



## Beacon Coding Software & Navigation System

Page: 23 of 35  
Ref: DRD22033  
Issue: A  
Date: 4th Feb 2022

### TEST REPORT

|    |                                                                                                                 |   |
|----|-----------------------------------------------------------------------------------------------------------------|---|
| 4  | Bits 67-85= 00000000 0101101000 = 168<br>Bits 115-132= 110110011 011001101 = 366CD<br>Bits 109-112= 1001 = 9    | ✓ |
| 5  | Bits 67-85= 000000010 0101100110 = 00966<br>Bits 115-132= 110101110 010010000 = 35C90<br>Bits 109-112= 0000 = 0 | ✓ |
| 6  | Bits 67-85= 100000000 1101101000 = 40368<br>Bits 115-132= 110110001 011100000 = 362E0<br>Bits 109-112= 0000 = 0 | ✓ |
| 7  | Bits 67-85= 110110011 0010110010 = 6CCB2<br>Bits 115-132= 011101101 100000000 = 1DB00<br>Bits 109-112= 0001 = 1 | ✓ |
| 8  | Bits 67-85= 110110011 1010110010 = 6CEB2<br>Bits 115-132= 011011100 100000000 = 1B900<br>Bits 109-112= 1011 = B | ✓ |
| 9  | Bits 67-85= 010110100 1101101000 = 2D368<br>Bits 115-132= 000001110 000000001 = 01C01<br>Bits 109-112= 1101 = D | ✓ |
| 10 | Bits 67-85= 010110100 0101101000 = 2D168<br>Bits 115-132= 000100000 000001001 = 04009<br>Bits 109-112= 1110 = E | ✓ |
| 11 | Bits 67-85= 101001001 1100010101 = 52715<br>Bits 115-132= 100000000 100000000 = 20100<br>Bits 109-112= 1110 = E | ✓ |
| 12 | Bits 67-85= 111111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F | ✓ |
| 13 | Bits 67-85= 011111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F | ✓ |

#### 5.3.5 Position Data Encoding – Appendix C to Annex F: NAVIGATION SYSTEM TEST RESULTS - Table F-C.4 – internal GNSS source – ELT(DT) AOD protocol

Table F-C.4 of C/S T.007 Issue 5 Rev 7, June 2021  
Position Data Encoding Results ELT(DT) Location Protocol

| Script Reference<br>(See Table D.4) | Value of Encoded Location Bits Transmitted by Beacon                                                                                                                                                                                          | Confirmation that<br>BCH Correct (✓) |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1                                   | Bits 67-85= 011111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F                                                                                                                               | ✓                                    |
| 2                                   | Bits 67-85= 100000000 1000000000 = 40200<br>Bits 115-132= 100010000 100001110 = 2210E<br>Number of seconds after providing navigation data that beacon transmitted the above encoded location information: 1 second<br>Bits 109-112= 0100 = 4 | ✓                                    |

Copyright © Orolia S.A.S. All rights reserved



## Beacon Coding Software & Navigation System

Page: 24 of 35  
Ref: DRD22033  
Issue: A  
Date: 4<sup>th</sup> Feb 2022

### TEST REPORT

|    |                                                                                                                 |   |
|----|-----------------------------------------------------------------------------------------------------------------|---|
| 3  | Bits 67-85= 000000000 0000000000 = 0<br>Bits 115-132= 100001101 100001101 = 21B0D<br>Bits 109-112= 1001 = A     | ✓ |
| 4  | Bits 67-85= 000000000 0101101000 = 168<br>Bits 115-132= 110110011 011001101 = 366CD<br>Bits 109-112= 1001 = 9   | ✓ |
| 5  | Bits 67-85= 000000010 0101100110 = 00966<br>Bits 115-132= 110101110 010010000 = 35C90<br>Bits 109-112= 0000 = 0 | ✓ |
| 6  | Bits 67-85= 100000000 1101101000 = 40368<br>Bits 115-132= 110110001 011100000 = 362E0<br>Bits 109-112= 0000 = 0 | ✓ |
| 7  | Bits 67-85= 110110011 0010110010 = 6CCB2<br>Bits 115-132= 011101101 100000000 = 1DB00<br>Bits 109-112= 0001 = 1 | ✓ |
| 8  | Bits 67-85= 110110011 1010110010 = 6CEB2<br>Bits 115-132= 011011100 100000000 = 1B900<br>Bits 109-112= 1011 = B | ✓ |
| 9  | Bits 67-85= 010110100 1101101000 = 2D368<br>Bits 115-132= 000001110 000000001 = 01C01<br>Bits 109-112= 1101 = D | ✓ |
| 10 | Bits 67-85= 010110100 0101101000 = 2D168<br>Bits 115-132= 000100000 000001001 = 04009<br>Bits 109-112= 1110 = E | ✓ |
| 11 | Bits 67-85= 101001001 1100010101 = 52715<br>Bits 115-132= 100000000 100000000 = 20100<br>Bits 109-112= 1110 = E | ✓ |
| 12 | Bits 67-85= 111111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F | ✓ |
| 13 | Bits 67-85= 011111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F | ✓ |

#### 5.3.6 Position Data Encoding – Appendix C to Annex F: NAVIGATION SYSTEM TEST RESULTS - Table F-C.4 – external ARINC source – ELT(DT) AOD protocol

Table F-C.4 of C/S T.007 Issue 5 Rev 7, June 2021  
Position Data Encoding Results ELT(DT) Location Protocol

| Script Reference<br>(See Table D.4) | Value of Encoded Location Bits Transmitted by Beacon                                                            | Confirmation that<br>BCH Correct (✓) |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1                                   | Bits 67-85= 011111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F | ✓                                    |



## Beacon Coding Software & Navigation System

Page: 25 of 35  
Ref: DRD22033  
Issue: A  
Date: 4<sup>th</sup> Feb 2022

### TEST REPORT

|    |                                                                                                                                                                                                                                                      |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2  | Bits 67-85= 100000000 1000000000 = 40200<br>Bits 115-132= 100010000 100001110 = 2210E<br><b>Number of seconds after providing navigation data that beacon transmitted the above encoded location information: 1 second</b><br>Bits 109-112= 0100 = 4 | ✓ |
| 3  | Bits 67-85= 000000000 0000000000 = 0<br>Bits 115-132= 100001101 100001101 = 21B0D<br>Bits 109-112= 1001 = A                                                                                                                                          | ✓ |
| 4  | Bits 67-85= 000000000 0101101000 = 168<br>Bits 115-132= 110110011 011001101 = 366CD<br>Bits 109-112= 1001 = 9                                                                                                                                        | ✓ |
| 5  | Bits 67-85= 000000010 0101100110 = 00966<br>Bits 115-132= 110101110 010010000 = 35C90<br>Bits 109-112= 0000 = 0                                                                                                                                      | ✓ |
| 6  | Bits 67-85= 100000000 1101101000 = 40368<br>Bits 115-132= 110110001 011100000 = 362E0<br>Bits 109-112= 0000 = 0                                                                                                                                      | ✓ |
| 7  | Bits 67-85= 110110011 0010110010 = 6CCB2<br>Bits 115-132= 011101101 100000000 = 1DB00<br>Bits 109-112= 0001 = 1                                                                                                                                      | ✓ |
| 8  | Bits 67-85= 110110011 1010110010 = 6CEB2<br>Bits 115-132= 011011100 100000000 = 1B900<br>Bits 109-112= 1011 = B                                                                                                                                      | ✓ |
| 9  | Bits 67-85= 010110100 1101101000 = 2D368<br>Bits 115-132= 000001110 000000001 = 01C01<br>Bits 109-112= 1101 = D                                                                                                                                      | ✓ |
| 10 | Bits 67-85= 010110100 0101101000 = 2D168<br>Bits 115-132= 000100000 000001001 = 04009<br>Bits 109-112= 1110 = E                                                                                                                                      | ✓ |
| 11 | Bits 67-85= 101001001 1100010101 = 52715<br>Bits 115-132= 100000000 100000000 = 20100<br>Bits 109-112= 1110 = E                                                                                                                                      | ✓ |
| 12 | Bits 67-85= 111111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F                                                                                                                                      | ✓ |
| 13 | Bits 67-85= 011111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F                                                                                                                                      | ✓ |

#### 5.3.7 Position Data Encoding – Appendix C to Annex F: NAVIGATION SYSTEM TEST RESULTS - Table F-C.4 – internal GNSS source – ELT(DT) 24bits ADR protocol

Table F-C.4 of C/S T.007 Issue 5 Rev 7, June 2021  
Position Data Encoding Results ELT(DT) Location Protocol

| Script Reference<br>(See Table D.4) | Value of Encoded Location Bits Transmitted by Beacon | Confirmation that<br>BCH Correct (✓) |
|-------------------------------------|------------------------------------------------------|--------------------------------------|
|-------------------------------------|------------------------------------------------------|--------------------------------------|



## Beacon Coding Software & Navigation System

Page: 26 of 35  
Ref: DRD22033  
Issue: A  
Date: 4th Feb 2022

### TEST REPORT

|    |                                                                                                                                                                                                                                                      |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1  | Bits 67-85= 01111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F                                                                                                                                       | ✓ |
| 2  | Bits 67-85= 100000000 1000000000 = 40200<br>Bits 115-132= 100010000 100001110 = 2210E<br><b>Number of seconds after providing navigation data that beacon transmitted the above encoded location information: 1 second</b><br>Bits 109-112= 0100 = 4 | ✓ |
| 3  | Bits 67-85= 000000000 0000000000 = 0<br>Bits 115-132= 100001101 100001101 = 21B0D<br>Bits 109-112= 1001 = A                                                                                                                                          | ✓ |
| 4  | Bits 67-85= 000000000 0101101000 = 168<br>Bits 115-132= 110110011 011001101 = 366CD<br>Bits 109-112= 1001 = 9                                                                                                                                        | ✓ |
| 5  | Bits 67-85= 000000010 0101100110 = 00966<br>Bits 115-132= 110101110 010010000 = 35C90<br>Bits 109-112= 0000 = 0                                                                                                                                      | ✓ |
| 6  | Bits 67-85= 100000000 1101101000 = 40368<br>Bits 115-132= 110110001 011100000 = 362E0<br>Bits 109-112= 0000 = 0                                                                                                                                      | ✓ |
| 7  | Bits 67-85= 110110011 0010110010 = 6CCB2<br>Bits 115-132= 011101101 100000000 = 1DB00<br>Bits 109-112= 0001 = 1                                                                                                                                      | ✓ |
| 8  | Bits 67-85= 110110011 1010110010 = 6CEB2<br>Bits 115-132= 011011100 100000000 = 1B900<br>Bits 109-112= 1011 = B                                                                                                                                      | ✓ |
| 9  | Bits 67-85= 010110100 1101101000 = 2D368<br>Bits 115-132= 000001110 000000001 = 01C01<br>Bits 109-112= 1101 = D                                                                                                                                      | ✓ |
| 10 | Bits 67-85= 010110100 0101101000 = 2D168<br>Bits 115-132= 000100000 000001001 = 04009<br>Bits 109-112= 1110 = E                                                                                                                                      | ✓ |
| 11 | Bits 67-85= 101001001 1100010101 = 52715<br>Bits 115-132= 100000000 100000000 = 20100<br>Bits 109-112= 1110 = E                                                                                                                                      | ✓ |
| 12 | Bits 67-85= 111111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F                                                                                                                                      | ✓ |
| 13 | Bits 67-85= 011111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F                                                                                                                                      | ✓ |



