

FCC Test Report

Report No.: RWAZ202300057A

Applicant: Guangdong Midea Kitchen Appliances Manufacturing Co.,Ltd

Address: No.6, Yong An Road, Beijiao, Shunde, Foshan ,Guangdong,China

Product Name: Microwave Oven

Product Model: EC0P045C-S

Multiple Models: EC0P04##-S, EC0P04***-S, AC0P04Y7-S, AC0P04##-S, AC0P04***-S, TC0P042FC-S, TC0P04##-S, TCP04***-S, RJ55-MF-XXXXXXX (X=0-9, A-Z or Blank, XXXXXXXX represents colors, country or retailers)

Trade Mark: Midea, CHEFMAN

FCC ID: VG8XC0P04YY

Standards: FCC CFR Title 47 Part 18

Test Date: 2023-12-07 to 2023-12-09

Test Result: Complied

Report Date: 2023-12-15

Reviewed by:

Frank Yin

Approved by:

Jacob Kong

Frank Yin
Project Engineer

Jacob Kong
Manager

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk “★”

Announcement

1. This test report shall not be reproduced in full or partial, without the written approval of World Alliance Testing & Certification (Shenzhen) Co., Ltd
2. The results in this report apply only to the sample tested.
3. This sample tested is in compliance with the limits of the above regulation.
4. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.
5. The information marked “#” is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

Revision History

Version No.	Issued Date	Description
00	2023-12-15	<i>Original</i>

Contents

1	General Information	4
1.1	Client Information	4
1.2	Product Description of EUT	4
1.3	Related Submittal(s)/Grant(s).....	4
1.4	Measurement Uncertainty	4
1.5	Laboratory Location.....	5
1.6	Test Methodology	5
2	Description of Measurement.....	6
2.1	Test Configuration.....	6
2.2	Test Auxiliary Equipment	6
2.3	Test Setup.....	6
2.4	Test Procedure	8
2.5	Measurement Method.....	9
2.6	Measurement Equipment	10
3	Test Results	11
3.1	Test Summary.....	11
3.2	Limit	12
3.3	Operating frequencies	13
3.4	Power Output Measurement	14
3.5	AC Line Conducted Emissions Test Data.....	15
3.6	Radiated emission Test Data.....	17
3.7	Radio frequency exposure	21
4	Test Setup Photo.....	22
5	E.U.T Photo	23

1 General Information

1.1 Client Information

Applicant:	Guangdong Midea Kitchen Appliances Manufacturing Co.,Ltd
Address:	No.6, Yong An Road, Beijiao, Shunde, Foshan ,Guangdong,China
Manufacturer:	Guangdong Midea Kitchen Appliances Manufacturing Co.,Ltd
Address:	No.6, Yong An Road, Beijiao, Shunde, Foshan ,Guangdong,China

1.2 Product Description of EUT

The EUT is Microwave Over operate on 2450MHz ISM frequency Band.

Sample Serial Number	Z-1(assigned by WATC)
Sample Received Date	2023-12-01
Sample Status	Good Condition
Operating Frequency Range	2450MHz \pm 50.0 MHz
Power Supply	AC 120V/60Hz
Microwave Rated Input Power [#]	1600W
Microwave Rated Output Power [#]	1000W
Modification	Sample No Modification by the test lab

1.3 Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s)

1.4 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
AC Power Lines Conducted Emissions	\pm 3.14dB
Radiated emission	Below 1GHz
	Above 1GHz
Frequency Error	150Hz

Note 1: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Note 2: The Decision Rule is based on simple acceptance with ISO Guide 98-4:2012 Clause 8.2 (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

1.5 Laboratory Location

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Tel: +86-755-29691511, Email: qa@wutc.com.cn

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 463912, the FCC Designation No. : CN5040.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160.

