |  |  |
| 7    | 10/8/2009               | AC<br>Powerline<br>Conducted<br>Emissions | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | Scheduled testing was completed.                        |  |  |  |  |

#### **OCCUPIED BANDWIDTH**

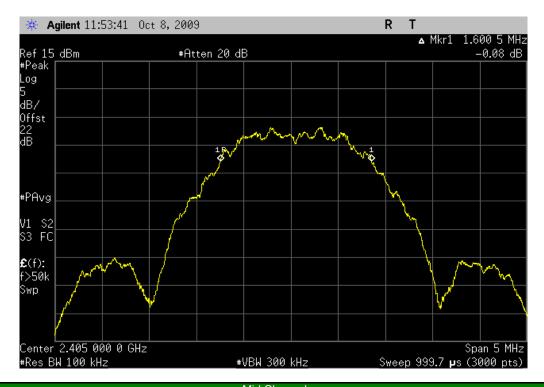
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| TEST EQUIPMENT                  |                  |          |     |            |          |
|---------------------------------|------------------|----------|-----|------------|----------|
| Description                     | Manufacturer     | Model    | ID  | Last Cal.  | Interval |
| Spectrum Analyzer               | Agilent          | E4440A   | AFD | 6/1/2009   | 13       |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 7/21/2009  | 13       |
| Power Meter                     | Gigatronics      | 8651A    | SPM | 12/10/2008 | 13       |
| Power Sensor                    | Gigatronics      | 80701A   | SPL | 12/10/2008 | 13       |
| Signal Generator                | Hewlett-Packard  | 8648D    | TGC | 12/9/2008  | 13       |

#### MEASUREMENT UNCERTAINTY

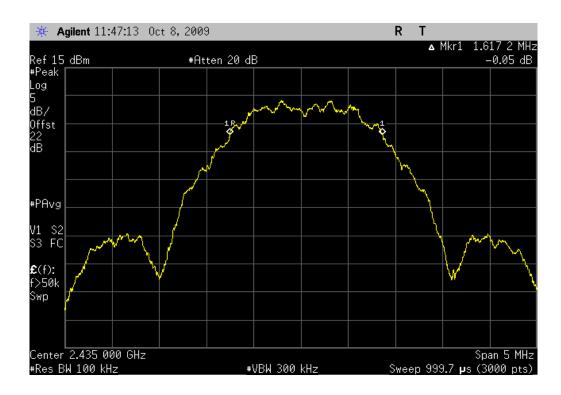
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

#### **TEST DESCRIPTION**


The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate with the typical modulation.

| NORTHWEST           |                        | OCCUPIED F              | AND    | MDTH                   |                   | XMit 2009.03.05 |
|---------------------|------------------------|-------------------------|--------|------------------------|-------------------|-----------------|
| EMC                 |                        | OCCUPIED E              | SAND   | MIDIH                  |                   |                 |
| EUT:                | RF Module 10169        |                         |        |                        | Work Order:       | ECTE0002        |
| Serial Number:      | FCC #5                 |                         |        |                        | Date:             | 10/08/09        |
| Customer:           | EcoTech Marine         |                         |        |                        | Temperature:      | 22°C            |
| Attendees:          | None                   |                         |        |                        | Humidity:         |                 |
| Project:            |                        |                         |        |                        | Barometric Pres.: |                 |
|                     | Rod Peloquin           |                         | Power: | 120VAC/60Hz            | Job Site:         | EV06            |
| TEST SPECIFICATION  | ONS                    |                         |        | Test Method            |                   |                 |
| FCC 15.247 (DTS):2  | 2009                   |                         |        | ANSI C63.4:2003 KDB No | . 558074          |                 |
|                     |                        |                         |        |                        |                   |                 |
| COMMENTS            |                        |                         |        |                        |                   |                 |
| Default power as pr | rogrammed by customer. |                         |        |                        |                   |                 |
| DEVIATIONS FROM     | I TEST STANDARD        |                         |        |                        |                   |                 |
| No Deviations       |                        |                         |        |                        |                   |                 |
| Configuration #     | 3                      | Rocky le 3<br>Signature | Relugs |                        |                   |                 |
|                     |                        |                         |        | Value                  | Limit             | Results         |
| Low Channel         |                        |                         |        | 1.601 MHz              | > 500 kHz         | Pass            |
| Mid Channel         |                        |                         |        | 1.617 MHz              | > 500 kHz         | Pass            |
| High Channel        |                        |                         |        | 1.601 MHz              | > 500 kHz         | Pass            |

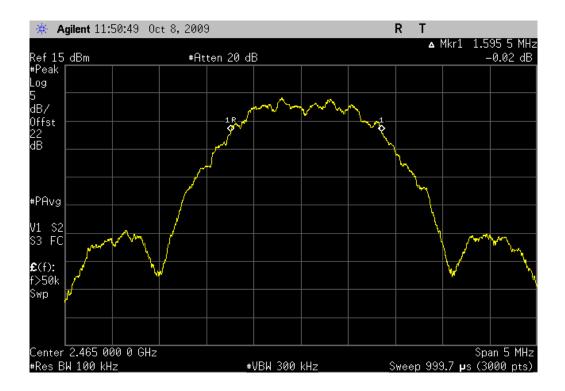
#### **OCCUPIED BANDWIDTH**


Low Channel

Result: Pass Value: 1.601 MHz Limit: > 500 kHz



Mid Channel


Result: Pass Value: 1.617 MHz Limit: > 500 kHz



#### **OCCUPIED BANDWIDTH**

High Channel

Result: Pass Value: 1.601 MHz Limit: > 500 kHz



#### **OUTPUT POWER**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

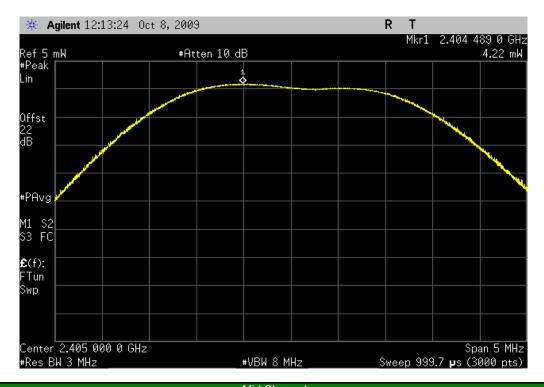
| TEST EQUIPMENT                  |                  |          |     |            |          |
|---------------------------------|------------------|----------|-----|------------|----------|
| Description                     | Manufacturer     | Model    | ID  | Last Cal.  | Interval |
| Spectrum Analyzer               | Agilent          | E4440A   | AFD | 6/1/2009   | 13       |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 7/21/2009  | 13       |
| Power Meter                     | Gigatronics      | 8651A    | SPM | 12/10/2008 | 13       |
| Power Sensor                    | Gigatronics      | 80701A   | SPL | 12/10/2008 | 13       |
| Signal Generator                | Hewlett-Packard  | 8648D    | TGC | 12/9/2008  | 13       |

#### MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

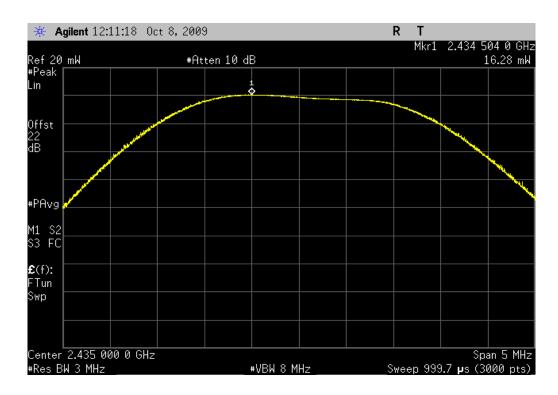
#### **TEST DESCRIPTION**

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.


De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

| NORTHWEST<br>EMC   |                        | OL        | JTPUT F      | POWE   | ER                      |                   | XMit 2009.03.05 |
|--------------------|------------------------|-----------|--------------|--------|-------------------------|-------------------|-----------------|
|                    | RF Module 10169        |           |              |        |                         | Work Order:       |                 |
| Serial Number:     |                        |           |              |        |                         |                   | 10/08/09        |
|                    | EcoTech Marine         |           |              |        |                         | Temperature:      |                 |
| Attendees:         |                        |           |              |        |                         | Humidity:         |                 |
| Project:           |                        |           |              |        |                         | Barometric Pres.: |                 |
|                    | Rod Peloquin           |           |              | Power: | 120VAC/60Hz             | Job Site:         | EV06            |
| TEST SPECIFICATI   |                        |           |              |        | Test Method             |                   |                 |
| FCC 15.247 (DTS):2 | 2009                   |           |              |        | ANSI C63.4:2003 KDB No. | 558074            |                 |
|                    |                        |           |              |        |                         |                   |                 |
| COMMENTS           |                        |           |              |        |                         |                   |                 |
|                    | rogrammed by customer. |           |              |        |                         |                   |                 |
| DEVIATIONS FROM    | I TEST STANDARD        |           |              |        |                         |                   |                 |
| No Deviations      |                        |           |              |        |                         |                   |                 |
| Configuration #    | 3                      | Signature | Rolly be Fre | lengs  |                         |                   |                 |
|                    |                        |           |              |        | Val                     |                   | mit Results     |
| Low Channel        |                        |           | •            |        | 4.2 ı                   |                   | Vatt Pass       |
| Mid Channel        |                        |           |              |        | 16.3                    |                   | Vatt Pass       |
| High Channel       |                        |           |              |        | 16.1                    | mW 1 V            | Vatt Pass       |

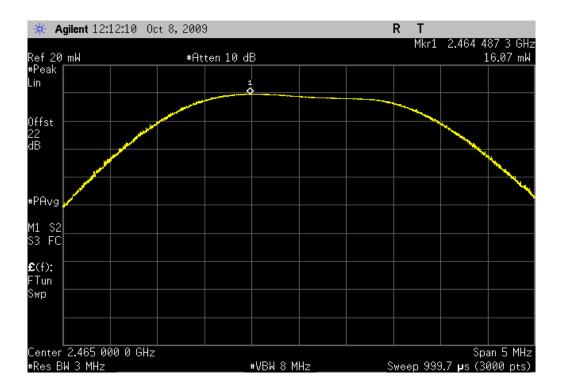
#### **OUTPUT POWER**


Low Channel

Result: Pass Value: 4.2 mW Limit: 1 Watt



Mid Channel


Result: Pass Value: 16.3 mW Limit: 1 Watt



#### **OUTPUT POWER**

High Channel

Result: Pass Value: 16.1 mW Limit: 1 Watt



### **BAND EDGE COMPLIANCE**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

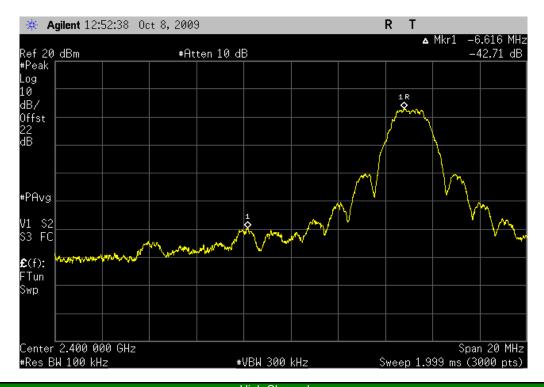
| TEST EQUIPMENT                  |                  |          |     |            |          |
|---------------------------------|------------------|----------|-----|------------|----------|
| Description                     | Manufacturer     | Model    | ID  | Last Cal.  | Interval |
| Spectrum Analyzer               | Agilent          | E4440A   | AFD | 6/1/2009   | 13       |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 7/21/2009  | 13       |
| Power Meter                     | Gigatronics      | 8651A    | SPM | 12/10/2008 | 13       |
| Power Sensor                    | Gigatronics      | 80701A   | SPL | 12/10/2008 | 13       |
| Signal Generator                | Hewlett-Packard  | 8648D    | TGC | 12/9/2008  | 13       |

#### MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

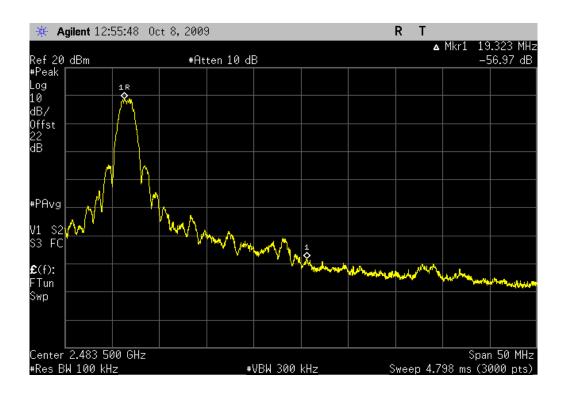
#### **TEST DESCRIPTION**

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its only data rate available.