## Beacon Coding Software & Navigation System

Page: 27 of 35  
Ref: DRD22033  
Issue: A  
Date: 4<sup>th</sup> Feb 2022

### TEST REPORT

#### 5.3.8 Position Data Encoding – Appendix C to Annex F: NAVIGATION SYSTEM TEST RESULTS - Table F-C.4 – internal GNSS source – ELT(DT) 24bits ADR protocol, with 3LD

Table F-C.4 of C/S T.007 Issue 5 Rev 7, June 2021  
Position Data Encoding Results ELT(DT) Location Protocol

| Script Reference<br>(See Table D.4) | Value of Encoded Location Bits Transmitted by Beacon                                                                                                                                                                                          | Confirmation that<br>BCH Correct (✓) |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1                                   | Bits 67-85= 01111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F                                                                                                                                | ✓                                    |
| 2                                   | Bits 67-85= 100000000 1000000000 = 40200<br>Bits 115-132= 100010000 100001110 = 2210E<br>Number of seconds after providing navigation data that beacon transmitted the above encoded location information: 1 second<br>Bits 109-112= 0100 = 4 | ✓                                    |
| 3                                   | Bits 67-85= 000000000 0000000000 = 0<br>Bits 115-132= 100001101 100001101 = 21B0D<br>Bits 109-112= 1001 = A                                                                                                                                   | ✓                                    |
| 4                                   | Bits 67-85= 000000000 0101101000 = 168<br>Bits 115-132= 110110011 011001101 = 366CD<br>Bits 109-112= 1001 = 9                                                                                                                                 | ✓                                    |
| 5                                   | Bits 67-85= 000000010 0101100110 = 00966<br>Bits 115-132= 110101110 010010000 = 35C90<br>Bits 109-112= 0000 = 0                                                                                                                               | ✓                                    |
| 6                                   | Bits 67-85= 100000000 1101101000 = 40368<br>Bits 115-132= 110110001 011100000 = 362E0<br>Bits 109-112= 0000 = 0                                                                                                                               | ✓                                    |
| 7                                   | Bits 67-85= 110110011 0010110010 = 6CCB2<br>Bits 115-132= 011101101 100000000 = 1DB00<br>Bits 109-112= 0001 = 1                                                                                                                               | ✓                                    |
| 8                                   | Bits 67-85= 110110011 1010110010 = 6CEB2<br>Bits 115-132= 011011100 100000000 = 1B900<br>Bits 109-112= 1011 = B                                                                                                                               | ✓                                    |
| 9                                   | Bits 67-85= 010110100 1101101000 = 2D368<br>Bits 115-132= 000001110 000000001 = 01C01<br>Bits 109-112= 1101 = D                                                                                                                               | ✓                                    |
| 10                                  | Bits 67-85= 010110100 0101101000 = 2D168<br>Bits 115-132= 000100000 000001001 = 04009<br>Bits 109-112= 1110 = E                                                                                                                               | ✓                                    |
| 11                                  | Bits 67-85= 101001001 1100010101 = 52715<br>Bits 115-132= 100000000 100000000 = 20100<br>Bits 109-112= 1110 = E                                                                                                                               | ✓                                    |
| 12                                  | Bits 67-85= 111111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 056B5<br>Bits 109-112= 1111 = F<br>Bits 113-114= 0                                                                                                            | ✓                                    |



## Beacon Coding Software & Navigation System

Page: 28 of 35  
Ref: DRD22033  
Issue: A  
Date: 4<sup>th</sup> Feb 2022

### TEST REPORT

|    |                                                                                                                                    |   |
|----|------------------------------------------------------------------------------------------------------------------------------------|---|
| 13 | Bits 67-85= 01111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 056B5<br>Bits 109-112= 1111 = F<br>Bits 113-114 = 0 | ✓ |
|----|------------------------------------------------------------------------------------------------------------------------------------|---|

#### 5.3.9 Position Data Encoding – Appendix C to Annex F: NAVIGATION SYSTEM TEST RESULTS - Table F-C.4 – external (ARINC) location source – ELT(DT) 24bits ADR protocol

Table F-C.4 of C/S T.007 Issue 5 Rev 7, June 2021  
Position Data Encoding Results ELT(DT) Location Protocol

| Script Reference<br>(See Table D.4) | Value of Encoded Location Bits Transmitted by Beacon                                                                                                                                                                                   | Confirmation that<br>BCH Correct (✓) |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1                                   | Bits 67-85= 11111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112 = 1111 = F                                                                                                                        | ✓                                    |
| 2                                   | Bits 67-85= 100000000 1000000000 = 40240<br>Bits 115-132= 100010000 10001110 = 2210E<br>Number of seconds after providing navigation data that beacon transmitted the above encoded location information: 2 seconds<br>Bits 109-112= 4 | ✓                                    |
| 3                                   | Bits 67-85= 000000000 0000000000 = 0<br>Bits 115-132= 100001101 100001101 = 21B0D<br>Bits 109-112= A                                                                                                                                   | ✓                                    |
| 4                                   | Bits 67-85= 000000000 0101101000 = 168<br>Bits 115-132= 110110010 011001101 = 366CD<br>Bits 109-112= 9                                                                                                                                 | ✓                                    |
| 5                                   | Bits 67-85= 000000010 0101100110 = 00966<br>Bits 115-132= 110101110 010010000 = 35C90<br>Bits 109-112= 0                                                                                                                               | ✓                                    |
| 6                                   | Bits 67-85= 100000000 1101101000 = 40368<br>Bits 115-132= 110110001 011100000 = 362E0<br>Bits 109-112= 0                                                                                                                               | ✓                                    |
| 7                                   | Bits 67-85= 110110011 0010110010 = 6CCB2<br>Bits 115-132= 011101101 100000000 = 1DB00<br>Bits 109-112= 1                                                                                                                               | ✓                                    |
| 8                                   | Bits 67-85= 110110011 1010110010 = 6CEB2<br>Bits 115-132= 011011101 100000000 = 1B900<br>Bits 109-112= B                                                                                                                               | ✓                                    |
| 9                                   | Bits 67-85= 010110100 1101101000 = 2D368<br>Bits 115-132= 000001110 000000010 = 01C01<br>Bits 109-112= D                                                                                                                               | ✓                                    |
| 10                                  | Bits 67-85= 010110100 0101101000 = 2D168<br>Bits 115-132= 000100000 000001001 = 04009                                                                                                                                                  | ✓                                    |



## Beacon Coding Software & Navigation System

Page: 29 of 35  
Ref: DRD22033  
Issue: A  
Date: 4<sup>th</sup> Feb 2022

### TEST REPORT

|    |                                                                                                          |   |
|----|----------------------------------------------------------------------------------------------------------|---|
|    | Bits 109-112= E                                                                                          |   |
| 11 | Bits 67-85= 101001001 1100010101 = 52715<br>Bits 115-132= 100000000 100000000 = 20100<br>Bits 109-112= E | ✓ |
| 12 | Bits 67-85= 111111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= F | ✓ |
| 13 | Bits 67-85= 011111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= F | ✓ |

#### 5.3.10 Position Data Encoding – Appendix C to Annex F: NAVIGATION SYSTEM TEST RESULTS - Table F-C.4 – external ARINC source – ELT(DT) 24bits ADR protocol, with 3LD

Table F-C.4 of C/S T.007 Issue 5 Rev 7, June 2021  
Position Data Encoding Results ELT(DT) Location Protocol

| Script Reference<br>(See Table D.4) | Value of Encoded Location Bits Transmitted by Beacon                                                                                                                                                                                           | Confirmation that<br>BCH Correct (✓) |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1                                   | Bits 67-85= 011111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F                                                                                                                                | ✓                                    |
| 2                                   | Bits 67-85= 100000000 1000000000 = 40200<br>Bits 115-132= 100010000 100001110 = 2210E<br>Number of seconds after providing navigation data that beacon transmitted the above encoded location information: 2 seconds<br>Bits 109-112= 0100 = 4 | ✓                                    |
| 3                                   | Bits 67-85= 000000000 0000000000 = 0<br>Bits 115-132= 100001101 100001101 = 21B0D<br>Bits 109-112= 1001 = A                                                                                                                                    | ✓                                    |
| 4                                   | Bits 67-85= 000000000 0101101000 = 168<br>Bits 115-132= 110110011 011001101 = 366CD<br>Bits 109-112= 1001 = 9                                                                                                                                  | ✓                                    |
| 5                                   | Bits 67-85= 000000010 0101100110 = 00966<br>Bits 115-132= 110101110 010010000 = 35C90<br>Bits 109-112= 0000 = 0                                                                                                                                | ✓                                    |
| 6                                   | Bits 67-85= 100000000 1101101000 = 40368<br>Bits 115-132= 110110001 011100000 = 362E0<br>Bits 109-112= 0000 = 0                                                                                                                                | ✓                                    |
| 7                                   | Bits 67-85= 110110011 0010110010 = 6CCB2<br>Bits 115-132= 011101101 100000000 = 1DB00<br>Bits 109-112= 0001 = 1                                                                                                                                | ✓                                    |
| 8                                   | Bits 67-85= 110110011 1010110010 = 6CEB2<br>Bits 115-132= 011011100 100000000 = 1B900<br>Bits 109-112= 1011 = B                                                                                                                                | ✓                                    |

