

FCC 47 CFR PART 18

TEST REPORT

For

Microwave Oven

MODEL NUMBER: TC934D3ZL-SHNA, TC934D##-SHNA, TC934D*-SHNA ("#", "*" =0-9 or A-Z or blank)**

REPORT NUMBER: 4791770946-1

FCC ID: VG8TC934DYY

ISSUE DATE: June 25, 2025

Prepared for

**Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd.
No 6, Yong An Road, Beijiao, Shunde, Foshan, Guangdong, China**

Prepared by

**UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch
Room 101, Building 2, No.4, Information Road, Songshan Lake, Dongguan,
Guangdong, China**

**Tel: +86 769 22038881
Fax: +86 769 33244054
Website: www.ul.com**

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	June 25, 2025	Initial Issue	

Note: 1. This is a copy report base on 4791393620-2 which is issued by UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch on 20 September 2024. The customer needed to door frame and control panel length from 24 inches to 30 inches and added new model name and updated the rated output power, changed from 950W to 900W. Therefore, engineering judgement the tests radiated emissions, input power, output power and radiation hazard were re-performed.

2. The added new model TC934D3ZL-SHNA, TC934D##- SHNA and TC934D***-SHNA have the same circuit diagram, PCB Layout, components, component layout and performance with TC934D3RT, only extending the door frame and control panel from 24 inches to 30 inches each.

3. Model TC934D3ZL-SHNA, TC934D##- SHNA, TC934D***-SHNA for 30 inches.

Summary of Test Results

Emission			
Standard	Test Item	Limit	Result
FCC 47 CFR PART 18	Conducted Emissions	FCC Part 18.307(b)	Note 1
	Radiated Emissions (30MHz~1000MHz)	FCC Part 18.305(b)	Pass
	Radiated Emissions (1GHz~25GHz)	FCC Part 18.305(b)	Pass
	Operating Frequency	FCC Part 18.301	Note 1
	Input Power	FCC / OST MP-5 (1986) Clause 4.3	Pass
	Output Power	FCC / OST MP-5 (1986) Clause 4.3	Pass
	Radiation Hazard	FCC / OST MP-5 (1986) Clause 3.1	Pass

Note 1: Please refer to the original report 4791393620-2

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <FCC 47 CFR PART 18> when <Simple Acceptance> decision rule is applied.

CONTENTS

1. ATTESTATION OF TEST RESULTS.....	5
2. TEST METHODOLOGY.....	6
3. FACILITIES AND ACCREDITATION.....	6
4. CALIBRATION AND UNCERTAINTY	7
4.1. <i>MEASURING INSTRUMENT CALIBRATION</i>	<i>7</i>
4.2. <i>MEASUREMENT UNCERTAINTY.....</i>	<i>7</i>
5. EQUIPMENT UNDER TEST	8
5.1. <i>DESCRIPTION OF EUT</i>	<i>8</i>
5.2. <i>TEST MODE.....</i>	<i>8</i>
5.3. <i>EUT ACCESSORY.....</i>	<i>8</i>
5.4. <i>LOAD FOR MICROWAVE OVENS.....</i>	<i>9</i>
5.5. <i>SUPPORT UNITS FOR SYSTEM TEST.....</i>	<i>9</i>
6. MEASURING EQUIPMENT AND SOFTWARE USED.....	10
7. EMISSION TEST	12
7.1. <i>CONDUCTED EMISSIONS</i>	<i>12</i>
7.2. <i>RADIATED EMISSIONS (30MHZ~1000MHZ).....</i>	<i>14</i>
7.3. <i>RADIATED EMISSIONS (1GHZ~25GHZ).....</i>	<i>18</i>
7.4. <i>OPERATING FREQUENCY.....</i>	<i>28</i>
7.5. <i>INPUT POWER.....</i>	<i>30</i>
7.6. <i>OUTPUT POWER.....</i>	<i>31</i>
7.7. <i>RADIATION HAZARD.....</i>	<i>33</i>

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd.
Address: No 6, Yong An Road, Beijiao, Shunde, Foshan, Guangdong, China

Manufacturer Information

Company Name: Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd.
Address: No 6, Yong An Road, Beijiao, Shunde, Foshan, Guangdong, China

EUT Information

EUT Name: Microwave Oven
Model: TC934D3ZL-SHNA
Series Model: TC934D##-SHNA, TC934D***-SHNA ("#", "*" =0-9 or A-Z or blank)
Sample Received Date: May 9, 2025
Sample ID: 8460376
Date of Tested: May 28, 2025 to June 4, 2025

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC 47 CFR PART 18	Pass


Prepared By:

Karl Wu

Engineer Project Associate

Checked By:

Kebo Zhang

Senior Project Engineer

Approved By:

Stephen Guo

Operations Manager

2. TEST METHODOLOGY

All tests were performed in accordance with the standard FCC 47 CFR PART 18 and FCC/OET MP-5

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	<p>A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA.</p> <p>FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.</p> <p>ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046.</p>
---------------------------	--

Note:

All tests measurement facilities use to collect the measurement data are located at Room 101, Building 2, No.4, Information Road, Songshan Lake, Dongguan, Guangdong, China.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Measurement Frequency Range	K	U(dB)
Conducted Emissions	0.009 MHz - 0.15 MHz	2	4.00
	0.15MHz - 30MHz	2	3.63
Radiated Emissions (30MHz~1000MHz)	9kHz - 30MHz	2	2.20
	30MHz - 1GHz	2	4.13
Radiated Emissions (1GHz~25GHz)	1GHz - 18GHz	2	5.64
	18GHz - 26GHz	2	5.23
Note1: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.			
Note 2: According to the standard CISPR 16-4-2, the MU for the Conducted emissions from the AC mains power ports using AMN should not exceed 3.8 in range of 9kHz to 150kHz and 3.4 in range of 150kHz to 30MHz. We have considered the test results containing the value of U _{lab} (in dB) for the measurement instrumentation actually used for the measurements.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Microwave Oven
Model	TC934D3ZL-SHNA
Series Model	TC934D##-SHNA, TC934D***-SHNA ("#", "*" =0-9 or A-Z or blank, indicates different appearance code)
Model Difference	All types of electronic circuit of the same, the difference are model name and appearance color. Different appearance code represent different model number and different appearance color. Therefore, radiated emissions, output power, input power and radiation hazard tests were performed on TC934D3ZL-SHNA.
Operating Frequency	2450MHz
Rated Input Power (Microwave)	1500W
Rated Output Power (Microwave)	900W
Rated Voltage	120V~, 60Hz, Single Phase

5.2. TEST MODE

Test Mode	Description
M01	Maximum power + 1000mL water load + beaker located in the center of the oven
M02	Maximum power + 700mL water load + beaker located in the center of the oven
M03	Maximum power+700mL water load + beaker located in the right front corner of the oven
M04	Maximum power+300mL water load + beaker located in the center of the oven
M05	Maximum power+300mL water load + beaker located in the right front corner of the oven

5.3. EUT ACCESSORY

Cable	
Description:	AC Cable
Cable Type:	Unshielded without ferrite
Length:	1.30 Meter

5.4. LOAD FOR MICROWAVE OVENS

For all measurements the energy developed by the oven is absorbed by a dummy load consisting of a quantity of tap water in a beaker. A polypropylene beaker or any other low-loss material shall be used as the container. If the oven is provided with a shelf or other utensil support, test shall be made with this support in its initial normal position. For ovens rated at 1000 watts or less power output, the beaker shall contain quantities of water as listed in the following subparagraphs. For ovens rated at more than 1000 watts output, each quantity shall be increased by 50% for each 500 watts or fraction thereof in excess of 1000 watts. Additional beakers are used if necessary.

