

FCC PART 15, SUBPART B FCC 15.247 TEST REPORT TEST METHOD: ANSI C63.4: 2009

For

STAR 3000 SYSTEM RFID READER

Models: STAR-3000-F (RFID Reader) EMX-1004 (eMux) ENM-1004-FW (4 Port eNode)

Prepared for

MOJIX, INC. 11075 SANTA MONICA BOUELVARD, SUITE 350 LOS ANGELES, CALIFORNIA 90025

Prepared by: Kyle Jajimst

KYLE FUJIMOTO

Approved by: Jomes Ron

JAMES ROSS

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: FEBRUARY 15, 2012

	REPORT		APPENDICES				TOTAL
	BODY	A	В	C	D	E	
PAGES	25	2	2	2	22	104	157

This report shall not be reproduced, except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section	n / Title	PAGE
GENER	RAL REPORT SUMMARY	4
SUMMA	ARY OF TEST RESULTS	5
1.	PURPOSE	6
2. 2.1 2.2 2.3 2.4 2.5 2.6	ADMINISTRATIVE DATA Location of Testing Traceability Statement Cognizant Personnel Date Test Sample was Received Disposition of the Test Sample Abbreviations and Acronyms	7 7 7 7 7 7 7
3.	APPLICABLE DOCUMENTS	8
4. 4.1 4.1.2	DESCIRPTION OF TEST CONFIGURATION Description of Test Configuration – (Emissions) Cable Construction and Termination	9 9 10
5.1 5.2 5.3	LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT EUT and Accessory List Emissions Test Equipment Emissions Test Equipment (Continued)	12 12 13 14
6. 6.1 6.2	TEST SITE DESCRIPTION Test Facility Description EUT Mounting, Bonding and Grounding	15 15 15
7.1 7.1.1 7.1.2 7.1.3 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	Radiated Emissions Test	16 16 17 19 20 21 21 22 22 22 23 24
8.	DEVIATIONS FROM THE TEST PROCEDURES	25
9	CONCLUSIONS	25

LIST OF APPENDICES

APPENDIX	TITLE				
A	Laboratory Accreditations and Recognitions				
В	Modifications to the EUT				
С	Additional Models Covered Under This Report				
D	Diagrams, Charts and Photos				
	Test Setup Diagrams				
	Antenna and Amplifier Gain Factors				
	Radiated and Conducted Emissions Photos				
Е	Data Sheets				

LIST OF TABLES

TABLE	TITLE
1	Conducted Emissions Test Results
2	Radiated Emissions Test Results

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Plot Map And Layout of Test Site
3	High Frequency Test Volume

FCC 15.247 Report Number: B11028D1 Page 4 of 25

GENERAL REPORT SUMMARY

This electromagnetic emission report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form except in full, without the written permission of Compatible Electronics.

This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Device Tested: Star 3000 System RFID Reader

Models: STAR-3000-F (RFID Reader), EMX-1004 (eMux),

ENM-1004-FW (4 Port eNode)

S/N: NONE

Product Description: Please see the expository statement.

Modifications: The EUT was not modified during the testing.

Manufacturer: Mojix, Inc.

11075 Santa Monica Boluevard, Suite 350

Los Angeles, California 90025

Test Date: September 23 and 26, 2011; and October 24, 25, and 26, 2011

Test Specifications: Emissions requirements

CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and

15.247

Test Procedure: ANSI C63.4: 2009.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz - 30 MHz.	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, section 15.207.
2	Radiated RF Emissions, 10 kHz – 9300 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; the limits of CFR Title 47, Part 15 Subpart C, 15.209 and 15.247 (d)
3	Radiated RF Emissions for the Digital Portion 30 MHz – 1000 MHz	Complies with the Class A limits of CFR Title 47, Part 15, Subpart B.
4	20 dB Bandwidth	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1)(i)
5	Peak Power Output	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (b)(2)
6	RF Conducted Antenna Test	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (d)
7	Carrier Frequency Separation	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1)
8	Average Time of Occupancy	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1)(i)
9	Peak Power Spectral Density from the International Radiator to the Antenna	This test was not performed because the EUT is a frequency hopper.

1. PURPOSE

This document is a qualification test report based on the Emissions tests performed on the Star 3000 System RFID Reader, Models: STAR-3000-F (RFID Reader), EMX-1004 (eMux), ENM-1004-FW (4 Port eNode). The emissions measurements were performed according to the measurement procedure described in ANSI C63.4: 2009. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.247

Note: for the digital portion of the test, the EUT was within the **Class A** specification limits defined by CFR Title 47, Part 15 Subpart B.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The emissions tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Mojix, Inc.

Shawn Manesh Senior VP Operations Hassan Syed Manger RF Design Group

Gus Mendoza Engineer

Compatible Electronics Inc.

Kyle Fujimoto Test Engineer James Ross Test Engineer

2.4 Date Test Sample was Received

The test sample was received prior to the initial date of testing.

2.5 Disposition of the Test Sample

The test sample was returned to Mojix Inc. prior to the date of this test report.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference

EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this test report.

SPEC	TITLE
FCC Title 47, Part 15 Subpart C	FCC Rules - Radio frequency devices (including digital devices) – Intentional Radiators
ANSI C63.4 2009	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
FCC Title 47, Part 15 Subpart B	FCC Rules - Radio frequency devices (including digital devices) – Unintentional Radiators

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration – (Emissions)

The EUT consists of an RFID Reader, 4 Port eNode, and eMux and was setup as follows:

eNode with eMux Configuration:

The RFID Reader was connected to a laptop, eMux, and power supply via its ethernet, transmit and DC in ports, respectively.

The eMux was also connected to the 4 Port eNode and power supply vita its CH-1 and power ports, respectively. The CH-2, CH-3, and CH-4 ports were connected to 25-foot cables that were terminated to 50 ohms via terminators.

The 4 Port eNode was also connected to the sensor and antenna via its sense and ANT-2 ports, respectively. The ANT-1, ANT-3, ANT-4, an output ports were connected to 25-foot cables that were terminated to 50 ohms via terminators. The antenna was connected to the ANT-2 port because that was the port the produced the highest emission level.

A program on the laptop allowed the EUT to transmit and/or receive at the low, middle, or high channel. The EUT was continuously transmitting and receiving during the test.

eNode Configuration with no eMux:

The RFID Reader was connected to a laptop, eNode, and power supply via its ethernet, transmit and DC in ports, respectively.

The 4 Port eNode was also connected to the sensor and antenna via its sense and ANT-2 ports, respectively. The ANT-1, ANT-3, ANT-4, an output ports were connected to 25-foot cables that were terminated to 50 ohms via terminators. The antenna was connected to the ANT-2 port because that was the port the produced the highest emission level.

A program on the laptop allowed the EUT to transmit and/or receive at the low, middle, or high channel. The EUT was continuously transmitting and receiving during the test.

Note: The eNode has no power supply and does not get its power from the AC public mains for either configuration.

The antennas that will be used on the RFID reader will be ½ wave center-fed dipole antennas (ANT-916-CW-HWR-RPS) with reverse polarity SMA connector. The RFID reader will include reverse polarity TNC to reverse polarity SMA adapters so that these antennas can be connected to the RFID reader.

The highest emissions were found when the EUT was running in the above configurations. The cables were moved to maximize the emissions. The final conducted and radiated data was taken in both configuration described above. All initial investigations were performed with the measurement receiver in manual mode scanning the frequency range continuously. The cables were bundled and routed as shown in the photographs in Appendix D.

4.1.2 Cable Construction and Termination

eNode with eMux Configuration:

- <u>Cables 1-3</u>
 These are 25-foot braid shielded cables connecting the ANT-1, ANT-3, and ANT-4 ports of the 4 Port eNode to 50 ohm terminators. The cables have reverse polarity SMA connectors at the 4 Port eNode end and regular SMA connectors at the 50 ohm terminator ends. The cables were coiled so that they were 40-centimeters above the ground plane. The shield of the cables was grounded to the chassis via the connectors.
- <u>Cable 4</u>
 This is a 6.1-meter braid and foil shielded cable connecting the 4 Port eNode to the antenna. The cable has a reverse SMA connector at the 4 Port eNode end and a reverse TNC connector at the antenna end. The cable was bundled to a length of 1-meter. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 5</u>
 This is a 25-foot braid shielded cable connecting the output port of the 4 Port eNode to a 50 ohm terminator. The cable has an SMA connector at each end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 6</u>
 This is a 25-foot braid shielded cable connecting the eMux to the 4 Port eNode. The cable has an SMA connector at the 4 Port eNode end and a TNC connector at the eMux end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cables 7-9</u>
 These are 25-foot braid shielded cables connecting the CH-2, CH-3, and CH-4 ports of the eMux to 50 ohm terminators. The cables have SMA connectors at each end. The cables were coiled so that they were 40-centimeters above the ground plane. The shield of the cables was grounded to the chassis via the connectors.
- This is a 50-foot braid shielded cable connecting the eMux to the RFID Reader. The cable has a TNC connector at the eMux end and a reverse polarity TNC connector at the RFID Reader end. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 11</u> This is a 40-centimeter foil shielded cable connecting the 4 port eNode to the sensor. The cable has a D-26 connector at the 4 port eNode end and is hard wired into the sensor. The shield of the cable was grounded to the chassis via the connector.
- <u>Cable 12</u> This is a 1-meter unshielded cable connecting the eMux to the power supply. The cable has a 5-pin DIN connector on the eMux end and is hard wired into the switching power supply. The cable has a molded ferrite on the eMux side.
- <u>Cable 13</u> This is a 50-foot unshielded cable connecting the RFID reader to the laptop. The cable has an RJ-45 connector at each end.
- <u>Cable 14</u>
 This is a 5-meter braid shielded cable connecting the RFID reader to the DC power supply. The cable has a Positronics FR11FP822LM5 connector at the RFID reader end and a Positronics P/N: 9942170007 connector at the DC power supply end. The cable was bundled to a length of 1-meter. The shield of the cable was grounded to the chassis via the connectors.