The spectrum was scanned across each band edge from at least 10 MHz below the band edge to 10 MHz above the band edge.

| NORTHWEST          |                        | BAND EDGE CO    | MDLIANCE              |                   | XMit 2009.03.05 |
|--------------------|------------------------|-----------------|-----------------------|-------------------|-----------------|
| EMC                |                        | BAND EDGE CO    | WIFLIANCE             |                   |                 |
| EUT:               | RF Module 10169        |                 |                       | Work Order:       | ECTE0002        |
| Serial Number:     | FCC #5                 |                 |                       | Date:             | 10/08/09        |
| Customer:          | EcoTech Marine         |                 |                       | Temperature:      | 22°C            |
| Attendees:         | None                   |                 |                       | Humidity:         | 43%             |
| Project:           | None                   |                 |                       | Barometric Pres.: | 30.15           |
|                    | Rod Peloquin           | F               | Power: 120VAC/60Hz    | Job Site:         | EV06            |
| TEST SPECIFICATI   | ONS                    |                 | Test Method           |                   |                 |
| FCC 15.247 (DTS):2 | 2009                   |                 | ANSI C63.4:2003 KDB N | o. 558074         |                 |
|                    |                        |                 |                       |                   |                 |
| COMMENTS           |                        |                 |                       |                   |                 |
| Default power as p | rogrammed by customer. |                 |                       |                   |                 |
|                    |                        |                 |                       |                   |                 |
|                    |                        |                 |                       |                   |                 |
| DEVIATIONS FROM    | I TEST STANDARD        |                 |                       |                   |                 |
| No Deviations      |                        |                 |                       |                   |                 |
|                    |                        | 1-0 1 P.C       |                       |                   |                 |
| Configuration #    | 3                      | Rolly le Releys |                       |                   |                 |
|                    |                        | Signature       |                       |                   |                 |
|                    |                        |                 | v                     | alue Li           | mit Results     |
| Law Obanasi        |                        |                 |                       |                   |                 |
| Low Channel        |                        |                 | -42.7 dBc             | ≤ -20 dBc         | Pass            |
| High Channel       |                        |                 | -56.9 dBc             | ≤ -20 dBc         | Pass            |

#### **BAND EDGE COMPLIANCE**


 Low Channel

 Result: Pass
 Value: -42.7 dBc
 Limit: ≤ -20 dBc



High Channel

Result: Pass Value: -56.9 dBc Limit: ≤ -20 dBc

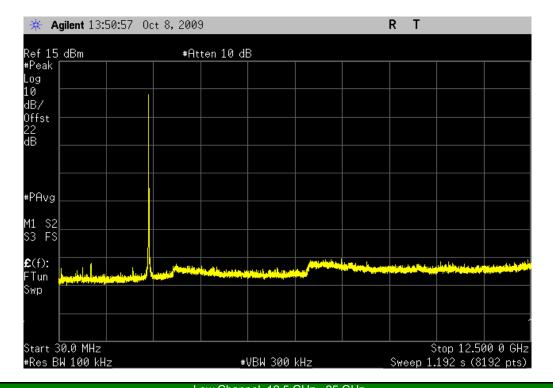


Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| TEST EQUIPMENT                  |                  |          |     |            |          |
|---------------------------------|------------------|----------|-----|------------|----------|
| Description                     | Manufacturer     | Model    | ID  | Last Cal.  | Interval |
| Spectrum Analyzer               | Agilent          | E4440A   | AFD | 6/1/2009   | 13       |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 7/21/2009  | 13       |
| Power Meter                     | Gigatronics      | 8651A    | SPM | 12/10/2008 | 13       |
| Power Sensor                    | Gigatronics      | 80701A   | SPL | 12/10/2008 | 13       |
| Signal Generator                | Hewlett-Packard  | 8648D    | TGC | 12/9/2008  | 13       |

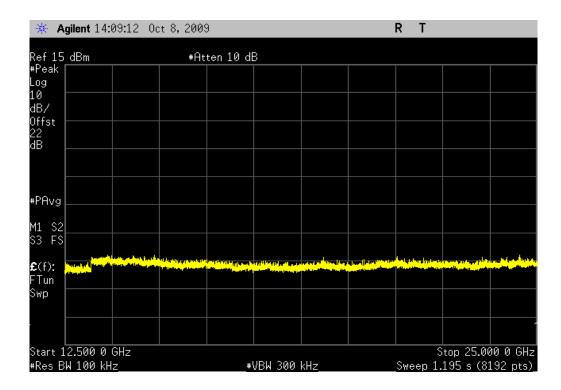
#### MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


#### **TEST DESCRIPTION**

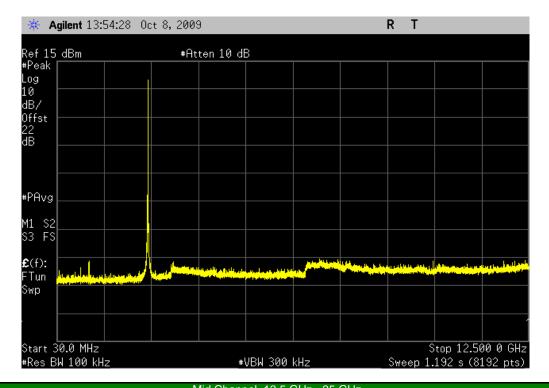
The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

| NORTHWEST             |                       |                             |                 | XMit 2009.03.05 |
|-----------------------|-----------------------|-----------------------------|-----------------|-----------------|
| EMC                   |                       | SPURIOUS CONDUCTED EMISSION | S               |                 |
|                       | RF Module 10169       |                             | Work Orde       | er: ECTE0002    |
| Serial Number         |                       |                             |                 | e: 10/08/09     |
|                       | : EcoTech Marine      |                             | Temperatur      |                 |
| Attendees             |                       |                             | Humidit         |                 |
| Project               |                       |                             | Barometric Pres |                 |
|                       | : Rod Peloquin        | Power: 120VAC/60Hz          |                 | e: EV06         |
| TEST SPECIFICAT       |                       | Test Method                 |                 |                 |
| FCC 15.247 (DTS):     | 2009                  | ANSI C63.4:2003 KDB         | No. 558074      |                 |
| (2.10)                |                       |                             |                 |                 |
| COMMENTS              |                       |                             |                 |                 |
| Default power as r    | programmed by custome | r.                          |                 |                 |
|                       | ,                     |                             |                 |                 |
|                       |                       |                             |                 |                 |
| <b>DEVIATIONS FRO</b> | M TEST STANDARD       |                             |                 |                 |
| No Deviations         |                       |                             |                 |                 |
|                       |                       | 00120                       |                 |                 |
| Configuration #       | 3                     | Roley be Roley,             |                 |                 |
|                       |                       | Signature                   |                 |                 |
|                       |                       |                             |                 |                 |
|                       |                       |                             | Value           | Limit Results   |
| Low Channel           |                       |                             |                 |                 |
|                       | 30 MHz - 12.5 GHz     |                             |                 | -20 dBc Pass    |
|                       | 12.5 GHz - 25 GHz     | <                           | -40 dBc ≤       | -20 dBc Pass    |
| Mid Channel           |                       |                             |                 |                 |
|                       | 30 MHz - 12.5 GHz     |                             |                 | 20 dBc Pass     |
| 11: 1 01 1            | 12.5 GHz - 25 GHz     | <                           | -40 dBc ≤       | -20 dBc Pass    |
| High Channel          | 00 MH - 40 5 OH-      |                             | 40 dD-          | 00 -10-         |
|                       | 30 MHz - 12.5 GHz     |                             |                 | -20 dBc Pass    |
|                       | 12.5 GHz - 25 GHz     | <                           | -40 dBc ≤       | -20 dBc Pass    |


Low Channel, 30 MHz - 12.5 GHz

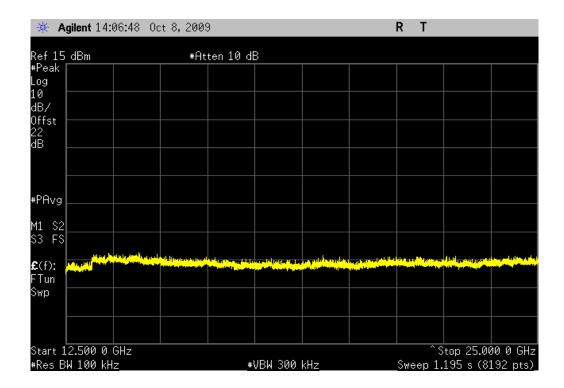
Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc




 Low Channel, 12.5 GHz - 25 GHz

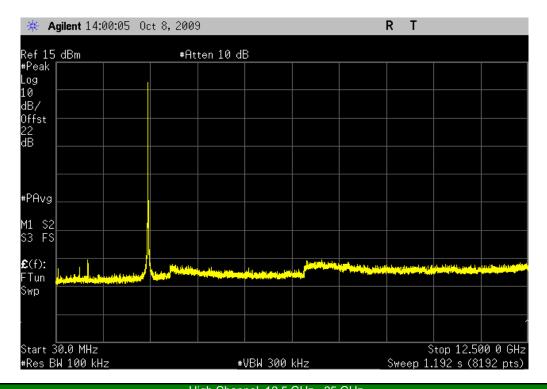
 Result: Pass
 Value: < -40 dBc</th>
 Limit: ≤ -20 dBc




Mid Channel, 30 MHz - 12.5 GHz

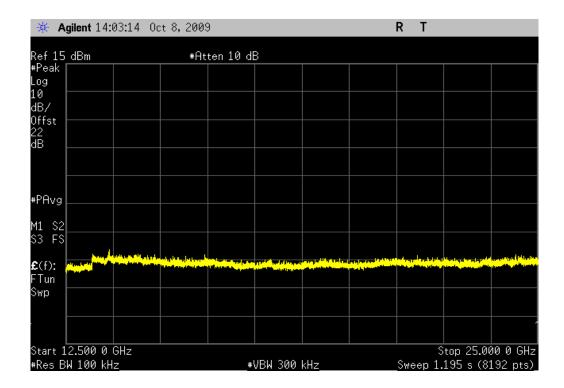
Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc




 Mid Channel, 12.5 GHz - 25 GHz

 Result: Pass
 Value: < -40 dBc</th>
 Limit: ≤ -20 dBc




High Channel, 30 MHz - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc



High Channel, 12.5 GHz - 25 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc



