

FCC TEST REPORT

REPORT NO.: RF960202L05

MODEL NO.: LBT324A

SERIES NO.: BTH01

RECEIVED: Feb. 02, 2007

TESTED: Feb. 27 ~ Mar. 03, 2007

ISSUED: Jul. 19, 2007

APPLICANT: Liyuh Technology Ltd.

ADDRESS: 7F, No. 13, Alley 23, Lane 796, Jhong Sino E. Rd.,
Taipei R.O.C.

ISSUED BY: Advance Data Technology Corporation

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang
244, Taipei Hsien, Taiwan, R.O.C.

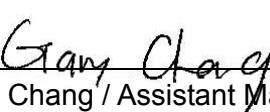
TEST LOCATION: No. 19, Hwa Ya 2nd Rd., Wen Hwa Tsuen, Kwei
Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 48 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF, A2LA or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	CERTIFICATION.....	4
2.	SUMMARY OF TEST RESULTS.....	5
2.1	MEASUREMENT UNCERTAINTY	6
3.	GENERAL INFORMATION.....	7
3.1.	GENERAL DESCRIPTION OF EUT.....	7
3.2.	DESCRIPTION OF TEST MODES.....	8
3.2.1.	CONFIGURATION OF SYSTEM UNDER TEST.....	9
3.2.2.	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	10
3.2.3.	GENERAL DESCRIPTION OF APPLIED STANDARDS.....	11
3.2.4.	DESCRIPTION OF SUPPORT UNITS.....	12
4.	TEST TYPES AND RESULTS.....	13
4.1.	RADIATED EMISSION MEASUREMENT.....	13
4.1.1.	LIMITS OF RADIATED EMISSION MEASUREMENT	13
4.1.2.	TEST INSTRUMENTS	14
4.1.3.	TEST PROCEDURES	15
4.1.4.	DEVIATION FROM TEST STANDARD	15
4.1.5.	TEST SETUP	16
4.1.6.	EUT OPERATING CONDITIONS.....	16
4.1.7.	TEST RESULTS	17
4.2.	NUMBER OF HOPPING FREQUENCY USED.....	21
4.3.1.	LIMIT OF HOPPING FREQUENCY USED	21
4.3.2.	TEST INSTRUMENTS	21
4.3.3.	TEST PROCEDURES	21
4.3.4.	DEVIATION FROM TEST STANDARD	22
4.3.5.	TEST SETUP	22
4.3.6.	TEST RESULTS	22
4.3.	DWELL TIME ON EACH CHANNEL.....	24
4.4.1.	LIMIT OF DWELL TIME USED.....	24
4.4.2.	TEST INSTRUMENTS	24
4.4.3.	TEST PROCEDURES	24
4.4.4.	DEVIATION FROM TEST STANDARD	24
4.4.5.	TEST SETUP	25
4.4.6.	TEST RESULTS	25
4.4.	CHANNEL BANDWIDTH.....	29
4.5.1.	LIMITS OF CHANNEL BANDWIDTH	29
4.5.2.	TEST INSTRUMENTS	29
4.5.3.	TEST PROCEDURE	29
4.5.4.	DEVIATION FROM TEST STANDARD	30
4.5.5.	TEST SETUP	30

4.5.6. EUT OPERATING CONDITION	30
4.5.7. TEST RESULTS	30
4.5. HOPPING CHANNEL SEPARATION	33
4.6.1. LIMIT OF HOPPING CHANNEL SEPARATION	33
4.6.2. TEST INSTRUMENTS	33
4.6.3. TEST PROCEDURES	33
4.6.4. DEVIATION FROM TEST STANDARD	34
4.6.5. TEST SETUP	34
4.6.6. TEST RESULTS	34
4.6. MAXIMUM PEAK OUTPUT POWER	37
4.7.1. LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	37
4.7.2. TEST INSTRUMENTS	37
4.7.3. TEST PROCEDURES	37
4.7.4. DEVIATION FROM TEST STANDARD	37
4.7.5. TEST SETUP	38
4.7.6. EUT OPERATING CONDITION	38
4.7.7. TEST RESULTS	38
4.7. BAND EDGES MEASUREMENT	41
4.8.1. LIMITS OF BAND EDGES MEASUREMENT	41
4.8.2. TEST INSTRUMENTS	41
4.8.3. TEST PROCEDURE	41
4.8.4. DEVIATION FROM TEST STANDARD	41
4.8.5. EUT OPERATING CONDITION	41
4.8.6. TEST RESULTS	42
4.8. ANTENNA REQUIREMENT	45
4.9.1. STANDARD APPLICABLE	45
4.9.2. ANTENNA CONNECTED CONSTRUCTION	45
5. PHOTOGRAPHS OF THE TEST CONFIGURATION	46
6. INFORMATION ON THE TESTING LABORATORIES	47
7. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	48


1. CERTIFICATION

PRODUCT: Bluetooth Stereo Headset
MODEL NO.: LBT324A
SERIES NO.: BTH01
APPLICANT: Liyuh Technology Ltd
TESTED: Feb. 27 ~ Mar. 03, 2007
TEST SAMPLE: ENGINEERING SAMPLE
STANDARDS: **FCC Part 15, Subpart C (Section 15.247)**
ANSI C63.4-2003

The above equipment (model: LBT324A) have been tested by **Advance Data Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : , **DATE:** Jul. 19, 2007
Joanna Wang / Senior Specialist

**TECHNICAL
ACCEPTANCE** : , **DATE:** Jul. 19, 2007
Responsible for RF Long Chen / Senior Engineer

APPROVED BY : , **DATE:** Jul. 19, 2007
Gary Chang / Assistant Manager

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C			
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK
15.207	AC Power Conducted Emission	NA	Power supply is 4.2Vdc from battery
15.247(a)(1) (iii)	Number of Hopping Frequency Used Spec.: At least 15 channels	PASS	Meet the requirement of limit.
15.247(a)(1) (iii)	Dwell Time on Each Channel Spec.: Max. 0.4 second within 31.6 second	PASS	Meet the requirement of limit.
15.247(a)(1)	1. Hopping Channel Separation Spec. : Min. 25 kHz or 20 dB bandwidth, whichever is greater 2. Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	PASS	Meet the requirement of limit.
15.247(b)	Maximum Peak Output Power Spec.: max. 30dBm	PASS	Meet the requirement of limit.
15.247(d)	Transmitter Radiated Emissions Spec.: Table 15.209	PASS	Meet the requirement of limit. Minimum passing margin is -9.81dB at 300.16MHz.
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz ~ 30MHz	2.44 dB
Radiated emissions	30MHz ~ 200MHz	3.19 dB
	200MHz ~1000MHz	3.21 dB
	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

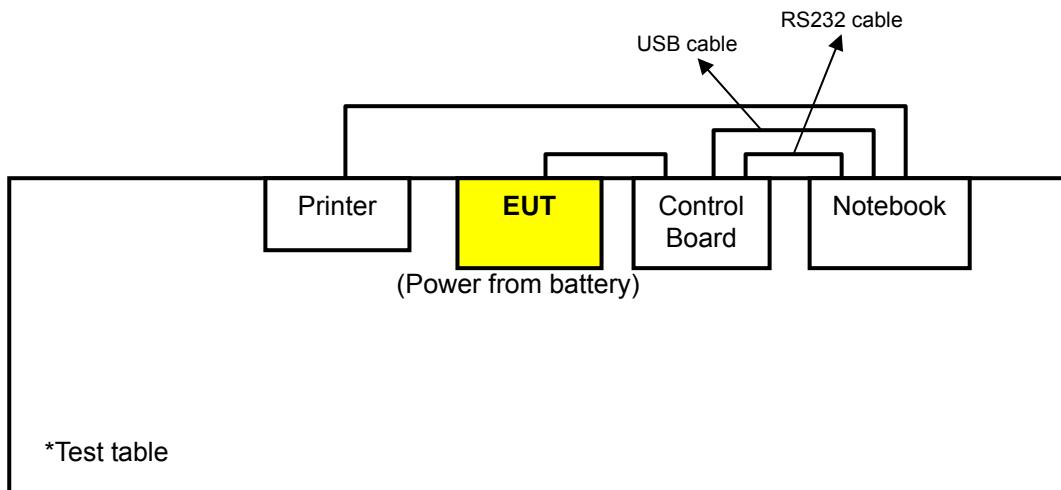
3. GENERAL INFORMATION

3.1. GENERAL DESCRIPTION OF EUT

PRODUCT	Bluetooth Stereo Headset
MODEL NO.	LBT324A
SERIES NO.	BTH01
FCC ID	VIBLBT324A
POWER SUPPLY	4.2Vdc from battery, 5.0Vdc from host equipment
MODULATION TYPE	GFSK
RADIO TECHNOLOGY	FHSS
TRANSFER RATE	723.2kbps
FREQUENCY RANGE	2400 ~ 2483.5 MHz
NUMBER OF CHANNEL	79
OUTPUT POWER	0.714mW
ANTENNA TYPE	Chip antenna with -2.66dBi gain
DATA CABLE	1m non-shielded USB cable without core
I/O PORTS	Refer to User's Manual
ACCESSORY DEVICE	NA

NOTE:

1. Bluetooth technology is used in this EUT.
2. The EUT has no transmission function when charging.
3. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.



3.2. DESCRIPTION OF TEST MODES

79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2431	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1. CONFIGURATION OF SYSTEM UNDER TEST

3.2.2. TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE MODE	Applicable to				Description
	PLC	RE<1G	RE≥1G	APCM	
-	NOTE	√	√	√	-

Where **PLC**: Power Line Conducted Emission **RE<1G**: Radiated Emission below 1GHz

RE≥1G: Radiated Emission above 1GHz **APCM**: Antenna Port Conducted Measurement

NOTE: No need to concern of Conducted Emission due to the EUT is powered by battery.

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, packet types and XYZ Axis.
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE	AXIS
0 to 78	0, 39, 78	FHSS	GFSK	DH5	Z

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, packet types and XYZ Axis.
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE	AXIS
0 to 78	0, 39, 78	FHSS	GFSK	DH5	Z

BANDEdge MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 78	0, 78	FHSS	GFSK	DH5

ANTENNA PORT CONDUCTED MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 78	0, 39, 78	FHSS	GFSK	DH5

3.2.3. GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)

ANSI C63.4- 2003

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.2.4. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK	DELL	PP05L	12130898320	E2K24CLNS
2	PRINTER	EPSON	LQ-300+	DCGY047265	FCC DoC Approved
3	CONTROL BOARD	NA	NA	NA	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA
2	1.8m braid shielded wire, DB25 connector, w/o core.
3	RS232 cable, USB cable.

NOTE : 1. All power cords of the above support units are non-shielded (1.8m).
2. Item 3 was provided by the client.

