

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Power Conducted	0.774	mW	
Maximum peak output power at antenna input terminal:	28.89	(dBm)	
Maximum peak output power at antenna input terminal:	0.774	(W)	
Antenna gain(typical):	5.80	(dBi)	
Maximum antenna gain:	3.80	(numeric)	
Prediction distance:	20.00	(cm)	
Prediction frequency:	906.00	(MHz)	
MPE limit for uncontrolled exposure at prediction frequency:	0.60	(mW/cm ²)	f/1500
Power density at prediction frequency:	0.585	(mW/cm^2)	
Maximum allowable antenna gain:	35.94	(dBi)	
Margin of Compliance:	0.14	dB	

Therefore the power density at 20 cm is = 0.585mW/cm2