4.1.3 Cable Construction and Termination (continued)

eNode Configuration with no eMux:

- <u>Cables 1-3</u>
 These are 25-foot braid shielded cables connecting the ANT-1, ANT-3, and ANT-4 ports of the 4 Port eNode to 50 ohm terminators. The cables have reverse polarity SMA connectors at the 4 Port eNode end and regular SMA connectors at the 50 ohm terminator ends. The cables were coiled so that they were 40-centimeters above the ground plane. The shield of the cables was grounded to the chassis via the connectors.
- <u>Cable 4</u>
 This is a 6.1-meter braid and foil shielded cable connecting the 4 Port eNode to the antenna. The cable has a reverse SMA connector at the 4 Port eNode end and a reverse TNC connector at the antenna end. The cable was bundled to a length of 1-meter. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 5</u>
 This is a 25-foot braid shielded cable connecting the output port of the 4 Port eNode to a 50 ohm terminator. The cable has an SMA connector at each end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 6</u>
 This is a 50-foot braid shielded cable connecting the eNode to the RFID Reader. The cable has a TNC connector at the eMux end and a reverse polarity TNC connector at the RFID Reader end. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 7</u>
 This is a 40-centimeter foil shielded cable connecting the 4 port eNode to the sensor. The cable has a D-26 connector at the 4 port eNode end and is hard wired into the sensor. The shield of the cable was grounded to the chassis via the connector.
- <u>Cable 8</u> This is a 50-foot unshielded cable connecting the RFID reader to the laptop. The cable has an RJ-45 connector at each end.
- <u>Cable 9</u>
 This is a 5-meter braid shielded cable connecting the RFID reader to the DC power supply. The cable has a Positronics FR11FP822LM5 connector at the RFID reader end and a Positronics P/N: 9942170007 connector at the DC power supply end. The cable was bundled to a length of 1-meter. The shield of the cable was grounded to the chassis via the connectors.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT TYPE	MANUFACTURER	MODEL	SERIAL NUMBER	FCC ID
EMUX (PART OF EUT)	MOJIX, INC.	EMX-1004	11114018E164	N/A
4 PORT ENODE (PART OF EUT)	MOJIX, INC.	ENM-1004-FW	N/A	VEDCBLENODE
RFID READER (PART OF EUT)	MOJIX, INC.	STAR-3000-F	9164022A1076	VEDSTAR3000
ANTENNA (4 PORT ENODE)	MTI WIRELESS EDGE	MT-262006/TRH/A	01471	N/A
(2) ANTENNAS (RFID READER)	ANTENNA FACTOR	ANT-916-CW-HWR- RPS	N/A	N/A
POWER SUPPLY FOR EMUX	ASTRODYNE	SPU130-108	06437827	N/A
SENSOR	BANNER	Q60BB6AF2000	N/A	N/A
POWER SUPPLY FOR RFID READER	TRACO POWER	TEX 120-124	N/A	N/A
LAPTOP	DELL	PP19L	N/A	DoC
(7) 50 OHM TERMINATORS	MINI-CIRCUITS	VAT-2W	N/A	N/A

5.2 Emissions Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CALIBRATION DUE DATE		
	GENERAL TEST EQUIPMENT USED FOR ALL RF EMISSIONS TESTS						
Computer	Hewlett Packard	4530	US91912319	N/A	N/A		
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	3638A08784	May 27, 2011	May 27, 2012		
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	2648A14530	May 27, 2011	May 27, 2012		
Quasi-Peak Adapter	Hewlett Packard	85650A	2430A00424	May 27, 2011	May 27, 2012		
EMI Receiver	Rohde & Schwarz	ESIB40	100194	November 19, 2010	November 19, 2012		
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A		
	RF RA	DIATED EMIS	SIONS TEST EQ	QUIPMENT			
Radiated Emissions Data Capture Program	Compatible Electronics	2.0	N/A	N/A	N/A		
Biconical Antenna	Com Power	AB-900	15250	June 8, 2011	June 8, 2012		
Log Periodic Antenna	Com Power	AL-100	16252	June 8, 2011	June 8, 2012		
Loop Antenna	Com-Power	AL-130	17089	January 21, 2011	January 21, 2012		
Preamplifier	Com-Power	PA-102	1017	January 11, 2011	January 11, 2012		
Microwave Preamplifier	Com-Power	PA-118	181656	December 22, 2010	December 22, 2011		
Horn Antenna	Com-Power	AH-118	071175	March 18, 2010	March 18, 2012		
Antenna Mast	Com-Power	AM-100	N/A	N/A	N/A		

5.3 Emissions Test Equipment (Continued)

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CALIBRATION DUE DATE
	RF CON	DUCTED EMI	SSIONS TEST E	QUIPMENT	
Emissions Program	Compatible Electronics	2.3 (SR19)	N/A	N/A	N/A
Transient Limiter	Seaward	252A910	1	November 2, 2010	November 2, 2011
LISN	Com Power	LI-215	12078	June 20, 2011	June 20, 2012
LISN	Com Power	LI-215	12082	June 20, 2011	June 20, 2012

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1.2 of this report for test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The eNode was grounded to the chassis of the RFID Reader via its interconnect cable. The RFID Reader was grounded to earth ground via the DC power supply.

The eMux was grounded to the chassis of the eNode via its interconnect cable.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A transient limiter was used for the protection of the spectrum analyzer input stage, and the spectrum analyzer offset was adjusted accordingly to read the actual data measured. The LISN output was read by the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for the conducted emissions test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The initial test data was taken in manual mode while scanning the frequency ranges of 0.15 MHz to 1.6 MHz, 1.6 MHz to 5 MHz, and 5 MHz to 30 MHz. The conducted emissions from the EUT were maximized for operating mode as well as cable placement. Once a predominant frequency (within 12 dB of the limit) was found, it was more closely examined with the spectrum analyzer span adjusted to 1 MHz.

The final data was collected under program control by the computer in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The six highest emissions are listed in Table 1.

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15 Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Section 15.207 for conducted emissions.

7.1.2 Radiated Emissions Test

The spectrum analyzer and EMI Receiver were used as a measuring meter along with the quasipeak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz and the Com Power Microwave Preamplifier Model: PA-118 was used for frequencies above 1 GHz. The spectrum analyzer and EMI Receiver were used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer or EMI Receiver records the highest measured reading over all the sweeps.

The quasi-peak adapter was used only for those readings which are marked accordingly on the data sheets.

The frequencies above 1 GHz were adjusted by a "duty cycle correction factor", derived from 20 log (dwell time / 100 ms). Since the duty cycle was below 10%, the maximum allowed 20 dB was subtracted from the peak reading.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
10 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 9.3 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 2009. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT by the Radiated Emission Manual Test software. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

Radiated Emissions Test (Continued)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 10-meter test distance from 10 kHz to 30 MHz, and at a 3 meter test distance from 30 MHz to 9.3 GHz to obtain the final test data.

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Sections 15.209 and 15.247 (d) for radiated emissions. Please see Appendix E for the data sheets

Note: The RFID Reader for the digital portion complies with the **Class A** limits of CFR Title 47, Part 15, Subpart B.

7.1.3 RF Emissions Test Results

Table 1.0 CONDUCTED EMISSION RESULTS (120V) STAR 3000 SYSTEM RFID READER

Frequency	Emission Level*	Specification Limit	Delta
MHz	dBuV	dBuV	dB
1.184 (Black Lead)	42.44 (A)	46.00	-3.56
1.184 (White Lead)	42.38 (A)	46.00	-3.62
0.324 (White Lead)	45.51	49.62	-4.11
0.373 (Black Lead)	44.15	48.43	-4.28
0.627 (Black Lead)	41.67	46.00	-4.33
0.322 (Black Lead)	45.26	49.66	-4.41

Table 2.0 RADIATED EMISSION RESULTS STAR 3000 SYSTEM RFID READER

Frequency	Emission Level*	Specification Limit	Delta
MHz	dBuV	dBuV	dB
187.492	41.65 (QP)	43.50	-1.85
374.980	44.38 (QP)	46.40	-2.02
62.473	36.62	40.00	-3.38
124.992	40.11	43.50	-3.39
136.702	40.11	43.50	-3.39
156.232	40.07	43.50	-3.43

Notes:

A Average Reading

^{*} The complete emissions data is given in Appendix E of this report.

^{**} The factors for the antennas and preamplifier gain are attached in Appendix D of this report.

7.2 20 dB Bandwidth

The 20 dB Bandwidth was measured using the EMI Receiver. The bandwidth was measured using a direct connection from the RF output of the EUT. The resolution bandwidth was 30 kHz and the video bandwidth was 100 kHz.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1)(i). The 20 dB bandwidth is less than the separation between channels. Please see the data sheets located in Appendix E.

7.3 Peak Output Power

The Peak Output Power was measured using the EMI Receiver. The peak output power was measured using a direct connection from the RF output of the EUT. The resolution bandwidth was 3 MHz and the video bandwidth was 10 MHz. The cable loss was also added back into the reading using the reference level offset.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (b)(2). The maximum peak output power is less than 1 Watt. Please see the data sheets located in Appendix E.

7.4 RF Antenna Conducted Test

The RF antenna conducted test was performed using the EMI Receiver. The RF antenna conducted test measured using a direct connection from the RF out on the EUT into the input of the EMI Receiver. The resolution bandwidth was 100 kHz, and the video bandwidth was 300 kHz. The spans were wide enough to include all the harmonics and emissions that were produced by the intentional radiator.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). The RF power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power. Please see the radiated emission data sheets located in Appendix E.

7.5 RF Band Edges

The RF band edges were taken at the edges of the ISM spectrum (902 MHz when the EUT was on the low channel and 928 MHz when the EUT was on the high channel) using the EMI Receiver. The RBW was set to 100 kHz and the VBW was set to 300 kHz. Plots of the fundamental were taken to ensure the amplitude at the band edges were at least 20 dB down from the peak of the fundamental emission.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). The RF power at the band edges at 902 MHz and 928 MHz meet the requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). Please see the data sheets located in Appendix E.

7.6 Carrier Frequency Separation

The Channel Hopping Separation Test was measured using the EMI Receiver. The EUT was operating in its normal operating mode. The resolution bandwidth was 100 kHz, and the video bandwidth 300 kHz. The frequency span was wide enough to include the peaks of two adjacent channels.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1). The Channel Hopping Separation is greater than the 20 dB bandwidth. Please see the data sheets located in Appendix D.

7.7 Number of Hopping Frequencies

The Channel Hopping Separation Test was measured using the EMI Receiver. The EUT was operating in its normal operating mode. The resolution bandwidth was 100 kHz, and the video bandwidth was 300 kHz. The frequency span was wide enough to include all of the peaks in the frequency band of operation.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1) and 15.247 (a)(1)(i). The number of hopping frequencies is 50. Please see the data sheets located in Appendix E.

7.8 Average Time of Occupancy Test

The Average Time of Occupancy Test was measured using the EMI Receiver. The EUT was operating in normal operating mode. The frequency span was taken to 0 Hz with a sweep time of 20 msec to determine the time for each transmission.

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 10 seconds.

The sweep time was then changed to 5 seconds and the number of pulses taken. The number of pulses was then multiplied by 2 to determine the number of pulses in a 10 second period. The number of pulses in a 10 second period was then multiplied by the time for each pulse to determine the average time of occupancy.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1)(i). The EUT does not transmit for more than 400 msec in a 10 second period on any frequency. Please see the data sheets located in Appendix E.

7.9 Spectral Density Test

The spectrum density output was measured using the EMI Receiver. The spectral density output was measured using a direct connection from the RF out on the EUT into the input of the EMI Receiver. The resolution bandwidth 3 kHz, and the video bandwidth was 10 kHz. The highest 1.5 MHz of the signal was used as the frequency span with the sweep rate being 1 second for every 3 kHz of span.

Test Results:

This test was not performed because the EUT is a frequency hopper.

8. DEVIATIONS FROM THE TEST PROCEDURES

There were no deviations from the test procedures.

9. CONCLUSIONS

The Star 3000 System RFID Reader, Model: STAR-3000-F (RFID Reader), EMX-1004 (eMux), ENM-1004-FW (4 Port eNode), as tested, meets all of the specification limits defined in FCC Title 47, Part 15, Subpart C, sections 15.205, 15.207, 15.209, and 15.247

Note #1: For the unintentional radiator portion of the test except for the RFID Reader, the EUT was within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B.