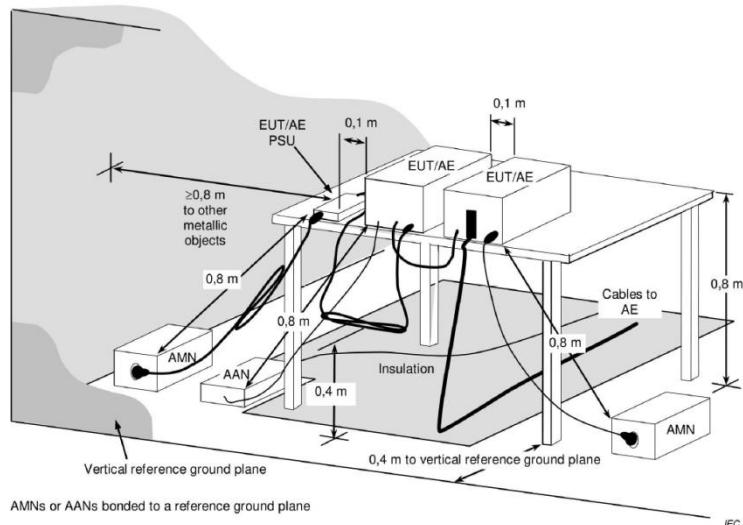
1.6 Test Methodology

FCC CFR 47 Part 18

FCC OST MP-5-1986

2 Description of Measurement

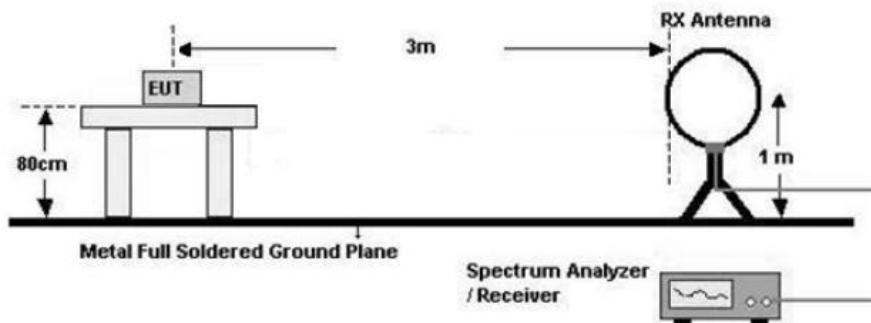
2.1 Test Configuration

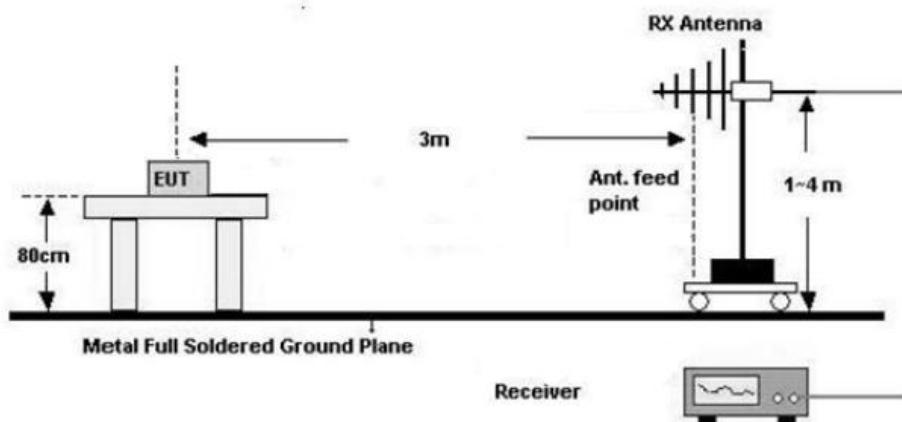

Test Mode:	
Microwave	The EUT was operate at the maximum microwave output power, according to FCC OST MP-5-1986 section 4.1, a quantity of water in a beaker was put in the oven cooking cavity during test

2.2 Test Auxiliary Equipment

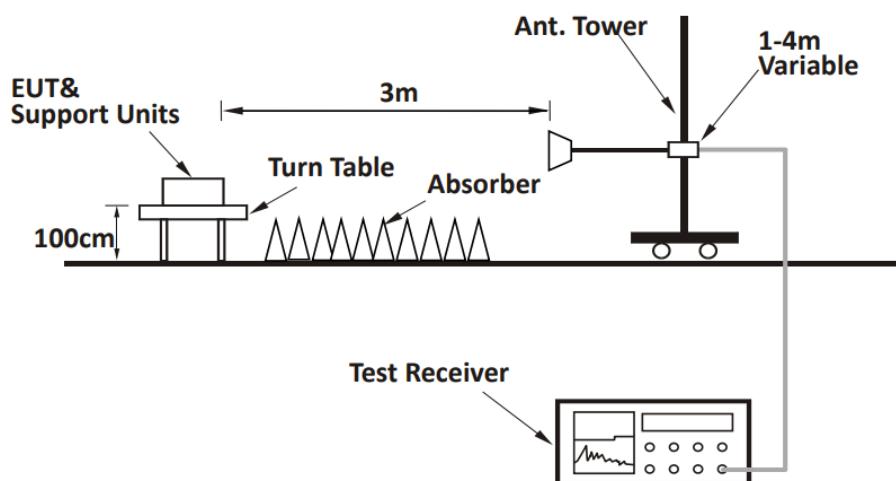
Manufacturer	Description	Model	Serial Number
Xiangbo	Glass Beaker	unknown	unknown