#### **POWER SPECTRAL DENSITY**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

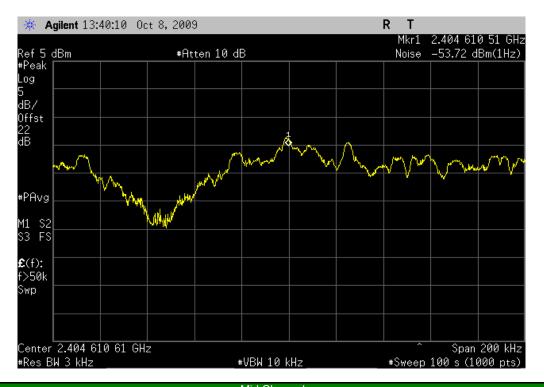
| TEST EQUIPMENT                  |                  |          |     |            |          |  |  |  |  |  |  |  |
|---------------------------------|------------------|----------|-----|------------|----------|--|--|--|--|--|--|--|
| Description                     | Manufacturer     | Model    | ID  | Last Cal.  | Interval |  |  |  |  |  |  |  |
| Spectrum Analyzer               | Agilent          | E4440A   | AFD | 6/1/2009   | 13       |  |  |  |  |  |  |  |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 7/21/2009  | 13       |  |  |  |  |  |  |  |
| Power Meter                     | Gigatronics      | 8651A    | SPM | 12/10/2008 | 13       |  |  |  |  |  |  |  |
| Power Sensor                    | Gigatronics      | 80701A   | SPL | 12/10/2008 | 13       |  |  |  |  |  |  |  |
| Signal Generator                | Hewlett-Packard  | 8648D    | TGC | 12/9/2008  | 13       |  |  |  |  |  |  |  |

#### **MEASUREMENT UNCERTAINTY**

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

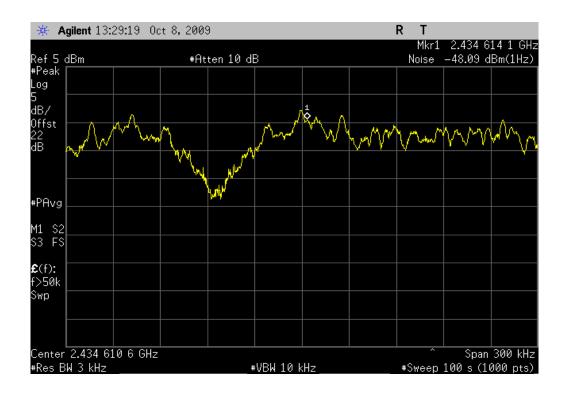
#### **TEST DESCRIPTION**

The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate for each modulation type available. Per the procedure outlined in FCC KDB 558074, March 23, 2005, the spectrum analyzer was used as follows:


The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x  $10^6 \div 3$  x  $10^3 = 500$  seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:

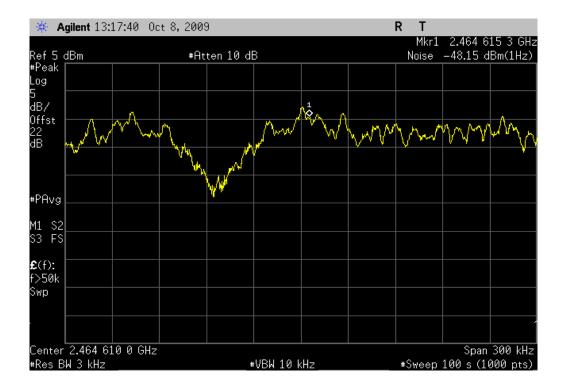
"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 35 dB for correction to 3 kHz."

| NORTHWEST<br>EMC                                   |                        | POWER S   | SPECTRAL I                     | DENSITY     |                   | XMit 2007.06.13 |  |  |  |  |  |
|----------------------------------------------------|------------------------|-----------|--------------------------------|-------------|-------------------|-----------------|--|--|--|--|--|
|                                                    | RF Module 10169        |           |                                |             | Work Order:       | ECTE0002        |  |  |  |  |  |
| Serial Number:                                     |                        |           |                                |             |                   | 10/08/09        |  |  |  |  |  |
|                                                    | EcoTech Marine         |           |                                |             | Temperature:      |                 |  |  |  |  |  |
| Attendees:                                         |                        |           |                                |             | Humidity:         |                 |  |  |  |  |  |
| Project:                                           | None                   |           |                                |             | Barometric Pres.: | 30.15           |  |  |  |  |  |
|                                                    | Rod Peloquin           |           | Power:                         | 120VAC/60Hz | Job Site:         | EV06            |  |  |  |  |  |
| TEST SPECIFICATI                                   | ONS                    |           |                                | Test Method |                   |                 |  |  |  |  |  |
| FCC 15.247 (DTS):2                                 | 2009                   |           | ANSI C63.4:2003 KDB No. 558074 |             |                   |                 |  |  |  |  |  |
|                                                    |                        |           |                                |             |                   |                 |  |  |  |  |  |
| COMMENTS                                           |                        |           |                                |             |                   |                 |  |  |  |  |  |
| Default power as properties of the DEVIATIONS FROM | rogrammed by customer. |           |                                |             |                   |                 |  |  |  |  |  |
| No Deviations                                      | I IESI STANDARD        |           |                                |             |                   |                 |  |  |  |  |  |
| Configuration #                                    | 3                      | Signature | Rocky be Felings               |             |                   |                 |  |  |  |  |  |
|                                                    |                        | -         | -                              |             | /alue Li          | mit Results     |  |  |  |  |  |
| Low Channel                                        |                        |           |                                | -18.9 d     | Bm / 3 kHz 8 dBm  | / 3 kHz Pass    |  |  |  |  |  |
| Mid Channel                                        |                        |           |                                | -13.3 d     | Bm / 3 kHz 8 dBm  | / 3 kHz Pass    |  |  |  |  |  |
| High Channel                                       |                        |           |                                | -13.4 d     | Bm / 3 kHz 8 dBm  | / 3 kHz Pass    |  |  |  |  |  |


#### **POWER SPECTRAL DENSITY**

|              | Low Channel              |                      |
|--------------|--------------------------|----------------------|
| Result: Pass | Value: -18.9 dBm / 3 kHz | Limit: 8 dBm / 3 kHz |




Mid Channel

Result: Pass Value: -13.3 dBm / 3 kHz Limit: 8 dBm / 3 kHz



#### **POWER SPECTRAL DENSITY**

|              | High Channel             |        |               |
|--------------|--------------------------|--------|---------------|
| Result: Pass | Value: -13.4 dBm / 3 kHz | Limit: | 8 dBm / 3 kHz |



#### **SPURIOUS RADIATED EMISSIONS**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| CHANNELS TESTED        |  |
|------------------------|--|
| Low, Channel 0 (0x00)  |  |
| Mid, Channel 6 (0x06)  |  |
| High Channel 12 (0x0C) |  |

#### **MODES OF OPERATION**

Low channel: typical modulation, power setting register 12: 0067

Mid channel: typical modulation, power setting register 12: 007F

High channel: typical modulation, power setting register 12: 007F

#### **POWER SETTINGS INVESTIGATED**

120VAC/60Hz

| FREQUENCY RANGE IN | VESTIGATED |                |        |
|--------------------|------------|----------------|--------|
| Start Frequency    | 30 MHz     | Stop Frequency | 25 GHz |

#### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

| TEST EQUIPMENT             |               |                            |     |            |          |
|----------------------------|---------------|----------------------------|-----|------------|----------|
| Description                | Manufacturer  | Model                      | ID  | Last Cal.  | Interval |
| Spectrum Analyzer          | Agilent       | E4446A                     | AAY | 12/11/2008 | 13       |
| Low Pass Filter 0-1000 MHz | Micro-Tronics | LPM50004                   | LFD | 7/10/2009  | 13       |
| Pre-Amplifier              | Miteq         | AM-1616-1000               | AOL | 7/10/2009  | 13       |
| Antenna, Biconilog         | EMCO          | 3141                       | AXE | 1/15/2008  | 24       |
| EV01 Cables                |               | Bilog Cables               | EVA | 7/10/2009  | 13       |
| High Pass Filter           | Micro-Tronics | HPM50111                   | HFO | 7/10/2009  | 13       |
| Pre-Amplifier              | Miteq         | AMF-4D-010100-24-10P       | APW | 7/10/2009  | 13       |
| Antenna, Horn              | EMCO          | 3115                       | AHC | 8/12/2008  | 24       |
| EV01 Cables                |               | Double Ridge Horn Cables   | EVB | 7/10/2009  | 13       |
| Pre-Amplifier              | Miteq         | AMF-6F-08001200-30-10P     | AVC | 7/10/2009  | 13       |
| Antenna, Horn              | ETS           | 3160-07                    | AHU | NCR        | 0        |
| Pre-Amplifier              | Miteq         | AMF-6F-12001800-30-10P     | AVD | 7/10/2009  | 13       |
| Antenna, Horn              | ETS           | 3160-08                    | AHV | NCR        | 0        |
| EV01 Cables                |               | Standard Gain Horns Cables | EVF | 11/13/2008 | 13       |
| Pre-Amplifier              | Miteq         | JSD4-18002600-26-8P        | APU | 12/2/2008  | 13       |
| Antenna, Horn              | ETS           | 3160-09                    | AHG | NCR        | 0        |
|                            |               | 18-26GHz Standard Gain     | ·   |            |          |
| EV01 Cables                |               | Horn Cable                 | EVD | 12/2/2008  | 13       |

| MEASUREMENT BANDWIDTHS |                                                                                                |           |                 |              |  |  |  |  |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------|-----------|-----------------|--------------|--|--|--|--|--|--|--|
|                        | Frequency Range                                                                                | Peak Data | Quasi-Peak Data | Average Data |  |  |  |  |  |  |  |
|                        | (MHz)                                                                                          | (kHz)     | (kHz)           | (kHz)        |  |  |  |  |  |  |  |
|                        | 0.01 - 0.15                                                                                    | 1.0       | 0.2             | 0.2          |  |  |  |  |  |  |  |
|                        | 0.15 - 30.0                                                                                    | 10.0      | 9.0             | 9.0          |  |  |  |  |  |  |  |
|                        | 30.0 - 1000                                                                                    | 100.0     | 120.0           | 120.0        |  |  |  |  |  |  |  |
|                        | Above 1000                                                                                     | 1000.0    | N/A             | 1000.0       |  |  |  |  |  |  |  |
|                        | Measurements were made using the bandwidths and detectors specified. No video filter was used. |           |                 |              |  |  |  |  |  |  |  |