- Load for power output measurement: 1000 milliliters of water in the beaker located in the center of the oven.
- Load for frequency measurement: 1000 milliliters of water in the beaker located in the center of the oven.
- Load for measurement of radiation on second and third harmonic: Two loads, one of 700 and the other of 300 milliliters of water are used. Each load is tested both with the beaker located in the center of the oven and with it in the right front corner.
- Load for all other measurements: 700 milliliters of water, with the beaker located in the center of the oven

5.5. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr./Brand	Model/Type No.	Specification	Note
1	Glass Beaker	N/A	N/A	1000ML	UL Support

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of Radiated Emissions (30MHz~1000MHz)					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	Jun. 28, 2024	Jun. 27, 2027
MXE EMI Receiver	KEYSIGHT	N9038A	MY56400036	Sep. 28, 2024	Sep. 27, 2025
Amplifier	HP	8447F	2944A03683	Sep. 28, 2024	Sep. 27, 2025
Test Software for Radiated Emission	Farad	EZ-EMC	Ver.UL-3A1	N/A	N/A

Test Equipment of Radiated Emissions (1GHz~25GHz)					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Measurement Receiver	ROHDE & SCHWARZ	ESR26	101377	Sep. 28, 2024	Sep. 27, 2025
Preamplifier	TDK	PA-02-0118	TRS-305-00067	Jun. 6, 2025	Jun. 5, 2026
Preamplifier	TDK	PA-02-2	TRS-307-00002	Jun. 6, 2025	Jun. 5, 2026
Horn Antenna	TDK	HRN-0118	130940	Dec. 12, 2024	Dec. 11, 2027
High Gain Horn Antenna	Schwarzbeck	BBHA-9170	697	Jun. 30, 2024	Jun. 29, 2027
Test Software for Radiated Emission	Farad	EZ-EMC	Ver.UL-3A1	N/A	N/A

Test Equipment of Input Power					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Signal Conditioning Unit	TESEQ	CCN 1000-1	1544A00611	Oct. 08, 2024	Oct. 07, 2025
5K VA AC Power Source	TESEQ	NSG 1007	1616A00637	Sep. 28, 2024	Sep. 27, 2025

Radiation Hazard					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Electric Field	LTLUTRON	EMF-819/EP-05H	I.508502	Dec. 31, 2024	Dec. 30, 2025

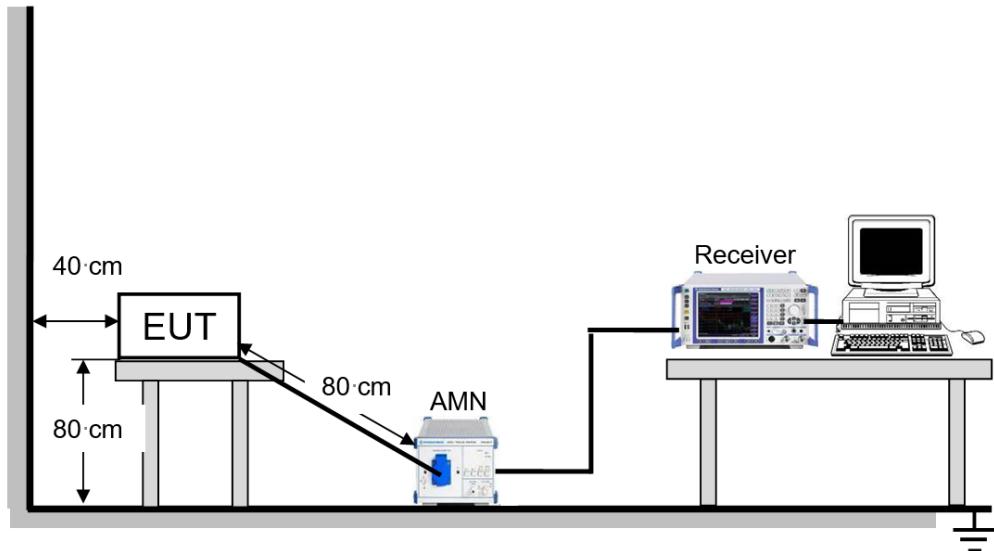
Output Power Measurement					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Probe Thermometer	Control Company	4242	150709653	Jun. 6, 2024	Jun. 5, 2026

Other Instrument					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Temperature humidity probe	OMEGA	ITHX-SD-5	18470007	Oct.8, 2024	Oct.7, 2025
Barometer	Yiyi	Baro	N/A	Oct.10, 2024	Oct.9, 2025
Attenuator	Agilent	8495B	2814a12853	Sep.28, 2024	Sep.27, 2025

7. EMISSION TEST

7.1. CONDUCTED EMISSIONS

LIMITS


Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

Note: *Decreases with the logarithm of the frequency.

TEST PROCEDURE

- 1) The testing follows the guideline in FCC / OST MP-5.
- 2) The EUT was placed on a 0.8m insulating material from the horizontal ground plane with EUT being connected to the power mains through a Line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 3) Excess I/O cables shall be bundled in the center. If bundling is not possible, bundling shall not exceed 30 to 40 cm in length.
- 4) Excess power cords shall be bundled in the center or shortened to appropriate length.
- 5) LISN at least 80 cm from nearest part of EUT.
- 6) For ovens rated at 1000 watts or less power output, the beaker shall contain quantities of water as listed in the following subparagraphs, for ovens rated at more than 1000 watts output, each quantity shall be increased by 50% for each 500 watts or fraction thereof in excess of 1000 watts,
A 700 milliliters of water in the beaker located in the center of the oven.
- 7) Conducted emissions from the EUT measured in the frequency range between 0.15MHz and 30MHz using CISPR Quasi-Peak and average detector mode, Resolution bandwidth set 9kHz.

TEST SETUP

TEST ENVIRONMENT

Temperature	/	Relative Humidity	/
Atmosphere Pressure	/		

TEST DATE / ENGINEER

Test Date	/	Test By	/
-----------	---	---------	---

TEST MODE

Pre-test Mode:	/
Final Test Mode:	/

TEST RESULTS

Please refer to the original report.

7.2. RADIATED EMISSIONS (30MHZ~1000MHZ)

LIMITS

- a) ISM equipment operating on a frequency specified in §18.301 is permitted unlimited radiated energy in the band specified for that frequency.
- b) The field strength levels of emissions which lie outside the bands specified in §18.301, unless otherwise indicated, shall not exceed the following:

Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (uV/m)	Distance (meters)
Any type unless otherwise specified (miscellaneous)	Any ISM frequency	Below 500	25	300
		500 or more	25 × SQRT(power/500)	1300*

¹Field strength may not exceed 10 μ V/m at 1600 meters. Consumer equipment operating below 1000 MHz is not permitted the increase in field strength otherwise permitted here for power over 500 watts.

Note: (1). dBuV/m = 20log(uV/m)

(2). dBuV/m @3m = dBuV/m @300m + 20log(300m/3m)

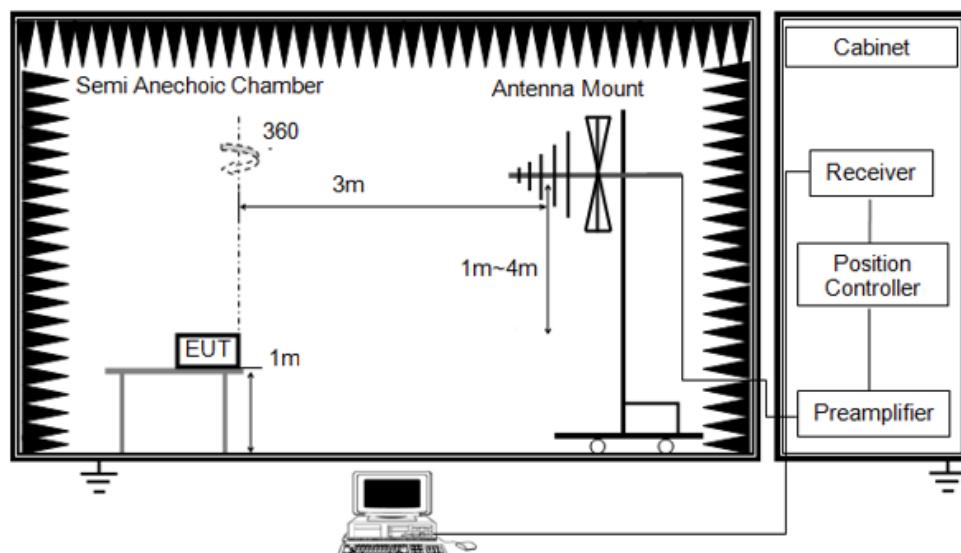
- c) Frequency range for field strength measurements:

Frequency band in which device operates (MHz)	Range of frequency measurements	
	Lowest frequency	Highest frequency
Below 1.705	Lowest frequency generated in the device, but not lower than 9 kHz	30 MHz.
1.705 to 30	Lowest frequency generated in the device, but not lower than 9 kHz	400 MHz.
30 to 500	Lowest frequency generated in the device or 25 MHz, whichever is lower	Tenth harmonic or 1,000 MHz, whichever is higher.
500 to 1,000	Lowest frequency generated in the device or 100 MHz, whichever is lower	Tenth harmonic.
Above 1,000do	Tenth harmonic or highest detectable emission.