Copyright © Orolia S.A.S. All rights reserved



## Beacon Coding Software & Navigation System

Page: 30 of 35  
Ref: DRD22033  
Issue: A  
Date: 4<sup>th</sup> Feb 2022

### TEST REPORT

|    |                                                                                                                                       |   |
|----|---------------------------------------------------------------------------------------------------------------------------------------|---|
| 9  | Bits 67-85= 0101101000 1101101000 = 2D368<br>Bits 115-132= 00001110 000000001 = 01C01<br>Bits 109-112= 1101 = D                       | ✓ |
| 10 | Bits 67-85= 0101101000 0101101000 = 2D168<br>Bits 115-132= 0001000000 000001001 = 04009<br>Bits 109-112= 1110 = E                     | ✓ |
| 11 | Bits 67-85= 1010010011 1100010101 = 52715<br>Bits 115-132= 1000000000 1000000000 = 20100<br>Bits 109-112= 1110 = E                    | ✓ |
| 12 | Bits 67-85= 1111111111 0111111111 = 3FDFF<br>Bits 115-132= 1000011111 1000011111 = 056B5<br>Bits 109-112= 1111 = F<br>Bits 113-114= 0 | ✓ |
| 13 | Bits 67-85= 0111111111 0111111111 = 3FDFF<br>Bits 115-132= 1000011111 1000011111 = 056B5<br>Bits 109-112= 1111 = F<br>Bits 113-114= 0 | ✓ |

#### 5.3.11 Position Data Encoding – Appendix C to Annex F: NAVIGATION SYSTEM TEST RESULTS - Table F-C.4 – internal GNSS source – ELT(DT) TAC & Serial number protocol

Table F-C.4 of C/S T.007 Issue 5 Rev 7, June 2021  
Position Data Encoding Results ELT(DT) Location Protocol

| Script Reference<br>(See Table D.4) | Value of Encoded Location Bits Transmitted by Beacon                                                                                                                                                                                            | Confirmation that<br>BCH Correct (✓) |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1                                   | Bits 67-85= 0111111111 0111111111 = 3FDFF<br>Bits 115-132= 1000011111 1000011111 = 21F0F<br>Bits 109-112= 1111 = F                                                                                                                              | ✓                                    |
| 2                                   | Bits 67-85= 1000000000 1000000000 = 40200<br>Bits 115-132= 1000100000 100001110 = 2210E<br>Number of seconds after providing navigation data that beacon transmitted the above encoded location information: 1 second<br>Bits 109-112= 0100 = 4 | ✓                                    |
| 3                                   | Bits 67-85= 0000000000 0000000000 = 0<br>Bits 115-132= 1000011011 1000011011 = 21B0D<br>Bits 109-112= 1001 = A                                                                                                                                  | ✓                                    |
| 4                                   | Bits 67-85= 0000000000 0101101000 = 168<br>Bits 115-132= 1101100111 011001101 = 366CD<br>Bits 109-112= 1001 = 9                                                                                                                                 | ✓                                    |
| 5                                   | Bits 67-85= 000000010 0101100110 = 00966<br>Bits 115-132= 110101110 010010000 = 35C90<br>Bits 109-112= 0000 = 0                                                                                                                                 | ✓                                    |
| 6                                   | Bits 67-85= 1000000000 1101101000 = 40368<br>Bits 115-132= 110110001 011100000 = 362E0<br>Bits 109-112= 0000 = 0                                                                                                                                | ✓                                    |



## Beacon Coding Software & Navigation System

Page: 31 of 35  
Ref: DRD22033  
Issue: A  
Date: 4<sup>th</sup> Feb 2022

### TEST REPORT

|    |                                                                                                                 |   |
|----|-----------------------------------------------------------------------------------------------------------------|---|
| 7  | Bits 67-85= 110110011 0010110010 = 6CCB2<br>Bits 115-132= 011101101 100000000 = 1DB00<br>Bits 109-112= 0001 = 1 | ✓ |
| 8  | Bits 67-85= 110110011 1010110010 = 6CEB2<br>Bits 115-132= 011011100 100000000 = 1B900<br>Bits 109-112= 1011 = B | ✓ |
| 9  | Bits 67-85= 010110100 1101101000 = 2D368<br>Bits 115-132= 000001110 000000001 = 01C01<br>Bits 109-112= 1101 = D | ✓ |
| 10 | Bits 67-85= 010110100 0101101000 = 2D168<br>Bits 115-132= 000100000 000001001 = 04009<br>Bits 109-112= 1110 = E | ✓ |
| 11 | Bits 67-85= 101001001 1100010101 = 52715<br>Bits 115-132= 100000000 100000000 = 20100<br>Bits 109-112= 1110 = E | ✓ |
| 12 | Bits 67-85= 111111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F | ✓ |
| 13 | Bits 67-85= 011111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F | ✓ |

#### 5.3.12 Position Data Encoding – Appendix C to Annex F: NAVIGATION SYSTEM TEST RESULTS - Table F-C.4 – external ARINC source – ELT(DT) TAC and Serial number protocol

Table F-C.4 of C/S T.007 Issue 5 Rev 7, June 2021  
Position Data Encoding Results ELT(DT) Location Protocol

| Script Reference<br>(See Table D.4) | Value of Encoded Location Bits Transmitted by Beacon                                                                                                                                                                                          | Confirmation that<br>BCH Correct (✓) |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1                                   | Bits 67-85= 011111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F                                                                                                                               | ✓                                    |
| 2                                   | Bits 67-85= 100000000 1000000000 = 40200<br>Bits 115-132= 100010000 100001110 = 2210E<br>Number of seconds after providing navigation data that beacon transmitted the above encoded location information: 1 second<br>Bits 109-112= 0100 = 4 | ✓                                    |
| 3                                   | Bits 67-85= 000000000 0000000000 = 0<br>Bits 115-132= 100001101 100001101 = 21B0D<br>Bits 109-112= 1001 = A                                                                                                                                   | ✓                                    |
| 4                                   | Bits 67-85= 000000000 0101101000 = 168<br>Bits 115-132= 110110011 011001101 = 366CD<br>Bits 109-112= 1001 = 9                                                                                                                                 | ✓                                    |



## Beacon Coding Software & Navigation System

Page: 32 of 35  
Ref: DRD22033  
Issue: A  
Date: 4<sup>th</sup> Feb 2022

### TEST REPORT

|    |                                                                                                                 |   |
|----|-----------------------------------------------------------------------------------------------------------------|---|
| 5  | Bits 67-85= 000000010 0101100110 = 00966<br>Bits 115-132= 110101110 010010000 = 35C90<br>Bits 109-112= 0000 = 0 | ✓ |
| 6  | Bits 67-85= 100000000 1101101000 = 40368<br>Bits 115-132= 110110001 011100000 = 362E0<br>Bits 109-112= 0000 = 0 | ✓ |
| 7  | Bits 67-85= 110110011 0010110010 = 6CCB2<br>Bits 115-132= 011101101 100000000 = 1DB00<br>Bits 109-112= 0001 = 1 | ✓ |
| 8  | Bits 67-85= 110110011 1010110010 = 6CEB2<br>Bits 115-132= 011011100 100000000 = 1B900<br>Bits 109-112= 1011 = B | ✓ |
| 9  | Bits 67-85= 010110100 1101101000 = 2D368<br>Bits 115-132= 000001110 000000001 = 01C01<br>Bits 109-112= 1101 = D | ✓ |
| 10 | Bits 67-85= 010110100 0101101000 = 2D168<br>Bits 115-132= 000100000 000001001 = 04009<br>Bits 109-112= 1110 = E | ✓ |
| 11 | Bits 67-85= 101001001 1100010101 = 52715<br>Bits 115-132= 100000000 100000000 = 20100<br>Bits 109-112= 1110 = E | ✓ |
| 12 | Bits 67-85= 111111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F | ✓ |
| 13 | Bits 67-85= 011111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F | ✓ |

#### 5.3.13 Position Data Encoding – Appendix C to Annex F: NAVIGATION SYSTEM TEST RESULTS - Table F-C.4 – internal GNSS source – ELT(DT) Location Test protocol, with 3LD

Table F-C.4 of C/S T.007 Issue 5 Rev 7, June 2021  
Position Data Encoding Results ELT(DT) Location Protocol

| Script Reference<br>(See Table D.4) | Value of Encoded Location Bits Transmitted by Beacon                                                                                                                                                                                             | Confirmation that<br>BCH Correct (✓) |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1                                   | Bits 67-85= 011111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F                                                                                                                                  | ✓                                    |
| 2                                   | Bits 67-85= 100000000 1000000000 = 40200<br>Bits 115-132= 100010000 100001110 = 2210E<br>Number of seconds after providing navigation data that beacon<br>transmitted the above encoded location information: 1 second<br>Bits 109-112= 0100 = 4 | ✓                                    |



## Beacon Coding Software & Navigation System

Page: 33 of 35  
Ref: DRD22033  
Issue: A  
Date: 4<sup>th</sup> Feb 2022

### TEST REPORT

|    |                                                                                                                                    |   |
|----|------------------------------------------------------------------------------------------------------------------------------------|---|
| 3  | Bits 67-85= 000000000 0000000000 = 0<br>Bits 115-132= 100001101 100001101 = 21B0D<br>Bits 109-112= 1001 = A                        | ✓ |
| 4  | Bits 67-85= 000000000 0101101000 = 168<br>Bits 115-132= 110110011 011001101 = 366CD<br>Bits 109-112= 1001 = 9                      | ✓ |
| 5  | Bits 67-85= 000000010 0101100110 = 00966<br>Bits 115-132= 110101110 010010000 = 35C90<br>Bits 109-112= 0000 = 0                    | ✓ |
| 6  | Bits 67-85= 100000000 1101101000 = 40368<br>Bits 115-132= 110110001 011100000 = 362E0<br>Bits 109-112= 0000 = 0                    | ✓ |
| 7  | Bits 67-85= 110110011 0010110010 = 6CCB2<br>Bits 115-132= 011101101 100000000 = 1DB00<br>Bits 109-112= 0001 = 1                    | ✓ |
| 8  | Bits 67-85= 110110011 1010110010 = 6CEB2<br>Bits 115-132= 011011100 100000000 = 1B900<br>Bits 109-112= 1011 = B                    | ✓ |
| 9  | Bits 67-85= 010110100 1101101000 = 2D368<br>Bits 115-132= 000001110 000000001 = 01C01<br>Bits 109-112= 1101 = D                    | ✓ |
| 10 | Bits 67-85= 010110100 0101101000 = 2D168<br>Bits 115-132= 000100000 000001001 = 04009<br>Bits 109-112= 1110 = E                    | ✓ |
| 11 | Bits 67-85= 101001001 1100010101 = 52715<br>Bits 115-132= 100000000 100000000 = 20100<br>Bits 109-112= 1110 = E                    | ✓ |
| 12 | Bits 67-85= 111111111 0111111111 = 3FDFF<br>Bits 115-132= 0001010110 10110101 = 056B5<br>Bits 109-112= 1111 = F<br>Bits 113-114= 0 | ✓ |
| 13 | Bits 67-85= 011111111 0111111111 = 3FDFF<br>Bits 115-132= 0001010110 10110101 = 056B5<br>Bits 109-112= 1111 = F<br>Bits 113-114= 0 | ✓ |