Note #2: The RFID Reader for the unintentional radiator portion was within the **Class A** specification limits defined by CFR Title 47, Part 15 Subpart B.

APPENDIX A

LABORATORY ACCREDITATIONS AND RECOGNITIONS

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Taiwan and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025 an ISO 9002 equivalent. Please follow the link to the NIST site for each of our facilities NVLAP certificate and scope of accreditation.

NVLAP listing links

Agoura Division - http://ts.nist.gov/Standards/scopes/2000630.htm

Brea Division - http://ts.nist.gov/Standards/scopes/2005280.htm

Silverado/Lake Forest Division - http://ts.nist.gov/Standards/scopes/2005270.htm

ANSI listing

CETCB https://www.ansica.org/wwwversion2/outside/ALLdirectoryDetails.asp?menuID=1&prgID=3&orgID=123&status=4

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA).

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA).

We are also certified/listed for IT products by the following country/agency:

VCCI Listing, from VCCI site

Enter "Compatible" in search form http://www.vcci.or.jp/vcci_e/activity/registration/setsubi.html

FCC Listing, from FCC OET site

FCC test lab search https://fjallfoss.fcc.gov/oetcf/eas/reports/TestFirmSearch.cfm

Compatible Electronics IC listing can be found at:

http://www.ic.gc.ca/eic/site/ic1.nsf/eng/home

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.247 and/or FCC Class A and/or FCC Class B specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

- On the STAR 3000 side Add a ferrite to the power supply cable on the STAR 3000 side (FairRite P/N: 0461164281)
- Ground the Ethernet Connector on the EUT to chassis ground via copper tape on the STAR 3000 side.

APPENDIX C

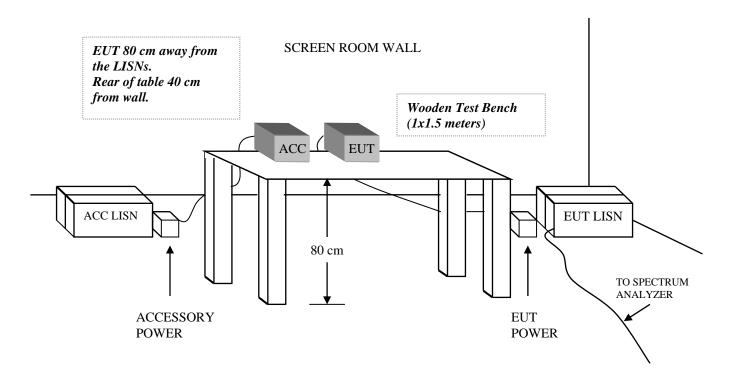
ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED **UNDER THIS REPORT**

USED FOR THE PRIMARY TEST

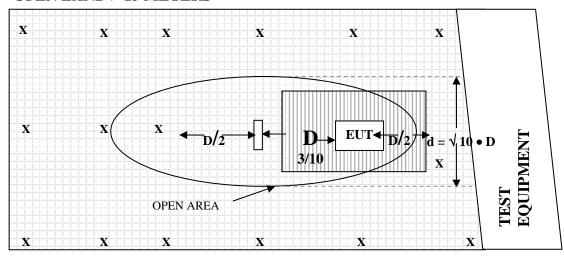
Star 3000 System RFID Reader S/N: NONE

There were no additional models covered under this report.



APPENDIX D

DIAGRAMS, CHARTS AND PHOTOS


FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

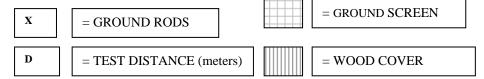
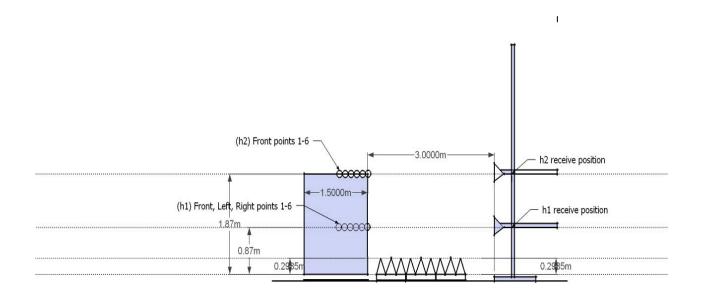

OPEN LAND > 15 METERS

FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS



OPEN LAND > 15 METERS

FIGURE 3: HIGH FREQUENCY TEST VOLUME

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15250

CALIBRATION DATE: JUNE 8, 2011

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	10.90	100	9.50
35	11.00	120	12.10
40	11.80	140	11.40
45	11.60	160	12.40
50	11.40	180	15.70
60	9.80	200	16.20
70	7.00	250	16.10
80	5.70	300	19.00
90	7.00		

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16252

CALIBRATION DATE: JUNE 8, 2011

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	13.50	700	20.40
400	15.50	800	20.60
500	15.80	900	20.10
600	20.20	1000	22.80

COM POWER AH-118

HORN ANTENNA

S/N: 071175

CALIBRATION DATE: MARCH 18, 2010

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	22.2	10.0	39.8
1.5	24.2	10.5	40.2
2.0	27.2	11.0	39.7
2.5	27.8	11.5	39.9
3.0	30.5	12.0	41.7
3.5	30.9	12.5	42.7
4.0	31.9	13.0	42.3
4.5	33.2	13.5	40.3
5.0	33.6	14.0	42.6
5.5	36.2	14.5	43.4
6.0	35.8	15.0	41.9
6.5	36.1	15.5	40.8
7.0	37.9	16.0	41.0
7.5	37.4	16.5	41.5
8.0	38.0	17.0	44.5
8.5	38.8	17.5	47.6
9.0	38.0	18.0	50.8
9.5	39.2		

COM-POWER PA-102

PREAMPLIFIER

S/N: 1017

CALIBRATION DATE: JANUARY 11, 2011

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	38.1	300	38.1
40	38.2	350	38.0
50	38.2	400	37.9
60	38.2	450	37.7
70	38.2	500	37.6
80	38.2	550	37.9
90	38.2	600	37.9
100	38.1	650	37.7
125	38.2	700	37.9
150	38.2	750	37.5
175	38.2	800	37.6
200	38.2	850	37.6
225	38.2	900	37.0
250	38.2	950	37.2
275	38.2	1000	36.8

COM-POWER PA-118

PREAMPLIFIER

S/N: 181656

CALIBRATION DATE: DECEMBER 22, 2010

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	24.90	10.0	26.07
1.5	26.50	10.5	24.97
2.0	26.79	11.0	24.79
2.5	26.90	11.5	24.33
3.0	27.03	12.0	24.24
3.5	26.94	12.5	24.92
4.0	27.18	13.0	24.52
4.5	26.79	13.5	24.33
5.0	26.25	14.0	24.56
5.5	26.16	14.5	24.99
6.0	25.52	15.0	26.06
6.5	25.29	15.5	26.87
7.0	24.45	16.0	25.95
7.5	24.18	16.5	24.69
8.0	24.02	17.0	24.20
8.5	24.54	17.5	25.12
9.0	24.91	18.0	26.03
9.5	25.42		

COM-POWER AL-130

LOOP ANTENNA

S/N: 17089

CALIBRATION DATE: JANUARY 21, 2011

FREQUENCY	MAGNETIC	ELECTRIC
(MHz)	(dB/m)	(dB/m)
0.009	-41.9	9.6
0.01	-41.79	9.71
0.02	-41.43	10.07
0.05	-41.53	9.97
0.07	-41.47	10.03
0.1	-41.44	10.06
0.2	-41.61	9.89
0.3	-41.62	9.88
0.5	-41.66	9.84
0.7	-41.48	10.02
1	-41.13	10.37
2	-40.89	10.61
3	-41.00	10.50
4	-41.14	10.36
5	-41.02	10.48
10	-40.69	10.82
15	-40.41	11.09
20	-41.07	10.43
25	-42.10	9.40
30	-41.15	10.35

FRONT VIEW

MOJIX, INC.

STAR 3000 SYSTEM RFID READER

Models: STAR-3000-F (RFID Reader), EMX-1004 (eMux), ENM-1004-FW (4 Port eNode) RADIATED EMISSIONS – STAR 3000 SIDE – FCC CLASS B

REAR VIEW

MOJIX, INC. STAR 3000 SYSTEM RFID READER

Model: STAR-3000-F (RFID Reader), EMX-1004 (eMux), ENM-1004-FW (4 Port eNode) RADIATED EMISSIONS – STAR 3000 SIDE – FCC CLASS B

FRONT VIEW

MOJIX, INC.

STAR 3000 SYSTEM RFID READER

Models: STAR-3000-F (RFID Reader), EMX-1004 (eMux), ENM-1004-FW (4 Port eNode) RADIATED EMISSIONS – STAR 3000 SIDE – FCC CLASS A

REAR VIEW

MOJIX, INC.
STAR 3000 SYSTEM RFID READER
RFID Reader) EMX-1004 (eMux) ENM-1004-

Models: STAR-3000-F (RFID Reader), EMX-1004 (eMux), ENM-1004-FW (4 Port eNode) RADIATED EMISSIONS – STAR 3000 SIDE – FCC CLASS A

FRONT VIEW

MOJIX, INC. STAR 3000 SYSTEM RFID READER

Models: STAR-3000-F (RFID Reader), EMX-1004 (eMux), ENM-1004-FW (4 Port eNode) RADIATED EMISSIONS – ENODE SIDE (ENODE ONLY) – FCC CLASS B

REAR VIEW

MOJIX, INC. STAR 3000 SYSTEM RFID READER Models: STAR-3000-F (RFID Reader), EMX-1004 (eMux), ENM-1004-FW (4 Port eNode) RADIATED EMISSIONS – ENODE SIDE (ENODE ONLY) – FCC CLASS B

FRONT VIEW

MOJIX, INC.
STAR 3000 SYSTEM RFID READER
Models: STAR-3000-F (RFID Reader), EMX-1004 (eMux), ENM-1004-FW (4 Port eNode)
RADIATED EMISSIONS – ENODE SIDE (ENODE with EMUX) – FCC CLASS B

REAR VIEW

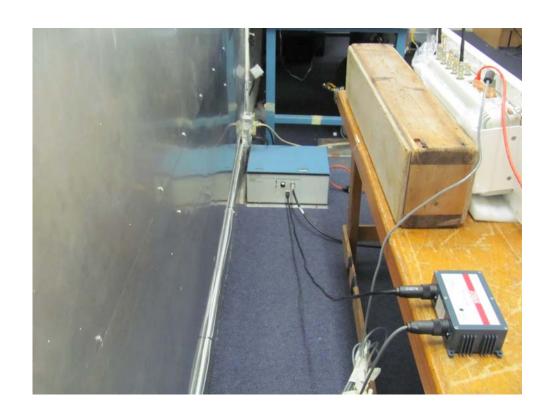
MOJIX, INC.
STAR 3000 SYSTEM RFID READER
Models: STAR-3000-F (RFID Reader), EMX-1004 (eMux), ENM-1004-FW (4 Port eNode)
RADIATED EMISSIONS – ENODE SIDE (ENODE with EMUX) – FCC CLASS B