TEST PROCEDURE

- 1) The testing follows the guidelines in FCC / OST MP-5.
- 2) The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3) The EUT was placed on a turntable with 1m meter above ground.
- 4) The EUT was set 3 meters from the interference receiving antenna, test antenna mast is remotely controlled and can be varied in height form 1m to 4m.
- 5) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 6) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

7) For ovens rated at 1000 watts or less power output, the beaker shall contain quantities of water as listed in the following subparagraphs, for ovens rated at more than 1000 watts output, each quantity shall be increased by 50% for each 500 watts or fraction thereof in excess of 1000 watts,


- Load for measurement of radiation on second and third harmonic; Two loads, one of 700ml and the other of 300ml, of water are used. Each load is tested both with the beaker located in the center of the oven and with it in the right front corner.
- All other emissions were measured while a 700ml water load was placed in the center of the oven.

8) The setting of the spectrum analyser

RBW	100kHz
VBW	300kHz
Detector	Peak / Average [#]

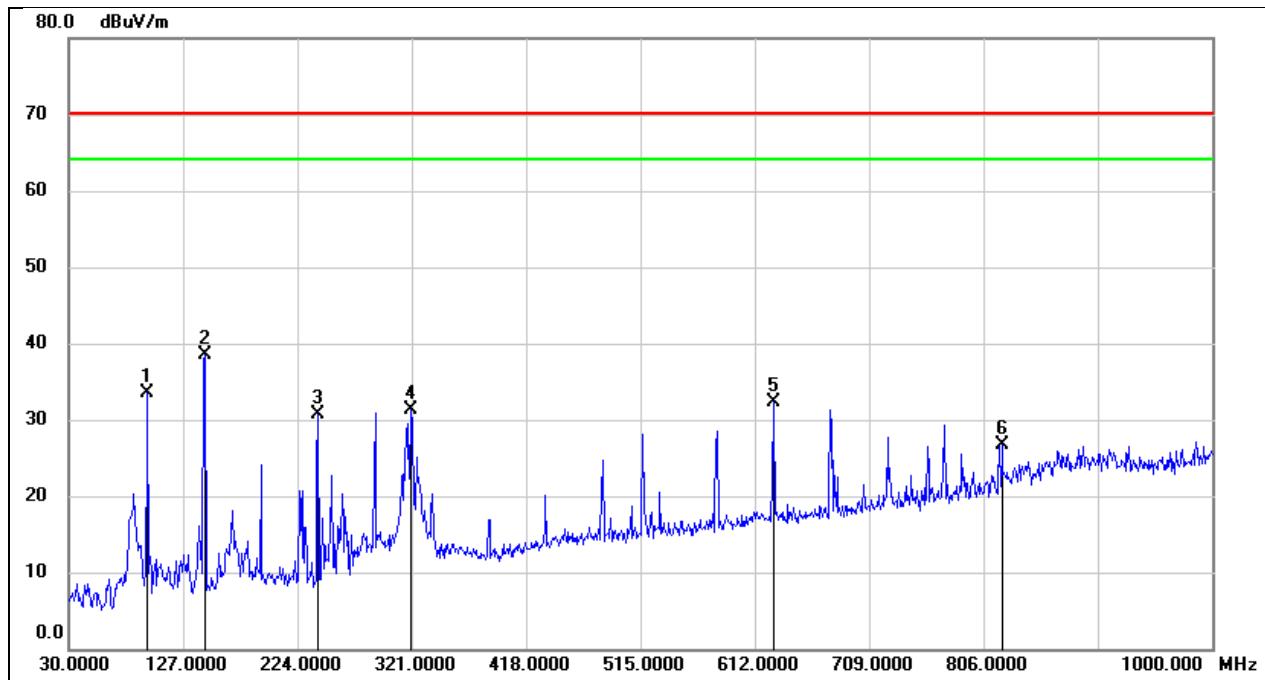
Note: # Peak for pre-scan, average for the final result.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.7°C	Relative Humidity	59%
Atmosphere Pressure	101kPa		

TEST DATE / ENGINEER

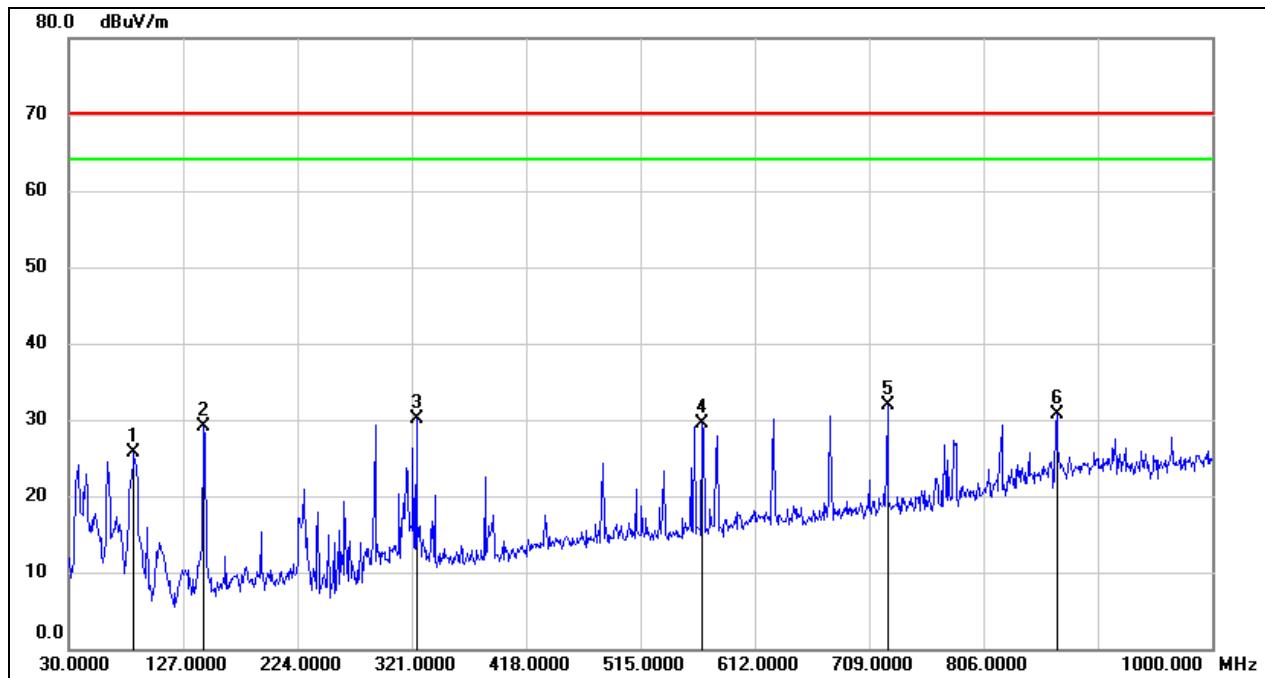

Test Date	June 4, 2025	Test By	Stipe Zheng
-----------	--------------	---------	-------------