4. TEST TYPES AND RESULTS

4.1. RADIATED EMISSION MEASUREMENT

4.1.1. LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB_uV/m) = 20 log Emission level (uV/m).
3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2. TEST INSTRUMENTS

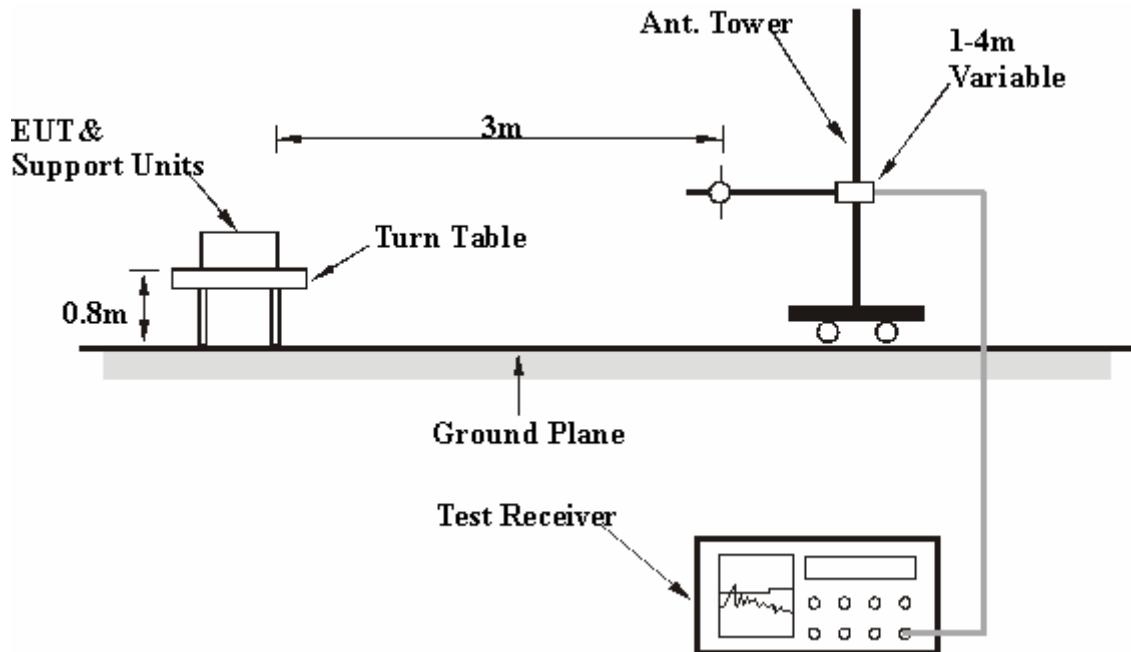
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESI7	838496/016	Dec. 29, 2007
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100039	Dec. 01, 2007
BILOG Antenna SCHWARZBECK	VULB9168	9168-155	Jan. 04, 2008
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-405	Dec. 18, 2007
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170242	Jan. 16, 2008
Preamplifier Agilent	8449B	3008A1960	Oct. 30, 2007
Preamplifier Agilent	8447D	2944A10631	Oct. 30, 2007
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	230128/4	Nov. 14, 2007
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	233233/4	Nov. 14, 2007
Software ADT.	ADT_Radiated_V7.6	NA	NA
Antenna Tower inn-co GmbH	MA 4000	010303	NA
Antenna Tower Controller inn-co GmbH	CO2000	019303	NA
Turn Table ADT.	TT100.	TT93021704	NA
Turn Table Controller ADT.	SC100.	SC93021704	NA

NOTE:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The test was performed in HwaYa Chamber 4.
3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
4. The IC Site Registration No. is IC3789B-4.

4.1.3. TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.


NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.

4.1.4. DEVIATION FROM TEST STANDARD

No deviation

4.1.5. TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6. EUT OPERATING CONDITIONS

- Connected EUT with notebook system via control board and placed on the test table.
- The notebook system ran a test program (provided by manufacturer) to enable EUT under transmitting condition continuously at specific channel frequency.
- The necessary accessories enable the system in full functions.

4.1.7. TEST RESULTS

RADIATED WORST CASE DATA: BELOW 1GHz

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL		Channel 78		FREQUENCY RANGE	
MODULATION TYPE		GFSK		DETECTOR FUNCTION	
INPUT POWER (SYSTEM)		120Vac, 60 Hz		ENVIRONMENTAL CONDITIONS	
TESTED BY		Brad Wu			

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	181.55	30.95 QP	43.50	-12.55	1.50 H	331	18.34	12.61
2	300.16	36.19 QP	46.00	-9.81	1.50 H	202	21.45	14.74
3	364.32	33.22 QP	46.00	-12.78	1.00 H	163	16.80	16.42
4	595.69	29.93 QP	46.00	-16.07	1.50 H	244	6.90	23.03
5	729.84	29.76 QP	46.00	-16.24	1.00 H	283	4.17	25.60
6	945.66	33.02 QP	46.00	-12.98	1.00 H	232	4.55	28.47

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	187.39	31.14 QP	43.50	-12.36	1.50 V	10	18.93	12.21
2	331.26	31.67 QP	46.00	-14.33	2.00 V	10	16.11	15.56
3	465.42	29.71 QP	46.00	-16.29	1.50 V	172	10.31	19.40
4	599.58	31.08 QP	46.00	-14.92	1.00 V	10	7.95	23.13
5	733.73	29.90 QP	46.00	-16.10	1.50 V	214	4.26	25.64
6	945.66	32.63 QP	46.00	-13.37	1.00 V	340	4.16	28.47

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.

RADIATED WORST CASE DATA: ABOVE 1GHz

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL		Frequency Range		1 ~ 25GHz
MODULATION TYPE		Detector Function		Peak (PK) Average (AV)
INPUT POWER (SYSTEM)		Environmental Conditions		24deg. C, 64%RH, 1005hPa
TESTED BY		Brad Wu		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	50.26 PK	74.00	-23.74	1.25 H	270	18.03	32.23
2	2390.00	39.81 AV	54.00	-14.19	1.25 H	270	7.58	32.23
3	*2402.00	94.33 PK			1.25 H	270	62.05	32.28
4	*2402.00	64.23 AV			1.25 H	270	31.95	32.28
5	4804.00	49.09 PK	74.00	-24.91	1.02 H	259	10.57	38.52
6	4804.00	18.99 AV	54.00	-35.01	1.02 H	259	-19.53	38.52

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	47.02 PK	74.00	-26.98	1.00 V	264	14.79	32.23
2	2390.00	36.56 AV	54.00	-17.44	1.00 V	264	4.33	32.23
3	*2402.00	91.23 PK			1.00 V	264	58.95	32.28
4	*2402.00	61.13 AV			1.00 V	264	28.85	32.28
5	4804.00	48.85 PK	74.00	-25.15	1.00 V	210	10.33	38.52
6	4804.00	18.75 AV	54.00	-35.25	1.00 V	210	-19.77	38.52

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. “*” : Fundamental frequency.
6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: $20\log(3.125/100) = -30.1$ dB.
7. Average value = peak reading+20log(duty cycle).

EUT TEST CONDITION		MEASUREMENT DETAIL	
CHANNEL	Channel 39	FREQUENCY RANGE	1 ~ 25GHz
MODULATION TYPE	GFSK	DETECTOR FUNCTION	Peak (PK) Average (AV)
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	24deg. C, 64%RH, 1005hPa
TESTED BY	Brad Wu		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2441.00	90.54 PK			1.22 H	267	58.12	32.42
2	*2441.00	60.44 AV			1.22 H	267	28.02	32.42
3	4882.00	49.25 PK	74.00	-24.75	1.06 H	268	10.52	38.73
4	4882.00	19.15 AV	54.00	-34.85	1.06 H	268	-19.58	38.73

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2441.00	88.12 PK			1.02 V	270	55.70	32.42
2	*2441.00	58.02 AV			1.02 V	270	25.60	32.42
3	4882.00	48.69 PK	74.00	-25.31	1.05 V	94	9.96	38.73
4	4882.00	18.59 AV	54.00	-35.41	1.05 V	94	-20.14	38.73

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. “*” : Fundamental frequency.
6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: $20\log(3.125/100) = -30.1$ dB.
7. Average value = peak reading + $20\log(\text{duty cycle})$.

EUT TEST CONDITION		MEASUREMENT DETAIL	
CHANNEL	Channel 78	FREQUENCY RANGE	1 ~ 25GHz
MODULATION TYPE	GFSK	DETECTOR FUNCTION	Peak (PK) Average (AV)
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	24deg. C, 64%RH, 1005hPa
TESTED BY	Brad Wu		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	87.08 PK			1.13 H	267	54.51	32.57
2	*2480.00	56.98 AV			1.13 H	267	24.41	32.57
3	2483.50	45.50 PK	74.00	-28.50	1.13 H	267	12.92	32.58
4	2483.50	35.34 AV	54.00	-18.66	1.13 H	267	2.76	32.58
5	4960.00	49.25 PK	74.00	-24.75	1.05 H	261	10.31	38.94
6	4960.00	19.15 AV	54.00	-34.85	1.05 H	261	-19.79	38.94

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	84.11 PK			1.00 V	269	51.54	32.57
2	*2480.00	54.01 AV			1.00 V	269	21.44	32.57
3	2483.50	42.61 PK	74.00	-31.39	1.00 V	269	10.03	32.58
4	2483.50	32.42 AV	54.00	-21.58	1.00 V	269	-0.16	32.58
5	4960.00	48.76 PK	74.00	-25.24	1.11 V	239	9.82	38.94
6	4960.00	18.66 AV	54.00	-35.34	1.11 V	239	-20.28	38.94

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. “*”: Fundamental frequency.
6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: $20\log(3.125/100) = -30.1$ dB.
7. Average value = peak reading + 20log(duty cycle).

4.2. NUMBER OF HOPPING FREQUENCY USED

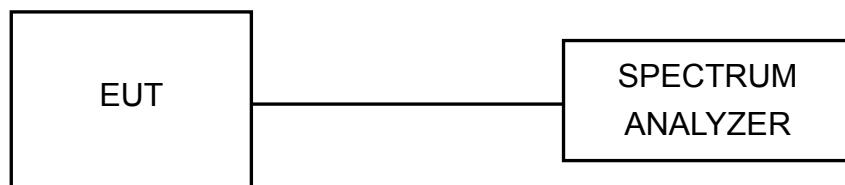
4.3.1. LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