#### **MEASUREMENT UNCERTAINTY**

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

#### TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

| NORTHWEST<br>EMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 5       | SPURI     | IOUS     | RAD      | IATED                   | <b>EMIS</b> | SION       | IS                     |                           |                | SA 2008.07.21<br>EMI 2009.4.13 |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-----------|----------|----------|-------------------------|-------------|------------|------------------------|---------------------------|----------------|--------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : RF Module | e 10169 |           |          |          |                         |             |            | W                      | ork Order:                | ECTE0002       |                                |  |  |  |  |
| Serial Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : FCC #1    |         |           |          |          |                         |             |            |                        |                           | Date: 10/07/09 |                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : EcoTech I | Marine  |           |          |          |                         |             |            | Tei                    | mperature:                |                |                                |  |  |  |  |
| Attendees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |         |           |          |          |                         |             |            | Davam                  | Humidity:                 |                |                                |  |  |  |  |
| Project<br>Tested by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : Rod Peloc | uin     |           |          |          | Power:                  | 120VAC/60   | 0Hz        | Barom                  | etric Pres.:<br>Job Site: |                |                                |  |  |  |  |
| ST SPECIFICAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | uni     |           |          |          |                         | Test Metho  |            |                        | COD CITO                  |                |                                |  |  |  |  |
| C 15.247 (DTS):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2009        |         |           |          |          |                         | ANSI C63.4  | 4:2003, KD | B No. 5580             | 74                        |                |                                |  |  |  |  |
| T PARAMETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
| enna Height(s)<br>MMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (m)         | 1 - 4   |           |          |          | Test Dista              | nce (m)     | 3          |                        |                           |                |                                |  |  |  |  |
| remote (serial and open control of the control of the control of the control open c | MODES       |         | ·         | nnel     |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
| /IATIONS FRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
| deviations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 1       | 1         |          |          |                         |             |            | 2.0                    | 00                        |                |                                |  |  |  |  |
| nfiguration #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 1       | ł         |          |          |                         |             |            | Hoching L              | - Relin                   |                |                                |  |  |  |  |
| sults                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | ass     | 1         |          |          |                         |             | Signature  | 0                      |                           | -              |                                |  |  |  |  |
| Janes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .,,         |         |           |          |          |                         |             | Signature  |                        |                           |                |                                |  |  |  |  |
| 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         |           |          |          |                         |             |            |                        |                           |                | _                              |  |  |  |  |
| 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         | $\Box$    |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |         |           |          |          |                         |             |            |                        |                           |                | +                              |  |  |  |  |
| 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |           |          |          |                         |             |            | <b>1</b>               |                           |                |                                |  |  |  |  |
| 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         |           |          |          |                         |             | 1 2        | *                      |                           |                |                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |         |           |          |          |                         |             | 1          |                        |                           |                |                                |  |  |  |  |
| 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         |           |          |          |                         |             |            | 7                      |                           |                |                                |  |  |  |  |
| #//ngp 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
| 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         | ++++      |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1200.0    | 00 4400 | 000 460   | 0.000 40 | 00 000   | 2000 000                | 2200 000    | 2400.0     | 00 2602                | 000 200                   | 0.000 20       | 00 000                         |  |  |  |  |
| 1000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U 1200.0    | 00 1400 | .000 160  | 0.000 18 | 000.000  | 2000.000                | ∠∠∪∪.∪∪∪    | 2400.0     | υυ <b>∠</b> 600.       | UUU 280                   | 0.000 30       | 00.000                         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |           |          |          | MHz                     |             |            |                        |                           |                |                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |           |          |          |                         |             |            |                        |                           |                |                                |  |  |  |  |
| Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Amplitude   | Factor  | Azimuth   | Height   | Distance | External<br>Attenuation | Polarity    | Detector   | Distance<br>Adjustment | Adjusted                  | Spec. Limit    | Compared to<br>Spec.           |  |  |  |  |
| (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (dBuV)      | (dB)    | (degrees) | (meters) | (meters) | (dB)                    | 1 Olamy     | Detectol   | (dB)                   | dBuV/m                    | dBuV/m         | (dB)                           |  |  |  |  |
| 2389.427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.4        | 2.1     | 274.0     | 1.7      | 3.0      | 20.0                    | H-Horn      | AV         | 0.0                    | 52.5                      | 54.0           | -1.5                           |  |  |  |  |
| 2389.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.4        | 2.1     | -1.0      | 1.0      | 3.0      | 20.0                    | H-Horn      | AV         | 0.0                    | 51.5                      | 54.0           | -2.5                           |  |  |  |  |
| 2389.453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.2        | 2.1     | 8.0       | 1.3      | 3.0      | 20.0                    | V-Horn      | AV         | 0.0                    | 51.3                      | 54.0           | -2.7                           |  |  |  |  |
| 2483.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.4        | 2.7     | 17.0      | 1.0      | 3.0      | 20.0                    | V-Horn      | AV         | 0.0                    | 51.1                      | 54.0           | -2.9                           |  |  |  |  |
| 2389.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.9        | 2.1     | 142.0     | 1.1      | 3.0      | 20.0                    | H-Horn      | AV         | 0.0                    | 51.0                      | 54.0           | -3.0                           |  |  |  |  |
| 2483.502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.1        | 2.7     | 258.0     | 1.6      | 3.0      | 20.0                    | H-Horn      | AV         | 0.0                    | 50.8                      | 54.0           | -3.2                           |  |  |  |  |

| Freq     | Amplitude | Factor | Azimuth   | Height   | Distance | Attenuation | Polarity | Detector | Adjustment | Adjusted | Spec. Limit | Spec. |                              |
|----------|-----------|--------|-----------|----------|----------|-------------|----------|----------|------------|----------|-------------|-------|------------------------------|
| (MHz)    | (dBuV)    | (dB)   | (degrees) | (meters) | (meters) | (dB)        |          |          | (dB)       | dBuV/m   | dBuV/m      | (dB)  | Comments                     |
| 2389.427 | 30.4      | 2.1    | 274.0     | 1.7      | 3.0      | 20.0        | H-Horn   | AV       | 0.0        | 52.5     | 54.0        | -1.5  | Low Channel, EUT on end      |
| 2389.000 | 29.4      | 2.1    | -1.0      | 1.0      | 3.0      | 20.0        | H-Horn   | AV       | 0.0        | 51.5     | 54.0        | -2.5  | Low Channel, EUT horizontal  |
| 2389.453 | 29.2      | 2.1    | 8.0       | 1.3      | 3.0      | 20.0        | V-Horn   | AV       | 0.0        | 51.3     | 54.0        | -2.7  | Low Channel, EUT on side     |
| 2483.500 | 28.4      | 2.7    | 17.0      | 1.0      | 3.0      | 20.0        | V-Horn   | AV       | 0.0        | 51.1     | 54.0        | -2.9  | High Channel, EUT on side    |
| 2389.437 | 28.9      | 2.1    | 142.0     | 1.1      | 3.0      | 20.0        | H-Horn   | AV       | 0.0        | 51.0     | 54.0        | -3.0  | Low Channel, EUT on side     |
| 2483.502 | 28.1      | 2.7    | 258.0     | 1.6      | 3.0      | 20.0        | H-Horn   | AV       | 0.0        | 50.8     | 54.0        | -3.2  | High Channel, EUT on end     |
| 2483.522 | 27.9      | 2.7    | 132.0     | 1.6      | 3.0      | 20.0        | H-Horn   | AV       | 0.0        | 50.6     | 54.0        | -3.4  | High Channel, EUT on side    |
| 2483.500 | 27.6      | 2.7    | 13.0      | 1.6      | 3.0      | 20.0        | H-Horn   | AV       | 0.0        | 50.3     | 54.0        | -3.7  | High Channel, EUT horizontal |
| 2483.500 | 27.1      | 2.7    | 26.0      | 1.0      | 3.0      | 20.0        | V-Horn   | AV       | 0.0        | 49.8     | 54.0        | -4.2  | High Channel, EUT on end     |
| 2389.493 | 27.6      | 2.1    | 122.0     | 2.0      | 3.0      | 20.0        | V-Horn   | AV       | 0.0        | 49.7     | 54.0        | -4.3  | Low Channel, EUT on end      |
| 2483.633 | 25.5      | 2.7    | 15.0      | 1.2      | 3.0      | 20.0        | V-Horn   | AV       | 0.0        | 48.2     | 54.0        | -5.8  | High Channel, EUT horizontal |
| 2388.703 | 25.5      | 2.1    | 31.0      | 1.6      | 3.0      | 20.0        | V-Horn   | AV       | 0.0        | 47.6     | 54.0        | -6.4  | Low Channel, EUT horizontal  |
| 2483.603 | 41.8      | 2.7    | 17.0      | 1.0      | 3.0      | 20.0        | V-Horn   | PK       | 0.0        | 64.5     | 74.0        | -9.5  | High Channel, EUT on side    |
| 2484.227 | 41.3      | 2.7    | 258.0     | 1.6      | 3.0      | 20.0        | H-Horn   | PK       | 0.0        | 64.0     | 74.0        | -10.0 | High Channel, EUT on end     |
| 2483.622 | 41.1      | 2.7    | 13.0      | 1.6      | 3.0      | 20.0        | H-Horn   | PK       | 0.0        | 63.8     | 74.0        | -10.2 | High Channel, EUT horizontal |
| 2483.953 | 41.1      | 2.7    | 132.0     | 1.6      | 3.0      | 20.0        | H-Horn   | PK       | 0.0        | 63.8     | 74.0        | -10.2 | High Channel, EUT on side    |
| 2483.855 | 40.5      | 2.7    | 26.0      | 1.0      | 3.0      | 20.0        | V-Horn   | PK       | 0.0        | 63.2     | 74.0        | -10.8 | High Channel, EUT on end     |
| 2389.437 | 40.9      | 2.1    | 142.0     | 1.1      | 3.0      | 20.0        | H-Horn   | PK       | 0.0        | 63.0     | 74.0        | -11.0 | Low Channel, EUT on side     |
| 2389.780 | 40.8      | 2.1    | 8.0       | 1.3      | 3.0      | 20.0        | V-Horn   | PK       | 0.0        | 62.9     | 74.0        | -11.1 | Low Channel, EUT on side     |
| 2388.810 | 40.6      | 2.1    | -1.0      | 1.0      | 3.0      | 20.0        | H-Horn   | PK       | 0.0        | 62.7     | 74.0        | -11.3 | Low Channel, EUT horizontal  |
| 2388.950 | 40.4      | 2.1    | 273.0     | 1.7      | 3.0      | 20.0        | H-Horn   | PK       | 0.0        | 62.5     | 74.0        | -11.5 | Low Channel, EUT on end      |
| 2389.263 | 39.9      | 2.1    | 122.0     | 2.0      | 3.0      | 20.0        | V-Horn   | PK       | 0.0        | 62.0     | 74.0        | -12.0 | Low Channel, EUT on end      |
| 2483.745 | 39.0      | 2.7    | 15.0      | 1.2      | 3.0      | 20.0        | V-Horn   | PK       | 0.0        | 61.7     | 74.0        | -12.3 | High Channel, EUT horizontal |
| 2388.933 | 38.6      | 2.1    | 31.0      | 1.6      | 3.0      | 20.0        | V-Horn   | PK       | 0.0        | 60.7     | 74.0        | -13.3 | Low Channel, EUT horizontal  |
|          |           |        |           |          |          |             |          |          |            |          |             |       |                              |