TEST MODE

Pre-test Mode:	M02
Final Test Mode:	M02

TEST RESULTS

Test Mode:	M02	Polarity:	Horizontal
Test Voltage:	AC 120V_60Hz		



No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	96.9300	49.76	-16.29	33.47	70.07	-36.60	AVG
2	145.4299	52.22	-13.71	38.51	70.07	-31.56	AVG
3	241.4600	44.88	-14.11	30.77	70.07	-39.30	AVG
4	320.0300	42.02	-10.72	31.30	70.07	-38.77	AVG
5	627.5200	37.97	-5.66	32.31	70.07	-37.76	AVG
6	821.5200	28.85	-2.05	26.80	70.07	-43.27	AVG

Remark:

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)
2. Margin = Result - Limit

Test Mode:	M02	Polarity:	Vertical
Test Voltage:	AC 120V_60Hz		

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	85.2900	42.00	-16.34	25.66	70.07	-44.41	AVG
2	144.4600	42.95	-13.76	29.19	70.07	-40.88	AVG
3	324.8800	40.56	-10.53	30.03	70.07	-40.04	AVG
4	567.3800	36.12	-6.58	29.54	70.07	-40.53	AVG
5	724.5200	35.84	-3.89	31.95	70.07	-38.12	AVG
6	868.0800	31.60	-0.99	30.61	70.07	-39.46	AVG

Remark:

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)
2. Margin = Result - Limit

7.3. RADIATED EMISSIONS (1GHZ~25GHZ)

LIMITS

- a) ISM equipment operating on a frequency specified in §18.301 is permitted unlimited radiated energy in the band specified for that frequency.
- b) The field strength levels of emissions which lie outside the bands specified in §18.301, unless otherwise indicated, shall not exceed the following:

Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (uV/m)	Distance (meters)
Any type unless otherwise specified (miscellaneous)	Any ISM frequency	Below 500	25	300
		500 or more	25 × SQRT(power/500)	1300*

¹Field strength may not exceed 10 μ V/m at 1600 meters. Consumer equipment operating below 1000 MHz is not permitted the increase in field strength otherwise permitted here for power over 500 watts.

Note: (1). dBuV/m = 20log(uV/m)

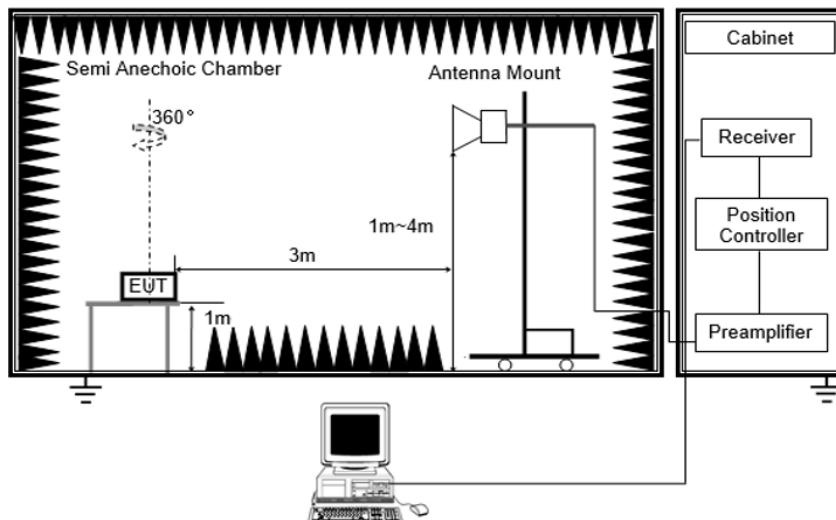
(2). dBuV/m @3m = dBuV/m @300m + 20log(300m/3m)

- c) Frequency range for field strength measurements:

Frequency band in which device operates (MHz)	Range of frequency measurements	
	Lowest frequency	Highest frequency
Below 1.705	Lowest frequency generated in the device, but not lower than 9 kHz	30 MHz.
1.705 to 30	Lowest frequency generated in the device, but not lower than 9 kHz	400 MHz.
30 to 500	Lowest frequency generated in the device or 25 MHz, whichever is lower	Tenth harmonic or 1,000 MHz, whichever is higher.
500 to 1,000	Lowest frequency generated in the device or 100 MHz, whichever is lower	Tenth harmonic.
Above 1,000do	Tenth harmonic or highest detectable emission.

TEST PROCEDURE

- 1) The testing follows the guidelines in FCC / OST MP-5.
- 2) The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3) The EUT was placed on a turntable with 1m meter above ground.
- 4) The EUT was set 3 meters from the interference receiving antenna, test antenna mast is remotely controlled and can be varied in height form 1m to 4m.
- 5) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 6) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.


- 7) For ovens rated at 1000 watts or less power output, the beaker shall contain quantities of water as listed in the following subparagraphs, for ovens rated at more than 1000 watts output, each quantity shall be increased by 50% for each 500 watts or fraction thereof in excess of 1000 watts,
 - a). Load for measurement of radiation on second and third harmonic; Two loads, one of 700ml and the other of 300ml, of water are used. Each load is tested both with the beaker located in the center of the oven and with it in the right front corner.
 - b). All other emissions were measured while a 700ml water load was placed in the center of the oven.
- 8) The setting of the spectrum analyser

8) The setting of the spectrum analyser

RBW	1MHz
VBW	3MHz
Detector	Peak / Average [#]

Note: # Peak for pre-scan, average for the final result.

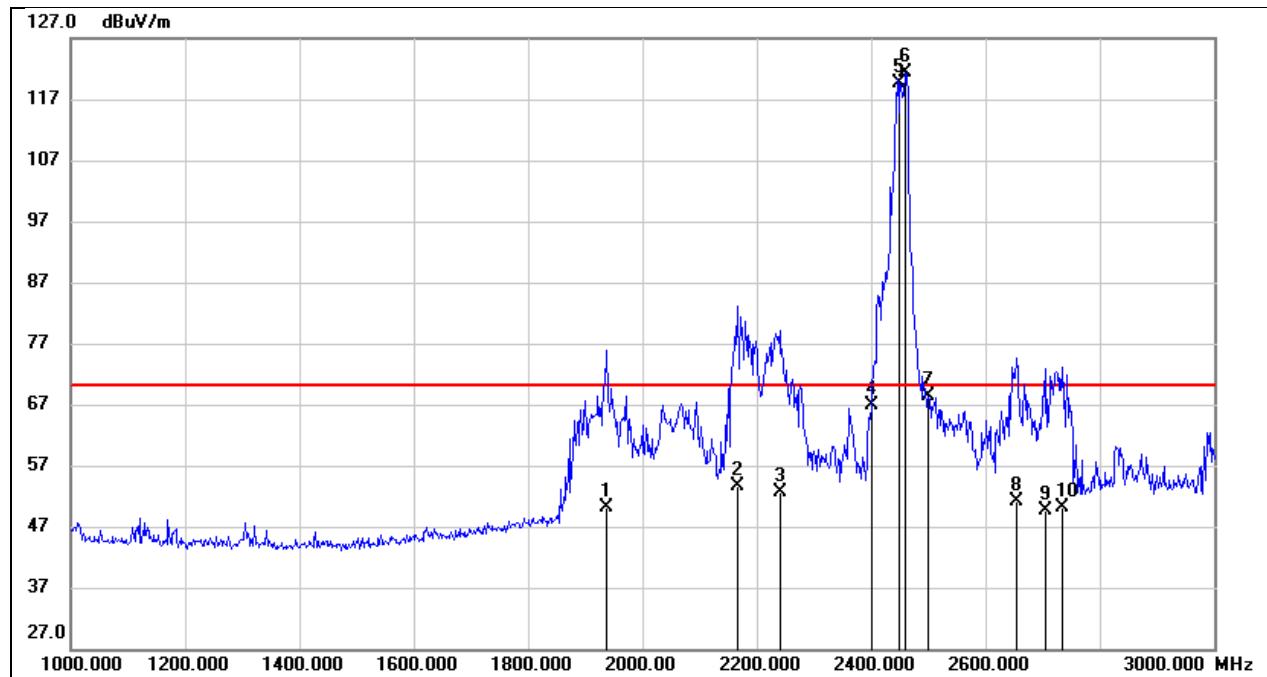
TEST SETUP

TEST ENVIRONMENT

Temperature	22.8°C	Relative Humidity	58.3%
Atmosphere Pressure	101kPa		

TEST DATE / ENGINEER

Test Date	May 28, 2025	Test By	Mason Wang
-----------	--------------	---------	------------