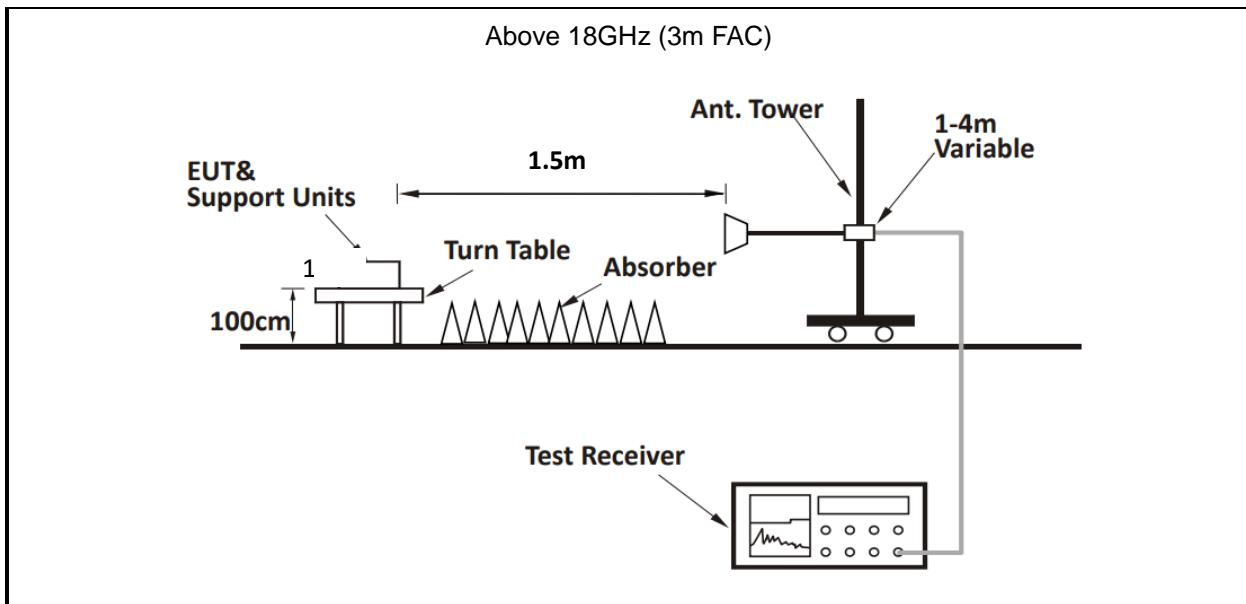
2.3 Test Setup


1) Conducted emission measurement:


Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:


Below 30MHz (3m SAC)



30MHz-1GHz (3m SAC)

Above 1-18GHz(3m FAC)

2.4 Test Procedure

Conducted emission:

1. The E.U.T is placed on a non-conducting table 40cm from the vertical ground plane and 80cm above the horizontal ground plane (Please refer to the block diagram of the test setup and photographs).
2. Both sides of A.C. line are checked for maximum conducted interference.
3. Line conducted data is recorded for both Line and Neutral

Radiated Emission Procedure:

a) For 30MHz-1GHz:

1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.

b) For above 1GHz:

1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.

2.5 Measurement Method

Description of Test	Measurement Method
AC Line Conducted Emissions	FCC OST MP-5-1986 Section 7
Radiated emission	FCC OST MP-5-1986 Section 5
Operating frequencies	FCC OST MP-5-1986 Section 4.5
Power Output Measurement	FCC OST MP-5-1986 Section 4.3
Radio frequency exposure requirements	FCC OST MP-5-1986 Section 3.1

2.6 Measurement Equipment

Manufacturer	Description	Model	Management No.	Calibration Date	Calibration Due Date
AC Line Conducted Emission Test					
ROHDE& SCHWARZ	EMI TEST RECEIVER	ESR	101817	2023/7/3	2024/7/2
R&S	LISN	ENV216	101748	2023/8/1	2024/7/31
N/A	Coaxial Cable	NO.12	N/A	2023/7/3	2024/7/2
Farad	Test Software	EZ-EMC	Ver. EMEC-3A1	/	/
Radiated Emission Test					
R&S	EMI test receiver	ESR3	102758	2023/7/3	2024/7/2
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSV40-N	101608	2023/7/3	2024/7/2
SONOMA INSTRUMENT	Low frequency amplifier	310	186014	2023/7/12	2024/7/11
COM-POWER	preamplifier	PAM-118A	18040152	2023/8/21	2024/8/20
COM-POWER	Amplifier	PAM-840A	461306	2023/8/8	2024/8/7
ETS	Passive Loop Antenna	6512	29604	2023/7/7	2024/7/6
SCHWARZBECK	Log - periodic wideband antenna	VULB 9163	9163-872	2023/7/7	2024/7/6
Astro Antenna Ltd	Horn antenna	AHA-118S	3015	2023/7/6	2024/7/5
Ducommun technologies	Horn Antenna	ARH-4223-02	1007726-03	2023/7/10	2024/7/9
Oulitong	Band Reject Filter	OBSF-2400-24 83.5-50N	OE02103119	2023/9/15	2024/9/14
N/A	Coaxial Cable	N/A	NO.9	2023/8/8	2024/8/7
N/A	Coaxial Cable	N/A	NO.10	2023/8/8	2024/8/7
N/A	Coaxial Cable	N/A	NO.11	2023/8/8	2024/8/7
Audix	Test Software	E3	191218 V9	/	/
Operating frequencies Test					
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSV40-N	101608	2023/7/3	2024/7/2
Astro Antenna Ltd	Horn antenna	AHA-118S	3015	2023/7/6	2024/7/5
N/A	Coaxial Cable	N/A	NO.9	2023/8/8	2024/8/7
N/A	Coaxial Cable	N/A	NO.10	2023/8/8	2024/8/7
Power Output Test					
YOKOGAWA	Digital Power Meter	253503	25BW3075	2023/8/24	2024/8/23
Victor	Digital Thermometer	6801	100730669	2023/12/1	2024/11/30
Radio frequency exposure					
ETS	Microwave Survey Meter	1501	3640274	2023/10/11	2024/10/10

Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards.