FRONT VIEW

MOJIX, INC.
STAR 3000 SYSTEM RFID READER
Models: STAR-3000-F (RFID Reader), EMX-1004 (eMux), ENM-1004-FW (4 Port eNode)
CONDUCTED EMISSIONS – ENODE SIDE (ENODE with EMUX) – FCC CLASS B

REAR VIEW

MOJIX, INC.
STAR 3000 SYSTEM RFID READER
Models: STAR-3000-F (RFID Reader), EMX-1004 (eMux), ENM-1004-FW (4 Port eNode)
CONDUCTED EMISSIONS – ENODE SIDE (ENODE with EMUX) – FCC CLASS B



FRONT VIEW

MOJIX, INC. STAR 3000 SYSTEM RFID READER

Models: STAR-3000-F (RFID Reader), EMX-1004 (eMux), ENM-1004-FW (4 Port eNode) CONDUCTED EMISSIONS – STAR 3000 SIDE – FCC CLASS B

REAR VIEW

MOJIX, INC.
STAR 3000 SYSTEM RFID READER
Models: STAR-3000-F (RFID Reader), EMX-1004 (eMux), ENM-1004-FW (4 Port eNode)
CONDUCTED EMISSIONS – STAR 3000 SIDE – FCC CLASS B

APPENDIX E

DATA SHEETS

RADIATED EMISSION

DATA SHEETS

Mojix, Inc. Date: 10/24/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode by itself)

Tested By: Kyle Fujimoto

Low Channel

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
902.73								N/A - Done via Conducted
1805.46	45.21	V	74	-28.79	Peak	1.25	155	
1805.46	25.21	V	54	-28.79	Avg	1.25	155	
2708.19	41.83	V	74	-32.17	Peak	1.25	315	
2708.19	21.83	V	54	-32.17	Avg	1.25	315	
0040.00	00.00		7.	04.44	D. I	4.45	005	
3610.92	39.89	V	74	-34.11	Peak	1.15	225	
3610.92	19.89	V	54	-34.11	Avg	1.15	225	
4513.65	42.56	V	74	-31.44	Peak	1.18	235	
4513.65	22.56	V	54	-31.44	Avg	1.18	235	
F440.00								
5416.38								no emissions found
5416.38								
6319.11								no emissions found
6319.11								
7221.84								no emissions found
7221.84								no emissions found
8124.57								no emissions found
8124.57								
9027.3								no emissions found
9027.3								omioorono rounu

Mojix, Inc. Date: 10/24/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode by itself)

Tested By: Kyle Fujimoto

Low Channel

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
902.73								N/A - Done via Conducted
1805.46	45.07	Н	74	-28.93	Peak	2	45	
1805.46	25.07	Н	54	-28.93	Avg	2	45	
2708.19	39.93	Н	74	-34.07	Peak	1.25	315	
2708.19	19.93	Н	54	-34.07	Avg	1.25	315	
3610.92	39.84	Н	74	-34.16	Peak	1.55	325	
3610.92	19.84	Н	54	-34.16	Avg	1.55	325	
4513.65	41.42	Н	74	-32.58	Peak	1.25	155	
4513.65	21.42	Н	54	-32.58	Avg	1.25	155	
5440.00								
5416.38								no emissions found
5416.38								
6319.11								no emissions found
6319.11								no emissions round
0313.11								
7221.84								no emissions found
7221.84								no emissione round
1221101								
8124.57								no emissions found
8124.57								
9027.3								no emissions found
9027.3								

Mojix, Inc.

Date: 10/24/2011

STAR 3000 System RFID Reader

Labs: B and D

Configuration: eNode Side (eNode by itself)

Tested By: Kyle Fujimoto

Middle Channel Transmit Mode - X-Axis

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
915.22								N/A - Done via Conducted
310.22								Conducted
1830.44	46.39	V	74	-27.61	Peak	1.25	155	
1830.44	26.39	V	54	-27.61	Avg	1.25	155	
07.17.00	22.22			0.4.==		4.0=		
2745.66	39.23	V	74	-34.77	Peak	1.25	145	
2745.66	19.23	V	54	-34.77	Avg	1.25	145	
3660.88	39.17	V	74	-34.83	Peak	1.35	155	
3660.88	19.17	V	54	-34.83	Avg	1.35	155	
4576.1	40.22	V	74	-33.78	Peak	1.25	155	
4576.1	20.22	V	54	-33.78	Avg	1.25	155	
5491.32								
5491.32								no emissions found
0401.02								
6406.54								no emissions found
6406.54								
7321.76								no emissions found
7321.76								
8236.98								no emissions found
8236.98								Jimojoji ja
9152.2								no emissions found
9152.2								

Page E6

FCC 15.249

Mojix, Inc.
STAR 3000 System RFID Reader
Configuration: eNode Side (eNode by itself)

Labs: B and D
Tested By: Kyle Fujimoto

Date: 10/24/2011

Middle Channel

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Heigh t (m)	Table Angle (deg)	Comments
915.22								N/A - Done via Conducted
1830.44	47.68	Н	74	-26.32	Peak	1.25	135	
1830.44	27.68	Н	54	-26.32	Avg	1.25	135	
2745.66	39.89	Н	74	-34.11	Peak	1.25	125	
2745.66	19.89	Н	54	-34.11	Avg	1.25	125	
3660.88	40.61	Н	74	-33.39	Peak	1.25	135	
3660.88	20.61	Н	54	-33.39	Avg	1.25	135	
4576.1	40.89	Н	74	-33.11	Peak	1.35	145	
4576.1	20.89	Н	54	-33.11	Avg	1.35	145	
5491.32								no emissions found
5491.32								
6406.54								no emissions found
6406.54								
7321.76								no emissions found
7321.76								
0000.00								
8236.98								no emissions found
8236.98								
0450.0				-				, , , .
9152.2								no emissions found
9152.2				<u> </u>				
				<u> </u>				

Mojix, Inc.

Date: 10/24/2011
STAR 3000 System RFID Reader

Labs: B and D

Configuration: eNode Side (eNode by itself)

Tested By: Kyle Fujimoto

High Channel

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
927.23								N/A - Done via Conducted
1854.46	46.41	V	74	-27.59	Peak	1.25	135	
1854.46	26.41	V	54	-27.59	Avg	1.25	135	
			-		<u> </u>			
2781.69	39.54	V	74	-34.46	Peak	1.25	135	
2781.69	19.54	V	54	-34.36	Avg	1.25	135	
3708.92	38.51	V	74	-35.49	Peak	1.15	145	
3708.92	18.51	V	54	-35.49	Avg	1.15	145	
4000.45	10.01	.,		00.00		4.0=	40=	
4636.15	43.01	V	74	-30.99	Peak	1.25	135	
4636.15	23.01	V	54	-30.99	Avg	1.25	135	
5563.38								no emissions found
5563.38								
6490.61								no emissions found
6490.61								
7417.84								no emissions found
7417.84								
8345.07								no omicolono found
8345.07								no emissions found
30-10.07								
9272.3								no emissions found
9272.3								

Mojix, Inc.

Date: 10/24/2011

STAR 3000 System RFID Reader

Labs: B and D

Configuration: eNode Side (eNode by itself)

Tested By: Kyle Fujimoto

High Channel

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
927.36								N/A - Done via Conducted
1854.72	46.87	Н	74	-27.13	Peak	1.25	155	
1854.72	26.87	Н	54	-27.13	Avg	1.25	155	
2782.08	40.07	Н	74	-33.93	Peak	1.25	165	
2782.08	20.07	H	54	-33.93	Avg	1.25	165	
						- 1125	100	
3709.44	43.77	Н	74	-30.23	Peak	1.25	175	
3709.44	23.77	Н	54	-30.23	Avg	1.25	175	
10000	40.50			22.42			40-	
4636.8	43.52	H	74	-30.48	Peak	1.25	185	
4636.8	23.52	Н	54	-30.48	Avg	1.25	185	
5564.16								no emissions found
5564.16								
6491.52								no emissions found
6491.52								
7418.88								no emissions found
7418.88								
0040 04								
8346.24 8346.24								no emissions found
0340.24								
9273.6								no emission found
9273.6								-

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode by itself)

Tested By: Kyle Fujimoto

Low Channel

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
902.73								N/A - Done via Conducted
1805.46	63.18	V	74	-10.82	Peak	1.55	180	
1805.46	43.18	V	54	-10.82	Avg	1.55	180	
2708.19	54.53	V	74	-19.47	Peak	1.25	225	
2708.19	34.53	V	54	-19.47	Avg	1.25	225	
2700.10	01.00	•	01	10.17	7179	1.20	220	
3610.92	52.36	V	74	-21.64	Peak	1.25	225	
3610.92	32.36	V	54	-21.64	Avg	1.25	225	
4513.65	45.01	V	74	-28.99	Peak	1.25	235	
4513.65	25.01	V	54	-28.99	Avg	1.25	235	
		.,						
5416.38	48.34	V	74	-25.66	Peak	1.25	235	
5416.38	28.34	V	54	-25.66	Avg	1.25	235	
6319.11								no emissions found
6319.11								
7221.84								no emissions found
7221.84								
8124.57								no emissions found
8124.57								
9027.3								no emissions found
9027.3								no emissions round
3027.0								

Mojix, Inc.

Date: 10/25/2011
STAR 3000 System RFID Reader

Labs: B and D

Configuration: eNode Side (eNode by itself)

Tested By: Kyle Fujimoto

Low Channel

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
902.73								N/A - Done via Conducted
1805.46	58.15	Н	74	-15.85	Peak	1.25	135	
1805.46	38.15	Н	54	-15.85	Avg	1.25	135	
2708.19	56.09	Н	74	-17.91	Peak	1.25	155	
2708.19	36.09	Н	54	-17.91	Avg	1.25	155	
3610.92	53.78	Н	74	-20.22	Peak	2.25	225	
3610.92	33.78	Н	54	-20.22	Avg	2.25	225	
4513.65	46.31	Н	74	-27.69	Peak	1.25	135	
4513.65	26.31	Н	54	-27.69	Avg	1.25	135	
5416.38	49.98	H	74	-24.02	Peak	1.25	135	
5416.38	29.98	Н	54	-24.02	Avg	1.25	135	
6319.11								no emissions found
6319.11								
7221.84								no emissions found
7221.84								
8124.57								no emissions found
8124.57								
9027.3								no emissions found
9027.3								

Mojix, Inc.