#### 5.3.14 Position Data Encoding – Appendix C to Annex F: NAVIGATION SYSTEM TEST RESULTS - Table F-C.4 – external ARINC source – ELT(DT) Location Test protocol, with 3LD

Table F-C.4 of C/S T.007 Issue 5 Rev 7, June 2021  
Position Data Encoding Results ELT(DT) Location Protocol

| Script Reference<br>(See Table D.4) | Value of Encoded Location Bits Transmitted by Beacon                                                            | Confirmation that<br>BCH Correct (✓) |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1                                   | Bits 67-85= 011111111 0111111111 = 3FDFF<br>Bits 115-132= 100001111 100001111 = 21F0F<br>Bits 109-112= 1111 = F | ✓                                    |



## Beacon Coding Software & Navigation System

Page: 34 of 35  
Ref: DRD22033  
Issue: A  
Date: 4<sup>th</sup> Feb 2022

### TEST REPORT

|    |                                                                                                                                                                                                                                               |   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2  | Bits 67-85= 100000000 1000000000 = 40200<br>Bits 115-132= 100010000 100001110 = 2210E<br>Number of seconds after providing navigation data that beacon transmitted the above encoded location information: 1 second<br>Bits 109-112= 0100 = 4 | ✓ |
| 3  | Bits 67-85= 000000000 0000000000 = 0<br>Bits 115-132= 100001101 100001101 = 21B0D<br>Bits 109-112= 1001 = A                                                                                                                                   | ✓ |
| 4  | Bits 67-85= 000000000 0101101000 = 168<br>Bits 115-132= 110110011 011001101 = 366CD<br>Bits 109-112= 1001 = 9                                                                                                                                 | ✓ |
| 5  | Bits 67-85= 000000010 0101100110 = 00966<br>Bits 115-132= 110101110 010010000 = 35C90<br>Bits 109-112= 0000 = 0                                                                                                                               | ✓ |
| 6  | Bits 67-85= 100000000 1101101000 = 40368<br>Bits 115-132= 110110001 011100000 = 362E0<br>Bits 109-112= 0000 = 0                                                                                                                               | ✓ |
| 7  | Bits 67-85= 110110011 0010110010 = 6CCB2<br>Bits 115-132= 011101101 100000000 = 1DB00<br>Bits 109-112= 0001 = 1                                                                                                                               | ✓ |
| 8  | Bits 67-85= 110110011 1010110010 = 6CEB2<br>Bits 115-132= 011011100 100000000 = 1B900<br>Bits 109-112= 1011 = B                                                                                                                               | ✓ |
| 9  | Bits 67-85= 010110100 1101101000 = 2D368<br>Bits 115-132= 000001110 000000001 = 01C01<br>Bits 109-112= 1101 = D                                                                                                                               | ✓ |
| 10 | Bits 67-85= 010110100 0101101000 = 2D168<br>Bits 115-132= 000100000 000001001 = 04009<br>Bits 109-112= 1110 = E                                                                                                                               | ✓ |
| 11 | Bits 67-85= 101001001 1100010101 = 52715<br>Bits 115-132= 100000000 100000000 = 20100<br>Bits 109-112= 1110 = E                                                                                                                               | ✓ |
| 12 | Bits 67-85= 111111111 011111111 = 3FDFF<br>Bits 115-132= 0001010110 10110101 = 056B5<br>Bits 109-112= 1111 = F<br>Bits 113-114 = 0                                                                                                            | ✓ |
| 13 | Bits 67-85= 011111111 011111111 = 3FDFF<br>Bits 115-132= 0001010110 10110101 = 056B5<br>Bits 109-112= 1111 = F<br>Bits 113-114 = 0                                                                                                            | ✓ |

#### 5.3.15 Conclusion

- Test is PASSED for internal GNSS location source.
- Test is PASSED for external ARINC location source.



## Beacon Coding Software & Navigation System

Page: 35 of 35  
Ref: DRD22033  
Issue: A  
Date: 4<sup>th</sup> Feb 2022

### TEST REPORT

---

## 6 Photographs

Not applicable.

## 7 Test Equipment Used

The following test equipment was used during the execution of the test procedure:

| <u>Type</u>            | <u>Description</u>                                                            | <u>Calibration due</u> |
|------------------------|-------------------------------------------------------------------------------|------------------------|
| RF Diplexer            | Amphenol PRO-DIPX 1000/1550 DC-LH XS                                          | Not applicable         |
| Beacon Tester          | WST STB100<br>Beacon Test Bench<br>S/N: 20001                                 | 21-September-2023      |
| Virtual GPS            | Generate and transmit NMEA through serial interface<br>Version V1.53, ZylSoft | Not applicable         |
| Power Supply<br>28V DC | RS3005D<br>ECME 1662                                                          | Not applicable         |
| ARINC 429 transmitter  | TechSat<br>A429USB-NT<br>P/N 403557<br>S/N 01169                              | Not applicable         |
| USB-Serial cable       | FTDI TTL RS232 adapter<br>TTL-232R-RPi                                        | Not applicable         |

## 8 Other Technical Information

Not applicable.

## 9 Technical data submitted by Beacon manufacturer

Not applicable



## **ANNEX B**

### **BATTERY CURRENT MEASUREMENT REPEAT**



## **B.1 BATTERY CURRENT RE-MEASUREMENTS**

### **B.1.1 Specification**

Cospas-Sarsat T.007, Clause A.2.3

### **B.1.2 Equipment Under Test and Modification State**

ULTIMA-DT-05 S/N: TO0010000002 - Modification State 0

### **B.1.3 Date of Test**

30 May 2023, 31 May 2023 and 01 June 2023

### **B.1.4 Test Equipment Used**

The major items of test equipment used for the above tests are identified in Section 3.1.

### **B.1.5 Laboratory Environmental Conditions**

Ambient Temperature 23.1 – 24.3°C

Relative Humidity 30.5 – 34.8%



## B.1.6 Test Results

### Notes

This section was repeated due to error's being found in the resistance used to calculated current measurements.

### Operating Current Measurements and Analysis

System Configuration/Operating Mode Matrix (SCCOMM):

| System Configuration →                                                                                                                     | A                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Operational Mode ↓                                                                                                                         | All Ancillaries Connected: Arinc, 28V supply, Remote Panel, Buzzer |
| 1. OFF                                                                                                                                     | A1                                                                 |
| 2. ARMED disabled mode (including periodic EBIT)                                                                                           | A2                                                                 |
| 3. ARMED enabled mode                                                                                                                      | A3                                                                 |
| 4. ARMED – WITHOUT 28V supply                                                                                                              | A4                                                                 |
| 5. EUT activation from ARINC429 Interface (label 202) ONLY 406MHz (T0 to T1 = T0+6h10) - NO GNSS SIGNAL                                    | A5                                                                 |
| 6. EUT activation from ARINC429 Interface (label 202) ONLY 406MHz (T0 to T1 = T0+6h10) - GNSS SIGNAL                                       | A6                                                                 |
| 7. EUT activation WITH 28V power supply loss ONLY 406MHz (T0 to T1 = T0+6h10) - NO GNSS SIGNAL                                             | A7                                                                 |
| 8. EUT activation from Activation with Crash Sensor 406MHz + 121,5MHz - NO GNSS SIGNAL                                                     | A8                                                                 |
| 9. EUT 121,5MHz after 24hours of beacon operation - NO GNSS SIGNAL                                                                         | A9                                                                 |
| 10. EUT activation from beacon front panel control 406MHz + 121,5MHz - NO GNSS SIGNAL                                                      | A10                                                                |
| 11. EUT activation from Remote Control Panel (RC820) 406MHz + 121,5MHz - NO GNSS SIGNAL                                                    | A11                                                                |
| 12. Self-test activation from beacon front panel control                                                                                   | A12                                                                |
| 13. Self-test from beacon from Remote Control Panel (RC820)                                                                                | A13                                                                |
| 15. GNSS Self-test from beacon front panel control – NO GNSS SIGNAL                                                                        | A15                                                                |
| 16. GNSS Self-test from beacon front panel control – GNSS SIGNAL                                                                           | A16                                                                |
| 17. Cancellation message from beacon front panel control (after EUT activation from beacon front panel control)                            | A17                                                                |
| 18. Cancellation message from ARINC429 Interface (label 202) (after EUT activation from ARINC429 Interface (label 202))                    | A18                                                                |
| 19. EUT activation from beacon front panel control 406MHz + 121,5MHz - NO GNSS SIGNAL and REMOVING 28V just after beacon manual activation | A19                                                                |



SCOMM Results as per C/S T.007 Table F-E.1:

| Beacon Operating Mode | Mode: Manually selectable or Automatic | Measurement interval, sec | Average Current, mA | Peak Current, mA |
|-----------------------|----------------------------------------|---------------------------|---------------------|------------------|
| A1                    | Manual                                 | 1000                      | -0.000000105        | 0.0000556        |
| A2                    | Manual                                 | 1000                      | 0.000195            | 0.000266         |
| A3                    | Manual                                 | 1000                      | 0.000187            | 0.000264         |
| A4                    | Manual                                 | 1000                      | 0.0000323           | 0.0000652        |
| A5                    | Autonomous                             | 1000                      | 116.69              | 871.06           |
| A6                    | Autonomous                             | 1000                      | 115.16              | 854.91           |
| A7                    | Autonomous                             | 1000                      | 116.95              | 713.90           |
| A8                    | Automatic                              | 1000                      | 122.69              | 450.81           |
| A9                    | Automatic                              | 1000                      | 28.78               | 44.88            |
| A10                   | Manual                                 | 1000                      | 125.29              | 509.23           |
| A11                   | Manual                                 | 1000                      | 125.69              | 617.67           |
| A12                   | Manual                                 | 26.1                      | 64.98               | 119.07           |
| A13                   | Manual                                 | 26.2                      | 64.80               | 119.39           |
| A15                   | Manual                                 | 179.6                     | 30.38               | 126.12           |
| A16                   | Manual                                 | 26.0                      | 62.04               | 116.24           |
| A17                   | Manual                                 | 100.1                     | 136.97              | 199.84           |
| A18                   | Autonomous                             | 99.9                      | 139.17              | 410.66           |
| A19                   | Manual                                 | 1000                      | 124.34              | 916.61           |

The sampling interval was a nominal 100 ms.