3 Test Results

3.1 Test Summary

FCC Rules	Description of Test	Result
FCC §18.307	AC Line Conducted Emissions	Compliance
FCC §18.305	Radiated emission	Compliance
FCC §18.301 FCC OST MP-5 §3.2	Operating frequencies	Compliance
FCC OST MP-5 §4.3	Power Output Measurement	Reporting only
FCC §18.313, §2.1091; §1.1310	Radio frequency exposure requirements	Compliance

Note: This is a Class II Permissive Change test report. The applicant declared the difference between EUT and original device (Granted on 2023/03/30) as below:

1. Change the computer board
2. Change the keys to touch panel
3. Change the appearance
4. Add model number

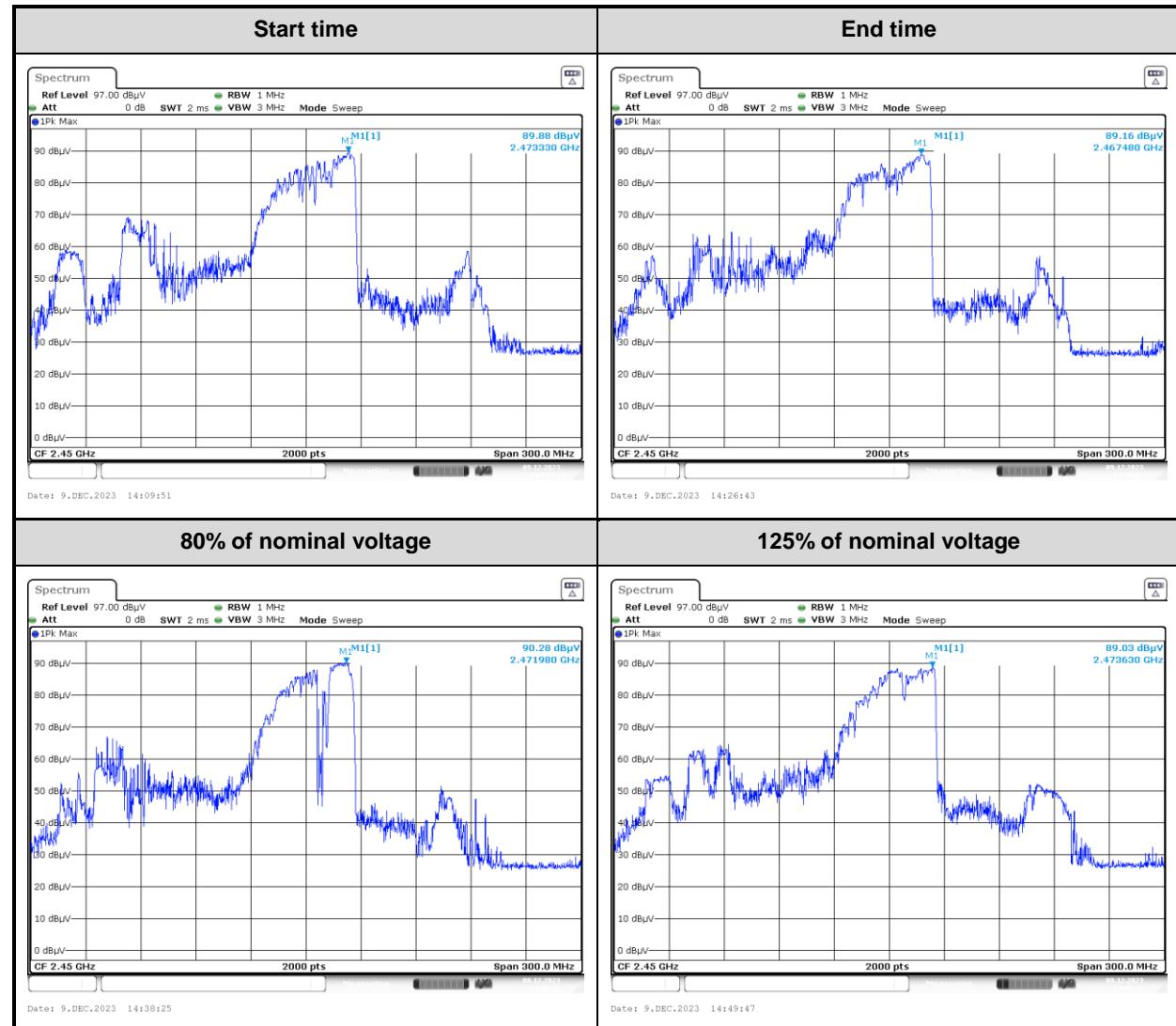
The microwave frequency, rated input& output power was not change