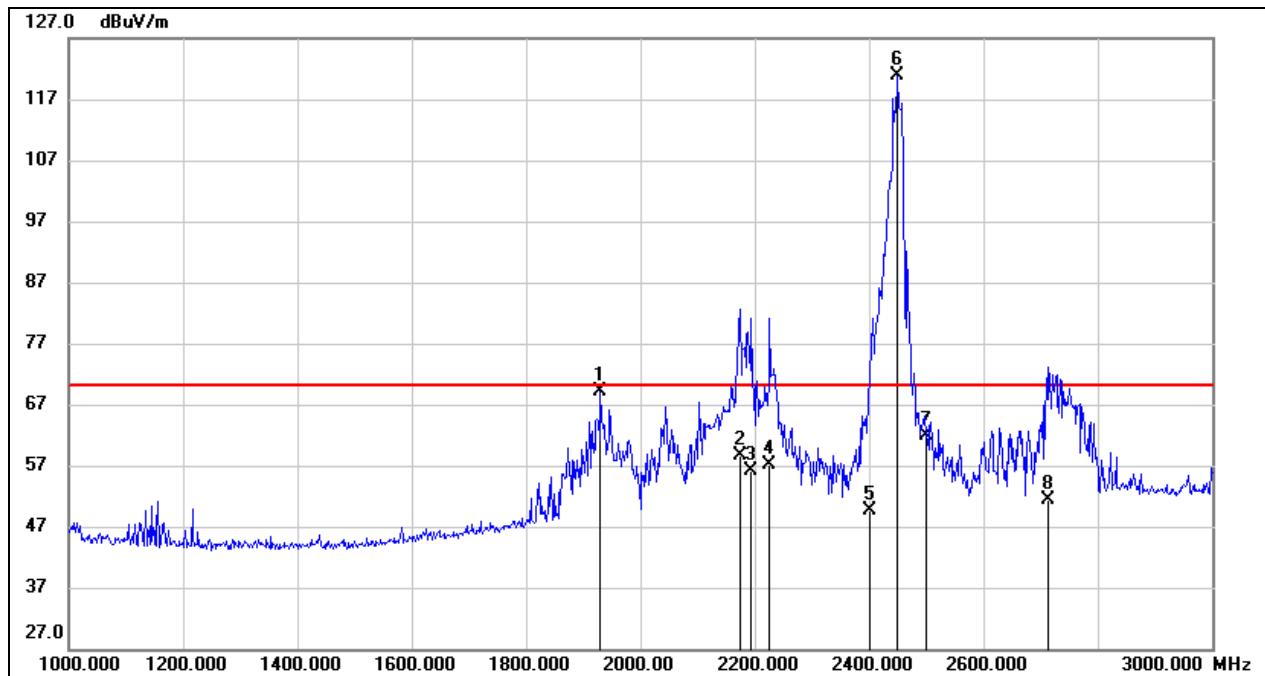

TEST MODE

Pre-test Mode:	M02 ~ M05
Final Test Mode:	M02, M04

Note: All test modes had been tested, but only the worst data recorded in the report.

TEST RESULTS

Test Mode:	M02	Polarity:	Horizontal
Test Voltage:	AC 120V_60Hz		

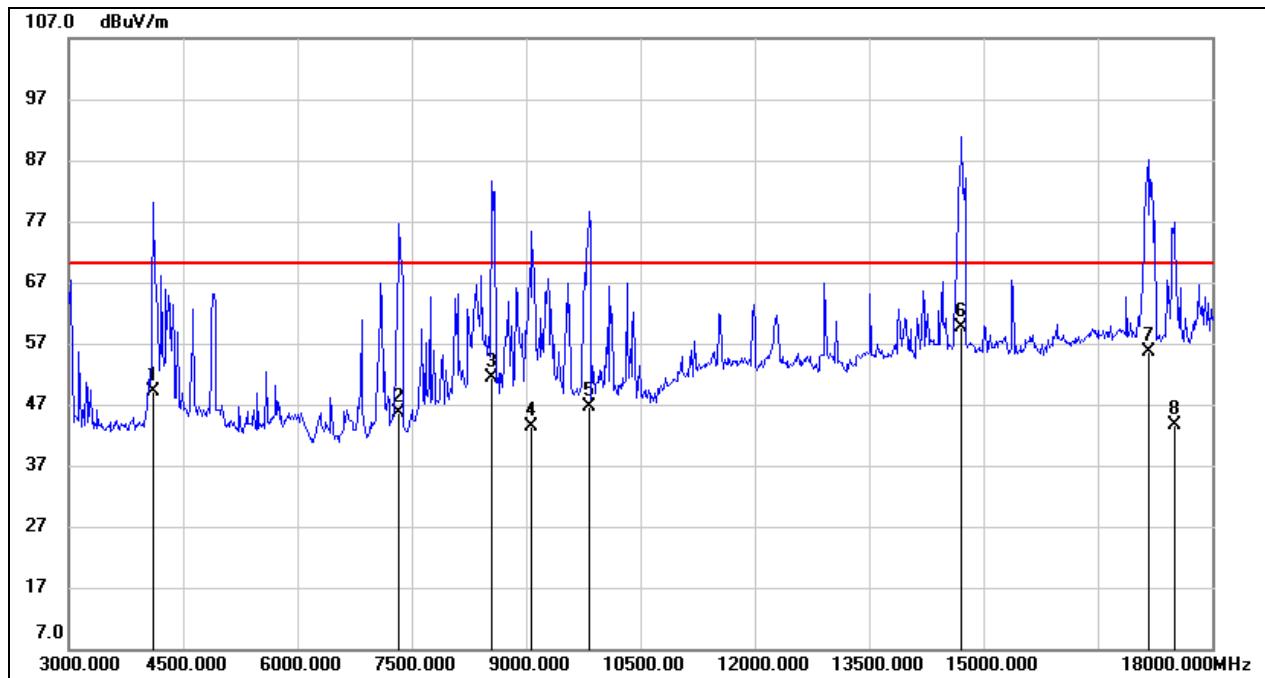


No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	1938.000	15.14	34.98	50.12	70.07	-19.95	AVG
2	2166.000	17.68	35.90	53.58	70.07	-16.49	AVG
3	2240.000	16.56	36.11	52.67	70.07	-17.40	AVG
4	2400.000	30.13	36.63	66.76	/	/	exempted frequency band
5	2450.000	83.02	36.73	119.75	/	/	exempted frequency band
6	2460.000	84.53	36.75	121.28	/	/	exempted frequency band
7	2500.000	31.50	36.84	68.34	/	/	exempted frequency band
8	2654.000	13.81	37.40	51.21	70.07	-18.86	AVG
9	2706.000	11.96	37.58	49.54	70.07	-20.53	AVG
10	2734.000	12.55	37.68	50.23	70.07	-19.84	AVG

Remark:

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)
2. Margin = Result – Limit