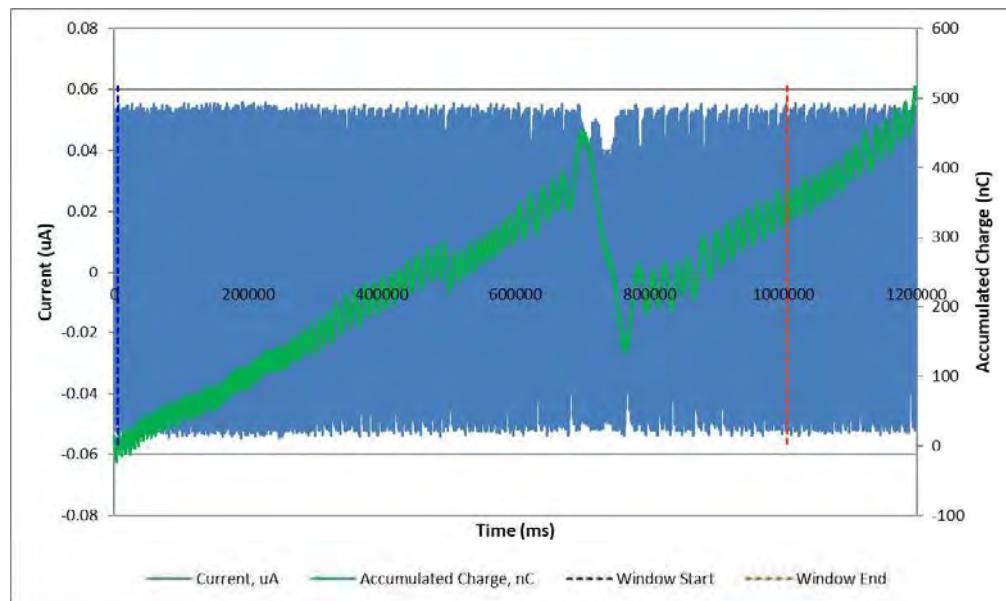
Worst Case System Configurations / Operating Modes

“Lifetime in service” drains (highest average current):

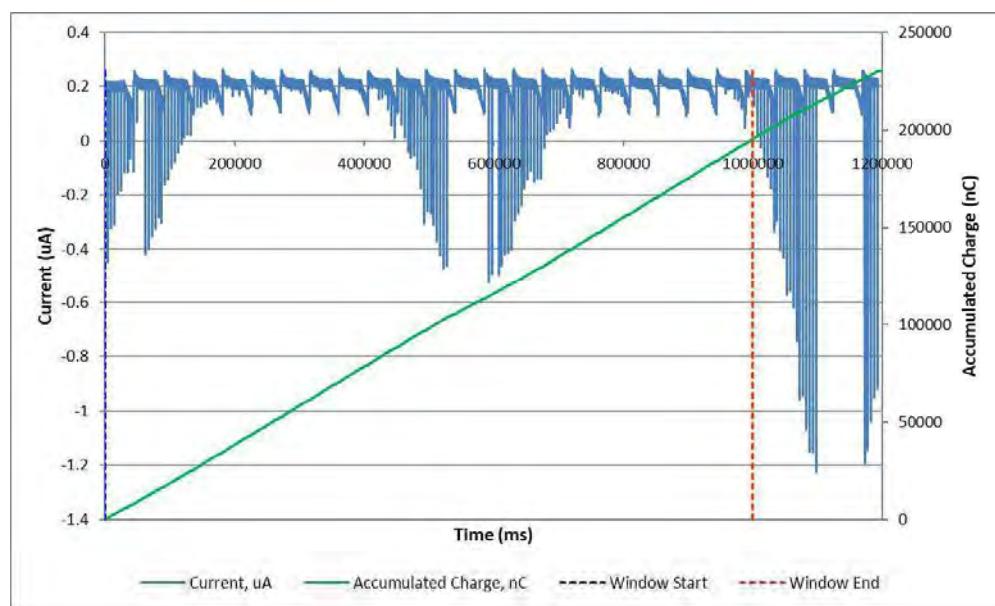
Standby: A2 – All Ancillaries – ARMED disabled mode (including periodic EBIT)

Self-test: A12 – All Ancillaries, Self-Test triggered from beacon front panel

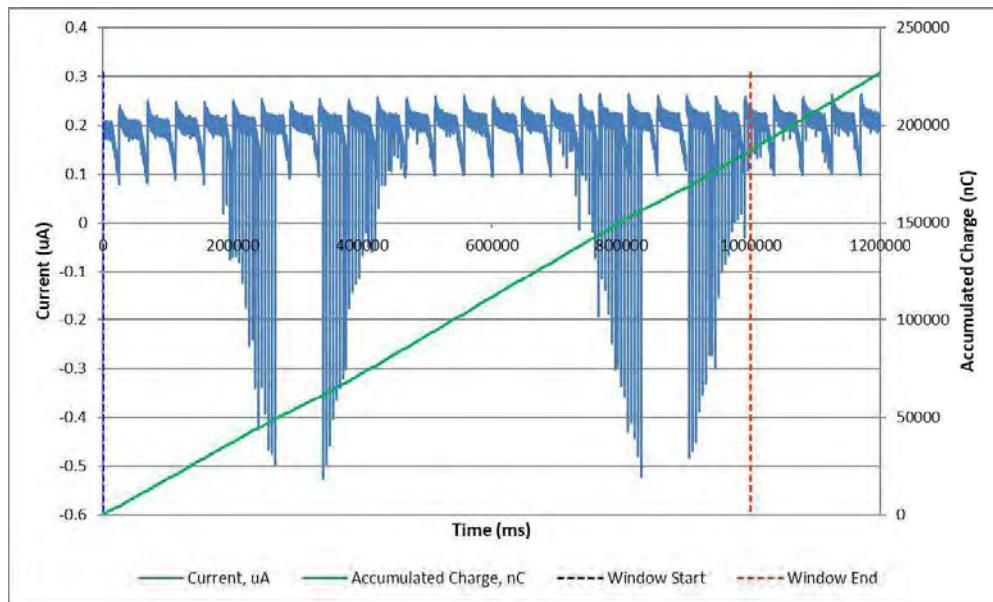
GNSS Self-test (Timeout): A15 – All Ancillaries, GNSS Self-Test triggered from EUT front panel


Note: “Worst case” GNSS Self-test is a test which times out because a long message is transmitted regardless of acquisition.

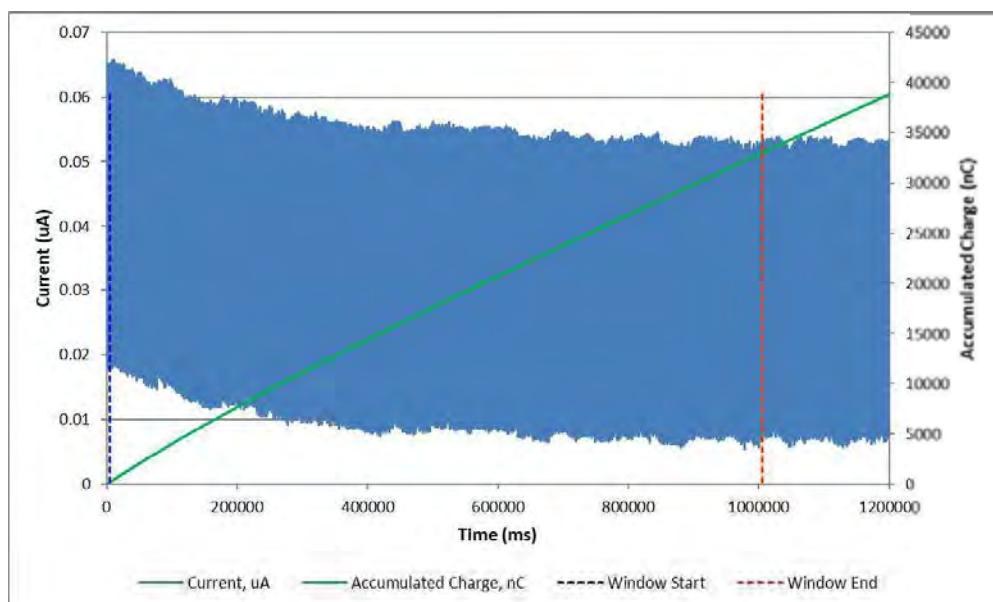
Operating mode during lifetime test (highest average current):

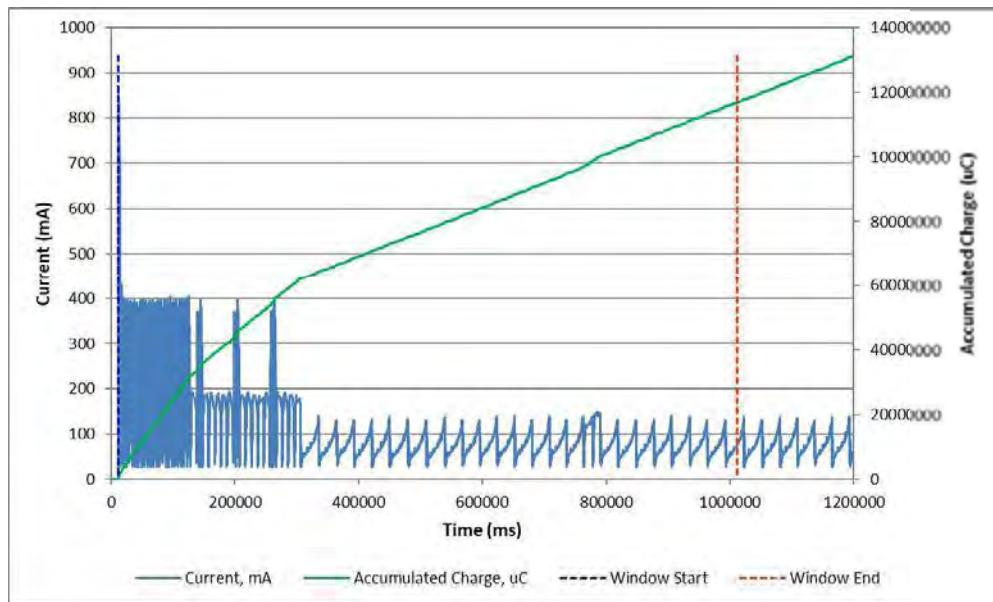

A11 – All Ancillaries, EUT triggered from Remote Control Panel (RC820)