3.2 Limit

Test items	Limit			
AC Line Conducted Emissions	Frequency of emission (MHz)		Conducted limit (dB μ V)	
			Quasi-peak	Average
	0.15–0.5		66 to 56 *	56 to 46 *
	0.5–5		56	46
	5–30		60	50
* Decreases with the logarithm of the frequency.				
Radiated emission	Equipment		RF Power generated by equipment (watts)	Field strength limit (uV/m)
	Any type unless otherwise specified (miscellaneous)	Any ISM frequency	Below 500 500 or more	25 25 × SQRT(power/500)
Operating frequencies	§18.301 Within ISM frequency band 2400-2500MHz			
Radio frequency exposure requirements	§1.1310			
	Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)
(ii) Limits for General Population/Uncontrolled Exposure				
0.3–1.34	614	1.63	*(100)	<30
1.34–30	824/f	2.19/f	*(180/f ²)	<30
30–300	27.5	0.073	0.2	<30
300–1,500			f/1500	<30
1,500–100,000			1.0	<30
f = frequency in MHz. * = Plane-wave equivalent power density.				

3.3 Operating frequencies

Test Date:	2023-12-09	Test By:	Luke Li
Environment condition:	Temperature: 24°C; Relative Humidity: 51%; ATM Pressure: 101kPa		


Variation in Operating Frequency with Time

Frequency at Start time(MHz)	Frequency at End time(MHz)	Limit(MHz)
2473.33	2467.48	Within 2400~2500

Variation in Operating Frequency with Line Voltage

Frequency at 80% of nominal voltage(MHz)	Frequency at 125% of nominal voltage(MHz)	Limit(MHz)
2471.98	2473.63	Within 2400~2500

Test Plot:

3.4 Power Output Measurement

Test Date:	2023-12-8	Test By:	Lirou Li
Environment condition:	Temperature: 26°C; Relative Humidity:45%; ATM Pressure: 101.1kPa		

Power Input:

Input Voltage(V _{AC})	Input Current(A)	Input Power(W)	Rated Input Power(W)
116.3	13.6	1582	1600

Note:

Based on the measured input power, the EUT was found to be operating within the intended specifications.

Power Output:

Quantity of Water (ml)	Mass of the container (g)	Ambient temperature (°C)	Initial temperature (°C)	Final temperature (°C)	Heating time (s)	Power output (W)
1000	487	26	24.7	37.6	60	952

Formula:

$$P = \frac{4,187 \cdot m_w (T_2 - T_1) + 0,55 \cdot m_c (T_2 - T_0)}{t}$$

Note:

P is the microwave power output(W)

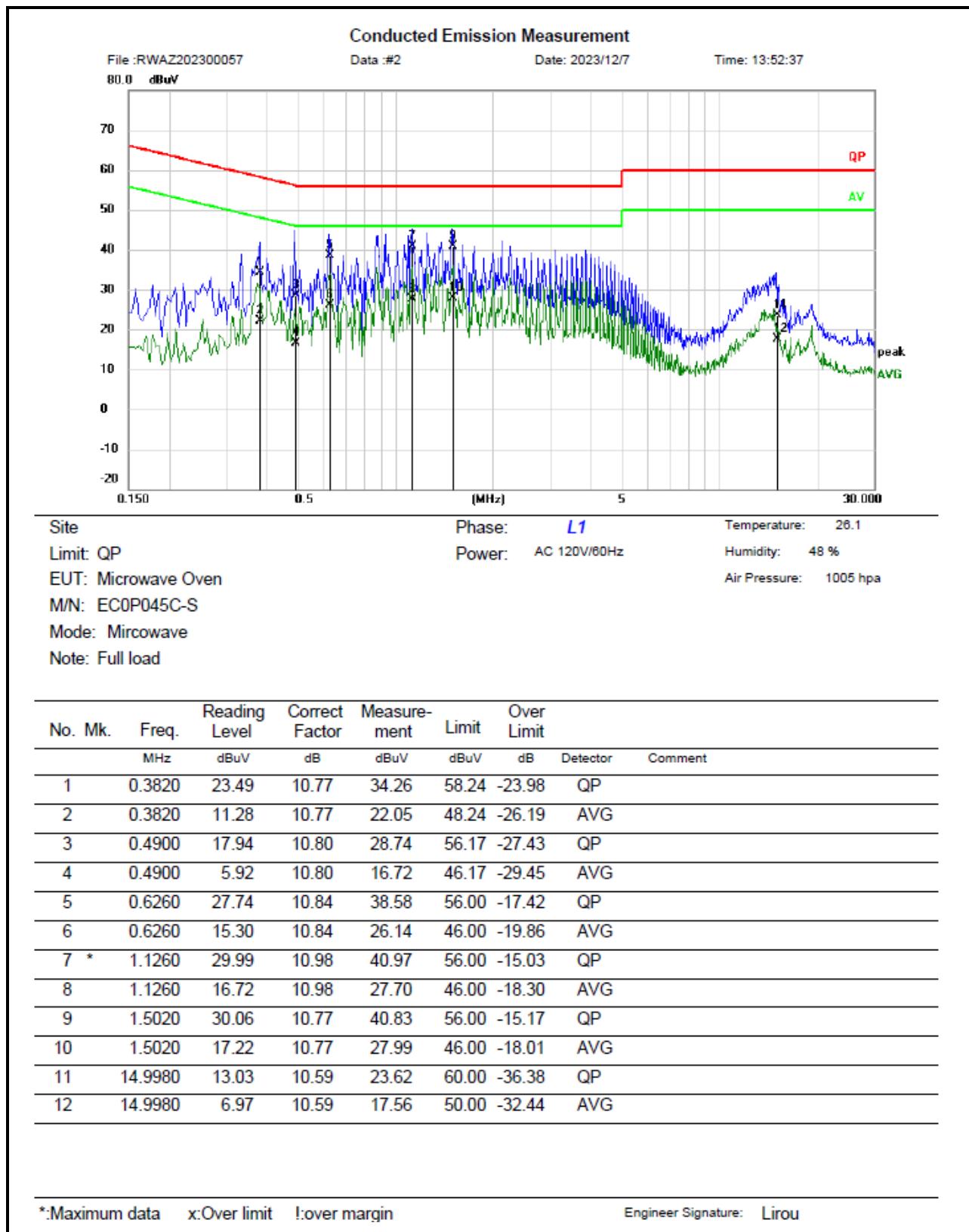
m_w is the mass of the water(ml)