Test Mode:	M02	Polarity:	Vertical
Test Voltage:	AC 120V_60Hz		

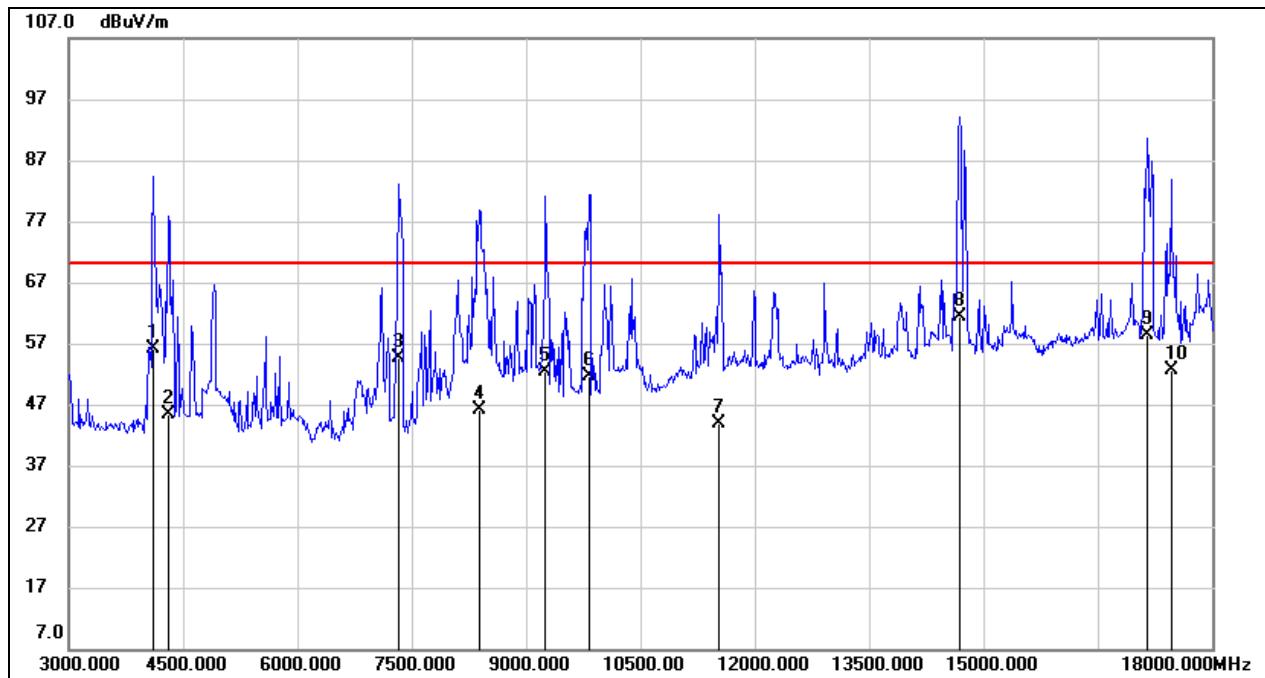


No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	1930.000	34.31	34.91	69.22	70.07	-0.85	peak
2	2174.000	22.72	35.92	58.64	70.07	-11.43	AVG
3	2194.000	20.21	35.97	56.18	70.07	-13.89	AVG
4	2226.000	20.98	36.07	57.05	70.07	-13.02	AVG
5	2400.000	12.91	36.63	49.54	/	/	exempted frequency band
6	2450.000	84.21	36.73	120.94	/	/	exempted frequency band
7	2500.000	25.16	36.84	62.00	/	/	exempted frequency band
8	2714.000	13.73	37.61	51.34	70.07	-18.73	AVG

Remark:

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)
2. Margin = Result – Limit
3. If the peak values are less than the average limit, the peak result is deemed to comply with average limit.

Test Mode:	M02	Polarity:	Horizontal
Test Voltage:	AC 120V_60Hz	Beaker Position:	Center of the oven



No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4110.000	48.09	1.13	49.22	70.07	-20.85	AVG
2	7335.000	38.84	6.83	45.67	70.07	-24.40	AVG
3	8550.000	42.05	9.32	51.37	70.07	-18.70	AVG
4	9075.000	33.39	10.10	43.49	70.07	-26.58	AVG
5	9825.000	34.45	12.26	46.71	70.07	-23.36	AVG
6	14715.000	39.22	20.35	59.57	70.07	-10.50	AVG
7	17160.000	31.87	23.80	55.67	70.07	-14.40	AVG
8	17505.000	20.15	23.53	43.68	70.07	-26.39	AVG

Remark:

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)
2. Margin = Result – Limit

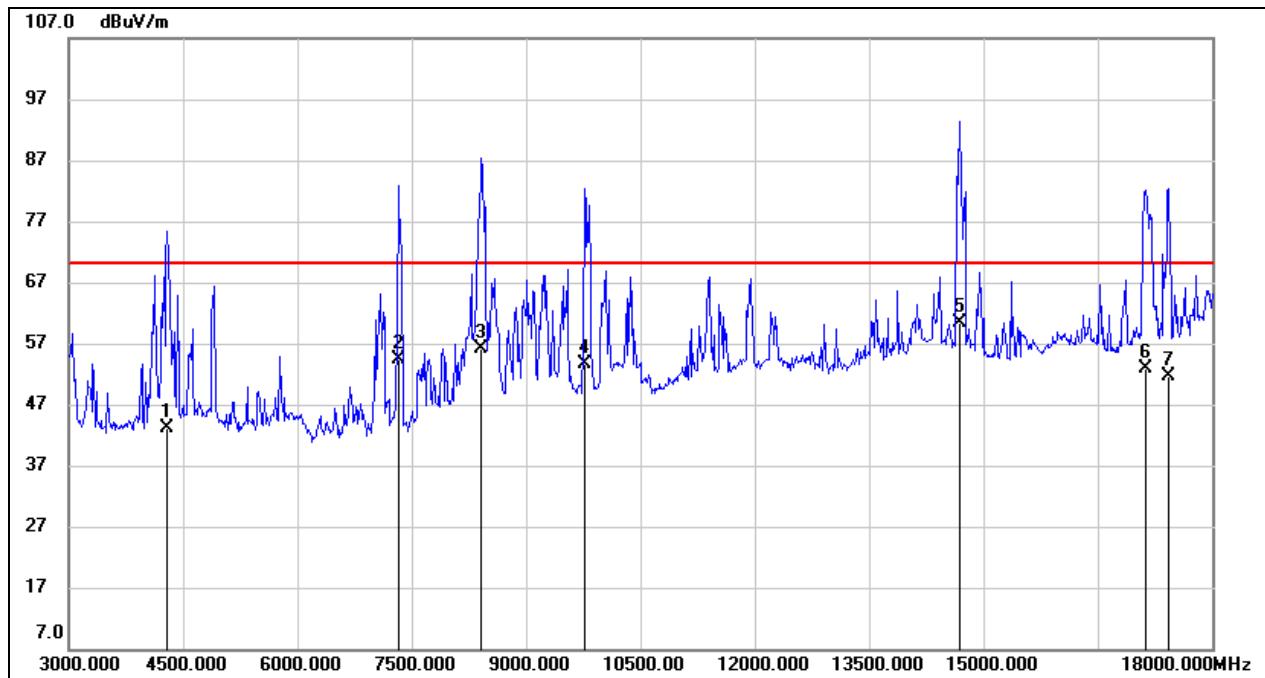
Test Mode:	M02	Polarity:	Vertical
Test Voltage:	AC 120V_60Hz	Beaker Position:	Center of the oven

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4110.000	55.08	1.13	56.21	70.07	-13.86	AVG
2	4305.000	43.56	1.81	45.37	70.07	-24.70	AVG
3	7335.000	47.85	6.83	54.68	70.07	-15.39	AVG
4	8385.000	37.26	8.87	46.13	70.07	-23.94	AVG
5	9255.000	41.76	10.61	52.37	70.07	-17.70	AVG
6	9825.000	39.42	12.26	51.68	70.07	-18.39	AVG
7	11535.000	28.02	15.87	43.89	70.07	-26.18	AVG
8	14685.000	40.99	20.38	61.37	70.07	-8.70	AVG
9	17145.000	34.54	23.81	58.35	70.07	-11.72	AVG
10	17460.000	29.11	23.56	52.67	70.07	-17.40	AVG

Remark:

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)
2. Margin = Result - Limit

Test Mode:	M04	Polarity:	Horizontal
Test Voltage:	AC 120V_60Hz	Beaker Position:	Center of the oven