GNSS Signals: No GNSS Applied

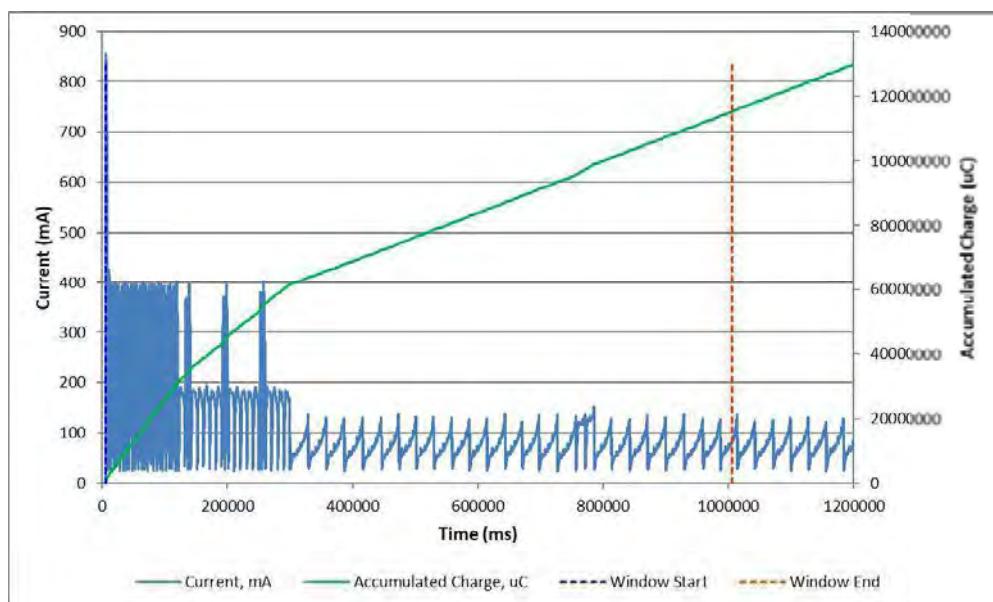

### Current Measurement Plots



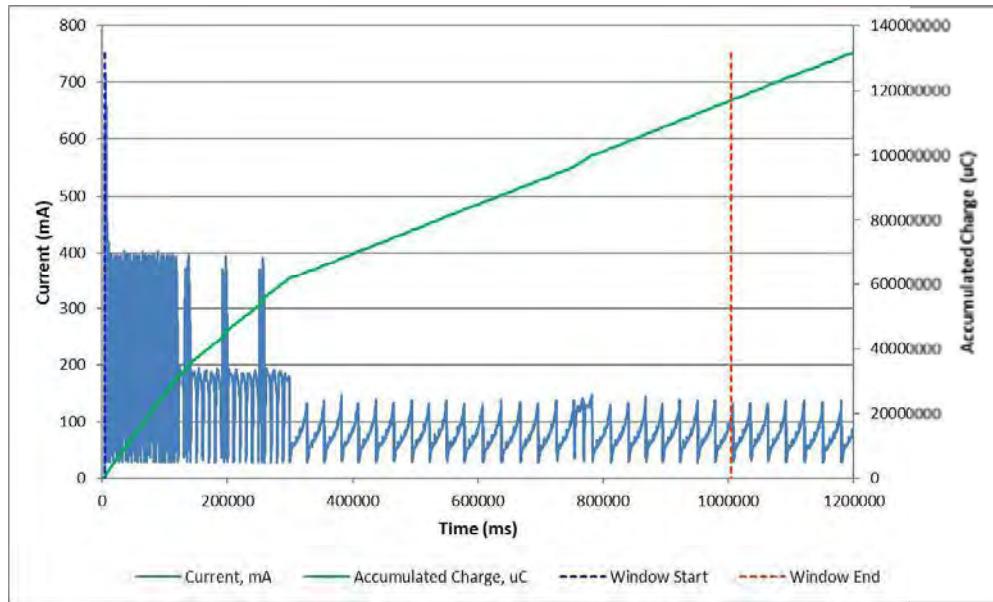

A1: OFF



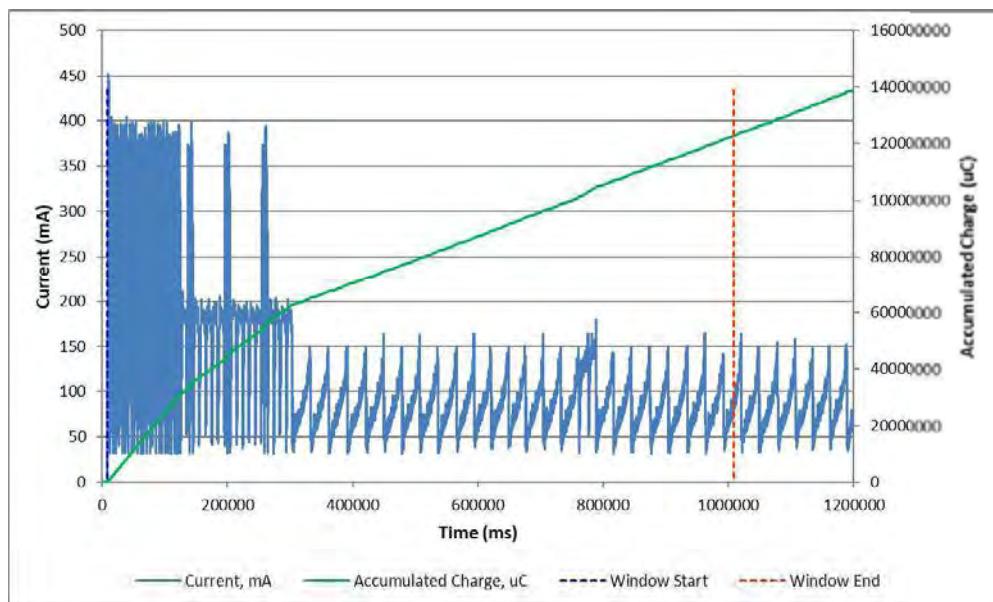

A2: ARMED disabled mode (including periodic EBIT)



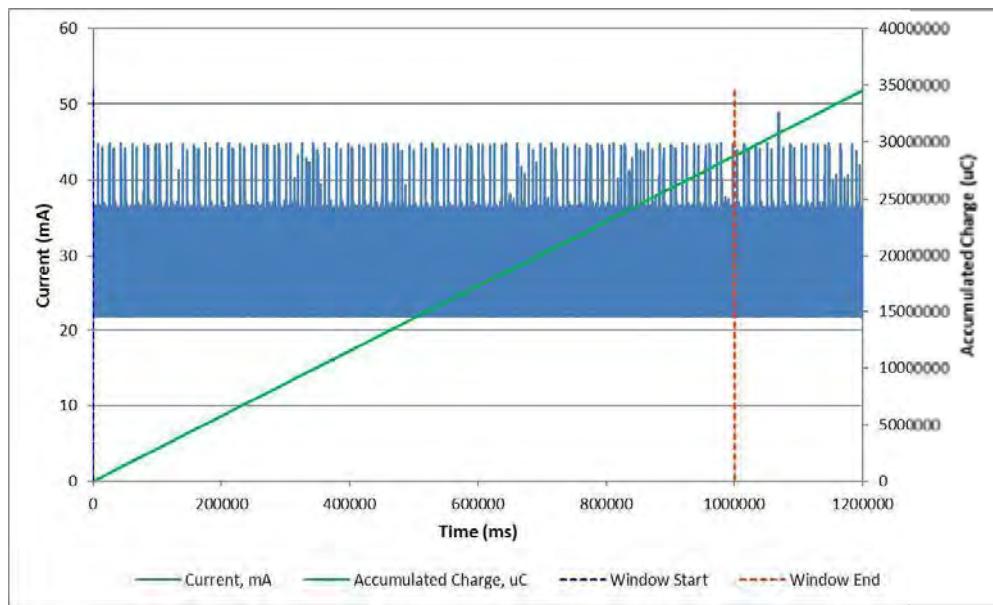

A3: ARMED enabled mode



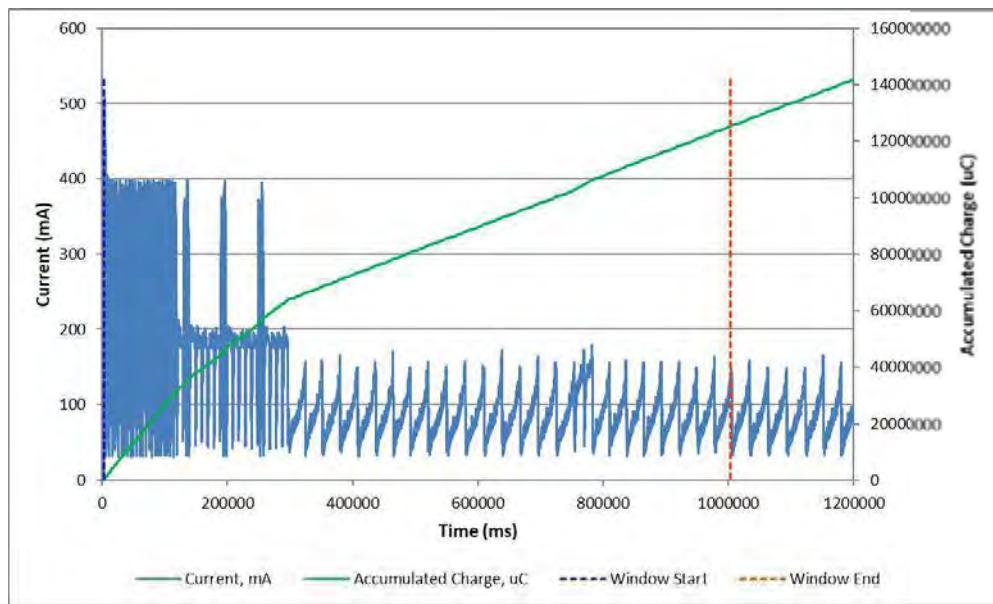




A5: EUT activation from ARINC429 Interface (label 202) ONLY 406MHz (T0 to T1 = T0+6h10) - NO GNSS SIGNAL

