
Exhibit 11: Maximum Permissible Exposure (MPE) calculations for UHF Single Antenna reader VHY3222

Maximum Permissible Exposure calculations

Table 1. FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ²)*	6
30-300	61.4	0.163	1.0	6
300-1500	--	--	f/300	6
1500-100,000	--	--	5	6

(B) Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ²)*	30
30-300	27.5	0.073	0.2	30
300-1500	--	--	f/1500	30
1500-100,000	--	--	1.0	30

f = frequency in MHz

*Plane-wave equivalent power density

Source: http://www.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet65/oet65b.pdf

The basic relationship among power, gain, and field strength is

$$S = \frac{G * P}{4\pi r^2} \quad (1)$$

where

S = power density in mW/cm²,

G = gain relative to an isotropic radiator (dBi),

P = power delivered to the antenna (mW),

r = distance (cm),

High Performance Fixed Reader:

Refer to Eq. 1 and the limits in Table 1

f = 902-928 MHz. Let assume MPE case for f = 902 MHz

G*P = 2W ERP => 3200mW EIRP

	Occupational/Controlled Exposure (mW/cm ²) for 6min	General population/Uncontrolled Exposure (mW/cm ²) for 30min
Limit according to Table 1	902/300 = 3.006	902/1500 = 0.601
Distance (cm) to meet MPE according to Eq.1	$r = \sqrt{\frac{3200}{3.006 \times 4\pi}}$ $r = 9.20\text{cm}$	$r = \sqrt{\frac{3200}{0.601 \times 4\pi}}$ $r = 20.58\text{cm}$
Note	<ul style="list-style-type: none"> Safety notification in manuals and product label on safe distance is 30cm. 	

Now let's assume MPE case for f = 928 MHz

G*P = 2W ERP => 3200mW EIRP

	Occupational/Controlled Exposure (mW/cm ²) for 6min	General population/Uncontrolled Exposure (mW/cm ²) for 30min
Limit according to Table 1	928/300 = 3.093	928/1500 = 0.618
Distance (cm) to meet MPE according to Eq.1	$r = \sqrt{\frac{3200}{3.093 \times 4\pi}}$ $r = 9.07\text{cm}$	$r = \sqrt{\frac{3200}{0.618 \times 4\pi}}$ $r = 20.30\text{cm}$
Note	<ul style="list-style-type: none"> Safety notification in manuals and product label on safe distance is 30cm. 	