4.3.2. TEST INSTRUMENTS

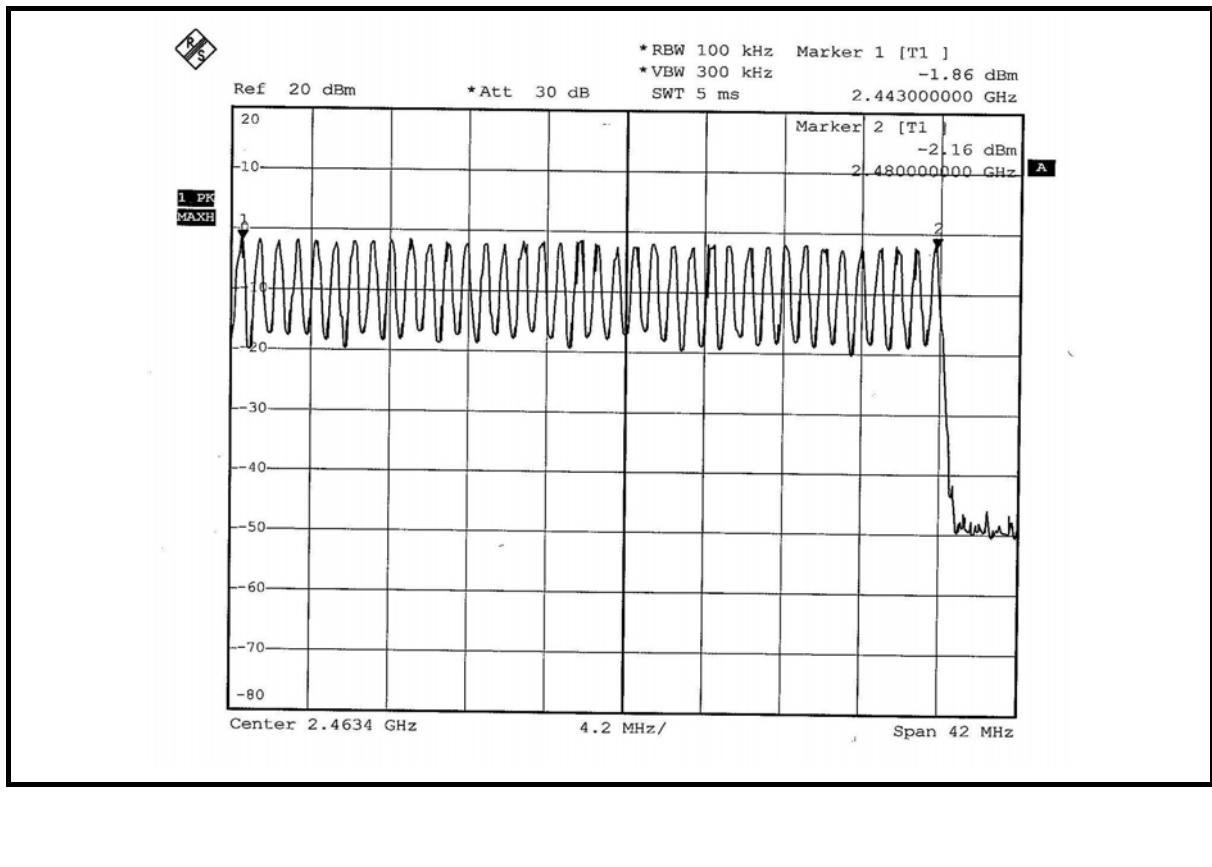
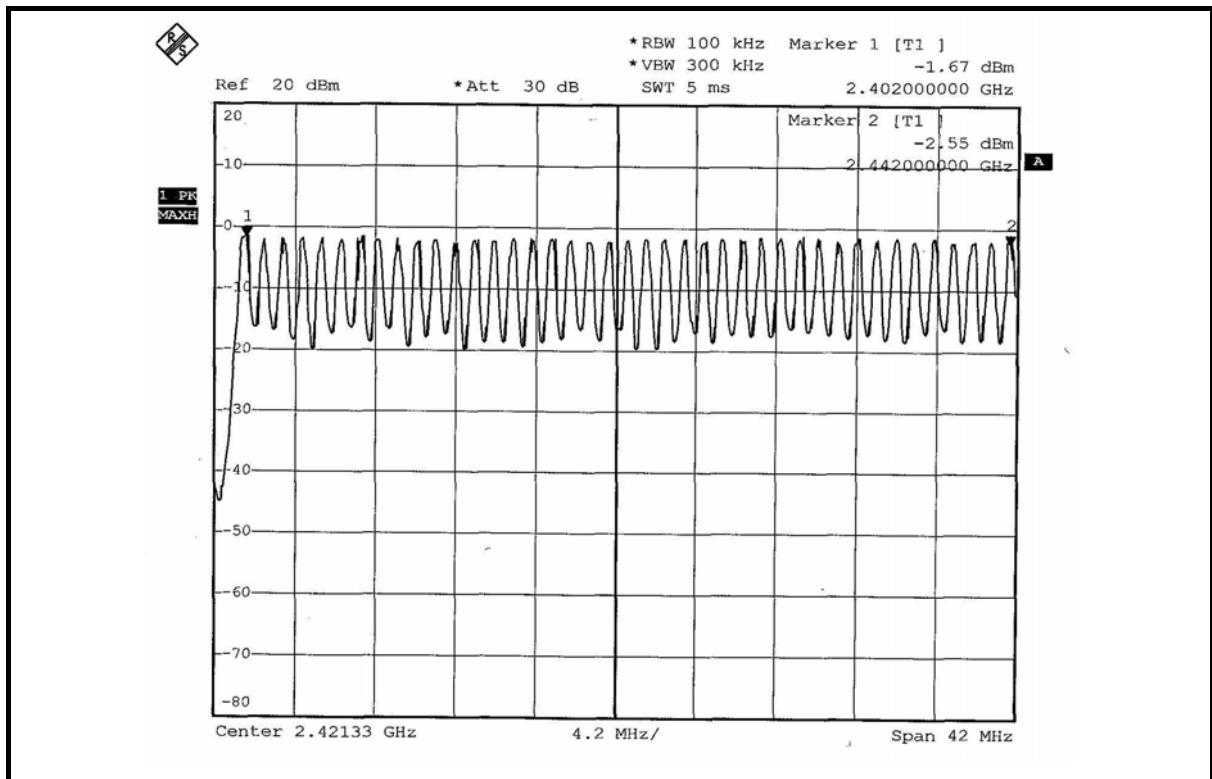
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP40	100040	Jun. 28, 2008

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.


4.3.3. TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.3.4. DEVIATION FROM TEST STANDARD



No deviation.

4.3.5. TEST SETUP

4.3.6. TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

4.3. DWELL TIME ON EACH CHANNEL

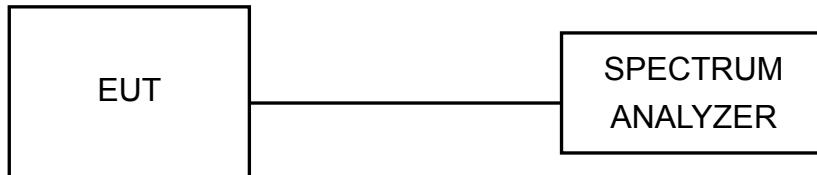
4.4.1. LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2. TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP40	100040	Jun. 28, 2008

NOTES: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

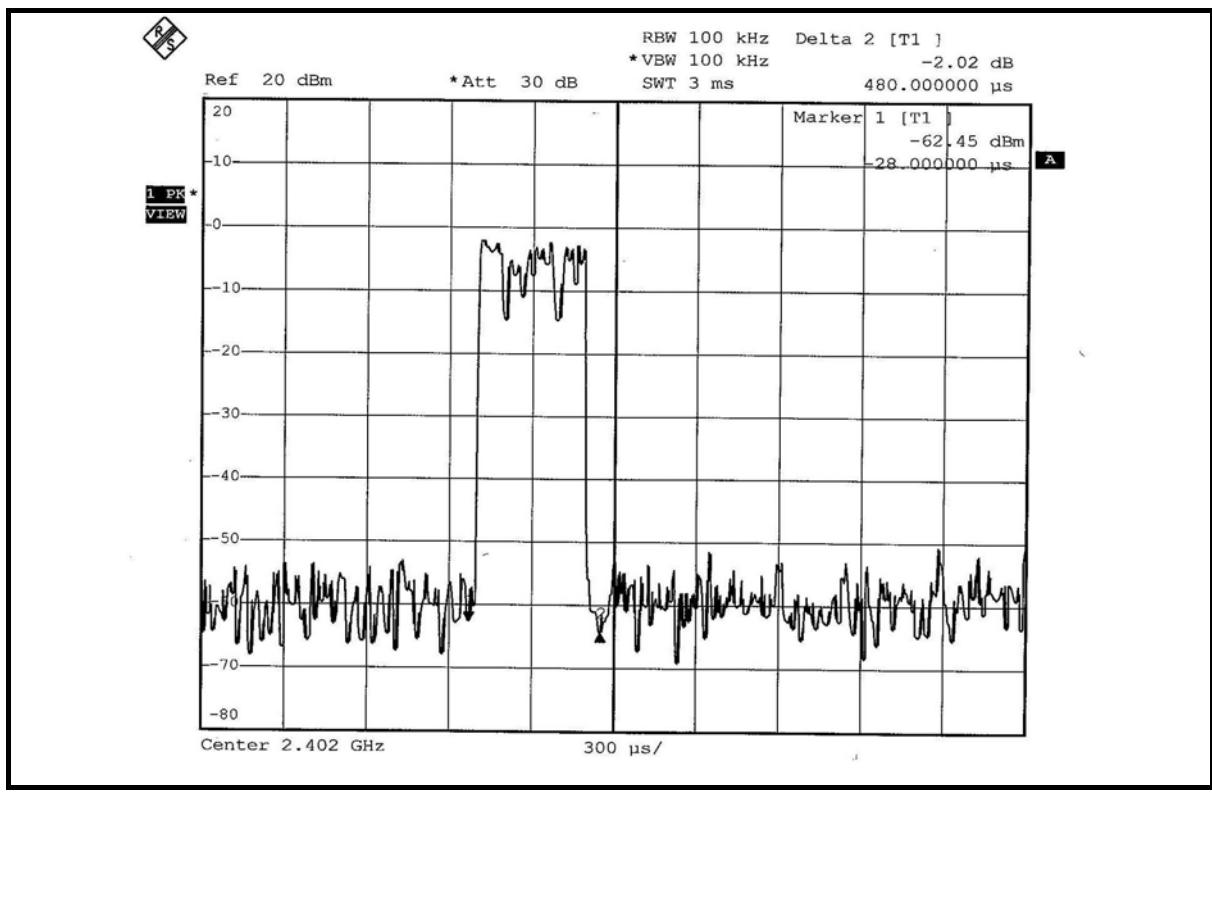
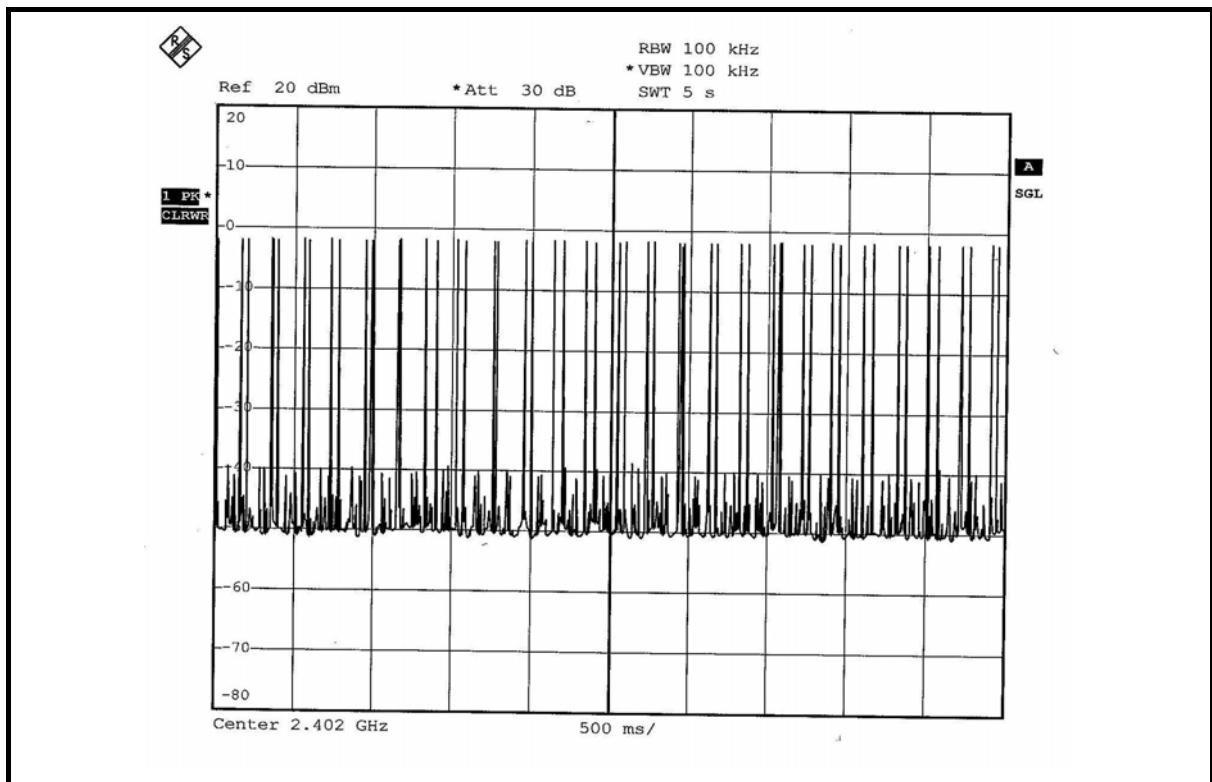

4.4.3. TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency to be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