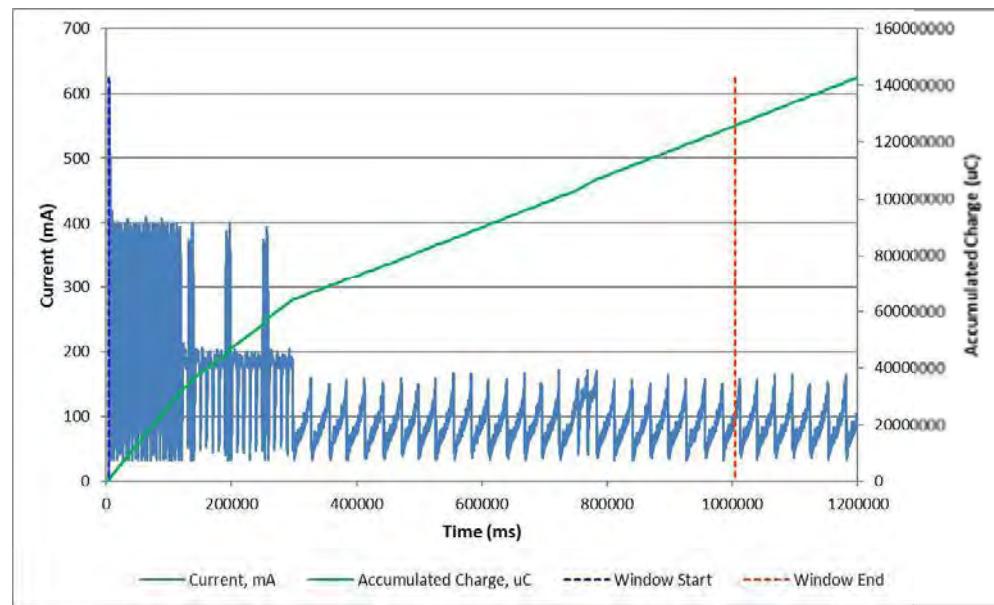



A6: EUT activation from ARINC429 Interface (label 202) ONLY 406MHz (T0 to T1 = T0+6h10) - GNSS SIGNAL

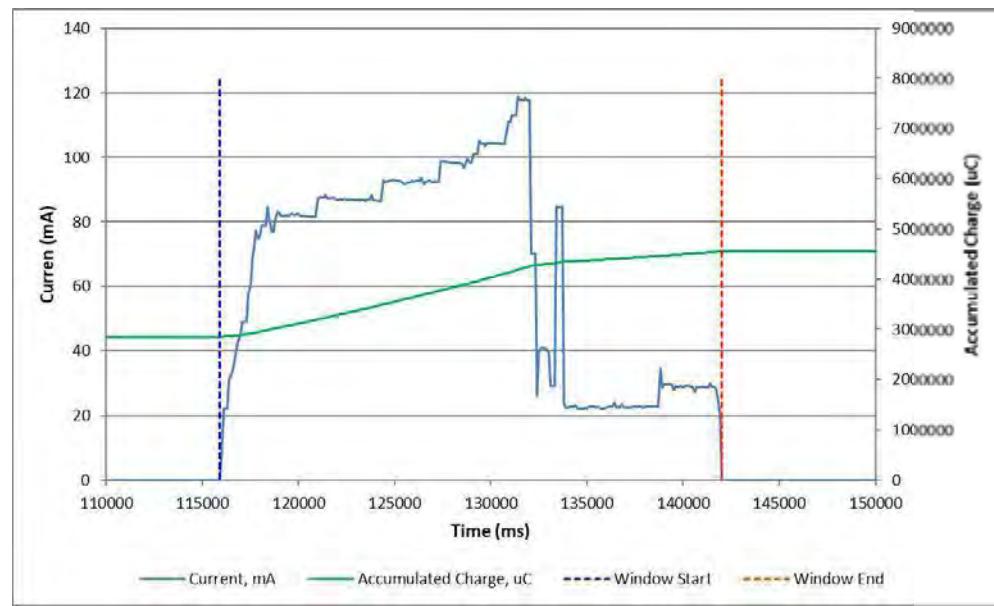


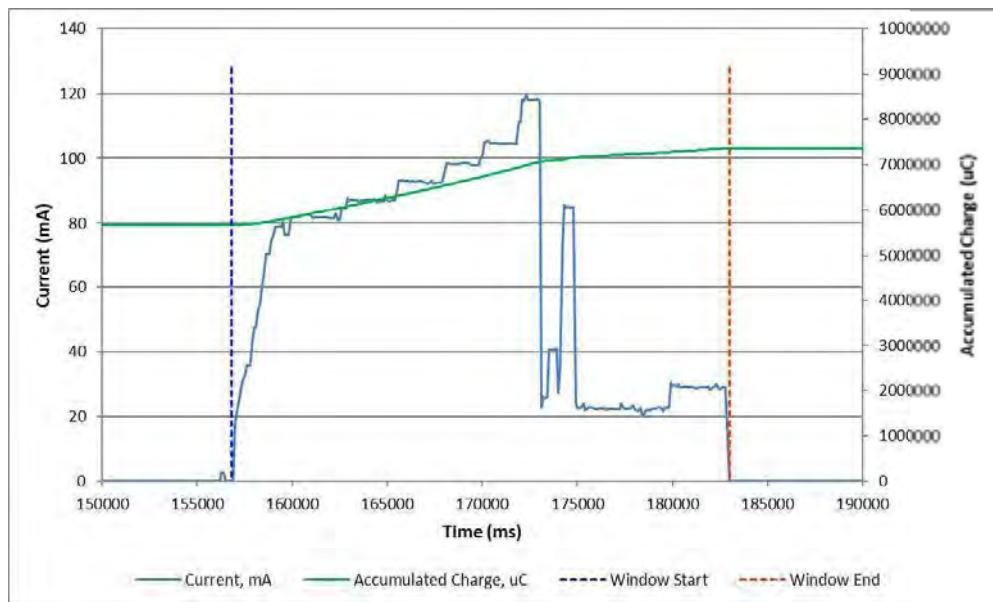

A7: EUT activation WITH 28V power supply loss ONLY 406MHz (T0 to T1 = T0+6h10) - NO GNSS SIGNAL



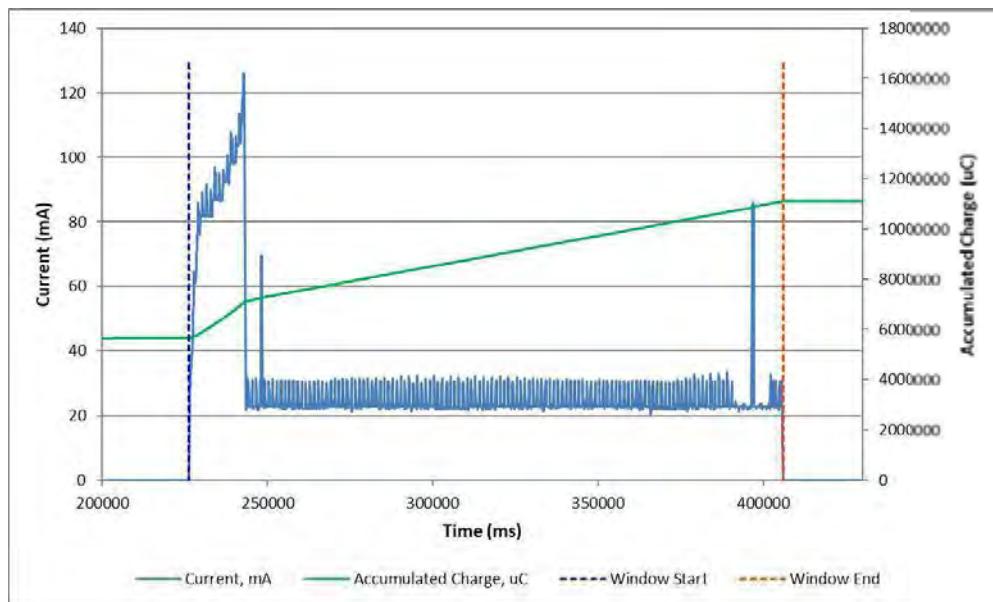

A8: EUT activation from Activation with Crash Sensor 406MHz + 121.5MHz - NO GNSS SIGNAL

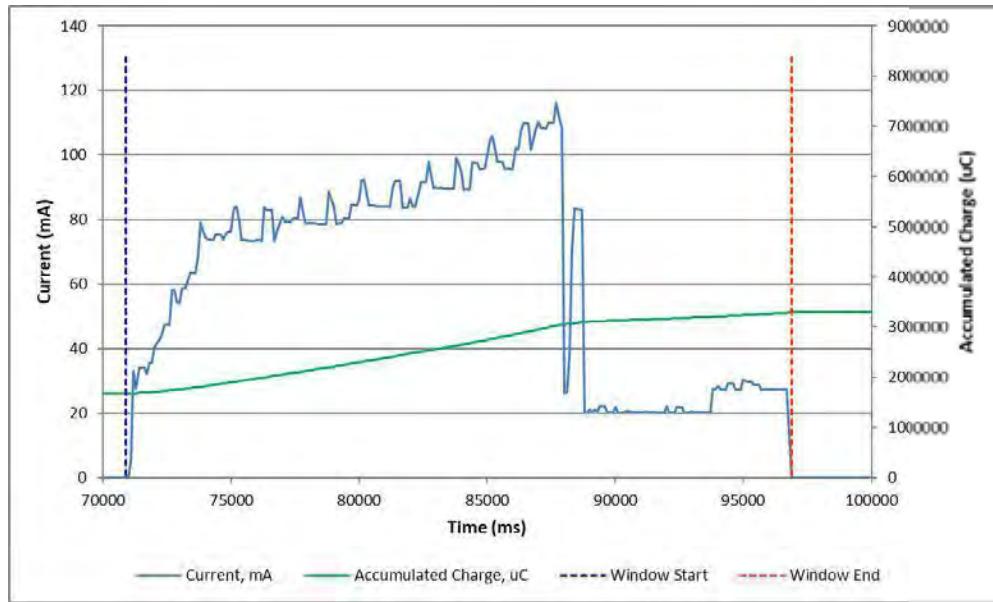



A9: EUT 121,5MHz after 24hours of beacon operation - NO GNSS SIGNAL

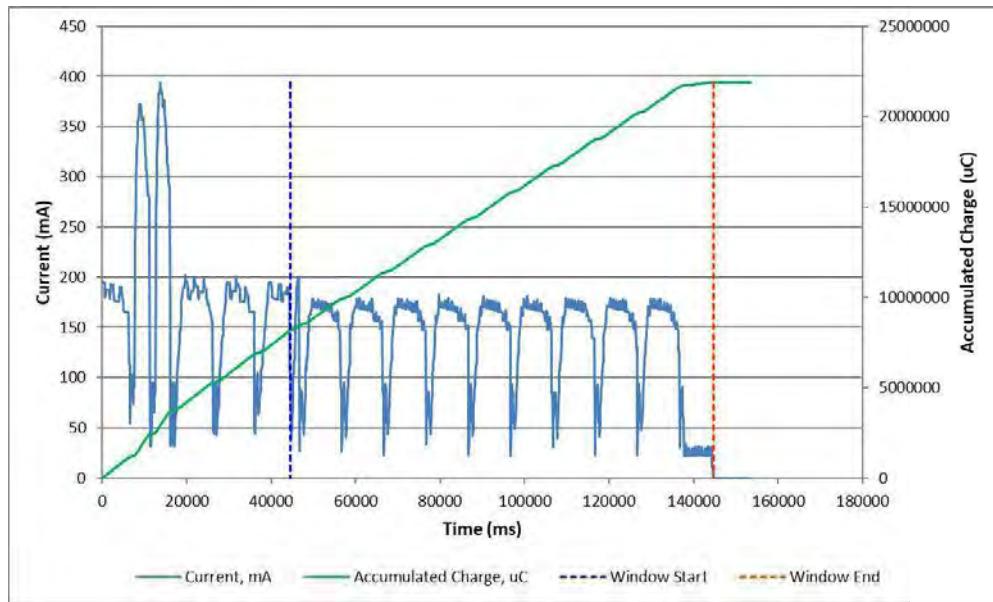



A10: EUT activation from beacon front panel control 406MHz + 121,5MHz - NO GNSS SIGNAL