m_c is the mass of the container(g)

T₀ is the ambient temperature(°C)

T₁ is the initial temperature of water(°C)

T₂ is the final temperature of water(°C)

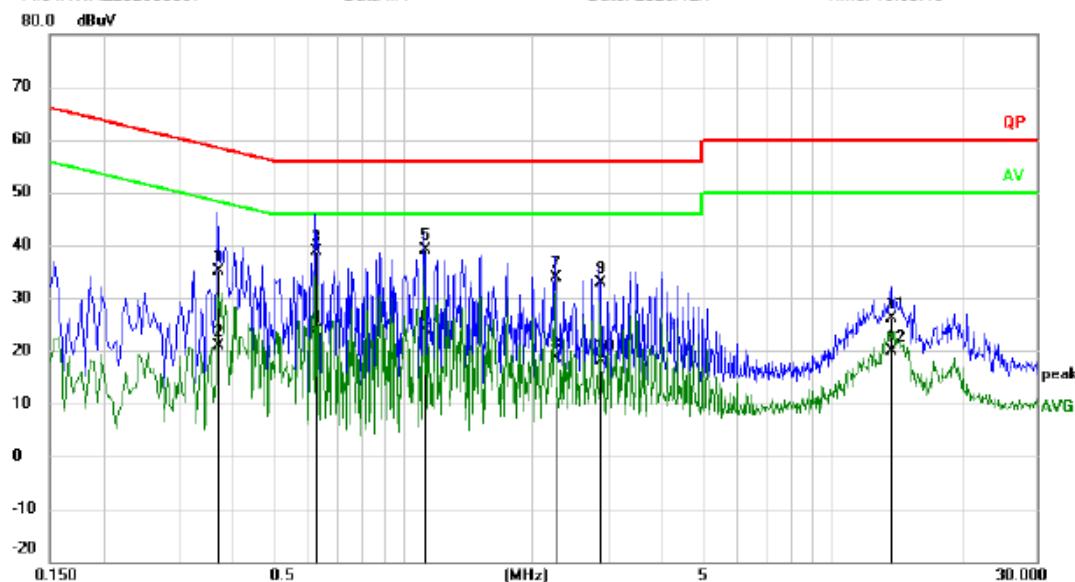

t is the water heating time(s), excluding the magnetron filament heating-up time

According to FCC § 18.305, the field strength limit of the outside band emissions is:

$$\begin{aligned}
\text{Limit} &= 20\lg(25*\text{SQRT}(\text{Power}/500)+20\lg(300/3)) \\
&= 20\lg(25*\text{SQRT}(952/500)+20\lg(300/3)) \\
&= 70.8\text{dBuV/m } @3\text{m distance}
\end{aligned}$$

3.5 AC Line Conducted Emissions Test Data

Test Date:	2023-12-07	Test By:	Lirou Li
Environment condition:	Temperature: 26.1°C; Relative Humidity:48%; ATM Pressure: 100.5kPa		


Conducted Emission Measurement

File :RWAZ202300057

Data :#1

Date: 2023/12/7

Time: 13:50:13

Site

Phase: *N*

Temperature: 26.1

Limit: QP

Power: AC 120V/60Hz

Humidity: 48 %

EUT: Microwave Oven

Air Pressure: 1005 hpa

M/N: EC0P045C-S

Mode: Mircowave

Note: Full load

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over Limit	
		MHz	dBuV	dB	dBuV	dB	Detector	Comment
1		0.3700	24.60	10.62	35.22	58.50	-23.28	QP
2		0.3700	10.27	10.62	20.89	48.50	-27.61	AVG
3		0.6260	28.36	10.61	38.97	56.00	-17.03	QP
4		0.6260	13.01	10.61	23.62	46.00	-22.38	AVG
5	*	1.1220	28.59	10.66	39.25	56.00	-16.75	QP
6		1.1220	13.31	10.66	23.97	46.00	-22.03	AVG
7		2.2540	23.35	10.65	34.00	56.00	-22.00	QP
8		2.2540	7.95	10.65	18.60	46.00	-27.40	AVG
9		2.8780	22.34	10.57	32.91	56.00	-23.09	QP
10		2.8780	7.54	10.57	18.11	46.00	-27.89	AVG
11		13.7580	15.38	10.84	26.22	60.00	-33.78	QP
12		13.7580	9.08	10.84	19.92	50.00	-30.08	AVG