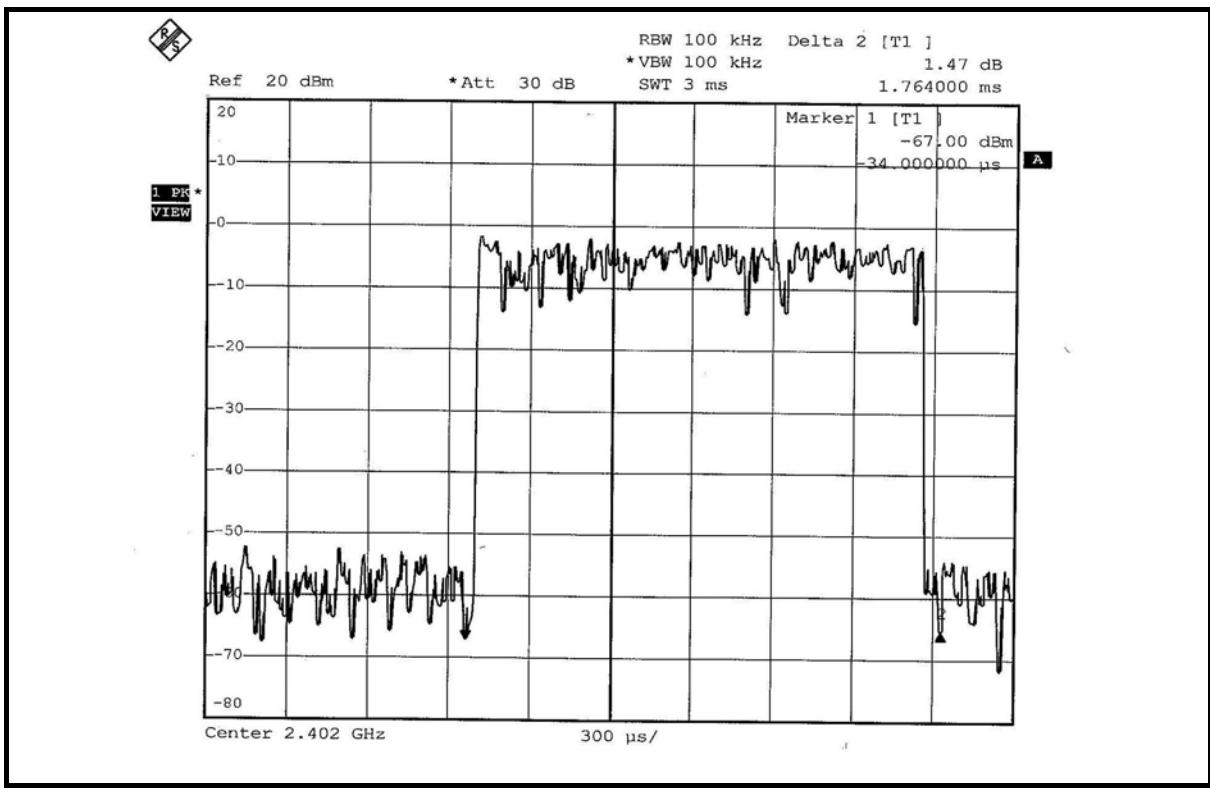
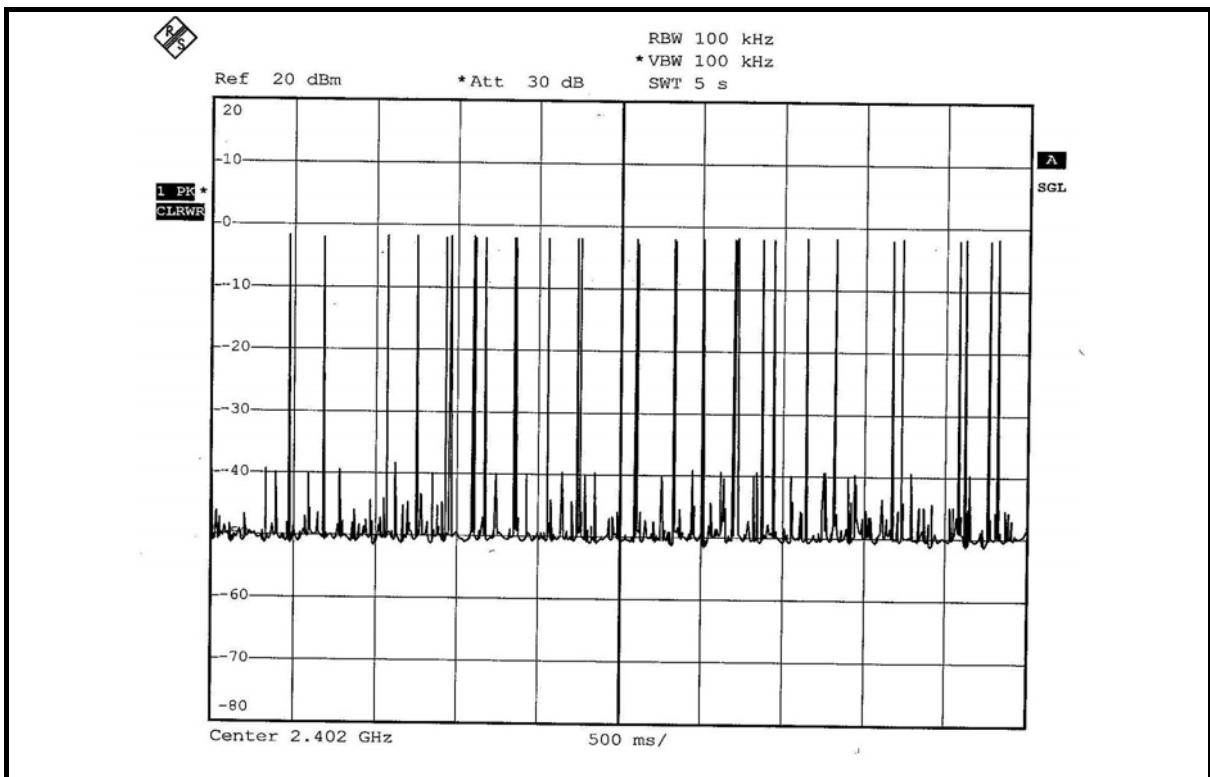
4.4.4. DEVIATION FROM TEST STANDARD

No deviation.

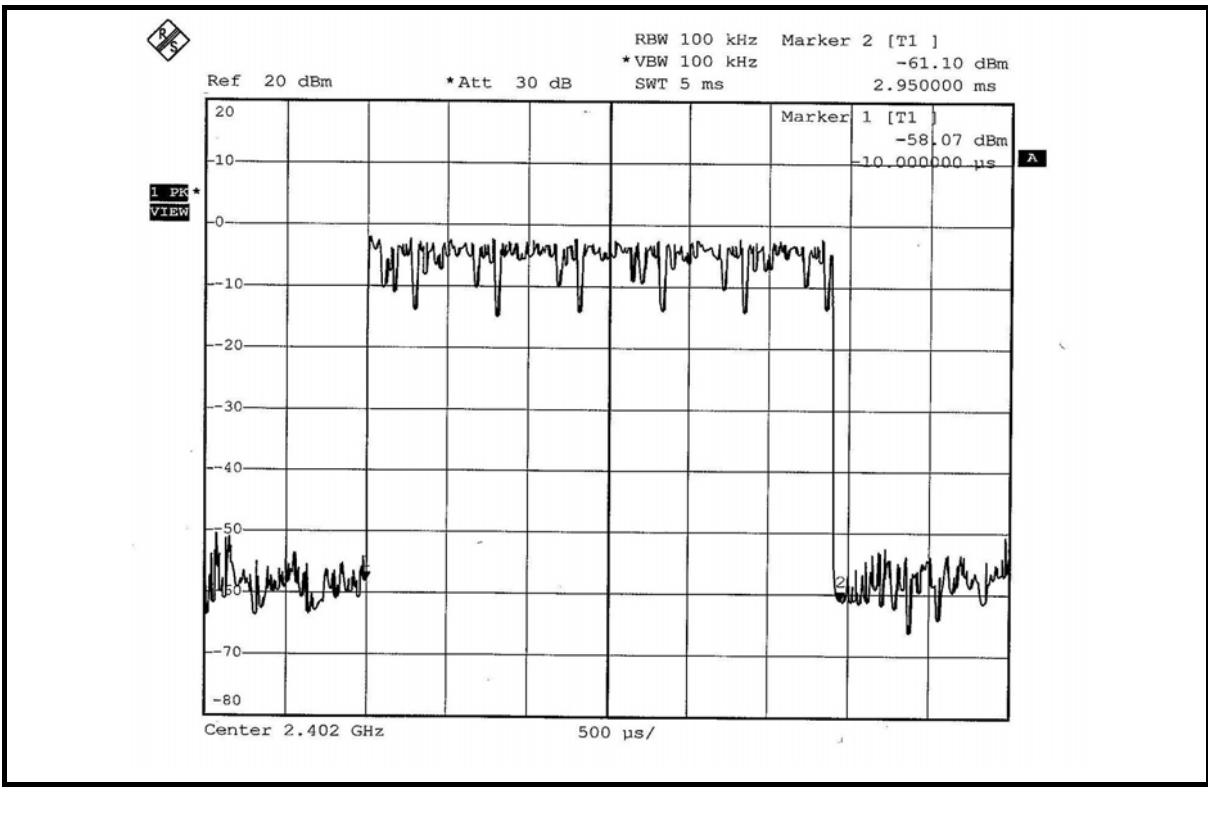
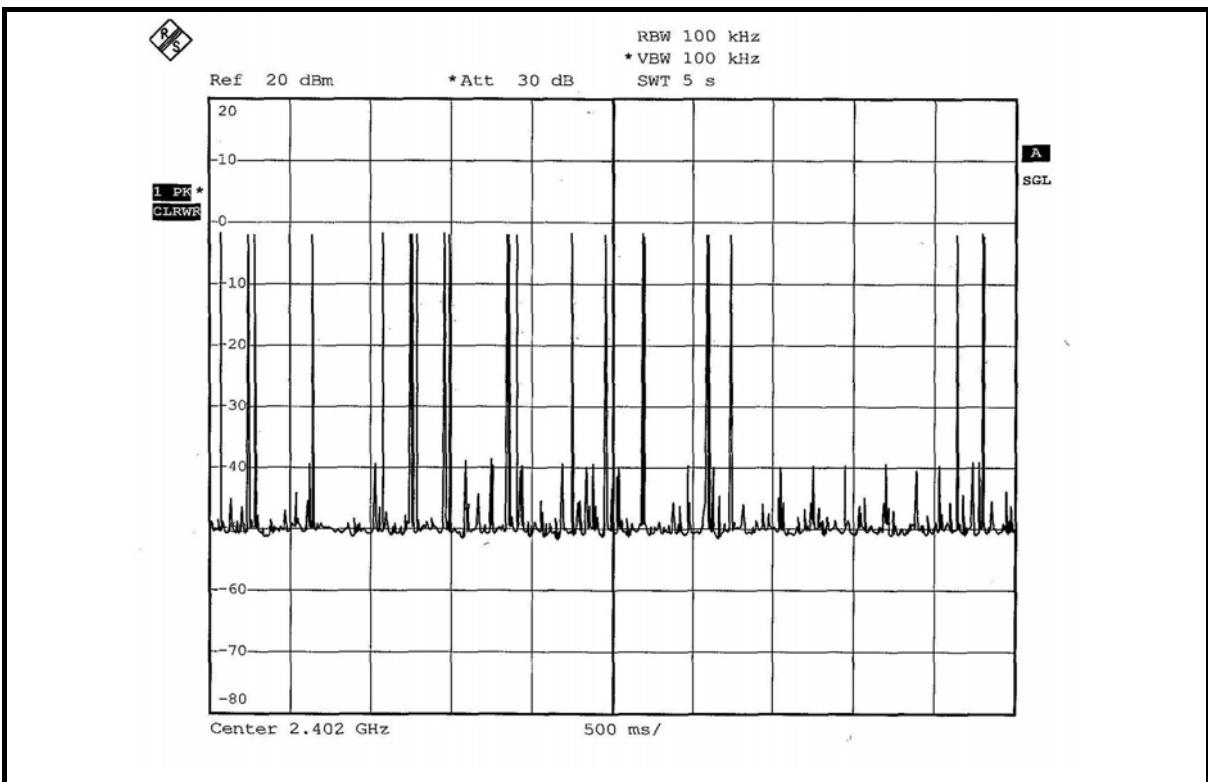
4.4.5. TEST SETUP

4.4.6. TEST RESULTS



Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	50 (times / 5 sec) *6.32=316.00 times	0.480	151.680	400
DH3	27 (times / 5 sec) *6.32=170.64 times	1.764	301.009	400
DH5	18 (times / 5 sec) *6.32=113.76 times	2.950	335.592	400

NOTE: Test plots of the transmitting time slot are shown on next 3 pages.