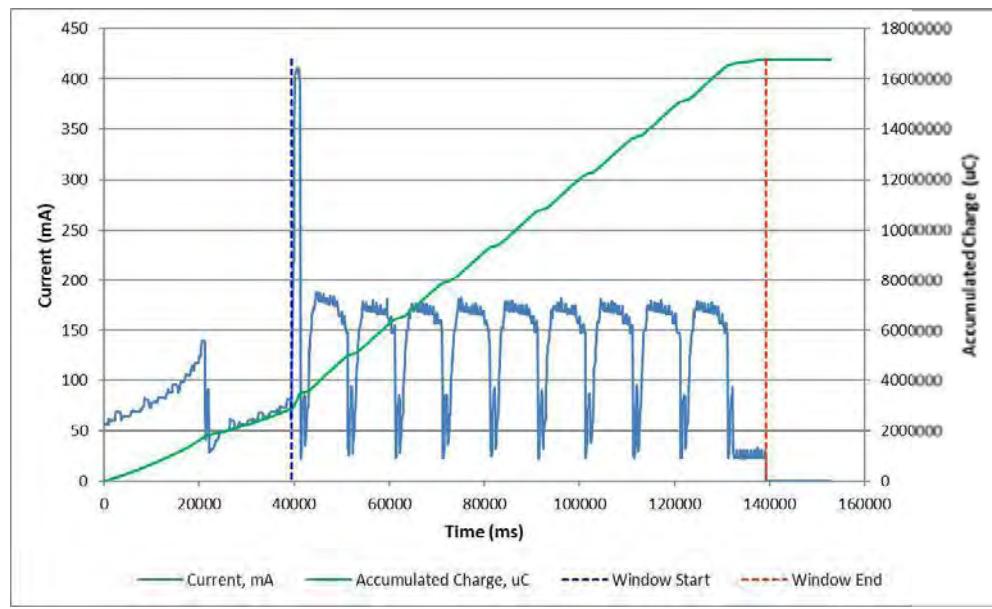




A11: EUT activation from Remote Control Panel (RC820) 406MHz + 121.5MHz - NO GNSS SIGNAL

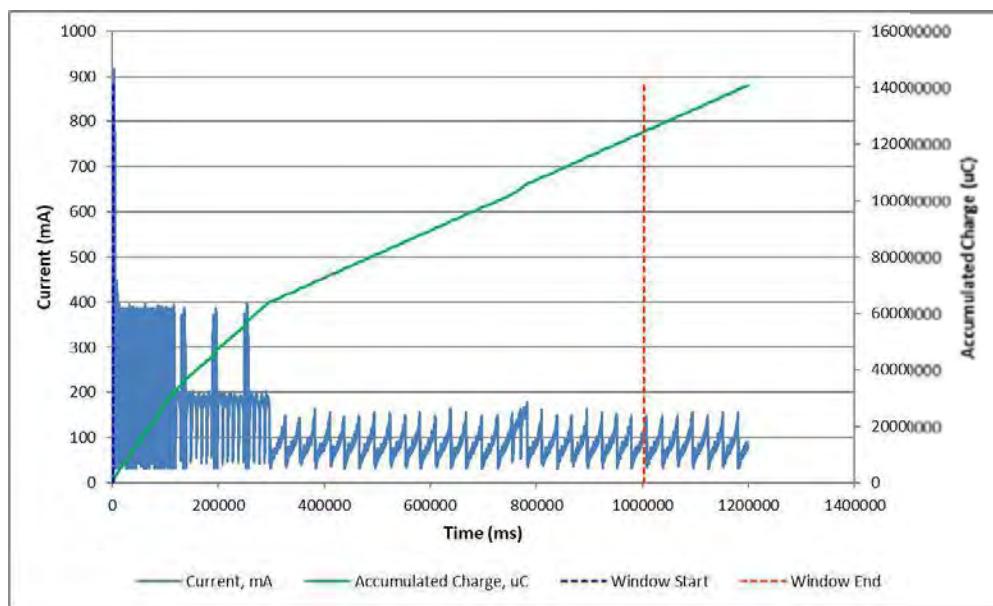





A13: Self-test from beacon from Remote Control Panel (RC820)







A16: GNSS Self-test from beacon front panel control – GNSS SIGNAL



A17: Cancellation message from beacon front panel control (after EUT activation from beacon front panel control)



A18: Cancellation message from ARINC429 Interface (label 202) (after EUT activation from ARINC429 Interface (label 202))





### Battery Conditioning Calculations

As per C/S T.007 Table F-E.2:

| Characteristic                                                                                                                                                     | Designation          | Units | Value                     | Comments                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|---------------------------|-----------------------------|
| Beacon manufacturers declared maximum allowed cell shelf-life (from date of cell manufacture to date of battery pack installation in the beacon)                   | $T_{CS}$ or $T_{CS}$ | Years | 4                         |                             |
| Declared beacon battery replacement period (from date of installation in the beacon to expiry date marked on the beacon)                                           | $T_{BR}$ or $T_{BR}$ | Years | 5                         |                             |
| Battery pack electrical configuration                                                                                                                              | -                    | -     | Lithium Manganese Dioxide |                             |
| Cell model and cell chemistry                                                                                                                                      | -                    | -     | 2 parallel of 4 in series |                             |
| Nominal cell capacity                                                                                                                                              | -                    | Ah    | 3                         |                             |
| Nominal battery pack capacity                                                                                                                                      | $C_{BN}$             | Ah    | 6                         |                             |
| Annual battery cell capacity loss (self-discharge) due to aging, as specified by cell manufacturer at ambient temperature                                          | $L_{SDC1}$           | %     | 2                         |                             |
| Calculated battery pack capacity loss due to self-discharge:<br>$L_{CBN} = C_{BN} - [C_{BN} * (1 - L_{SDC1} / 100)^{T_{BR} + T_{CS}}]$                             | $L_{CBN1}$           | Ah    | 0.1200                    |                             |
| Annual battery cell capacity loss (self-discharge) due to aging, as specified by cell manufacturer at ambient temperature                                          | $L_{SDC2}$           | %     | 1                         |                             |
| Calculated battery pack capacity loss due to self-discharge: $L_{CBN\_2} = (CBN - L_{CBN\_1}) - [(CBN - L_{CBN\_1}) * (1 - L_{SDC2} / 100)^{T_{BR} + T_{CS} - 1}]$ | $L_{CBN2}$           |       | 0.4543                    |                             |
| Number of self-tests per year                                                                                                                                      | $N_{ST}$             | -     | 12                        |                             |
| Average battery current during a self-test                                                                                                                         | $I_{ST}$             | mA    | 64.98                     |                             |
| Maximum duration of a self-test                                                                                                                                    | $T_{ST}$             | s     | 32                        | Manufacturer declared value |
| Calculated battery pack capacity loss due to self-tests during battery replacement period: $L_{ST} = I_{ST} * T_{ST} * T_{BR} * (N_{ST} / 3600)$                   | $L_{ST}$             | mAh   | 34.66                     |                             |
| Maximum Number of GNSS self-tests between battery replacements                                                                                                     | $N_{GST}$            | -     | 60                        |                             |
| Average battery current during a GNSS self-test of maximum duration                                                                                                | $I_{GST}$            | mA    | 30.38                     |                             |
| Maximum duration of a GNSS self-test                                                                                                                               | $T_{GST}$            | s     | 190                       | Manufacturer declared value |
| Calculated battery pack capacity loss due to GNSS self-tests during battery replacement period: $L_{GST} = I_{GST} * T_{GST} * (N_{GST} / 3600)$                   | $L_{GST}$            | mAh   | 96.20333333               |                             |
| Average stand-by battery pack current                                                                                                                              | $I_{SB}$             | mA    | 0.000195                  |                             |
| Other Capacity Losses                                                                                                                                              | $L_{OTH}$            | mAh   |                           |                             |
| Battery pack capacity loss due to constant operation of circuitry prior to beacon activation: $L_{ISB} = I_{ISB} * T_{BR} * 8760$                                  | $L_{ISB}$            | mAh   | 8.5410                    |                             |
| Calculated value of the battery pack pre-test discharge<br>$L_{CDC} = L_{CBN} + L_{CBN2} + 1.65((L_{ST} + L_{GST} + L_{ISB}) / 1000) + (L_{OTH} / 1000)$           | $L_{CDC}$            | Ah    | 0.8043                    |                             |



### Battery Conditioning Results

A fresh battery was used for the test; it was discharged over a resistor for the pre-test discharge duration calculated as follows:

$$\begin{aligned}\text{Pre-test discharge (L}_{\text{CDC}}\text{) [mAh]} &= 803.7 \\ \text{Current Drawn [mA]} &= 94 \\ \text{Pre-test discharge duration [h]} &= \frac{803.7}{94} \\ &= 8.55\end{aligned}$$

The actual discharge duration was 7.62 h resulting in a discharge of 716 mAh: an under-test of 10.98 %.

The discharge figure used for the Operating Lifetime test required an additional 88.3mAh (804.3 - 716). The average current draw once the 406 MHz transmissions ceased was measured as 28.78mA. Therefore,  $88.3 / 28.78 = 3.07$  hours. This can be deducted from the overall duration:  $67.63 - 3.07 = 64.56$  hours.

### Summary

The EUT complies with clause A.2.3 of Cospas-Sarsat T.007.