Date: 10/25/2011
STAR 3000 System RFID Reader

Labs: B and D

Configuration: eNode Side (eNode by itself)

Tested By: Kyle Fujimoto

Middle Channel

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
915.22								N/A - Done via Conducted
1830.44	52.32	V	74	-21.68	Peak	1.25	135	
1830.44	32.32	V	54	-21.68	Avg	1.25	135	
2745.66	57.05	V	74	-16.95	Peak	1.25	0	
2745.66	37.05	V	54	-16.95	Avg	1.25	0	
3660.88	51.56	V	74	-22.44	Peak	1.35	155	
3660.88	31.56	V	54	-22.44	Avg	1.35	155	
4576.1	46.73	V	74	-27.27	Peak	1.25	165	
4576.1	26.73	V	54	-27.27	Avg	1.25	165	
5491.32	48.52	V	74	-25.48	Peak	1.25	165	
5491.32	28.52	V	54	-25.48	Avg	1.25	165	
C40C 54								
6406.54								no emissions found
6406.54								
7321.76								no emissions found
7321.76								
8236.98								no emissions found
8236.98				_				
9152.2								no emissions found
9152.2								

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode by itself)

Tested By: Kyle Fujimoto

Middle Channel Transmit Mode - Y-Axis

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Heigh t (m)	Table Angle (deg)	Comments
915.22								N/A - Done via Conducted
1830.44	46.11	Н	74	-27.89	Peak	1.25	45	
1830.44	26.11	Н	54	-27.89	Avg	1.25	45	
2745.66	37.77	Н	74	-36.23	Peak	1.25	315	
2745.66	17.77	Н	54	-36.23	Avg	1.25	315	
3660.88	38.96	Н	74	-35.04	Peak	1.25	115	
3660.88	18.96	Н	54	-35.04	Avg	1.25	115	
4576.1	41.09	Н	74	-32.91	Peak	1.25	135	
4576.1	21.09	Н	54	-32.91	Avg	1.25	135	
5491.32								no emissions found
5491.32								
6406.54								no emissions found
6406.54								
7321.76								no emissions found
7321.76								
8236.98								no emissions found
8236.98								
9152.2								no emissions found
9152.2								

Mojix, Inc.

Date: 10/25/2011
STAR 3000 System RFID Reader

Labs: B and D

Configuration: eNode Side (eNode by itself)

Tested By: Kyle Fujimoto

High Channel

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
927.23								N/A - Done via Conducted
1854.46	55.41	V	74	-18.59	Peak	1.25	315	
1854.46	35.41	V	54	-18.59	Avg	1.25	315	
2781.69	59.27	V	74	-14.73	Peak	1.35	225	
2781.69	39.27	V	54	-14.73	Avg	1.35	225	
3708.92	50.63	V	74	-23.37	Peak	1.25	225	
3708.92	30.63	V	54	-23.37	Avg	1.25	225	
4636.15	45.26	V	74	-28.74	Peak	1.25	155	
4636.15	25.26	V	54	-28.74		1.25	155	
4030.13	25.26	V	54	-20.74	Avg	1.23	100	
5563.38								no emissions found
5563.38								110 011110010110 10 01110
6490.61								no emissions found
6490.61								
7417.84								no emissione formal
7417.84								no emissions found
7417.04								
8345.07								no emissions found
8345.07								
9272.3								no emissions found
9272.3								

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode by itself)

Tested By: Kyle Fujimoto

High Channel Transmit Mode - Y-Axis

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
927.36								N/A - Done via Conducted
1854.72	56.15	Н	74	-17.85	Peak	1.25	225	
1854.72	36.15	Н	54	-17.85	Avg	1.25	225	
2782.08	61.57	Н	74	-12.43	Peak	1.25	225	
2782.08		Н	74 54	-12.43		1.25		
2782.08	41.57	П	54	-12.43	Avg	1.25	225	
3709.44	53.54	Н	74	-20.46	Peak	1.25	135	
3709.44	33.54	Н	54	-20.46	Avg	1.25	135	
4636.8	46.08	Н	74	-27.92	Peak	1.35	145	
4636.8	26.08	Н	54	-27.92	Avg	1.35	145	
5564.16		H	74	-25.19	Peak	1.35	145	
5564.16	28.81	Н	54	-25.19	Avg	1.35	145	
6491.52								no emissions found
6491.52								
7418.88								no emissions found
7418.88								
8346.24								no emissions found
8346.24								
9273.6								no emission found
9273.6								
			_					

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode with eMux)

Tested By: Kyle Fujimoto

Low Channel Transmit Mode - X-Axis

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
902.73								N/A - Done via Conducted
1805.46	59.42	V	74	-14.58	Peak	1.25	135	
1805.46	39.42	V	54	-14.58	Avg	1.25	135	
2708.19	57.82	V	74	-16.18	Peak	1.25	315	
2708.19	37.82	V	54	-16.18	Avg	1.25	315	
3610.92	61.26	V	74	-12.74	Peak	1.25	135	
3610.92	41.26	V	54	-12.74	Avg	1.25	135	
4513.65	53.77	V	74	-20.23	Peak	1.25	135	
4513.65	33.77	V	54	-20.23	Avg	1.25	135	
				04.00		4.0=	40=	
5416.38	52.11	V	74	-21.89	Peak	1.25	135	
5416.38	32.11	V	54	-21.89	Avg	1.25	135	
0040.44	FO 40	\ /	7.4	04.50	Daala	4.05	405	
6319.11 6319.11	52.48 32.48	V	74 54	-21.52 -21.52	Peak	1.25 1.25	135 135	
6319.11	32.48	V	54	-21.52	Avg	1.25	135	
7221.84								no emissions found
7221.84								
8124.57								no emissions found
8124.57								
9027.3								no emissions found
9027.3								

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode with eMux)

Tested By: Kyle Fujimoto

Low Channel Transmit Mode - X-Axis

Freq.	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
902.73								N/A - Done via Conducted
1805.46	58.06	Н	74	-15.94	Peak	1.25	225	
1805.46	38.06	Н	54	-15.94	Avg	1.25	225	
2708.19	55.96	Н	74	-18.04	Peak	2.25	225	
2708.19	35.96	Н	54	-18.04	Avg	2.25	225	
3610.92	57.47	Н	74	-16.53	Peak	1.25	135	
3610.92	37.47	Н	54	-16.53	Avg	1.25	135	
4513.65	51.02	Н	74	-22.98	Peak	1.25	155	
4513.65	31.02	Н	54	-22.98	Avg	1.25	155	
5440.00	50.00		74	04.44	D	4.05	405	
5416.38	52.89	H	74	-21.11	Peak	1.25	135	
5416.38	32.89	Н	54	-21.11	Avg	1.25	135	
6040.44	40.04		74	04.00	Daal	4.05	455	
6319.11	49.34	H	74	-24.66	Peak	1.25	155	
6319.11	29.34	Н	54	-24.66	Avg	1.25	155	
7221.84								no emissions found
7221.84								no emissions round
7221.04								
8124.57								no emissions found
8124.57								
9027.3								no emissions found
9027.3								
	_							

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode with eMux)

Tested By: Kyle Fujimoto

Middle Channel Transmit Mode - X-Axis

(MHz) 915.22	(dBuV)	(v/h)	Limit	Margin	QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
		` /			J	, ,	, 0 /	N/A - Done via Conducted
1830.44	58.06	V	74	-15.94	Peak	1.25	225	
1830.44	38.06	V	54	-15.94	Avg	1.25	225	
2745.66	60.43	V	74	-13.57	Peak	2.25	225	
2745.66	40.43	V	54	-13.57	Avg	2.25	225	
2000.00	FO 70	V	74	44.00	Dools	4.05	405	
3660.88	59.78		74	-14.22	Peak	1.25	135	
3660.88	39.78	V	54	-14.22	Avg	1.25	135	
4576.1	53.44	V	74	-20.56	Peak	1.25	135	
4576.1	33.44	V	54	-20.56	Avg	1.25	135	
5491.32	51.71	V	74	-22.29	Peak	1.25	135	
5491.32	31.71	V	54	-22.29	Avg	1.25	135	
6406.54	50.92	V	74	-23.08	Peak	1.25	135	
6406.54	30.92	V	54	-23.08	Avg	1.25	135	
7321.76	51.57	V	74	-22.43	Peak	1.25	180	
7321.76	31.57	V	54	-22.43		1.25	180	
1321.70	31.37	V	54	-22.43	Avg	1.23	100	
8236.98								no emissions found
8236.98								
0450.0								
9152.2				-				no emissions found
9152.2								

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode with eMux)

Tested By: Kyle Fujimoto

Middle Channel Transmit Mode - X-Axis

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
915.22								N/A - Done via Conducted
1830.44	58.75	Н	74	-15.25	Peak	1.25	225	
1830.44	38.75	Н	54	-15.25	Avg	1.25	225	
2745.66	56.89	Н	74	-17.11	Peak	1.25	315	
2745.66	36.89	Н	54	-17.11	Avg	1.25	315	
3660.88	58.95	Н	74	-15.05	Peak	1.25	135	
3660.88	38.95	Н	54	-15.05	Avg	1.25	135	
4576.1	49.89	Н	74	-24.11	Peak	1.25	180	
4576.1	29.89	Н	54	-24.11	Avg	1.25	180	
5491.32	49.93	Н	74	-24.07	Peak	1.25	180	
5491.32	29.93	Н	54	-24.07	Avg	1.25	180	
6406.54	49.07	Н	74	-24.93	Peak	1.25	180	
6406.54	29.07	Н	54	-24.93	Avg	1.25	180	
7321.76								no emissions found
7321.76								
8236.98								no emissions found
8236.98								
9152.2								no emissions found
9152.2								

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode with eMux)

Tested By: Kyle Fujimoto

High Channel Transmit Mode - X-Axis

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
927.23								N/A - Done via Conducted
1854.46	58.71	V	74	-15.29	Peak	1.25	135	
1854.46	38.71	V	54	-15.29	Avg	1.25	135	
2781.69	54.73	V	74	-19.27	Peak	1.25	155	
2781.69	34.73	V	54	-19.27	Avg	1.25	155	
					Ŭ			
3708.92	56.62	V	74	-17.38	Peak	1.25	225	
3708.92	36.62	V	54	-17.38	Avg	1.25	225	
4636.15	48.88	V	74	-25.12	Peak	1.25	180	
4636.15	28.88	V	54	-25.12	Avg	1.25	180	
4000.10	20.00	V	07	20.12	, , vg	1.20	100	
5563.38	49.51	V	74	-24.49	Peak	1.25	180	
5563.38	29.51	V	54	-24.49	Avg	1.25	180	
0400.04	40.40	17	7.4	04.00	Deel	4.05	400	
6490.61 6490.61	49.18 29.18	V	74 54	-24.82 -24.82	Peak Avg	1.25 1.25	180 180	
0490.01	29.10	V	54	-24.02	Avg	1.20	100	
7417.84	48.34	V	74	-25.66	Peak	1.35	90	
7417.84	28.34	V	54	-25.66	Avg	1.35	90	
8345.07								no emissions found
8345.07								iio eiiiissioiis iouliu
00 10.01								
9272.3								no emissions found
9272.3								

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode with eMux)