|                  | MC               |        |                     |                | <b>SPUF</b>         | RIOUS      | RAD                  | ATED                | <b>EMI</b>       | SSIO        | NS                 |                           |                       | EMI 2009.4.13  |                                                       |
|------------------|------------------|--------|---------------------|----------------|---------------------|------------|----------------------|---------------------|------------------|-------------|--------------------|---------------------------|-----------------------|----------------|-------------------------------------------------------|
|                  |                  | EUT:   | RF Modul            | e 10169        |                     |            |                      |                     |                  |             | W                  | ork Order:                | ECTE0002              |                | ı                                                     |
|                  | al Num           | ber:   | FCC #1              |                |                     |            |                      |                     |                  |             |                    | Date:                     | 10/07/09              |                |                                                       |
|                  |                  |        | EcoTech I           | Marine         |                     |            |                      |                     |                  |             | Te                 | mperature:                |                       |                |                                                       |
|                  | Attend<br>Pro    |        | None                |                |                     |            |                      |                     |                  |             | Barom              | Humidity:<br>etric Pres.: |                       |                |                                                       |
|                  | Tested           | d by:  | Rod Peloc           | quin           |                     |            |                      | Power:              | 120VAC/6         |             |                    | Job Site:                 |                       |                |                                                       |
| TEST S           |                  |        |                     |                |                     |            |                      |                     | Test Meth        |             |                    |                           |                       |                | l.                                                    |
| FCC 15.          | 247 (D           | 18):2  | 009                 |                |                     |            |                      |                     | ANSI C63         | 3.4:2003, K | DB No. 5580        | 74                        |                       |                |                                                       |
| TEST PA          | N D A ME         | TED    |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
| Antenna<br>COMME | Heigh            |        |                     | 1 - 4          |                     |            |                      | Test Dista          | nce (m)          |             | 3                  |                           |                       |                |                                                       |
| PC remo          | ote (se          | rial a | nd power            | only to te     | st board)           |            |                      |                     |                  |             |                    |                           |                       |                | •                                                     |
| EUT OP           | FRATI            | NG M   | IODES               |                |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
| Transmi          | tting d          | lefaul | t power, S          |                | ents for cl         | nannel     |                      |                     |                  |             |                    |                           |                       |                |                                                       |
|                  |                  |        | TEST ST             | ANDARD         |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
| No devia         | ations.          |        |                     | 2              | 1                   |            |                      |                     |                  |             | 4 -                |                           |                       |                |                                                       |
| Configu          | ration           | #      |                     | 1              | -                   |            |                      |                     |                  |             | Rocky 1            | La Relin                  | 2                     |                |                                                       |
| Results          |                  |        |                     | ass            | -                   |            |                      |                     |                  | Signatur    | e /                |                           |                       |                |                                                       |
|                  |                  |        |                     |                |                     |            |                      |                     |                  | - 9         |                    |                           |                       |                |                                                       |
|                  | 80.0             |        |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       | $\neg$         |                                                       |
|                  |                  |        |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       | _              |                                                       |
|                  | 70.0 -           |        |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
|                  |                  |        |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
|                  | 00.0             |        |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
|                  | 60.0 -           |        |                     |                |                     |            |                      |                     |                  |             |                    | **                        |                       |                |                                                       |
|                  | -                |        |                     |                |                     |            | <del></del>          |                     |                  |             |                    |                           |                       | +              |                                                       |
|                  | 50.0 -           |        |                     |                |                     | *          |                      |                     |                  |             |                    |                           |                       |                |                                                       |
| Æ                |                  |        |                     |                |                     |            |                      |                     |                  |             |                    | **                        |                       |                |                                                       |
| dBuV/m           | 40.0 -           |        |                     |                |                     |            | 4                    |                     |                  |             |                    |                           |                       |                |                                                       |
| В                |                  |        |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
| _                |                  |        |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
| -                | 30.0 -           |        |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
|                  |                  |        |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
|                  | 20.0 -           |        |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
|                  |                  |        |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
|                  | 10.0 -           |        |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
|                  | 10.0             |        |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
|                  |                  |        |                     |                |                     |            |                      |                     |                  |             |                    |                           |                       |                |                                                       |
|                  | 0.0 -            |        |                     |                |                     |            | -                    |                     | -                |             |                    |                           |                       |                |                                                       |
|                  | 3000             | 0.000  |                     | 4000           | 0.000               | 500        | 00.000               | 6                   | 000.000          |             | 7000.000           | )                         | 8000.0                | 00             |                                                       |
|                  |                  |        |                     |                |                     |            |                      | MHz                 |                  |             |                    |                           |                       |                |                                                       |
|                  |                  |        |                     |                |                     |            |                      | External            | 1                | 1           | Distance           |                           |                       | Compared to    |                                                       |
|                  | Freq<br>∕IHz)    |        | Amplitude<br>(dBuV) | Factor<br>(dB) | Azimuth<br>(degrees |            | Distance<br>(meters) | Attenuation<br>(dB) | Polarity         | Detector    | Adjustment<br>(dB) | Adjusted<br>dBuV/m        | Spec. Limit<br>dBuV/m | Spec.<br>(dB)  | Comments                                              |
|                  | 3.858            |        | 29.9                | 16.1           | 279.0               |            | 3.0                  | 0.0                 | V-Horn           | AV          | 0.0                | 46.0                      | 54.0                  | -8.0           | Mid Channel, EUT on side                              |
|                  | 96.483           |        | 29.3                | 16.6           | 276.0               |            | 3.0                  | 0.0                 | V-Horn           | AV          | 0.0                | 45.9                      | 54.0                  | -8.1           | High Channel, EUT on side                             |
|                  | 03.783<br>96.558 |        | 28.6<br>28.0        | 16.1<br>16.6   | 261.0<br>217.0      |            | 3.0<br>3.0           | 0.0<br>0.0          | H-Horn<br>H-Horn | AV<br>AV    | 0.0<br>0.0         | 44.7<br>44.6              | 54.0<br>54.0          | -9.3<br>-9.4   | Mid Channel, EUT on end<br>High Channel, EUT on end   |
|                  | 71.073           |        | 34.6                | 9.7            | 161.0               |            | 3.0                  | 0.0                 | H-Horn           | AV          | 0.0                | 44.3                      | 54.0                  | -9.7           | Mid Channel, EUT on end                               |
|                  | 31.042           |        | 34.0                | 9.9            | 39.0                | 1.3        | 3.0                  | 0.0                 | H-Horn           | AV          | 0.0                | 43.9                      | 54.0                  | -10.1          | High Channel, EUT on end                              |
|                  | 31.067<br>71.033 |        | 33.4<br>33.6        | 9.9<br>9.7     | 87.0<br>265.0       | 1.3<br>1.1 | 3.0<br>3.0           | 0.0<br>0.0          | V-Horn<br>V-Horn | AV<br>AV    | 0.0<br>0.0         | 43.3<br>43.3              | 54.0<br>54.0          | -10.7<br>-10.7 | High Channel, EUT on side<br>Mid Channel, EUT on side |
|                  | 70.933           |        | 32.4                | 9.7            | 133.0               |            | 3.0                  | 0.0                 | V-Horn           | AV          | 0.0                | 43.3                      | 54.0                  | -10.7          | Mid Channel, EUT horizontal                           |
| 487              | 71.067           |        | 32.3                | 9.7            | 38.0                | 1.0        | 3.0                  | 0.0                 | H-Horn           | AV          | 0.0                | 42.0                      | 54.0                  | -12.0          | Mid Channel, EUT on side                              |
|                  | 70.980           |        | 31.3                | 9.7            | 170.0               |            | 3.0                  | 0.0                 | H-Horn           | AV          | 0.0                | 41.0<br>40.8              | 54.0<br>54.0          | -13.0<br>-13.2 | Mid Channel, EUT on side<br>Mid Channel, EUT on side  |
|                  | 71.060           |        | 31.1<br>29.2        | 9.7<br>9.7     | 62.0<br>135.0       | 1.2<br>1.6 | 3.0<br>3.0           | 0.0<br>0.0          | V-Horn<br>V-Horn | AV<br>AV    | 0.0<br>0.0         | 40.8<br>38.9              | 54.0<br>54.0          | -13.2<br>-15.1 | Mid Channel, EUT on side Mid Channel, EUT on end      |
| 487              | 71.000           |        | 29.1                | 9.7            | 207.0               | 1.2        | 3.0                  | 0.0                 | H-Horn           | AV          | 0.0                | 38.8                      | 54.0                  | -15.2          | Mid Channel, EUT horizontal                           |
|                  | 03.833           |        | 42.1                | 16.1           | 279.0               |            | 3.0                  | 0.0                 | V-Horn           | PK          | 0.0                | 58.2                      | 74.0                  | -15.8          | Mid Channel, EUT on side                              |
|                  | 93.733<br>93.383 |        | 41.2<br>40.8        | 16.6<br>16.1   | 276.0<br>261.0      |            | 3.0<br>3.0           | 0.0<br>0.0          | V-Horn<br>H-Horn | PK<br>PK    | 0.0<br>0.0         | 57.8<br>56.9              | 74.0<br>74.0          | -16.2<br>-17.1 | High Channel, EUT on side<br>Mid Channel, EUT on end  |
| 739              | 3.725            |        | 40.0                | 16.6           | 217.0               | 1.4        | 3.0                  | 0.0                 | H-Horn           | PK          | 0.0                | 56.6                      | 74.0                  | -17.4          | High Channel, EUT on end                              |
|                  | 11.025           |        | 26.1                | 9.5            | 264.0               |            | 3.0                  | 0.0                 | V-Horn           | AV          | 0.0                | 35.6                      | 54.0                  | -18.4          | Low Channel, EUT on side                              |
| 480              | 9.242            |        | 25.7                | 9.5            | 37.0                | 1.0        | 3.0                  | 0.0                 | H-Horn           | AV          | 0.0                | 35.2                      | 54.0                  | -18.8          | Low Channel, EUT on end                               |