DH1

DH3

DH5

4.4. CHANNEL BANDWIDTH

4.5.1. LIMITS OF CHANNEL BANDWIDTH

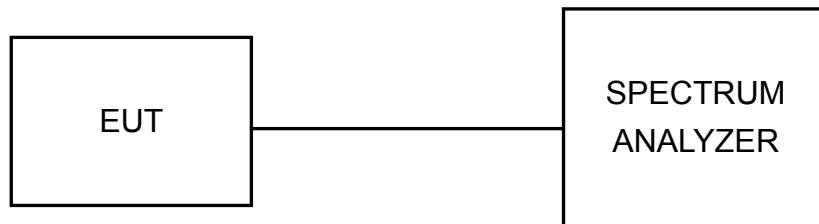
For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, the 20dB bandwidth of hopping channel shall be a minimum limit for the hopping channel separation.

4.5.2. TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP40	100040	Jun. 28, 2008

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

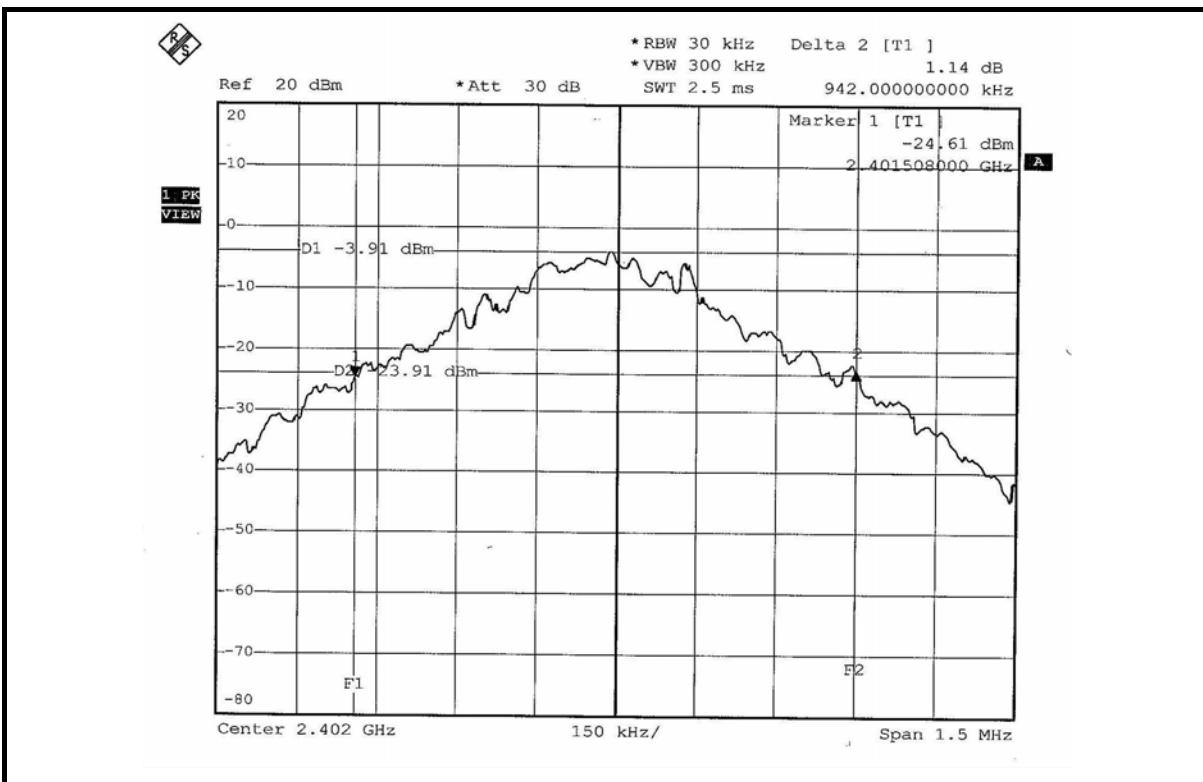
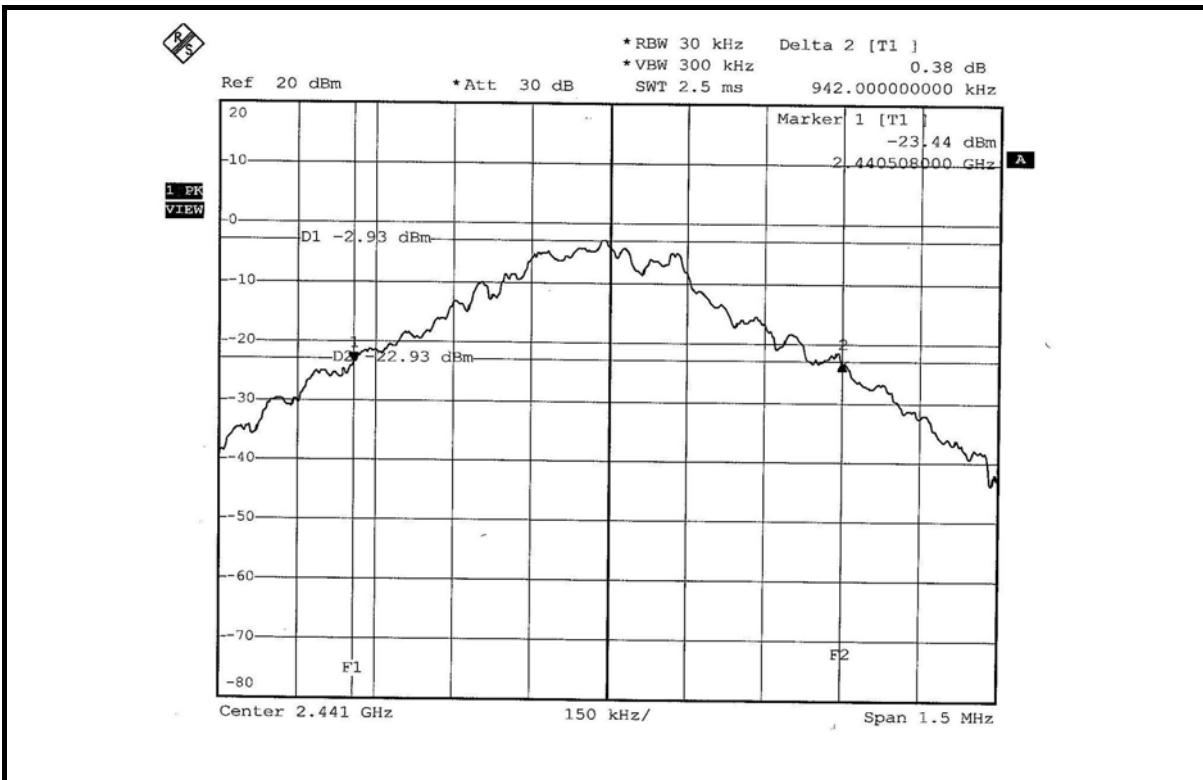
4.5.3. TEST PROCEDURE

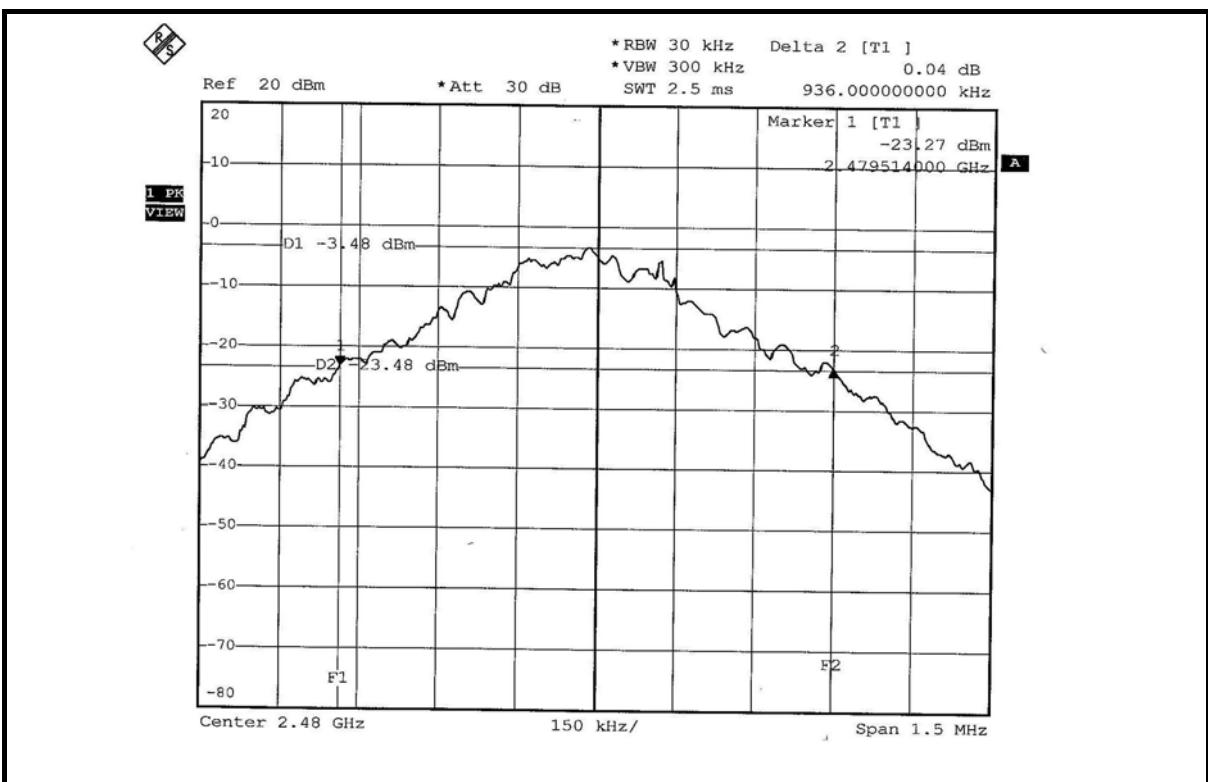

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.4. DEVIATION FROM TEST STANDARD

No deviation.