Tested By: Kyle Fujimoto

High Channel Transmit Mode - X-Axis

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
927.36								N/A - Done via Conducted
1854.72	55.91	Н	74	-18.09	Peak	2.25	180	
1854.72	35.91	Н	54	-18.09	Avg	2.25	180	
2782.08	60.24	Н	74	-13.76	Peak	1.25	225	
2782.08	40.24	Н	54	-13.76	Avg	1.25	225	
								_
3709.44	49.81	Н	74	-24.19	Peak	1.25	270	
3709.44	29.81	Н	54	-24.19	Avg	1.25	270	
4636.8	48.75	Н	74	-25.25	Peak	1.25	180	
4636.8	28.75	Н	54	-25.25	Avg	1.25	180	
					J			
5564.16	48.82	Н	74	-25.18	Peak	1.35	175	
5564.16	28.82	Н	54	-25.18	Avg	1.35	175	
6491.52	48.21	Н	74	-25.79	Peak	1.25	45	
6491.52	28.21	H	54	-25.79	Avg	1.25	45	
					J			
7418.88								no emissions found
7418.88								
8346.24								no emissions found
8346.24								
0070.0								no emissione fermi
9273.6 9273.6								no emissions found
0210.0								

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode with eMux)

Tested By: Kyle Fujimoto

Low Channel

Transmit Mode - Y-Axis

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
902.73								N/A - Done via Conducted
1805.46	62.54	V	74	-11.46	Peak	1.55	180	
1805.46	42.54	V	54	-11.46	Avg	1.55	180	
2708.19	53.21	V	74	-20.79	Peak	1.25	225	
2708.19	33.21	V	54	-20.79	Avg	1.25	225	
3610.92	51.74	V	74	-22.26	Peak	1.25	225	
3610.92	31.74	V	54	-22.26	Avg	1.25	225	
4513.65	42.69	V	74	-31.31	Peak	1.25	235	
4513.65	22.69	V	54	-31.31	Avg	1.25	235	
5440.00	47.50		7.4	00.40	Daal	4.05	005	
5416.38	47.52	V	74	-26.48	Peak	1.25	235	
5416.38	27.52	V	54	-26.48	Avg	1.25	235	
6319.11	48.68	V	74	-25.32	Peak	1.25	235	
6319.11	28.68	V	54	-25.32	Avg	1.25	235	
0319.11	20.00	v	- 54	-20.02	Avg	1.20	233	
7221.84								no emissions found
7221.84								
8124.57								no emissions found
8124.57								
9027.3								no emissions found
9027.3								

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode with eMux)

Tested By: Kyle Fujimoto

Low Channel

Transmit Mode - Y-Axis

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
902.73								N/A - Done via Conducted
1805.46	56.48	Н	74	-17.52	Peak	1.25	135	
1805.46	36.48	Н	54	-17.52	Avg	1.25	135	
2708.19	55.21	Н	74	-18.79	Peak	1.25	155	
2708.19	35.21	Н	54	-18.79	Avg	1.25	155	
3610.92	52.14	Н	74	-21.86	Peak	2.25	225	
3610.92		Н	54			2.25	225	
3610.92	32.14	П	54	-21.86	Avg	2.25	225	
4513.65	45.85	Н	74	-28.15	Peak	1.25	135	
4513.65	25.85	Н	54	-28.15	Avg	1.25	135	
					J			
5416.38	47.64	Н	74	-26.36	Peak	1.25	135	
5416.38	27.64	Н	54	-26.36	Avg	1.25	135	
6319.11	50.35	Н	74	-23.65	Peak	1.25	135	
6319.11	30.35	Н	54	-23.65	Avg	1.25	135	
7221.84								no emissions found
7221.84								no emissions toutiu
7221.04								
8124.57								no emissions found
8124.57								_
						-		
9027.3								no emissions found
9027.3								

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode with eMux)

Tested By: Kyle Fujimoto

Middle Channel Transmit Mode - Y-Axis

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
915.22								N/A - Done via Conducted
1830.44	51.41	V	74	-22.59	Peak	1.25	135	
1830.44	31.41	V	54	-22.59	Avg	1.25	135	
							_	
2745.66	56.24	V	74	-17.76	Peak	1.25	0	
2745.66	36.24	V	54	-17.76	Avg	1.25	0	
3660.88	40 F7	V	74	24.42	Dools	1.35	155	
	49.57	V		-24.43	Peak		•	
3660.88	29.57	V	54	-24.43	Avg	1.35	155	
4576.1	47.52	V	74	-26.48	Peak	1.25	165	
4576.1	27.52	V	54	-26.48	Avg	1.25	165	
					J			
5491.32	48.91	V	74	-25.09	Peak	1.25	165	
5491.32	28.91	V	54	-25.09	Avg	1.25	165	
6406.54	46.58	V	74	-27.42	Peak	1.25	165	no emissions found
6406.54	26.58	V	54	-27.42	Avg	1.25	165	
7321.76								no emissions found
7321.76								no chiasions round
8236.98								no emissions found
8236.98								
9152.2								no emissions found
9152.2								

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode with eMux)

Tested By: Kyle Fujimoto

Middle Channel Transmit Mode - Y-Axis

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
915.22								N/A - Done via Conducted
1830.44	53.16	Н	74	-20.84	Peak	1.25	155	
1830.44	33.16	Н	54	-20.84	Avg	1.25	155	
2745.66	60.73	Н	74	-13.27	Peak	1.55	135	
2745.66	40.73	H	54	-13.27	Avg	1.55	135	
21 40.00	40.70	- ''	07	10.21	7119	1.00	100	
3660.88	56.01	Н	74	-17.99	Peak	1.25	135	
3660.88	36.01	Н	54	-17.99	Avg	1.25	135	
4576.1	48.05	Н	74	-25.95	Peak	1.25	125	
4576.1	28.05	Н	54	-25.95	Avg	1.25	125	
5491.32	50.09	Н	74	-23.91	Peak	1.25	165	
5491.32	30.09	<u>''</u>	54	-23.91	Avg	1.25	165	
0401.02	00.00		07	20.01	7119	1.20	100	
6406.54	48.92	Н	74	-25.08	Peak	1.15	175	
6406.54	28.92	Н	54	-25.08	Avg	1.15	175	
7321.76								no emissions found
7321.76								no emissions tound
7021.70								
8236.98								no emissions found
8236.98								
9152.2								no emissions found
9152.2								iio ciiiissioiis iodiid
J 102.2								

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode with eMux)

Tested By: Kyle Fujimoto

High Channel

Transmit Mode - Y-Axis

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
927.23								N/A - Done via Conducted
1854.46	54.02	V	74	-19.98	Peak	1.25	315	
1854.46	34.02	V	54	-19.98	Avg	1.25	315	
2781.69	57.45	V	74	-16.55	Peak	1.35	225	
2781.69	37.45	V	54	-16.55	Avg	1.35	225	
0700.00	40.40		7.4	05.00	Deal	4.05	005	
3708.92	48.12	V	74	-25.88	Peak	1.25	225	
3708.92	28.12	V	54	-25.88	Avg	1.25	225	
4636.15	46.21	V	74	-27.79	Peak	1.25	155	
4636.15	26.21	V	54	-27.79	Avg	1.25	155	
4000.10	20.21	V	<u> </u>	21.10	Avg	1.20	100	
5563.38								no emissions found
5563.38								
6490.61								no emissions found
6490.61								
7417.84								no emissions found
7417.84								
0045.07								
8345.07								no emissions found
8345.07								
9272.3								no emissions found
9272.3								omioolono rounu
32.2.3								

Mojix, Inc. Date: 10/25/2011 STAR 3000 System RFID Reader Labs: B and D

Configuration: eNode Side (eNode with eMux)

Tested By: Kyle Fujimoto

High Channel

Transmit Mode - Y-Axis

927.36	54.29				Avg	(m)	(deg)	Comments
								N/A - Done via Conducted
		Н	74	-19.71	Peak	1.25	225	
1854.72	34.29	Н	54	-19.71	Avg	1.25	225	
2782.08	60.74	Н	74	-13.26	Peak	1.25	225	
2782.08	40.74	H	54	-13.26	Avg	1.25	225	
2102.00	40.74	11	54	-13.20	Avg	1.25	223	
3709.44	52.59	Н	74	-21.41	Peak	1.25	135	
3709.44	32.59	Н	54	-21.41	Avg	1.25	135	
4636.8	45.14	Н	74	-28.86	Peak	1.35	145	
4636.8	25.14	Н	54	-28.86	Avg	1.35	145	
	4-04			00.70		4.0=		
5564.16	47.21	H	74	-26.79	Peak	1.35	145	
5564.16	27.21	Н	54	-26.79	Avg	1.35	145	
6491.52								no emissions found
6491.52								
7418.88								no emissions found
7418.88								no emissions found
7410.00								
8346.24								no emissions found
8346.24								
9273.6								no omission found
9273.6								no emission found
3213.0								

Test Location : Compatible Electronics Page : 1/1

Customer : Mojix_Inc.
Manufacturer : Mojix_Inc.
Eut name : Star 3000 System RFID Reader **Date:** 9/22/2011 Time : 15:14:12

Lab: D ${ t Model}$ Test Distance : 3 : N/A

Serial # : N/A

Specification : FCC Class B

Distance correction factor (20 * log(test/spec) : 0.00

Test Mode : Radiated Emissions - eNode Side - Tx Mode (Worst Case)

Without the Emux

Vertical and Horizontal Polarization

Pol	Freq MHz	Rdng dBuV	Cable loss dB	Ant factor dB	Amp gain dB	Cor'd rdg = R dBuV	Limit = L dBuV/m	Delta R-L dB
	11112	abav	uВ	ав	aВ	авач	abav/iii	αВ
1V	39.065	61.50	0.57	11.66	38.19	35.53	40.00	-4.47
2H	62.473	64.70	1.05	9.07	38.20	36.62	40.00	-3.38
3V	62.477	62.90	1.05	9.07	38.20	34.82	40.00	-5.18
4V	62.500	59.20	1.05	9.06	38.20	31.11	40.00	-8.89
5V	78.120	62.20	1.20	5.93	38.20	31.13	40.00	-8.87
6V	78.125	61.60	1.20	5.93	38.20	30.53	40.00	-9.47
7V	97.639	67.60	1.08	8.93	38.12	39.49	43.50	-4.01
8V	97.640	69.20	1.08	8.93	38.12	41.09	43.50	-2.41
9V	100.000	62.70	1.10	9.50	38.10	35.20	43.50	-8.30
10V	100.000	63.30	1.10	9.50	38.10	35.80	43.50	-7.70
11V	124.971	64.00	1.10	11.92	38.20	38.82	43.50	-4.68
12V	125.000	61.20	1.10	11.91	38.20	36.01	43.50	-7.49
13V	125.005	49.70	1.10	11.91	38.20	24.51	43.50	-18.99
14H	125.007	58.30	1.10	11.91	38.20	33.11	43.50	-10.39
15V	136.686	58.30	1.15	11.51	38.20	32.76	43.50	-10.74
16V	136.715	50.50	1.15	11.51	38.20	24.96	43.50	-18.54
17V	156.216	51.80	1.23	12.22	38.20	27.05	43.50	-16.45
18V	156.245	59.00	1.23	12.22	38.20	34.25	43.50	-9.25
19V	249.988	51.10	1.70	16.10	38.20	30.70	46.00	-15.30
20V	250.000	47.90	1.70	16.10	38.20	27.50	46.00	-18.50
21V	250.000	40.90	1.70	16.10	38.20	20.50	46.00	-25.50
22V	250.005	43.30	1.70	16.10	38.20	22.90	46.00	-23.10
23H	289.014	53.10	1.81	18.41	38.14	35.18	46.00	-10.82
24V	312.480	50.10	1.95	13.78	38.07	27.76	46.00	-18.24
25H	312.481	54.10	1.95	13.78	38.07	31.76	46.00	-14.24
26H	374.980	55.00	2.00	15.05	37.95	34.10	46.00	-11.90
27V	374.980	51.50	2.00	15.05	37.95	30.60	46.00	-15.40
28H	410.131	48.40	1.98	15.53	37.86	28.06	46.00	-17.94
29V	437.480	49.60	2.20	15.62	37.75	29.68	46.00	-16.32
30H	499.980	48.40	2.40	15.80	37.60	29.00	46.00	-17.00