| E               | MC                 |               |              |                   |            | 5          | SP    | UF           | सट   | UC         | S    | R  | AD         |      | \T    | E              | D   | E۱         | AIS  | SS  | Ю        | N:   | S     |                |             |               |             |              | EI  | MI 2009.4.1         |
|-----------------|--------------------|---------------|--------------|-------------------|------------|------------|-------|--------------|------|------------|------|----|------------|------|-------|----------------|-----|------------|------|-----|----------|------|-------|----------------|-------------|---------------|-------------|--------------|-----|---------------------|
| 901             | ial Nun            |               |              |                   | e 1016     | 9          |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       | V              | /ork        | Orde          | r: EC       |              |     |                     |
| Jei             | Custo              | mer:          | EcoT         | ech N             | /larine    |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          | 1    |       | Те             |             | rature        | e: 22       |              | _   |                     |
|                 | Attend             |               | None<br>None |                   |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      | В     | arom           | etric       |               | .: 30       | .15          |     |                     |
| TEST S          | Teste              | d by:         | Rod          |                   | uin        |            |       |              |      |            |      |    |            |      | P     | owe            |     |            | AC/6 |     |          | 1    |       |                |             | b Site        |             |              |     |                     |
| FCC 15          |                    |               |              |                   |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     | 03, K    | DB   | No.   | 5580           | 74          |               |             |              |     |                     |
|                 |                    |               |              |                   |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
|                 |                    |               |              |                   |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
| TEST F          | A D A M            |               |              |                   |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
| Antenn          | a Heig             |               |              |                   | 1 - 4      |            |       |              |      |            |      |    |            | 1    | Гest  | Dis            | tan | ce (n      | n)   |     |          | 3    |       |                |             |               |             |              |     |                     |
| COMM<br>PC rem  |                    | rial a        | nd no        | wer c             | only to    | test       | hoa   | rd)          |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
| . 🔾 1611        | Je jac             | ai c          | a pu         |                   |            | wol        | . Soa | . u,         |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
| EUT O           |                    |               |              |                   |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
| Transn<br>DEVIA | itting o           | defau<br>FROI | It pow       | /er, S<br>TST/    | ee cor     | nmei<br>RD | nts f | or cl        | hann | el         |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
| No dev          |                    |               |              |                   | 3          |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               | _           |              |     |                     |
| Run #<br>Config | uration            | #             |              |                   | 1          |            | 1     |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      | Roc   | ly             | le :        | Reli          | /<br>!<br>! |              |     |                     |
| Results         |                    |               |              | Pa                | ISS        |            | 1     |              |      |            |      |    |            |      |       |                |     |            |      | Sig | natui    |      |       | V              |             | 0             |             |              |     |                     |
|                 | 80.0               |               |              |                   |            |            |       |              |      |            |      |    |            |      |       |                | _   |            |      |     |          | _    |       |                |             |               |             |              |     | 7                   |
|                 |                    |               |              |                   |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
|                 | 70.0               | $\perp$       |              |                   |            |            |       |              |      |            |      |    |            |      | +     |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
|                 |                    |               |              |                   |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
|                 | 60.0               |               |              |                   |            |            |       |              |      |            |      |    |            |      | +     | Н              |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
|                 |                    |               |              |                   |            |            |       |              |      |            |      |    |            |      | +     |                |     |            |      |     |          |      |       |                | -           |               |             |              |     | +                   |
|                 | 50.0               |               |              |                   |            |            |       |              |      |            |      |    |            |      |       | Н              |     |            |      |     |          |      |       |                |             |               | -           |              | +   |                     |
| w/              |                    |               |              |                   |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
| dBuV/m          | 40.0               | $\Box$        |              |                   |            |            |       |              | H    |            | H    | +  |            | +    | +     | Н              |     |            |      |     |          |      |       |                | H           |               | • :         |              |     |                     |
| ab<br>B         |                    |               |              |                   |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
|                 | 30.0               | $\Box$        |              | $\dagger \dagger$ |            |            |       |              |      |            |      |    |            |      |       | H              | 1   |            |      |     |          |      |       |                | $\parallel$ | 1             | •           |              |     |                     |
|                 | 00.0               |               |              |                   |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
|                 | 20.0               |               |              |                   |            |            |       |              | П    |            | П    |    |            |      |       | П              |     |            |      |     |          |      |       |                | П           |               |             |              |     |                     |
|                 | 10.0               |               |              |                   |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
|                 | 10.0               |               |              |                   |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
|                 | 0.0                | Ш             |              | Щ                 |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
|                 |                    | 0.000         | ) 8          | 3700.             | .000       | 92         | 200.0 | 000          | 9    | 9700       | 0.00 | 0  | 102        | 200. | 000   | )              | 107 | '00.C      | 000  | 11  | 200.     | .000 | 0     | 1170           | 0.00        | 00            | 1220        | 0.00         | 00  |                     |
|                 |                    |               |              |                   |            |            |       |              |      |            |      |    |            | -    | MΗ    | lz             |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
|                 |                    |               |              |                   |            |            |       |              |      |            |      |    |            |      |       |                |     |            |      |     |          |      |       |                |             |               |             |              |     |                     |
|                 | Freq               | _             | Ampl         |                   | Fac        |            |       | imuth        |      | Heig       |      |    | istance    |      | Atter | emal<br>nuatio |     | Pola       | rity | D   | etector  | . [  | Adjus | ance<br>stment |             | ljusted       |             | ec. Li       | mit | Compared t<br>Spec. |
|                 | MHz)<br>327.630    | )             | (dB<br>42    | _                 | (dE        |            |       | grees<br>9.0 | s)   | (mete      | _    | (1 | 3.0        | )    |       | dB)            |     | H-H        | orn  |     | AV       |      |       | iB)            |             | 3uV/m<br>39.6 |             | 54.0         |     | (dB)<br>-14.4       |
| 12              | 177.610            | )             | 42           | 2.3               | -3.        | 4          | 6     | 0.0          |      | 1.1        | 1    |    | 3.0        |      | C     | 0.0            |     | H-H        | orn  |     | ΑV       |      | 0     | .0             | 3           | 38.9          |             | 54.0         | )   | -15.1               |
| 12              | 177.650<br>322.960 | )             | 40<br>39     | 8.0               | -3.<br>-2. | 7          | 1     | 8.0<br>50.0  |      | 1.0        | )    |    | 3.0        |      | C     | 0.0            |     | V-H<br>V-H | orn  |     | AV       |      | 0     | .0             | 3           | 37.3<br>37.1  |             | 54.0<br>54.0 | )   | -16.7<br>-16.9      |
|                 | 322.960<br>177.680 |               | 53<br>52     |                   | -2.<br>-3. |            |       | 59.0<br>50.0 |      | 1.0        |      |    | 3.0        |      |       | 0.0            |     | H-H<br>H-H |      |     | PK<br>PK |      |       | .0             |             | 50.4<br>19.4  |             | 74.0<br>74.0 |     | -23.6<br>-24.6      |
| 12              | 322.850            | )             | 50           | 8.0               | -2.        | 7          | 1     | 50.0         |      | 1.0        | )    |    | 3.0        |      | C     | 0.0            |     | V-H        | orn  |     | PK       |      | 0     | .0             | 4           | 18.1          |             | 74.0         | )   | -25.9               |
| 12              | 172.890<br>022.130 | )             | 51<br>31     | .3                | -3.<br>-4. | 1          | 2     | 8.0<br>11.0  |      | 1.1<br>1.0 | )    |    | 3.0<br>3.0 |      | C     | ).0<br>).0     |     | V-H<br>H-H | orn  |     | PK<br>AV |      | 0     | 0.0<br>0.0     | 2           | 18.0<br>27.2  |             | 74.0<br>54.0 | )   | -26.0<br>-26.8      |
|                 | 022.160<br>026.480 |               | 31<br>45     |                   | -4.<br>-4. |            |       | 00.0<br>11.0 |      | 1.0        |      |    | 3.0        |      |       | 0.0            |     | V-H<br>H-H |      |     | AV<br>PK |      |       | .0             |             | 27.1<br>10.9  |             | 54.0<br>74.0 |     | -26.9<br>-33.1      |
|                 | 026.830            |               | 43           |                   | -4.        |            |       | 00.0         |      | 1.0        |      |    | 3.0        |      |       | 0.0            |     | V-H        |      |     | PK       |      |       | .0             |             | 39.2          |             | 74.0         |     | -34.8               |



#### AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## MODES OF OPERATION Transmitting high channel

Transmitting mid channel
Transmitting low channel

#### POWER SETTINGS INVESTIGATED

120VAC/60Hz

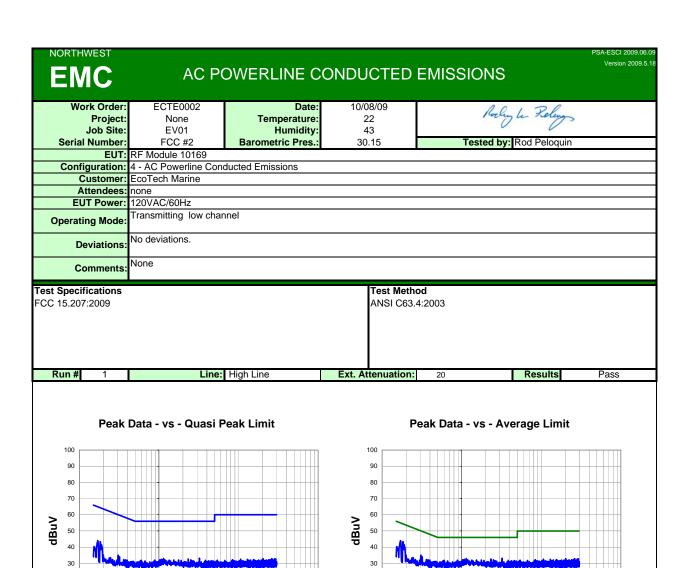
#### **CONFIGURATIONS INVESTIGATED**

ECTE0002 - 4

#### SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

| TEST EQUIPMENT   |                 |                  |     |           |          |  |  |  |  |  |  |  |
|------------------|-----------------|------------------|-----|-----------|----------|--|--|--|--|--|--|--|
| Description      | Manufacturer    | Model            | ID  | Last Cal. | Interval |  |  |  |  |  |  |  |
| Receiver         | Rohde & Schwarz | ESCI             | ARH | 9/25/2009 | 24 mo    |  |  |  |  |  |  |  |
| High Pass Filter | TTE             | H97-100K-50-720B | HFX | 5/27/2009 | 13 mo    |  |  |  |  |  |  |  |
| Attenuator       | Coaxicom        | 66702 2910-20    | ATO | 7/21/2009 | 13 mo    |  |  |  |  |  |  |  |
| EV07 Cables      |                 | Conducted Cables | EVG | 6/1/2009  | 13 mo    |  |  |  |  |  |  |  |
| LISN             | Solar           | 9252-50-R-24-BNC | LIP | 2/4/2009  | 13 mo    |  |  |  |  |  |  |  |
| LIGNI            | Solar           | 0252-50-P-24-BNC | LID | 2/4/2000  | 13 mo    |  |  |  |  |  |  |  |


| ASUREMEN | Frequency Range Peak Data Quasi-Peak Data Average Data |        |                                        |        |  |  |  |  |  |  |  |
|----------|--------------------------------------------------------|--------|----------------------------------------|--------|--|--|--|--|--|--|--|
|          | (MHz)                                                  | (kHz)  | (kHz)                                  | (kHz)  |  |  |  |  |  |  |  |
|          | 0.01 - 0.15                                            | 1.0    | 0.2                                    | 0.2    |  |  |  |  |  |  |  |
|          | 0.15 - 30.0                                            | 10.0   | 9.0                                    | 9.0    |  |  |  |  |  |  |  |
|          | 30.0 - 1000                                            | 100.0  | 120.0                                  | 120.0  |  |  |  |  |  |  |  |
|          | Above 1000                                             | 1000.0 | N/A                                    | 1000.0 |  |  |  |  |  |  |  |
| M        |                                                        |        | N/A<br>ctors_specified. No video filte |        |  |  |  |  |  |  |  |