4.5.5. TEST SETUP



4.5.6. EUT OPERATING CONDITION


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7. TEST RESULTS

MODULATION TYPE	GFSK	ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH, 991hPa
INPUT POWER	120Vac, 60Hz	TESTED BY	Morgan Chen

CHANNEL	CHANNEL FREQUENCY (MHz)	20dB BANDWIDTH (MHz)
0	2402	0.942
39	2441	0.942
78	2480	0.936

CH 0

Ch 39

CH 78

4.5. HOPPING CHANNEL SEPARATION

4.6.1. LIMIT OF HOPPING CHANNEL SEPARATION

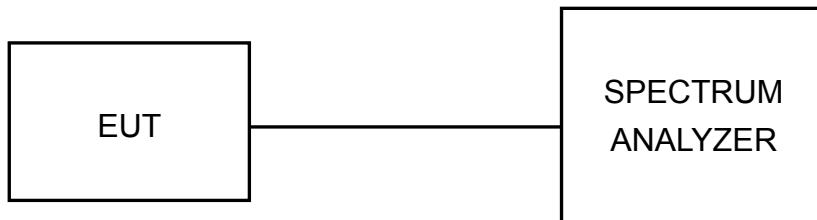
At least 25kHz or 20dB hopping channel bandwidth (whichever is greater).

4.6.2. TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP40	100040	Jun. 28, 2008

NOTES: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

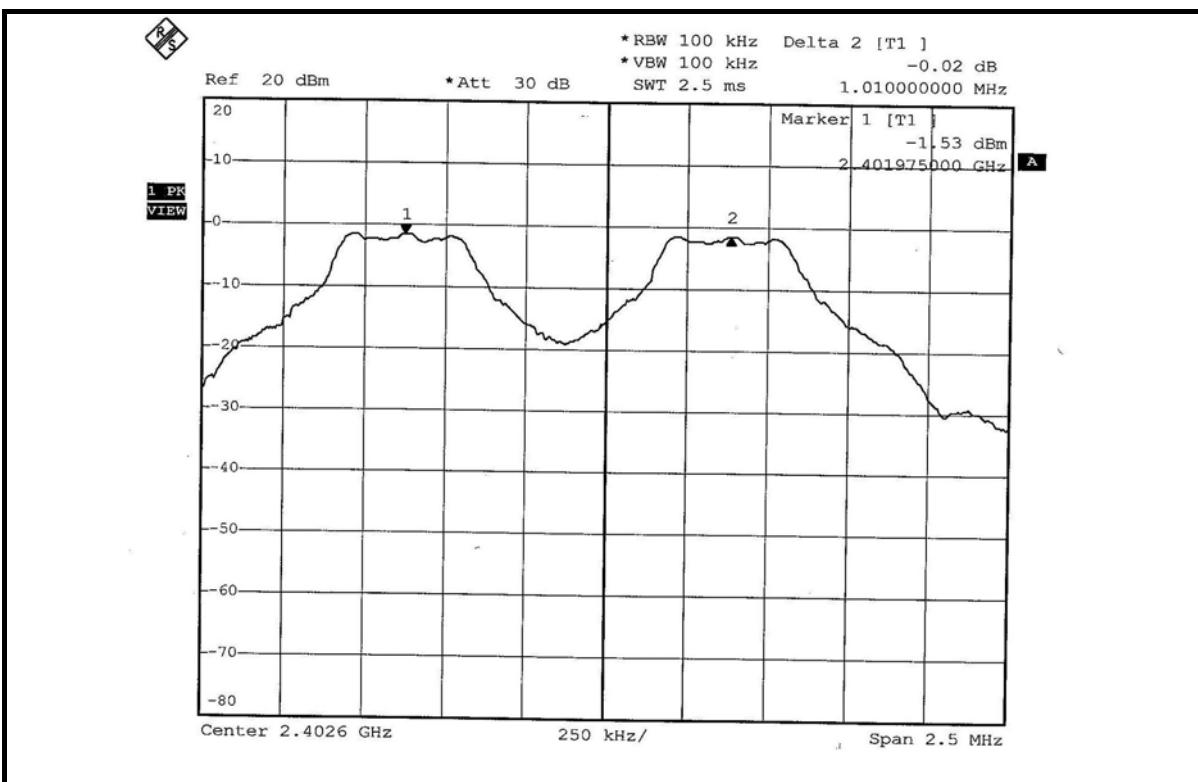
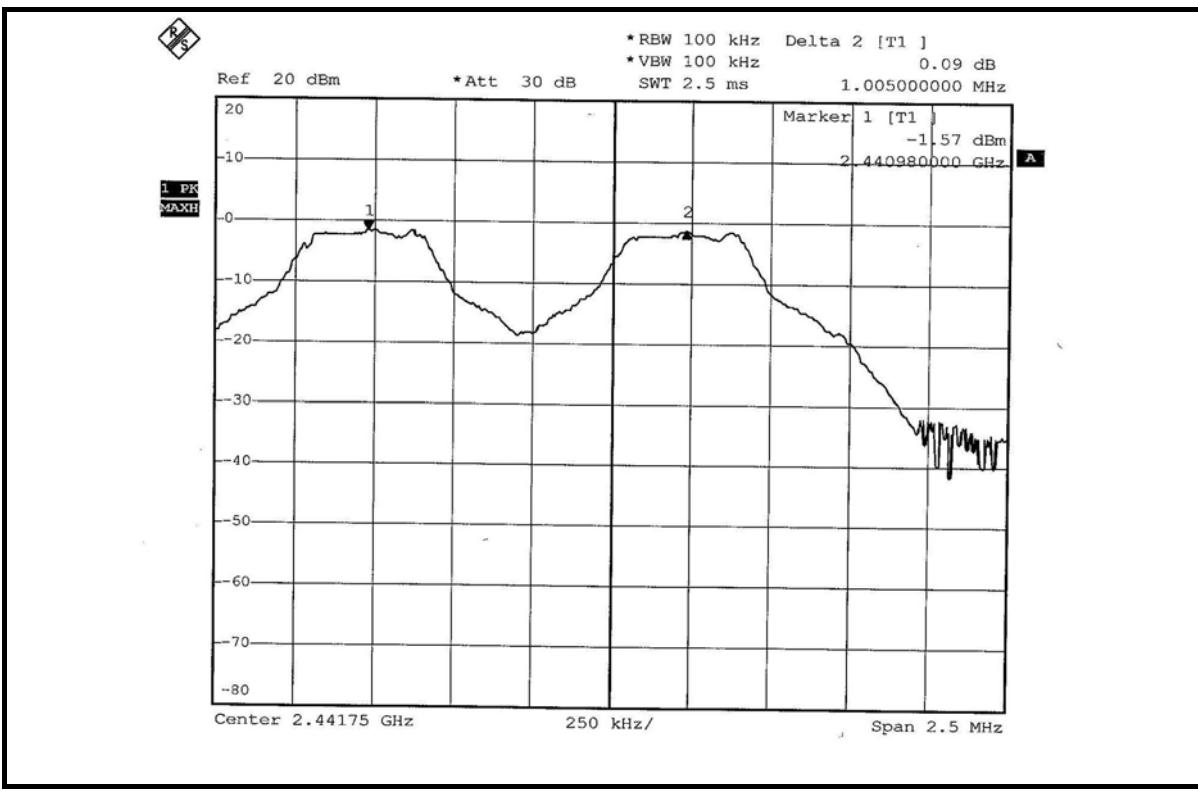
4.6.3. TEST PROCEDURES


1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
3. By using the MaxHold function record the separation of two adjacent channels.
4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
5. Repeat above procedures until all frequencies measured were complete.

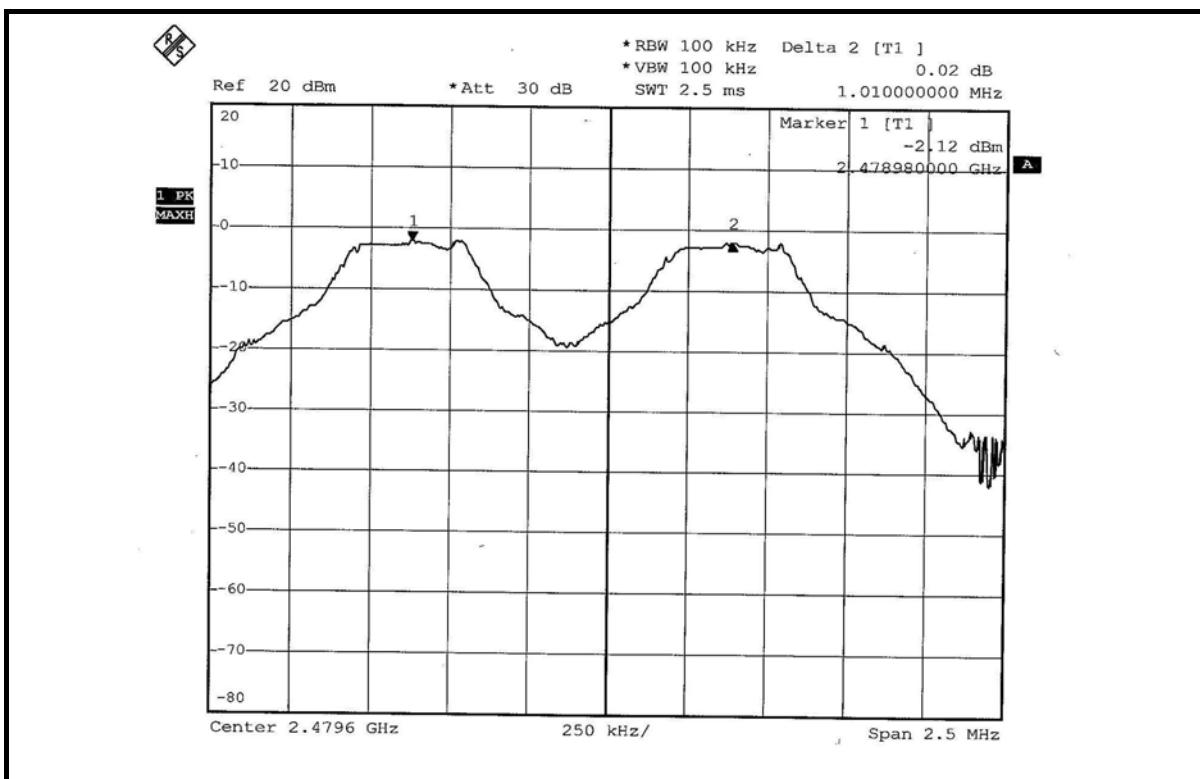
4.6.4. DEVIATION FROM TEST STANDARD

No deviation.

4.6.5. TEST SETUP

4.6.6. TEST RESULTS


MODULATION TYPE	GFSK	ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH, 991hPa
INPUT POWER	120Vac, 60Hz	TESTED BY	Morgan Chen

CHANNEL	FREQUENCY (MHz)	ADJACENT CHANNEL SEPARATION (MHz)	20dB BANDWIDTH (MHz)	PASS / FAIL
0	2402	1.010	0.942	PASS
39	2441	1.005	0.942	PASS
78	2480	1.010	0.936	PASS

NOTE: The minimum limit is 20dB bandwidth. Test results please refer to next two pages.

CH 0

CH 39

CH 78

4.6. MAXIMUM PEAK OUTPUT POWER

4.7.1. LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

The Maximum Peak Output Power Measurement is 30dBm.