Test Location : Compatible Electronics **Page :** 1/1

Customer : Mojix_Inc.
Manufacturer : Mojix_Inc.
Eut name : Star 3000 System RFID Reader **Date:** 9/23/2011 Time : 10:39:53

Lab : D Model Test Distance : 3 : N/A

Serial # : N/A

Specification : FCC Class B

Distance correction factor (20 * log(test/spec) : 0.00

Test Mode : Radiated Emissions - eNode Side - Tx Mode (Worst Case)

With the Emux

Vertical and Horizontal Polarization

Pol	Freq MHz	Rdng dBuV	Cable loss dB	Ant factor dB	Amp gain dB	Cor'd rdg = R dBuV	Limit = L dBuV/m	Delta R-L dB
1H 2V 3V 4V 5V	62.491 62.492 78.112 97.642 97.642	52.80 64.60 60.30 64.60 68.20	1.05 1.05 1.20 1.08	9.06 9.06 5.93 8.93	38.20 38.20 38.20 38.12 38.12	24.71 36.51 29.23 36.49 40.09	40.00 40.00 40.00 43.50 43.50	-15.29 -3.49 -10.77 -7.01 -3.41
6H 7V 8V 9V 10V	97.651 97.651 117.172 124.992 136.720	47.70 61.60 52.60 56.20 52.00	1.08 1.08 1.10 1.10	8.94 8.94 11.76 11.91 11.51	38.12 38.12 38.17 38.20 38.20	19.59 33.49 27.29 31.01 26.46	43.50 43.50 43.50 43.50 43.50	-23.91 -10.01 -16.21 -12.49 -17.04
11V 12V 13V 14V 15H	156.232 195.301 249.992 257.840 273.421	50.80 42.60 43.60 51.70 43.90	1.23 1.38 1.70 1.70	12.22 16.09 16.10 16.59 17.52	38.20 38.20 38.20 38.20 38.20	26.05 21.87 23.20 31.79 24.92	43.50 43.50 46.00 46.00 46.00	-17.45 -21.63 -22.80 -14.21 -21.08
16H 17V 18H 19H 20V	300.000 312.470 312.516 351.564 374.970	51.10 53.40 50.50 43.50 54.30	1.90 1.95 1.95 2.09 2.00	13.50 13.78 13.78 14.60 15.05	38.10 38.07 38.07 38.00 37.95	28.40 31.06 28.16 22.20 33.40	46.00 46.00 46.00 46.00 46.00	-17.60 -14.94 -17.84 -23.80 -12.60
21H 22H 23H 24H 25V	375.018 410.154 414.078 437.474 437.492	58.30 52.00 40.30 60.30 53.90	2.00 1.99 2.02 2.20 2.20	15.05 15.53 15.55 15.62 15.62	37.95 37.86 37.84 37.75 37.75	37.40 31.66 20.02 40.38 33.98	46.00 46.00 46.00 46.00 46.00	-8.60 -14.34 -25.98 -5.62 -12.02
26H 27H 28V	453.138 453.138 499.992	57.20 61.70 54.80	2.31 2.31 2.40	15.67 15.67 15.80	37.69 37.69 37.60	37.48 41.98 35.40	46.00 46.00 46.00	-8.52 -4.02 -10.60

FCC 15.247 and FCC Class B

Mojix, Inc. Date: 09/23/11

Star 3000 System RFID Reader Lab: B

Configuration: eNode Side (eNode by itself)

Tested By: Kyle Fujimoto

10 kHz to 30 MHz and 1 to 9.3 GHz - Vert. and Horiz. Polar.

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
								No Emissions
								Detected from the Receive
								Mode from 1 GHz to 9.3 GHz
								No Emissions Detected
								from the Digital Portion from
								1 GHz to 9.3 GHz
								No Emissions Detected for
								the Non-Harmonic Tx
								Emissions from
								1 GHz to 9.3 GHz
								No Emissions
								Detected from the Receive
								Mode from 10 kHz to
								30 MHz
								No Emissions Detected
								from the Digital Portion from
								10 kHz to 30 MHz
								No Emissions Detected for
								the Non-Harmonic Tx
								Emissions from
								10 kHz to 30 MHz

FCC 15.247 and FCC Class B

Mojix, Inc. Date: 09/23/11

Star 3000 System RFID Reader Lab: B

Configuration: eNode Side (eNode with eMux)

Tested By: Kyle Fujimoto

10 kHz to 30 MHz and 1 to 9.3 GHz - Vert. and Horiz. Polar.

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
								No Emissions
								Detected from the Receive
								Mode from 1 GHz to 9.3 GHz
								No Emissions Detected
								from the Digital Portion from
								1 GHz to 9.3 GHz
								No Emissions Detected for
								the Non-Harmonic Tx
								Emissions from
								1 GHz to 9.3 GHz
								No Emissions
								Detected from the Receive
								Mode from 10 kHz to
								30 MHz
								No Emissions Detected
								from the Digital Portion from
								10 kHz to 30 MHz
								No Emissions Detected for
								the Non-Harmonic Tx
								Emissions from
								10 kHz to 30 MHz

Test Location : Compatible Electronics **Page :** 1/2

Customer : Mojix_Inc.
Manufacturer : Mojix_Inc.
Eut name : STAR 3000 System RFID Reader **Date:** 9/23/2011 Time : 13:34:13

Lab : D Model : N/A Test Distance: 10

Serial # : N/A

Specification : FCC Class A

Distance correction factor (20 * log(test/spec) : 0.00

Test Mode : Radiated Emissions - Star 3000 Side Emissions from the Digital Portion Vertical and Horizontal Polarization

Pol	Freq	Rdng	Cable loss	Ant factor	Amp gain	Cor'd rdg = R	Limit = L	Delta R-L
	MHz	dBuV	dB	dB	dB	dBuV	dBuV/m	dB
1V	39.072	49.70	1.28	11.66	38.19	24.45	39.10	-14.65
2V	58.578	61.00	1.40	10.01	38.20	34.21	39.10	-4.89
3H	58.596	40.20	1.40	10.01	38.20	13.41	39.10	-25.69
4V	62.477	61.50	1.48	9.07	38.20	33.84	39.10	-5.26
5H	62.520	42.80	1.48	9.05	38.20	15.13	39.10	-23.97
6V	78.112	63.80	1.70	5.93	38.20	33.23	39.10	-5.87
7V	97.642	66.60	1.88	8.93	38.12	39.29	43.50	-4.21
8V	117.172	61.80	2.04	11.76	38.17	37.43	43.50	-6.07
9H	117.200	49.80	2.04	11.76	38.17	25.43	43.50	-18.07
10V	124.992	64.30	2.10	11.91	38.20	40.11	43.50	-3.39
11V	136.702	64.60	2.20	11.51	38.20	40.11	43.50	-3.39
12H	136.729	58.40	2.20	11.51	38.20	33.91	43.50	-9.59
13H	136.736	61.20	2.20	11.51	38.20	36.71	43.50	-6.79
14V	156.232	63.70	2.35	12.22	38.20	40.07	43.50	-3.43
15H	156.266	52.00	2.35	12.22	38.20	28.38	43.50	-15.12
16V	175.762	55.40	2.50	15.03	38.20	34.74	43.50	-8.76
17V	187.492	61.70	2.55	15.89	38.20	41.95	43.50	-1.55
18V	187.492Qp	61.40	2.55	15.89	38.20	41.65	43.50	-1.85
19V	195.292	49.90	2.58	16.09	38.20	30.37	43.50	-13.13
20H	195.326	41.50	2.58	16.09	38.20	21.97	43.50	-21.53
21H	195.329	43.50	2.58	16.09	38.20	23.97	43.50	-19.53
22V	234.352	42.30	2.74	16.13	38.20	22.97	46.40	-23.43
23V	249.992	54.60	2.80	16.10	38.20	35.30	46.40	-11.10
24V	253.882	36.40	2.86	16.35	38.20	17.41	46.40	-28.99
25V	292.942	40.60	3.20	18.62	38.13	24.29	46.40	-22.11
26H	300.003	47.00	3.20	13.50	38.10	25.60	46.40	-20.80
27H	312.477	55.40	3.28	13.78	38.07	34.39	46.40	-12.01
28V	312.552	45.20	3.28	13.78	38.07	24.19	46.40	-22.21
29H	332.007	43.40	3.40	14.20	38.03	22.97	46.40	-23.43
30V	332.194	34.50	3.40	14.21	38.03	14.07	46.40	-32.33
31H	371.067	36.20	3.63	14.98	37.96	16.85	46.40	-29.55
32V	374.980	63.90	3.65	15.05	37.95	44.66	46.40	-1.74
33V	374.980Qp	63.62	3.65	15.05	37.95	44.38	46.40	-2.02
34H	375.048	62.00	3.66	15.05	37.95	42.76	46.40	-3.64
35H	390.606	39.90	3.75	15.33	37.92	21.06	46.40	-25.34

Test Location : Compatible Electronics **Page :** 2/2

Customer : Mojix_Inc. **Date:** 9/23/2011 Manufacturer : Mojix_Inc. Time : 13:34:13

Eut name : STAR 3000 System RFID Reader Lab : D ${ t Model}$: N/A Test Distance: 10

Serial # : N/A
Specification : FCC Class A

Distance correction factor (20 * log(test/spec) : 0.00

Test Mode : Radiated Emissions - Star 3000 Side Emissions from the Digital Portion Vertical and Horizontal Polarization

Pol	Freq	Rdng	Cable loss	Ant factor	Amp gain	Cor'd rdq = R	Limit = L	Delta R-L
	MHZ	dBuV	đВ	đВ	đB	₫BuV	dBuV/m	đВ
36H	410.136	54.90	3.84	15.53	37.86	36.42	46.40	-9.98
37H	429.666	47.70	3.92	15.60	37.78	29.44	46.40	-16.96
38H	437.480	55.80	3.95	15.62	37.75	37.62	46.40	-8.78
39V	449.017	39.80	4.00	15.66	37.70	21.75	46.40	-24.65
40H	468.726	39.50	4.15	15.71	37.66	21.71	46.40	-24.69
41H	500.048	47.00	4.40	15.80	37.60	29.60	46.40	-16.80
42H	507.846	42.70	4.45	16.18	37.65	25.68	46.40	-20.72
43H	511.758	33.80	4.47	16.36	37.67	16.96	46.40	-29.44
44V	625.031	40.00	5.16	20.25	37.80	27.61	46.40	-18.79