*:Maximum data x:Over limit !:over margin

Engineer Signature: Lirou

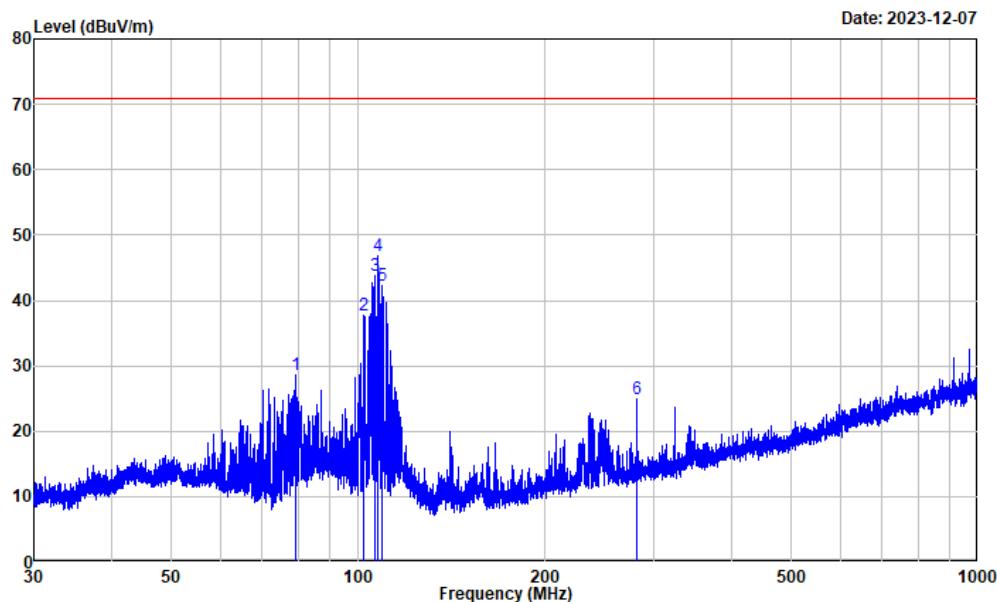
Remark:

Measurement (dBuV)= Reading Level (dBuV) + Correct Factor(dB)

Correct Factor (dB)= LISN Voltage Division Factor (dB)+ Cable loss(dB)

Over Limit= Measurement – Limit

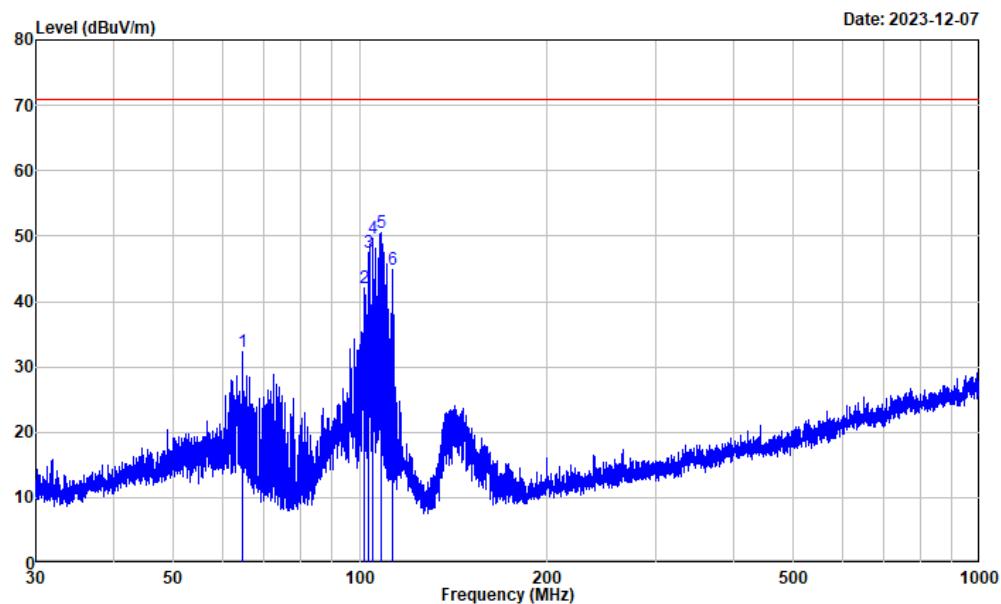
3.6 Radiated emission Test Data


9 kHz-30MHz:

Test Date:	2023-12-07	Test By:	Luke Li
Environment condition:	Temperature: 24°C; Relative Humidity:44%; ATM Pressure: 101kPa		

For radiated emissions below 30MHz, there were no emissions found within 20dB of limit.