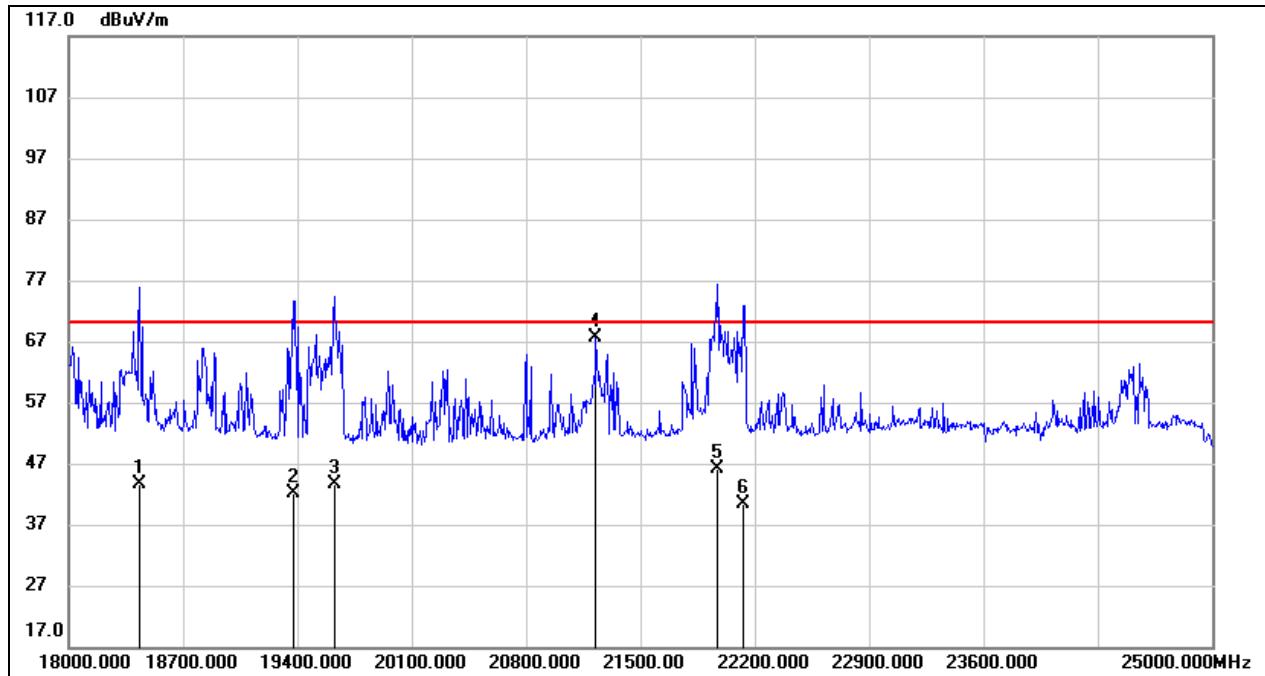


No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4290.000	44.59	1.76	46.35	70.07	-23.72	AVG
2	7320.000	40.00	6.83	46.83	70.07	-23.24	AVG
3	8400.000	39.63	8.93	48.56	70.07	-21.51	AVG
4	8565.000	38.19	9.34	47.53	70.07	-22.54	AVG
5	9825.000	33.95	12.26	46.21	70.07	-23.86	AVG
6	14670.000	29.72	20.39	50.11	70.07	-19.96	AVG
7	17190.000	25.89	23.78	49.67	70.07	-20.40	AVG

Remark:

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)
2. Margin = Result - Limit

Test Mode:	M04	Polarity:	Vertical
Test Voltage:	AC 120V_60Hz	Beaker Position:	Center of the oven

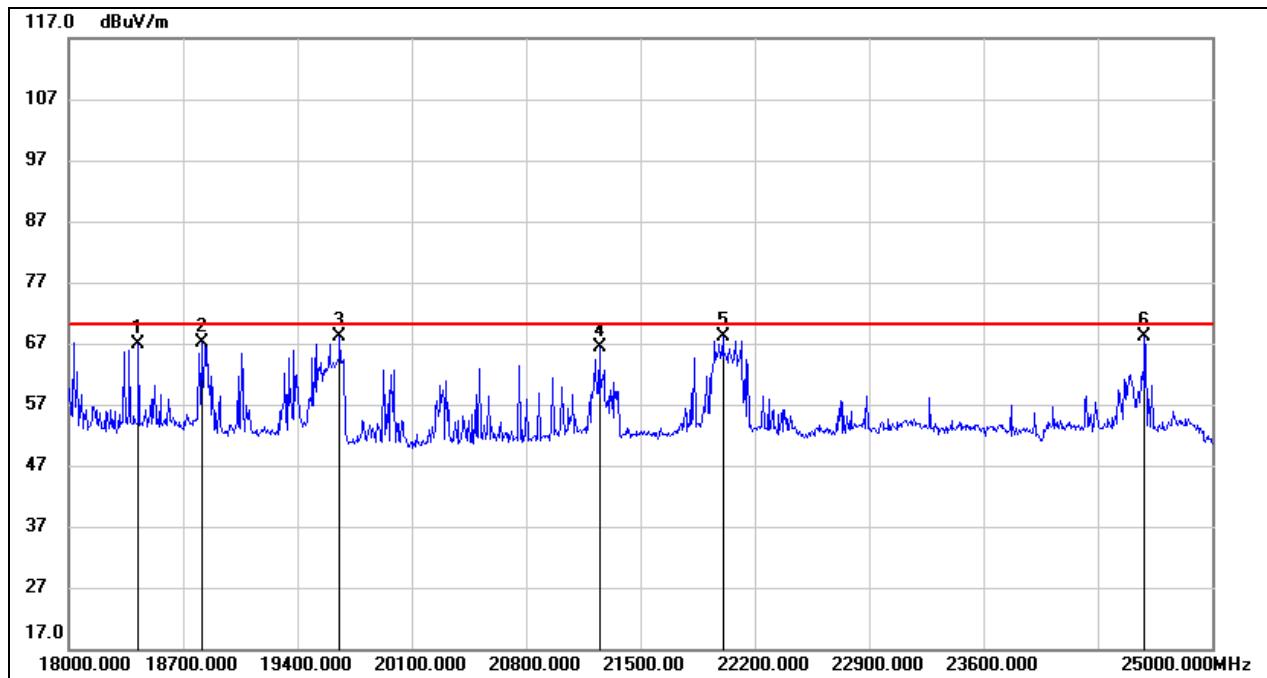


No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4290.000	41.45	1.76	43.21	70.07	-26.86	AVG
2	7320.000	47.45	6.83	54.28	70.07	-15.79	AVG
3	8415.000	47.15	8.98	56.13	70.07	-13.94	AVG
4	9765.000	41.51	12.16	53.67	70.07	-16.40	AVG
5	14685.000	39.99	20.38	60.37	70.07	-9.70	AVG
6	17130.000	29.15	23.82	52.97	70.07	-17.10	AVG
7	17430.000	28.08	23.59	51.67	70.07	-18.40	AVG

Remark:

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)
2. Margin = Result – Limit

Test Mode:	M02	Polarity:	Horizontal
Test Voltage:	AC 120V_60Hz		



No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	18434.000	38.42	5.23	43.65	70.07	-26.42	AVG
2	19372.000	37.39	4.66	42.05	70.07	-28.02	AVG
3	19624.000	39.17	4.40	43.57	70.07	-26.50	AVG
4	21227.000	62.30	5.42	67.72	70.07	-2.35	peak
5	21969.000	40.60	5.58	46.18	70.07	-23.89	AVG
6	22130.000	34.99	5.39	40.38	70.07	-29.69	AVG

Remark:

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)
2. Margin = Result – Limit
3. If the peak values are less than the average limit, the peak result is deemed to comply with average limit.

Test Mode:	M02	Polarity:	Vertical
Test Voltage:	AC 120V_60Hz	Beaker position:	Center of the oven

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	18427.000	61.65	5.24	66.89	70.07	-3.18	peak
2	18812.000	61.59	5.47	67.06	70.07	-3.01	peak
3	19659.000	63.78	4.43	68.21	70.07	-1.86	peak
4	21248.000	60.89	5.40	66.29	70.07	-3.78	peak
5	22004.000	62.51	5.59	68.10	70.07	-1.97	peak
6	24587.000	60.15	8.05	68.20	70.07	-1.87	peak

Remark:

1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)
2. Margin = Result – Limit
3. If the peak values are less than the average limit, the peak result is deemed to comply with average limit.