4.7.2. TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP40	100040	Jun. 28, 2008

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


4.7.3. TEST PROCEDURES

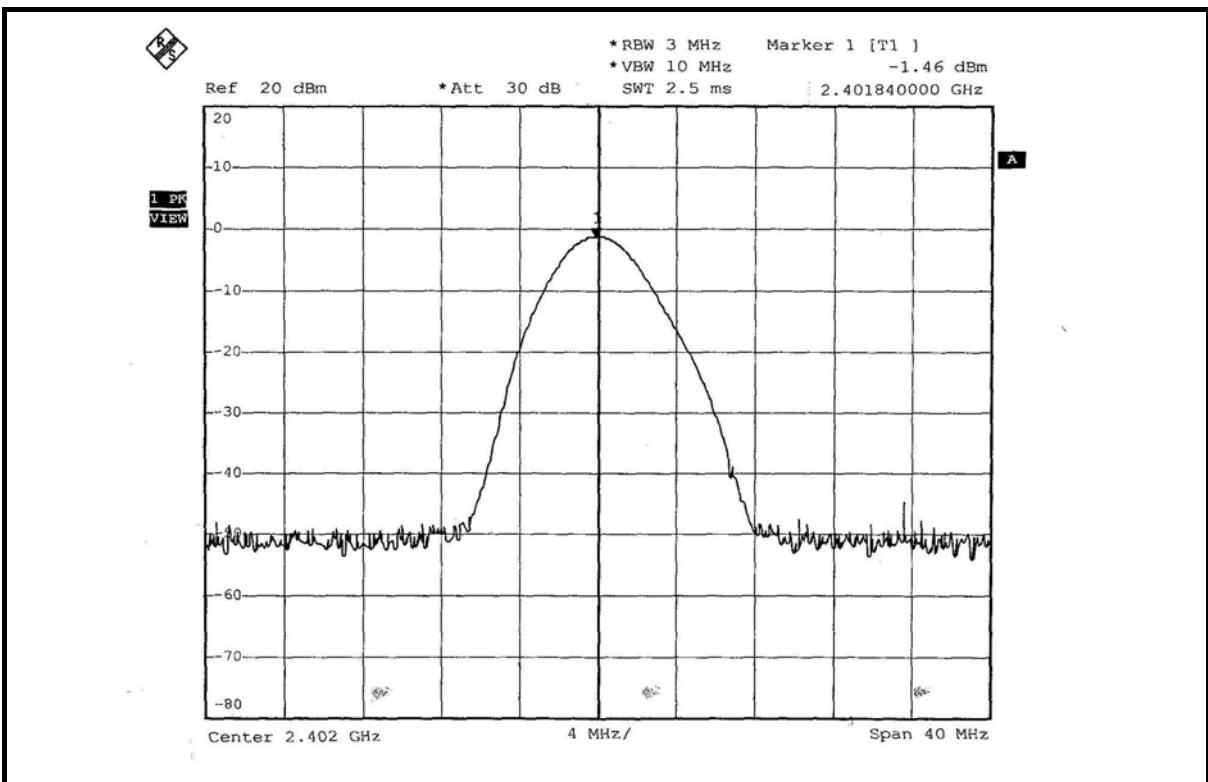
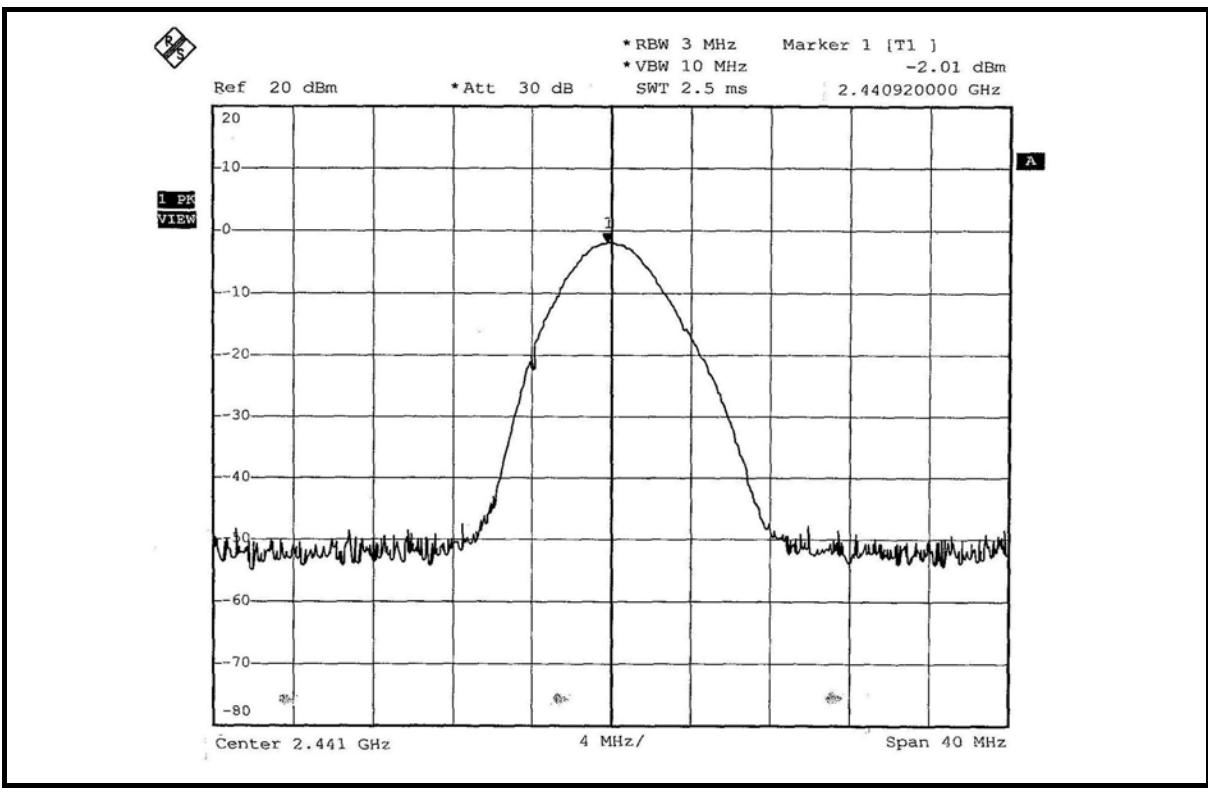
- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.7.4. DEVIATION FROM TEST STANDARD

No deviation

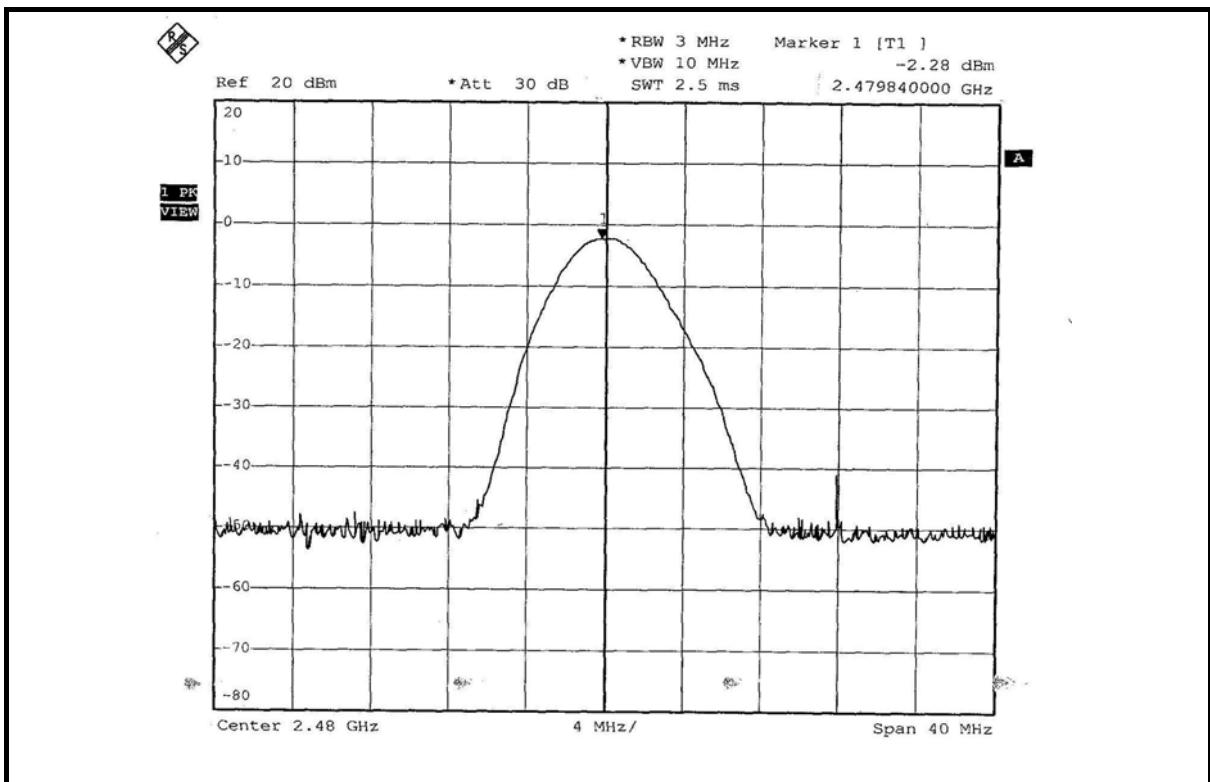
4.7.5. TEST SETUP

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.



4.7.6. EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7. TEST RESULTS


MODULATION TYPE	GFSK	ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH, 991hPa
INPUT POWER	120Vac, 60Hz	TESTED BY	Morgan Chen

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (dBm)	PASS/FAIL
0	2402	0.714	-1.46	30	PASS
39	2441	0.630	-2.01	30	PASS
78	2480	0.592	-2.28	30	PASS

CH 0

Ch 39

Ch 78

4.7. BAND EDGES MEASUREMENT

4.8.1. LIMITS OF BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

4.8.2. TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP40	100040	Jun. 28, 2008

NOTES: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

4.8.3. TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low loss cable. Set both RBW and VBW of spectrum analyzer to 100 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4. DEVIATION FROM TEST STANDARD

No deviation.

4.8.5. EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest and highest channel frequencies individually.

4.8.6. TEST RESULTS

The spectrum plots are attached on the following 4 images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement in part 15.247(d).