#### **MEASUREMENT UNCERTAINTY**

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

#### TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm.



# Peak Data - vs - Quasi Peak Limit Peak Data - vs - Average Limit

100.00

10.00

MHz

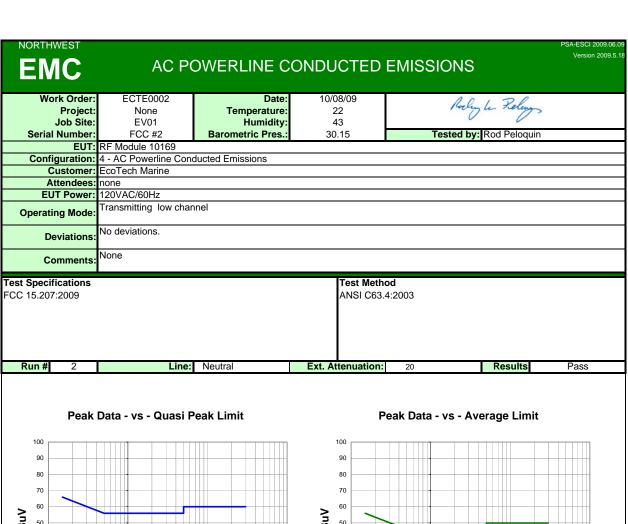
20 10

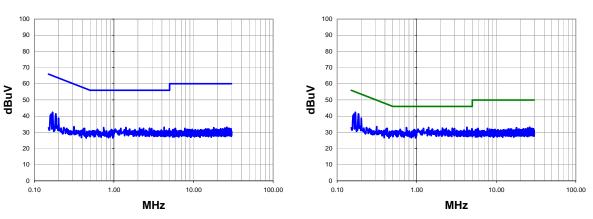
0.10

1.00

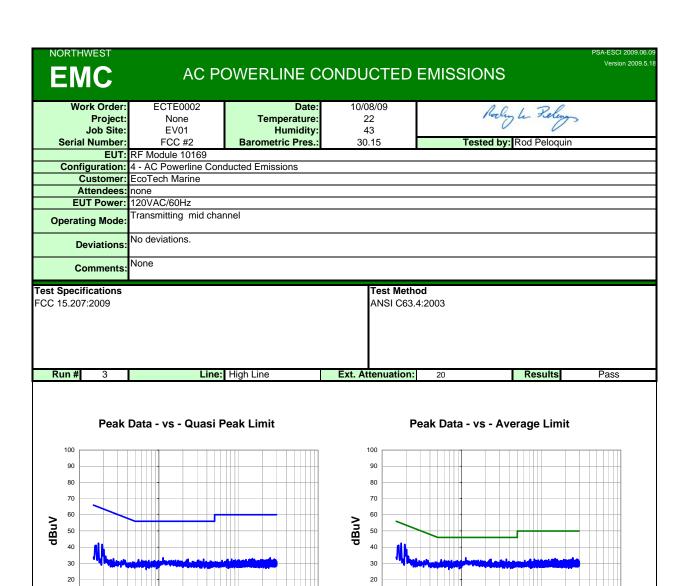
MHz

10.00


100.00


20

10


0.10

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) | Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.170         | 22.7                | 21.4           | 44.1               | 64.9                  | -20.9                        | 0.170         | 22.7                | 21.4           | 44.1               | 54.9                  | -10.9                        |
| 0.182         | 22.2                | 21.3           | 43.5               | 64.4                  | -20.9                        | 0.182         | 22.2                | 21.3           | 43.5               | 54.4                  | -10.9                        |
| 3.216         | 12.7                | 20.4           | 33.1               | 56.0                  | -22.9                        | 3.216         | 12.7                | 20.4           | 33.1               | 46.0                  | -12.9                        |
| 1.144         | 12.5                | 20.4           | 32.9               | 56.0                  | -23.1                        | 1.144         | 12.5                | 20.4           | 32.9               | 46.0                  | -13.1                        |
| 2.328         | 12.2                | 20.4           | 32.6               | 56.0                  | -23.4                        | 2.328         | 12.2                | 20.4           | 32.6               | 46.0                  | -13.4                        |
| 1.080         | 12.1                | 20.4           | 32.5               | 56.0                  | -23.5                        | 1.080         | 12.1                | 20.4           | 32.5               | 46.0                  | -13.5                        |
| 1.032         | 11.9                | 20.4           | 32.3               | 56.0                  | -23.7                        | 1.032         | 11.9                | 20.4           | 32.3               | 46.0                  | -13.7                        |
| 2.512         | 11.7                | 20.4           | 32.1               | 56.0                  | -23.9                        | 2.512         | 11.7                | 20.4           | 32.1               | 46.0                  | -13.9                        |
| 1.536         | 11.7                | 20.4           | 32.1               | 56.0                  | -23.9                        | 1.536         | 11.7                | 20.4           | 32.1               | 46.0                  | -13.9                        |
| 1.768         | 11.6                | 20.4           | 32.0               | 56.0                  | -24.0                        | 1.768         | 11.6                | 20.4           | 32.0               | 46.0                  | -14.0                        |
| 1.344         | 11.6                | 20.4           | 32.0               | 56.0                  | -24.0                        | 1.344         | 11.6                | 20.4           | 32.0               | 46.0                  | -14.0                        |
| 0.597         | 11.4                | 20.5           | 31.9               | 56.0                  | -24.1                        | 0.597         | 11.4                | 20.5           | 31.9               | 46.0                  | -14.1                        |
| 0.879         | 11.5                | 20.4           | 31.9               | 56.0                  | -24.1                        | 0.879         | 11.5                | 20.4           | 31.9               | 46.0                  | -14.1                        |
| 3.848         | 11.5                | 20.3           | 31.8               | 56.0                  | -24.2                        | 3.848         | 11.5                | 20.3           | 31.8               | 46.0                  | -14.2                        |
| 1.896         | 11.4                | 20.4           | 31.8               | 56.0                  | -24.2                        | 1.896         | 11.4                | 20.4           | 31.8               | 46.0                  | -14.2                        |
| 4.632         | 11.3                | 20.4           | 31.7               | 56.0                  | -24.4                        | 4.632         | 11.3                | 20.4           | 31.7               | 46.0                  | -14.4                        |
| 4.208         | 11.2                | 20.3           | 31.5               | 56.0                  | -24.5                        | 4.208         | 11.2                | 20.3           | 31.5               | 46.0                  | -14.5                        |
| 2.680         | 11.1                | 20.4           | 31.5               | 56.0                  | -24.5                        | 2.680         | 11.1                | 20.4           | 31.5               | 46.0                  | -14.5                        |
| 0.667         | 11.0                | 20.5           | 31.5               | 56.0                  | -24.5                        | 0.667         | 11.0                | 20.5           | 31.5               | 46.0                  | -14.5                        |
| 4.448         | 11.0                | 20.3           | 31.3               | 56.0                  | -24.7                        | 4.448         | 11.0                | 20.3           | 31.3               | 46.0                  | -14.7                        |





|               | Pea                 | ak Data - vs - | Quasi Peak L       | imit                  |                              | Peak Data - vs - Average Limit |               |                     |                |                    |                       |                              |  |  |  |  |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|--------------------------------|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|--|--|--|--|
| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |                                | Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |  |  |  |  |
| 0.169         | 21.0                | 21.4           | 42.4               | 65.0                  | -22.6                        | <u></u>                        | 0.169         | 21.0                | 21.4           | 42.4               | 55.0                  | -12.6                        |  |  |  |  |
| 0.186         | 20.2                | 21.3           | 41.5               | 64.2                  | -22.8                        |                                | 0.186         | 20.2                | 21.3           | 41.5               | 54.2                  | -12.8                        |  |  |  |  |
| 4.272         | 12.7                | 20.3           | 33.0               | 56.0                  | -23.0                        |                                | 4.272         | 12.7                | 20.3           | 33.0               | 46.0                  | -13.0                        |  |  |  |  |
| 1.416         | 12.6                | 20.4           | 33.0               | 56.0                  | -23.0                        |                                | 1.416         | 12.6                | 20.4           | 33.0               | 46.0                  | -13.0                        |  |  |  |  |
| 0.743         | 12.6                | 20.4           | 33.0               | 56.0                  | -23.0                        |                                | 0.743         | 12.6                | 20.4           | 33.0               | 46.0                  | -13.0                        |  |  |  |  |
| 2.104         | 12.2                | 20.4           | 32.6               | 56.0                  | -23.4                        |                                | 2.104         | 12.2                | 20.4           | 32.6               | 46.0                  | -13.4                        |  |  |  |  |
| 2.800         | 12.1                | 20.4           | 32.5               | 56.0                  | -23.5                        |                                | 2.800         | 12.1                | 20.4           | 32.5               | 46.0                  | -13.5                        |  |  |  |  |
| 1.216         | 12.1                | 20.4           | 32.5               | 56.0                  | -23.5                        |                                | 1.216         | 12.1                | 20.4           | 32.5               | 46.0                  | -13.5                        |  |  |  |  |
| 2.352         | 12.0                | 20.4           | 32.4               | 56.0                  | -23.6                        |                                | 2.352         | 12.0                | 20.4           | 32.4               | 46.0                  | -13.6                        |  |  |  |  |
| 2.984         | 11.9                | 20.4           | 32.3               | 56.0                  | -23.7                        |                                | 2.984         | 11.9                | 20.4           | 32.3               | 46.0                  | -13.7                        |  |  |  |  |
| 4.944         | 11.8                | 20.5           | 32.3               | 56.0                  | -23.7                        |                                | 4.944         | 11.8                | 20.5           | 32.3               | 46.0                  | -13.7                        |  |  |  |  |
| 1.576         | 11.7                | 20.4           | 32.1               | 56.0                  | -23.9                        |                                | 1.576         | 11.7                | 20.4           | 32.1               | 46.0                  | -13.9                        |  |  |  |  |
| 1.048         | 11.6                | 20.4           | 32.0               | 56.0                  | -24.0                        |                                | 1.048         | 11.6                | 20.4           | 32.0               | 46.0                  | -14.0                        |  |  |  |  |
| 0.619         | 11.4                | 20.5           | 31.9               | 56.0                  | -24.1                        |                                | 0.619         | 11.4                | 20.5           | 31.9               | 46.0                  | -14.1                        |  |  |  |  |
| 0.162         | 19.7                | 21.5           | 41.2               | 65.4                  | -24.1                        |                                | 0.162         | 19.7                | 21.5           | 41.2               | 55.4                  | -14.1                        |  |  |  |  |
| 2.208         | 11.4                | 20.4           | 31.8               | 56.0                  | -24.2                        |                                | 2.208         | 11.4                | 20.4           | 31.8               | 46.0                  | -14.2                        |  |  |  |  |
| 0.927         | 11.4                | 20.4           | 31.8               | 56.0                  | -24.2                        |                                | 0.927         | 11.4                | 20.4           | 31.8               | 46.0                  | -14.2                        |  |  |  |  |
| 1.832         | 11.3                | 20.4           | 31.7               | 56.0                  | -24.3                        |                                | 1.832         | 11.3                | 20.4           | 31.7               | 46.0                  | -14.3                        |  |  |  |  |
| 3.928         | 11.1                | 20.3           | 31.4               | 56.0                  | -24.6                        |                                | 3.928         | 11.1                | 20.3           | 31.4               | 46.0                  | -14.6                        |  |  |  |  |
| 2.512         | 10.9                | 20.4           | 31.3               | 56.0                  | -24.7                        |                                | 2.512         | 10.9                | 20.4           | 31.3               | 46.0                  | -14.7                        |  |  |  |  |