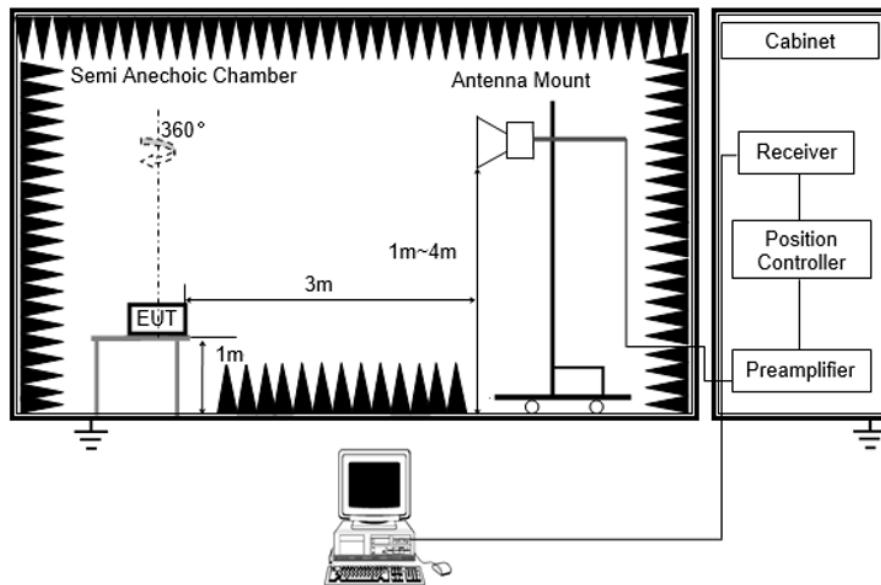
7.4. OPERATING FREQUENCY

LIMITS

2400MHz~2500MHz

TEST PROCEDURE

The EUT was setup inside the Fully Anechoic chamber, and a double ridge horn antenna and spectrum analyzer were used to measure the fundamental frequency of the EUT.


1) FREQUENCY FOR NORMAL VOLTAGE

The operating frequency was measured using a spectrum analyzer. Starting with the EUT at room temperature, a 1000mL water load was placed in the center of the oven and the oven was operated at maximum output power. The fundamental operating frequency was monitored until the water load was reduced to 20 percent of the original load. This test is made with nominal rated ac supply voltage.

2) FREQUENCY FOR LINE VOLTAGE

The EUT was operated / warmed by at least 10 minutes of use with a 1000 mL water load at room temperature at the beginning of the test. Then the operating frequency was monitored as the input voltage was varied between 80% and 125% of the nominal rating.

TEST SETUP

TEST ENVIRONMENT

Temperature	/	Relative Humidity	/
Atmosphere Pressure	/		

TEST DATE / ENGINEER

Test Date	/	Test By	/
-----------	---	---------	---

TEST MODE

Pre-test Mode:	/
Final Test Mode:	/

TEST RESULTS

Please refer to the original report.

7.5. INPUT POWER

TEST PROCEDURE

- 1) The input power and current was measured using a power source.
- 2) For ovens rated at 1000 watts or less power output, the beaker shall contain quantities of water as listed in the following subparagraphs, for ovens rated at more than 1000 watts output, each quantity shall be increased by 50% for each 500 watts or fraction thereof in excess of 1000 watts,
A 700ml water load in a beaker was located in the center of the microwave oven and the microwave oven was set to full power.

TEST ENVIRONMENT

Temperature	22.4 °C	Relative Humidity	55.7%
Atmosphere Pressure	101kPa		

TEST DATE / ENGINEER

Test Date	May 28, 2025	Test By	Karl Wu
-----------	--------------	---------	---------

TEST MODE

Pre-test Mode:	M01
Final Test Mode:	M01

TEST RESULTS

Input Power

Input Voltage (Vac)	Input Current (A)	Power Factor	Measured Input Power (W)	Rated Input Power (W)
120V	15.384	0.94	1744	1500

7.6. OUTPUT POWER

TEST PROCEDURE

- 1) The calorific method was used to determine full output power.
- 2) For ovens rated at 1000 watts or less power output, the beaker shall contain quantities of water as listed in the following subparagraphs, for ovens rated at more than 1000 watts output, each quantity shall be increased by 50% for each 500 watts or fraction thereof in excess of 1000 watts,
Load for power output measurement: 1000 milliliters of water in the beaker located in the center of the oven
- 3) The Microwave Oven was set to maximum power and operation 120 seconds, then measure and record the temperature of the water.
- 4) According to the calculated formula:

$$P=4.187 \cdot m_{\text{water}} \cdot (T_2 - T_1) / \text{Time}$$

P: the microwave power output(W)

m_{water} : the mass of the water(g)

T_1 : the initial temperature of the water($^{\circ}\text{C}$)

T_2 : the final temperature of the water($^{\circ}\text{C}$)

Time: the heating time (second)

TEST ENVIRONMENT

Temperature	22.4 $^{\circ}\text{C}$	Relative Humidity	55.7%
Atmosphere Pressure	101kPa		

TEST DATE / ENGINEER

Test Date	May 28, 2025	Test By	Karl Wu
-----------	--------------	---------	---------

TEST MODE

Pre-test Mode:	M01
Final Test Mode:	M01

TEST RESULTS
Output Power

m_{water} (g)	T_1 (°C)	T_2 (°C)	Time (second)	P (W)
1000	20.84	44.16	120	813.67

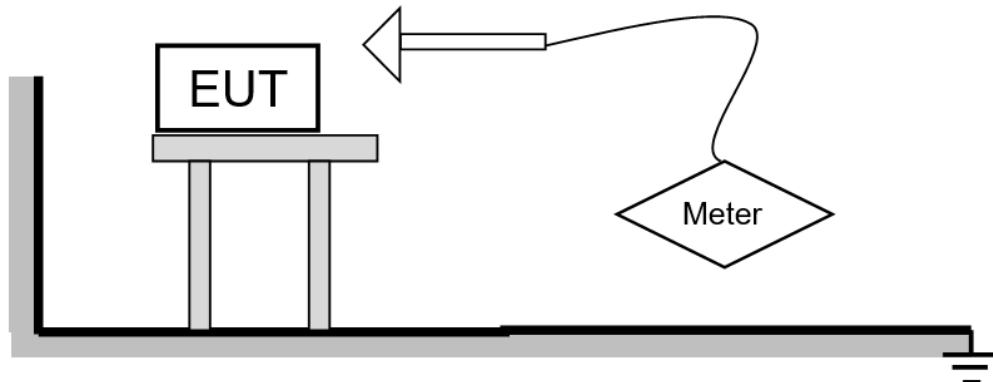
Field strength limit

P (W)	Field strength limit $25 \times \text{SQRT}(\text{power}/500)$		
	(uV/m) @300m	dBuV/m@300m	dBuV/m@3m
813.67	31.89	30.07	70.07

$$\text{dBuV/m} = 20\log(\text{uV/m})$$

$$\text{dBuV/m @3m} = \text{dBuV/m @300m} + 20\log(300m/3m)$$

7.7. RADIATION HAZARD


LIMITS

Maximum Emission (mW/cm ²)
1.00

TEST PROCEDURE

- 1) The EUT was set-up according to the FCC MP-5 and Part 18 for Radiation Hazard Measurement.
- 2) The measurement was using a microwave leakage meter to measure the Radiation leakage in the as-received condition with the oven door closed.
- 3) For ovens rated at 1000 watts or less power output, the beaker shall contain quantities of water as listed in the following subparagraphs, for ovens rated at more than 1000 watts output, each quantity shall be increased by 50% for each 500 watts or fraction thereof in excess of 1000 watts,
A 700ml water load in a beaker was located in the center of the oven and the Household Microwave Combi Oven was set to maximum power.
- 4) While the oven operating, the microwave survey meter probe was moved slowly around the door seams the check for maximum leakage.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.4°C	Relative Humidity	55.7%
Atmosphere Pressure	101kPa		

TEST DATE / ENGINEER

Test Date	May 28, 2025	Test By	Karl Wu
-----------	--------------	---------	---------

TEST MODE

Pre-test Mode:	M01
Final Test Mode:	M01

TEST RESULTS**Radiation Hazard**

Maximum expose value (mW/cm ²)	Limit (mW/cm ²)	Result
0.163	1.00	Pass

END OF REPORT