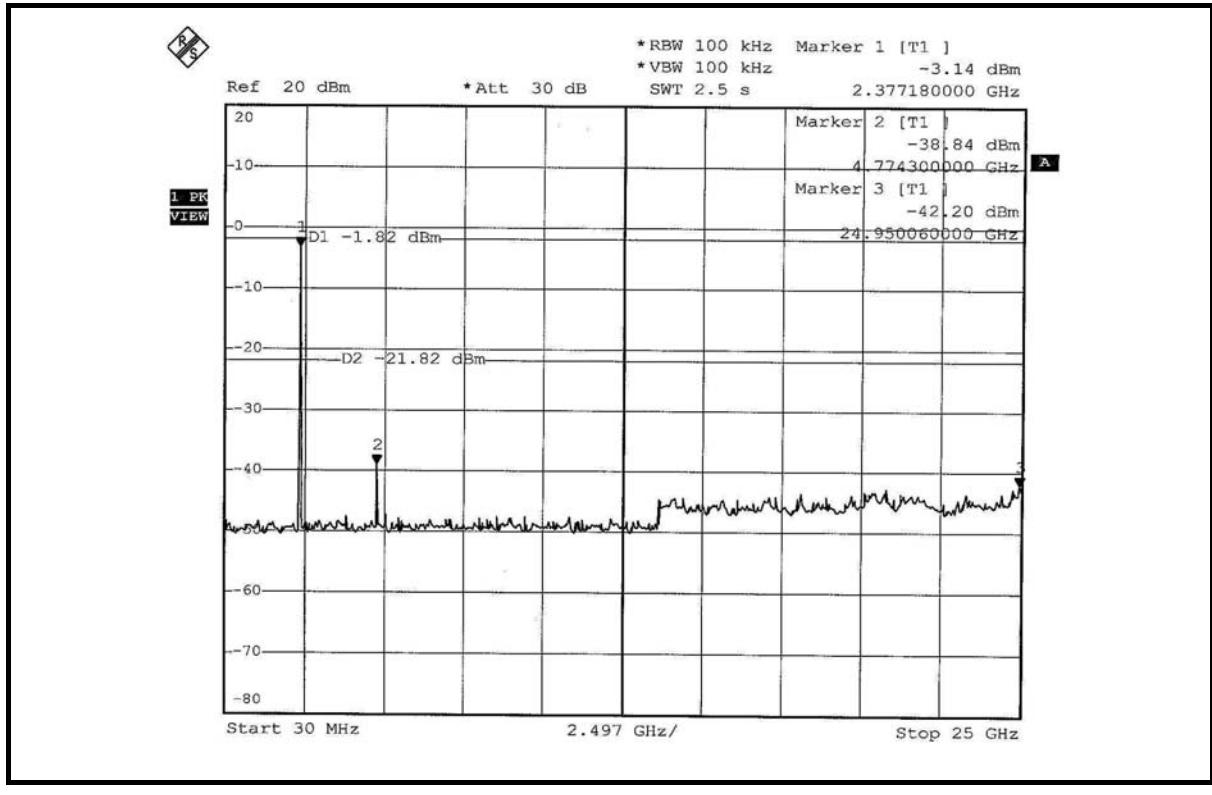
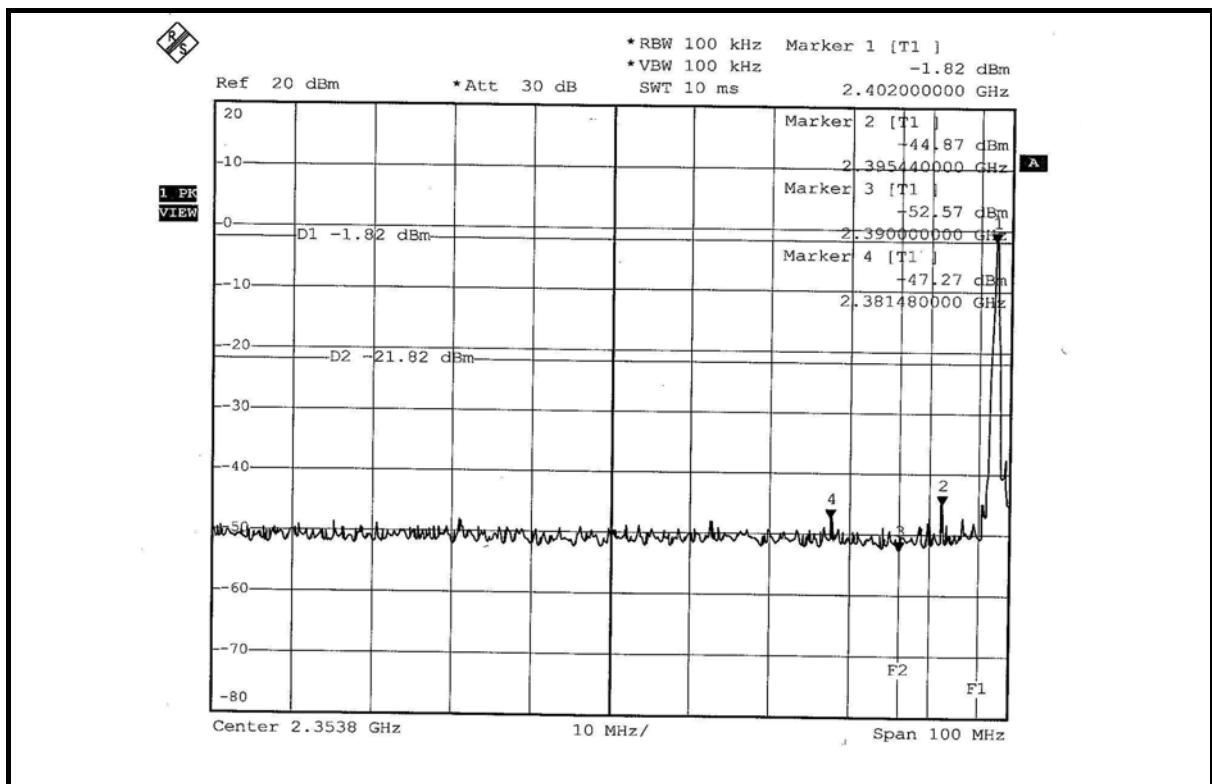
NOTE 1:

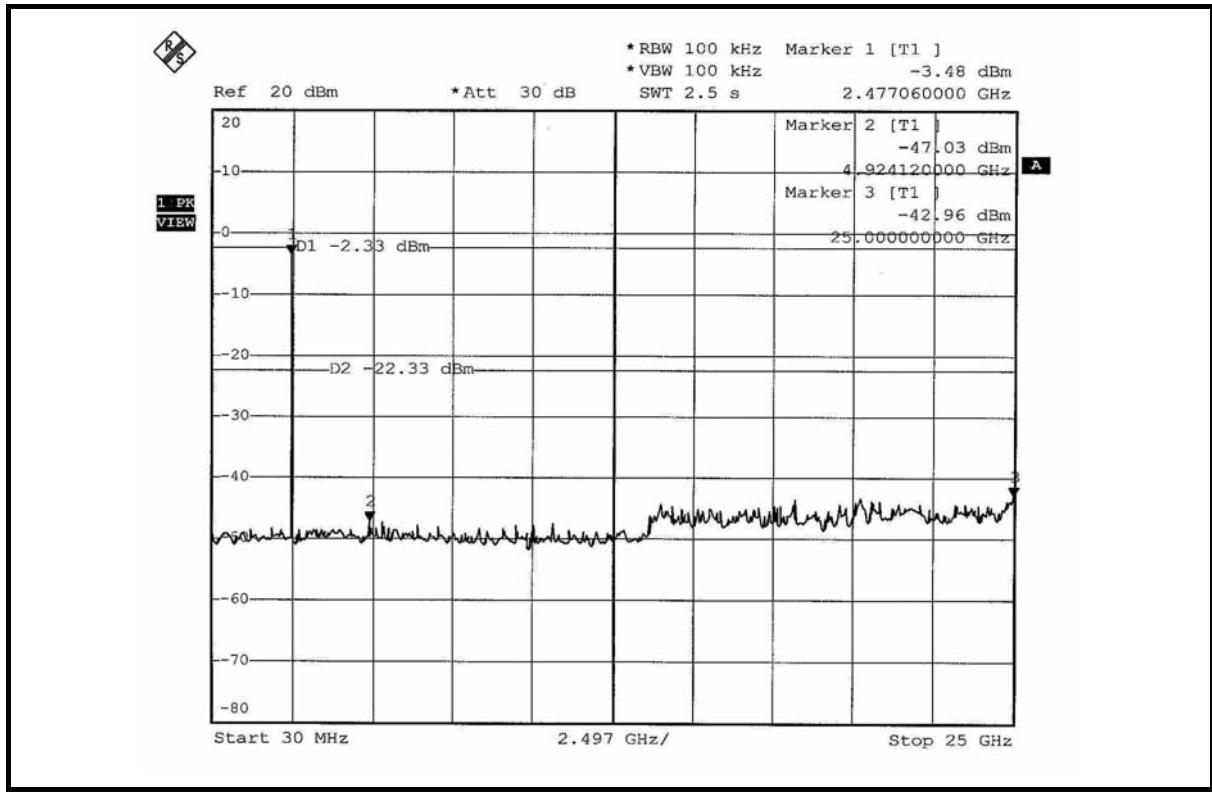
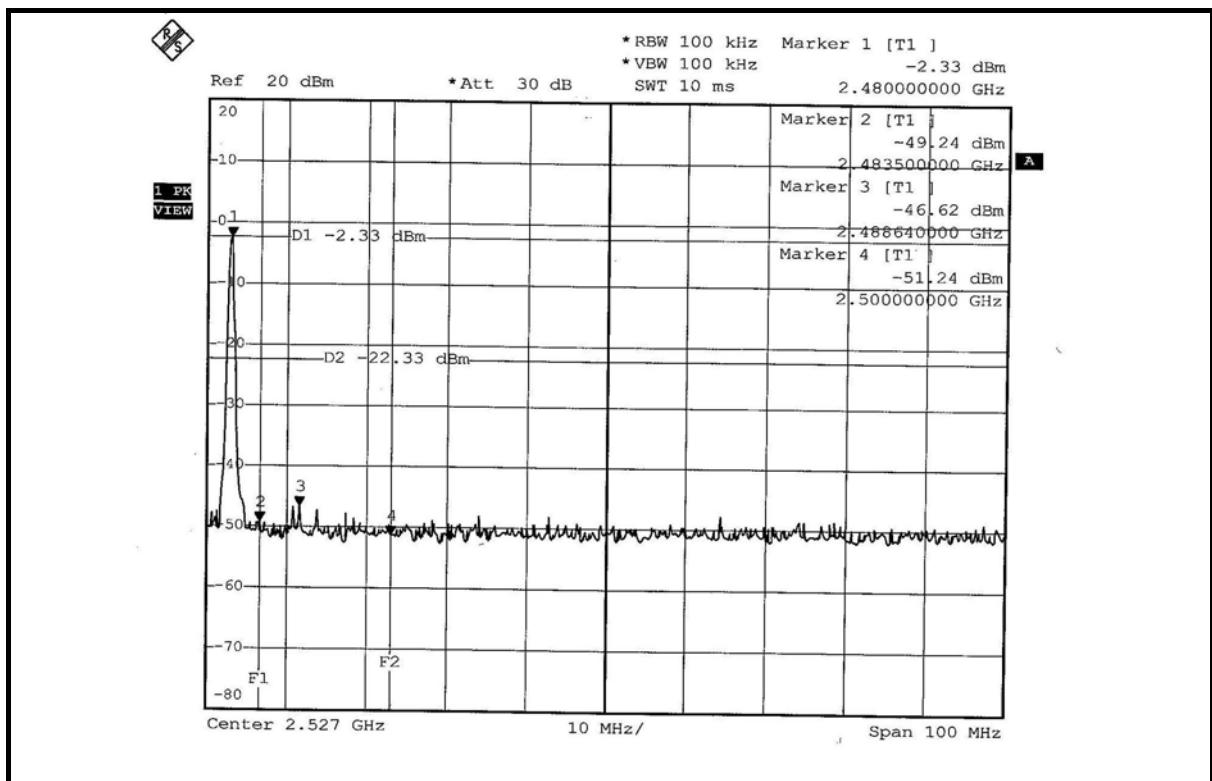
The band edge emission plot on the next page shows 45.45dBc between carrier maximum power and local maximum emission in restrict band (2.38148GHz). The emission of carrier strength list in the test result of channel 0 at the item 4.2.7 is 94.33dBuV/m (Peak), so the maximum field strength in restrict band is $94.33 - 45.45 = 48.88$ dBuV/m, which is under 74 dBuV/m limit.

Average value = $48.88 - 30.10 = 18.78$ dBuV/m, which is under 54dBuV/m limit.

*The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: $20\log(3.125/100) = -30.10$ dB.

Average value = peak reading -30.10.



NOTE 2:



The band edge emission plot on the next second page shows 44.29dBc between carrier maximum power and local maximum emission in restrict band (2.48864GHz). The emission of carrier strength list in the test result of channel 78 at the item 4.2.7 is 87.08dBuV/m (Peak), so the maximum field strength in restrict band is $87.08 - 44.29 = 42.79$ dBuV/m, which is under 74 dBuV/m limit.

Average value = $42.79 - 30.10 = 12.69$ dBuV/m, which is under 54dBuV/m limit.

*The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: $20\log(3.125/100) = -30.10$ dB.

Average value = peak reading -30.10.

4.8. ANTENNA REQUIREMENT

4.9.1. STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.9.2. ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is chip antenna without antenna connector. The maximum gain of this antenna is -2.66dBi.

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, UL, A2LA
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA , CSA
R.O.C.	TAF, BSMI, NCC
Netherlands	Telefication
Singapore	PSB , GOST-ASIA(MOU)
Russia	CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site:

www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343
Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232
Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.