Peak Data - vs - Quasi Peak Limit Peak Data - vs - Average Limit

100.00

10.00

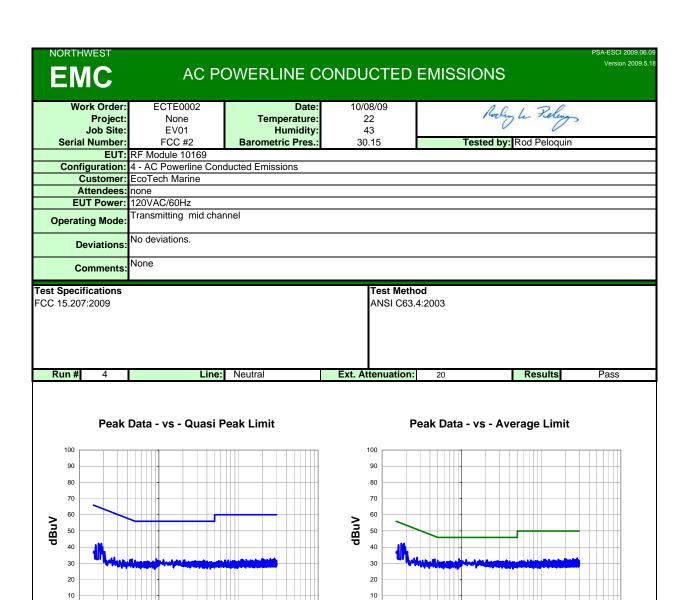
MHz

10

0.10

1.00

10


0.10

1.00

MHz

10.00

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |   | Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|---|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.193         | 20.4                | 21.2           | 41.6               | 63.9                  | -22.3                        | • | 0.193         | 20.4                | 21.2           | 41.6               | 53.9                  | -12.3                        |
| 0.174         | 21.1                | 21.3           | 42.4               | 64.8                  | -22.4                        |   | 0.174         | 21.1                | 21.3           | 42.4               | 54.8                  | -12.4                        |
| 1.128         | 13.0                | 20.4           | 33.4               | 56.0                  | -22.6                        |   | 1.128         | 13.0                | 20.4           | 33.4               | 46.0                  | -12.6                        |
| 3.640         | 12.2                | 20.3           | 32.5               | 56.0                  | -23.5                        |   | 3.640         | 12.2                | 20.3           | 32.5               | 46.0                  | -13.5                        |
| 2.328         | 12.1                | 20.4           | 32.5               | 56.0                  | -23.5                        |   | 2.328         | 12.1                | 20.4           | 32.5               | 46.0                  | -13.5                        |
| 0.553         | 11.8                | 20.5           | 32.3               | 56.0                  | -23.7                        |   | 0.553         | 11.8                | 20.5           | 32.3               | 46.0                  | -13.7                        |
| 2.240         | 11.7                | 20.4           | 32.1               | 56.0                  | -23.9                        |   | 2.240         | 11.7                | 20.4           | 32.1               | 46.0                  | -13.9                        |
| 3.160         | 11.5                | 20.4           | 31.9               | 56.0                  | -24.1                        |   | 3.160         | 11.5                | 20.4           | 31.9               | 46.0                  | -14.1                        |
| 1.616         | 11.5                | 20.4           | 31.9               | 56.0                  | -24.1                        |   | 1.616         | 11.5                | 20.4           | 31.9               | 46.0                  | -14.1                        |
| 0.607         | 11.4                | 20.5           | 31.9               | 56.0                  | -24.1                        |   | 0.607         | 11.4                | 20.5           | 31.9               | 46.0                  | -14.1                        |
| 1.744         | 11.4                | 20.4           | 31.8               | 56.0                  | -24.2                        |   | 1.744         | 11.4                | 20.4           | 31.8               | 46.0                  | -14.2                        |
| 1.424         | 11.4                | 20.4           | 31.8               | 56.0                  | -24.2                        |   | 1.424         | 11.4                | 20.4           | 31.8               | 46.0                  | -14.2                        |
| 0.745         | 11.4                | 20.4           | 31.8               | 56.0                  | -24.2                        |   | 0.745         | 11.4                | 20.4           | 31.8               | 46.0                  | -14.2                        |
| 0.162         | 19.6                | 21.5           | 41.1               | 65.4                  | -24.2                        |   | 0.162         | 19.6                | 21.5           | 41.1               | 55.4                  | -14.2                        |
| 3.056         | 11.3                | 20.4           | 31.7               | 56.0                  | -24.3                        |   | 3.056         | 11.3                | 20.4           | 31.7               | 46.0                  | -14.3                        |
| 0.985         | 11.3                | 20.4           | 31.7               | 56.0                  | -24.3                        |   | 0.985         | 11.3                | 20.4           | 31.7               | 46.0                  | -14.3                        |
| 0.879         | 11.3                | 20.4           | 31.7               | 56.0                  | -24.3                        |   | 0.879         | 11.3                | 20.4           | 31.7               | 46.0                  | -14.3                        |
| 0.684         | 11.0                | 20.4           | 31.4               | 56.0                  | -24.6                        |   | 0.684         | 11.0                | 20.4           | 31.4               | 46.0                  | -14.6                        |
| 1.840         | 11.0                | 20.4           | 31.4               | 56.0                  | -24.6                        |   | 1.840         | 11.0                | 20.4           | 31.4               | 46.0                  | -14.6                        |
| 0.645         | 10.9                | 20.5           | 31.4               | 56.0                  | -24.6                        |   | 0.645         | 10.9                | 20.5           | 31.4               | 46.0                  | -14.6                        |



Peak Data - vs - Quasi Peak Limit Peak Data - vs - Average Limit

0.10

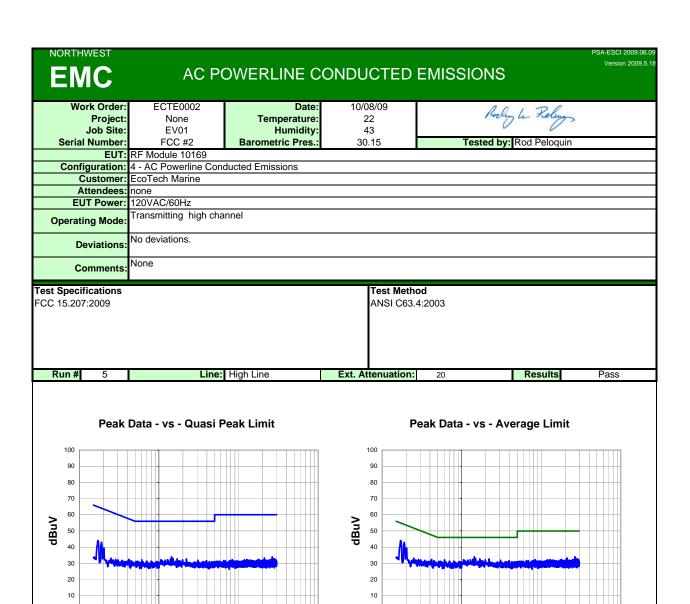
1.00

MHz

10.00

100.00

100.00


10.00

MHz

10

0.10

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) | Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.187         | 21.0                | 21.3           | 42.3               | 64.2                  | -21.9                        | 0.187         | 21.0                | 21.3           | 42.3               | 54.2                  | -11.9                        |
| 0.174         | 21.0                | 21.3           | 42.3               | 64.8                  | -22.5                        | 0.174         | 21.0                | 21.3           | 42.3               | 54.8                  | -12.5                        |
| 0.929         | 12.4                | 20.4           | 32.8               | 56.0                  | -23.2                        | 0.929         | 12.4                | 20.4           | 32.8               | 46.0                  | -13.2                        |
| 0.194         | 18.9                | 21.2           | 40.1               | 63.9                  | -23.7                        | 0.194         | 18.9                | 21.2           | 40.1               | 53.9                  | -13.7                        |
| 1.136         | 11.8                | 20.4           | 32.2               | 56.0                  | -23.8                        | 1.136         | 11.8                | 20.4           | 32.2               | 46.0                  | -13.8                        |
| 1.456         | 11.7                | 20.4           | 32.1               | 56.0                  | -23.9                        | 1.456         | 11.7                | 20.4           | 32.1               | 46.0                  | -13.9                        |
| 0.160         | 19.9                | 21.6           | 41.5               | 65.5                  | -24.0                        | 0.160         | 19.9                | 21.6           | 41.5               | 55.5                  | -14.0                        |
| 2.096         | 11.6                | 20.4           | 32.0               | 56.0                  | -24.0                        | 2.096         | 11.6                | 20.4           | 32.0               | 46.0                  | -14.0                        |
| 1.672         | 11.6                | 20.4           | 32.0               | 56.0                  | -24.0                        | 1.672         | 11.6                | 20.4           | 32.0               | 46.0                  | -14.0                        |
| 3.648         | 11.6                | 20.3           | 31.9               | 56.0                  | -24.1                        | 3.648         | 11.6                | 20.3           | 31.9               | 46.0                  | -14.1                        |
| 0.461         | 12.1                | 20.5           | 32.6               | 56.7                  | -24.1                        | 0.461         | 12.1                | 20.5           | 32.6               | 46.7                  | -14.1                        |
| 0.500         | 11.4                | 20.5           | 31.9               | 56.0                  | -24.1                        | 0.500         | 11.4                | 20.5           | 31.9               | 46.0                  | -14.1                        |
| 2.040         | 11.4                | 20.4           | 31.8               | 56.0                  | -24.2                        | 2.040         | 11.4                | 20.4           | 31.8               | 46.0                  | -14.2                        |
| 0.978         | 11.2                | 20.4           | 31.6               | 56.0                  | -24.4                        | 0.978         | 11.2                | 20.4           | 31.6               | 46.0                  | -14.4                        |
| 0.964         | 11.2                | 20.4           | 31.6               | 56.0                  | -24.4                        | 0.964         | 11.2                | 20.4           | 31.6               | 46.0                  | -14.4                        |
| 3.768         | 11.1                | 20.3           | 31.4               | 56.0                  | -24.6                        | 3.768         | 11.1                | 20.3           | 31.4               | 46.0                  | -14.6                        |
| 2.888         | 11.0                | 20.4           | 31.4               | 56.0                  | -24.6                        | 2.888         | 11.0                | 20.4           | 31.4               | 46.0                  | -14.6                        |
| 2.784         | 11.0                | 20.4           | 31.4               | 56.0                  | -24.6                        | 2.784         | 11.0                | 20.4           | 31.4               | 46.0                  | -14.6                        |
| 0.719         | 11.0                | 20.4           | 31.4               | 56.0                  | -24.6                        | 0.719         | 11.0                | 20.4           | 31.4               | 46.0                  | -14.6                        |
| 0.842         | 10.9                | 20.4           | 31.3               | 56.0                  | -24.7                        | 0.842         | 10.9                | 20.4           | 31.3               | 46.0                  | -14.7                        |



Peak Data - vs - Quasi Peak Limit Peak Data - vs - Average Limit Peak Data - vs - Average Limit

0.10

1.00

MHz

10.00

100.00

100.00

10.00

MHz

1.00

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |   | Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|---|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.170         | 22.8                | 21.4           | 44.2               | 64.9                  | -20.8                        | ļ | 0.170         | 22.8                | 21.4           | 44.2               | 54.9                  | -10.8                        |
| 0.189         | 21.8                | 21.3           | 43.1               | 64.1                  | -21.0                        |   | 0.189         | 21.8                | 21.3           | 43.1               | 54.1                  | -11.0                        |
| 1.440         | 13.6                | 20.4           | 34.0               | 56.0                  | -22.0                        |   | 1.440         | 13.6                | 20.4           | 34.0               | 46.0                  | -12.0                        |
| 1.504         | 12.5                | 20.4           | 32.9               | 56.0                  | -23.1                        |   | 1.504         | 12.5                | 20.4           | 32.9               | 46.0                  | -13.1                        |
| 2.208         | 12.3                | 20.4           | 32.7               | 56.0                  | -23.3                        |   | 2.208         | 12.3                | 20.4           | 32.7               | 46.0                  | -13.3                        |
| 1.696         | 12.3                | 20.4           | 32.7               | 56.0                  | -23.3                        |   | 1.696         | 12.3                | 20.4           | 32.7               | 46.0                  | -13.3                        |
| 1.384         | 12.2                | 20.4           | 32.6               | 56.0                  | -23.4                        |   | 1.384         | 12.2                | 20.4           | 32.6               | 46.0                  | -13.4                        |
| 1.280         | 11.9                | 20.4           | 32.3               | 56.0                  | -23.7                        |   | 1.280         | 11.9                | 20.4           | 32.3               | 46.0                  | -13.7                        |
| 1.056         | 11.9                | 20.4           | 32.3               | 56.0                  | -23.7                        |   | 1.056         | 11.9                | 20.4           | 32.3               | 46.0                  | -13.7                        |
| 0.607         | 11.7                | 20.5           | 32.2               | 56.0                  | -23.8                        |   | 0.607         | 11.7                | 20.5           | 32.2               | 46.0                  | -13.8                        |
| 1.984         | 11.7                | 20.4           | 32.1               | 56.0                  | -23.9                        |   | 1.984         | 11.7                | 20.4           | 32.1               | 46.0                  | -13.9                        |
| 0.203         | 18.3                | 21.1           | 39.4               | 63.5                  | -24.1                        |   | 0.203         | 18.3                | 21.1           | 39.4               | 53.5                  | -14.1                        |
| 3.080         | 11.5                | 20.4           | 31.9               | 56.0                  | -24.1                        |   | 3.080         | 11.5                | 20.4           | 31.9               | 46.0                  | -14.1                        |
| 1.824         | 11.3                | 20.4           | 31.7               | 56.0                  | -24.3                        |   | 1.824         | 11.3                | 20.4           | 31.7               | 46.0                  | -14.3                        |
| 1.752         | 11.1                | 20.4           | 31.5               | 56.0                  | -24.5                        |   | 1.752         | 11.1                | 20.4           | 31.5               | 46.0                  | -14.5                        |
| 3.968         | 11.1                | 20.3           | 31.4               | 56.0                  | -24.6                        |   | 3.968         | 11.1                | 20.3           | 31.4               | 46.0                  | -14.6                        |
| 0.699         | 11.0                | 20.4           | 31.4               | 56.0                  | -24.6                        |   | 0.699         | 11.0                | 20.4           | 31.4               | 46.0                  | -14.6                        |
| 0.798         | 11.0                | 20.4           | 31.4               | 56.0                  | -24.6                        |   | 0.798         | 11.0                | 20.4           | 31.4               | 46.0                  | -14.6                        |
| 3.928         | 11.0                | 20.3           | 31.3               | 56.0                  | -24.7                        |   | 3.928         | 11.0                | 20.3           | 31.3               | 46.0                  | -14.7                        |
| 0.538         | 10.8                | 20.5           | 31.3               | 56.0                  | -24.7                        |   | 0.538         | 10.8                | 20.5           | 31.3               | 46.0                  | -14.7                        |