30MHz-1GHz:


Test Date:	2023-12-07	Test By:	Luke Li
Environment condition:	Temperature: 24°C; Relative Humidity:44%; ATM Pressure: 101kPa		

Project No. : RWAZ202300057
 EUT/Model No.: EC0P045C-S
 Test Mode : Microwave
 Test Voltage : AC 120V/60Hz
 Environment : 24°C/44%R.H./101kPa
 Tested by : Luke Li
 Polarization : horizontal
 Remark : Microwave Maximum output power

--No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Over Limit (dB)	Detector
1	79.173	46.50	-17.92	28.58	70.80	-42.22	Peak
2	102.360	51.60	-13.79	37.81	70.80	-32.99	Peak
3	106.525	57.55	-13.72	43.83	70.80	-26.97	Peak
4	107.699	60.59	-13.75	46.84	70.80	-23.96	Peak
5	109.460	56.09	-13.90	42.19	70.80	-28.61	Peak
6	282.242	36.50	-11.53	24.97	70.80	-45.83	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Project No. : RWAZ202300057
 EUT/Model No.: EC0P045C-S
 Test Mode : Microwave
 Test Voltage : AC 120V/60Hz
 Environment : 24°C/44%R.H./101kPa
 Tested by : Luke Li
 Polarization : vertical
 Remark : Microwave Maximum output power

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Over Limit (dB)	Detector
1	64.546	46.38	-14.05	32.33	70.80	-38.47	Peak
2	101.555	55.88	-13.83	42.05	70.80	-28.75	Peak
3	103.125	61.32	-13.77	47.55	70.80	-23.25	Peak
4	105.087	63.31	-13.67	49.64	70.80	-21.16	Peak
5	108.124	64.25	-13.76	50.49	70.80	-20.31	Peak
6	112.821	59.17	-14.39	44.78	70.80	-26.02	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Remark:

Result = Reading + Factor

Factor = Antenna factor + Cable loss - Amplifier gain

Over Limit = Result - Limit

Above 1GHz:

Test Date:	2023-12-09	Test By:	Bard Huang
Environment condition:	Temperature: 24°C; Relative Humidity: 51%; ATM Pressure: 101kPa		

Frequency (MHz)	Reading level (dB μ V)	Polar	Corrected Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Remark
2368.134	39.66	horizontal	-1.75	37.91	70.80	-32.89	Average
2542.371	39.48	horizontal	-1.77	37.71	70.80	-33.09	Average
2641.321	38.85	horizontal	-1.61	37.24	70.80	-33.56	Average
2368.885	39.04	vertical	-1.75	37.29	70.80	-33.51	Average
2537.119	38.75	vertical	-1.76	36.99	70.80	-33.81	Average
2641.321	38.14	vertical	-1.61	36.53	70.80	-34.27	Average
Second and third harmonic							
700ml Water							
4928.964	51.34	horizontal	0.72	52.06	70.80	-18.74	Average
7386.693	46.13	horizontal	3.10	49.23	70.80	-21.57	Average
4928.964	45.56	vertical	0.72	46.28	70.80	-24.52	Average
7395.198	41.28	vertical	3.10	44.38	70.80	-26.42	Average
300ml Water							
4926.963	52.43	horizontal	0.70	53.13	70.80	-17.67	Average
7377.088	45.24	horizontal	3.09	48.33	70.80	-22.47	Average
4928.314	46.79	vertical	0.72	47.51	70.80	-23.29	Average
7393.297	41.18	vertical	3.10	44.28	70.80	-26.52	Average

Remark:

Corrected Amplitude= Reading level + corrected Factor

Corrected Factor = Antenna factor + Cable loss – Amplifier gain

Margin = Corrected Amplitude – Limit

The emission levels of other frequencies that were lower than the limit 20dB not show in test report.

For emissions in 18GHz-25GHz range, all emissions were investigated and in the noise floor level.

3.7 Radio frequency exposure

Test Date:	2023-12-8	Test By:	Lirou Li
Environment condition:	Temperature: 26°C; Relative Humidity:45%; ATM Pressure: 101.1kPa		

Radiation leakage was measured in the as-received condition with the oven door closed using a microwave leakage meter.

A 275mL water load was placed in the center of the oven and the oven was operated at maximum output power.

There was no microwave leakage exceeding a power level of 0.15mW/cm² observed at any point 5 cm or more from the external surface of the oven.

A maximum of 1.0mW/cm² is allowed in accordance with the applicable Federal Standards. Hence, microwave leakage in the as-received condition with the oven door closed was below the maximum allowed.

4 Test Setup Photo

Please refer to the attachment RWAZ202300057 test setup photo

5 E.U.T Photo

Please refer to the attachment RWAZ202300057 external photo and RWAZ202300057 internal photo

---End of Report---