Test Location : Compatible Electronics Page : 1/1

Customer: Mojix_Inc.Date: 9/22/2011Manufacturer: Mojix_Inc.Time: 11:06:51

Eut name : STAR 3000 System RFID Reader Lab : D
Model : N/A Test Distance : 3

Serial # : N/A

Specification : FCC Class B

Distance correction factor (20 * log(test/spec) : 0.00

Test Mode : Star 3000 Side

Emissions from the Transmitter

Radiated Emissions

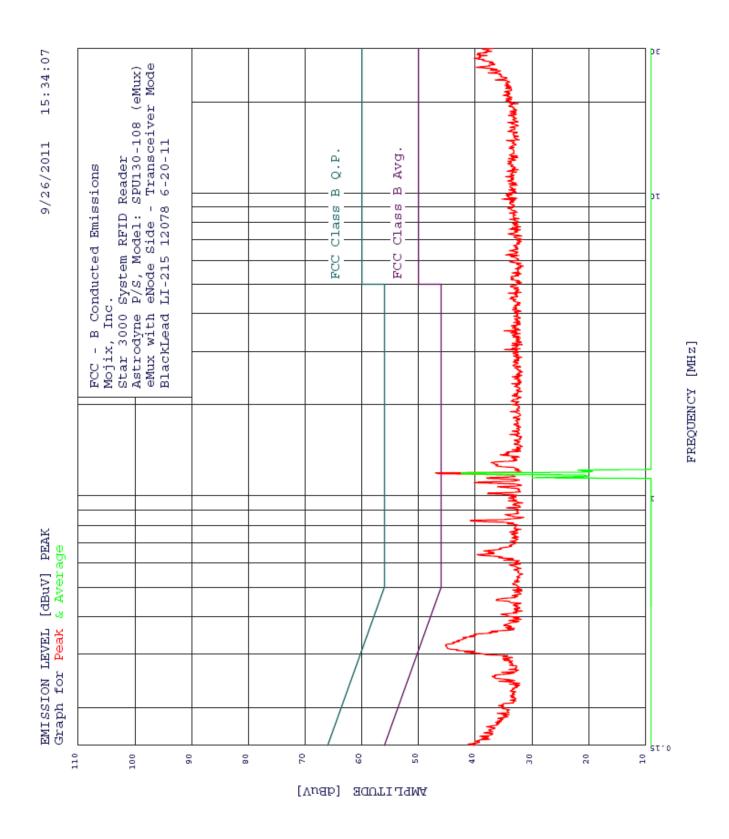
Pol	Freq MHz	Rdng dBuV	Cable loss dB	Ant factor dB	Amp gain dB	Cor'd rdg = R dBuV	Limit = L dBuV/m	Delta R-L dB
1V 2H 3V 4H 5V	36.834 36.885 47.455 47.506 83.326	55.80 43.90 58.50 54.90 65.60	0.49 0.49 0.75 0.75	11.31 11.31 11.50 11.50 6.15	38.17 38.17 38.20 38.20 38.20	29.42 17.53 32.55 28.95 34.68	40.00 40.00 40.00 40.00 40.00	-10.58 -22.47 -7.45 -11.05 -5.32
6H 7V 8H 9V 10H	121.112 121.117 140.618 162.153 162.158	53.70 60.80 60.00 55.40 50.20	1.10 1.10 1.16 1.25 1.25	12.06 12.06 11.43 12.77	38.19 38.19 38.20 38.20 38.20	28.67 35.77 34.40 31.23 26.03	43.50 43.50 43.50 43.50 43.50	-14.83 -7.73 -9.10 -12.27 -17.47
11H 12V 13H 14V 15H	200.006 300.003 312.478 312.501 366.694	56.70 51.60 64.80 49.40 51.40	1.40 1.90 1.95 1.95 2.03	16.20 13.50 13.78 13.78 14.90	38.20 38.10 38.07 38.07 37.97	36.10 28.90 42.46 27.06 30.36	43.50 46.00 46.00 46.00 46.00	-7.40 -17.10 -3.54 -18.94 -15.64
16V	366.697	50.20	2.03	14.90	37.97	29.16	46.00	-16.84

FCC 15.247 and FCC Class B

Mojix, Inc. Date: 09/23/11

Star 3000 System RFID Reader Lab: B

Configuration: STAR 3000 Side Tested By: Kyle Fujimoto


10 kHz to 30 MHz and 1 to 9.3 GHz - Vert. and Horiz. Polar.

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments	
								No Emissions	
								Detected from the Receive	
								Mode from 1 GHz to 9.3 GHz	
								No Emissions Detected	
								from the Digital Portion from	
								1 GHz to 9.3 GHz	
								No Emissions Detected for	
								the Non-Harmonic Tx	
								Emissions from	
								1 GHz to 9.3 GHz	
								No Emissions	
								Detected from the Receive	
								Mode from 10 kHz to 30 MHz	
								No Emissions Detected	
								from the Digital Portion from	
								10 kHz to 30 MHz	
								No Emissions Detected for	
								the Non-Harmonic Tx	
								Emissions from	
								10 kHz to 30 MHz	

CONDUCTED EMISSION

DATA SHEETS

Mojix, Inc.

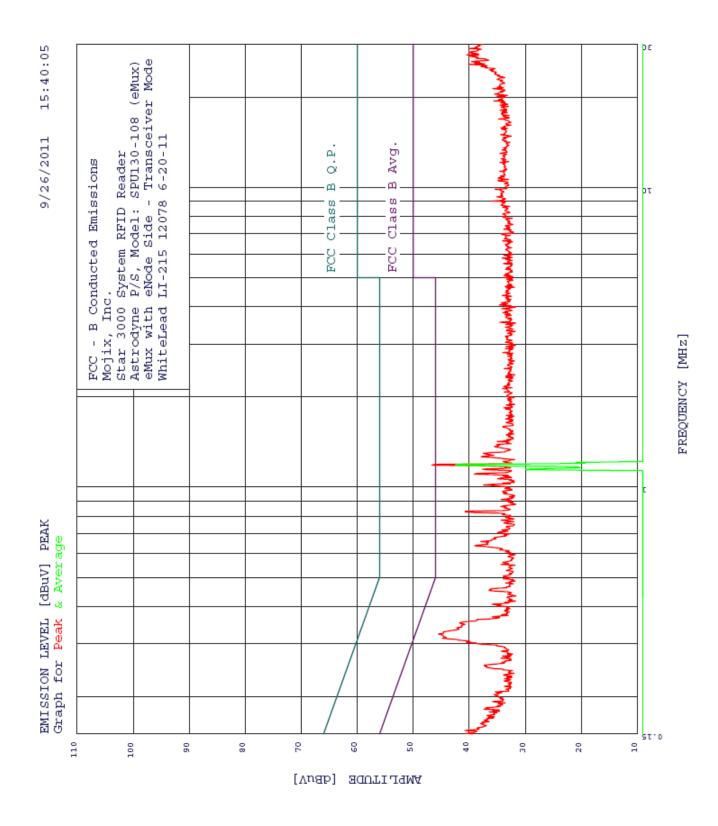
FCC - B Conducted Emissions

```
Star 3000 System RFID Reader
Astrodyne P/S, Model: SPU130-108 (eMux)
eMux with eNode Side - Transceiver Mode
BlackLead LI-215 12078 6-20-11
TEST ENGINEER : Kyle Fujimoto
______
48 highest peaks above -50.00 dB of FCC Class B Avg. limit line
Peak criteria : 1.00 dB, Curve : Peak
Peak# Freq(MHz) Amp(dBuV) Limit(dB)
                                    Delta(dB)
 1
       1.191
               47.00
                           46.00
                                     1.00**
               45.26
       0.322
                           49.66
                                     -4.41
 3
       0.826
              40.83
                          46.00
                                    -5.17
             40.20
       1.106
  4
                          46.00
                                     -5.80
 5
       0.641
                39.68
                           46.00
                                     -6.32
                                     -7.53
  6
                38.47
                           46.00
       0.658
                          46.00
 7
               38.00
                                     -8.00**
       1.148
 8
      1.016
               37.80
                          46.00
                                    -8.20
 9
      0.305
              41.85
                          50.10
                                    -8.25
10
      1.290
               37.20
                          46.00
                                    -8.80
                                    -9.79
                          50.00
              40.21
 11
      27.864
 12
       1.072
                36.10
                           46.00
                                     -9.90
                          50.00
               39.83
13
      26.009
                                    -10.17
               39.70
                          50.00
14
                                    -10.30
      28.615
15
      1.367
               35.60
                         46.00
                                    -10.40
16
      0.454
               36.30
                         46.80
                                    -10.50
               34.99
                          46.00
17
       0.614
                                    -11.01
                34.95
 18
       3.511
                           46.00
                                    -11.05
 19
       3.043
                34.87
                           46.00
                                     -11.13
               34.73
20
       0.867
                          46.00
                                    -11.27
21
      29.851
               38.68
                          50.00
                                    -11.32
22
      0.914
               34.52
                          46.00
                                    -11.48
               37.17
                          48.78
23
      0.358
                                    -11.61
               34.34
34.21
24
       0.809
                           46.00
                                    -11.66
 25
       4.672
                           46.00
                                    -11.79
               34.21
                          46.00
26
       0.963
                                    -11.79
27
      0.984
               34.10
                          46.00
                                    -11.90
28
       0.592
               33.99
                          46.00
                                    -12.01
               33.95
29
       0.759
                         46.00
                                    -12.05
               33.92
       4.480
30
                           46.00
                                    -12.08
 31
       1.000
                33.90
                           46.00
                                    -12.10
 32
       1.594
                33.90
                           46.00
                                     -12.10
                          46.00
33
      0.709
               33.86
                                    -12.14
               33.80
34
      4.928
                          46.00
                                    -12.20
35
      1.899
               33.80
                          46.00
                                    -12.20
               35.50
36
      0.406
                         47.72
                                    -12.23
 37
       3.456
                33.75
                           46.00
                                    -12.25
                         50.00
               37.74
38
      24.933
                                    -12.26
               33.70
                          46.00
                                    -12.30
39
      2.055
               33.65
40
      0.747
                         46.00
                                    -12.35
      3.644
               33.65
                         46.00
 41
                                    -12.35
               33.59
                         46.00
42
       2.346
                                    -12.41
43
       3.141
                33.56
                           46.00
                                    -12.44
       0.728
                33.55
                           46.00
                                     -12.45
 44
               33.50
45
       1.419
                           46.00
                                    -12.50
       1.637
               33.50
46
                           46.00
                                    -12.50
47
       2.002
               33.50
                          46.00
                                    -12.50
              33.50
48
       2.145
                           46.00
                                    -12.50
```

^{**} Please See the Average Readings on the Next Page and on the Plot

Mojix, Inc.

Star 3000 System RFID Reader


Astrodyne P/S, Model: SPU130-108 (eMux) eMux with eNode Side - Transceiver Mode

BlackLead LI-215 12078 6-20-11 TEST ENGINEER : Kyle Fujimoto

3 highest peaks above -50.00 dB of FCC Class B Avg. limit line

Peak criteria : 0.00 dB, Curve : Average

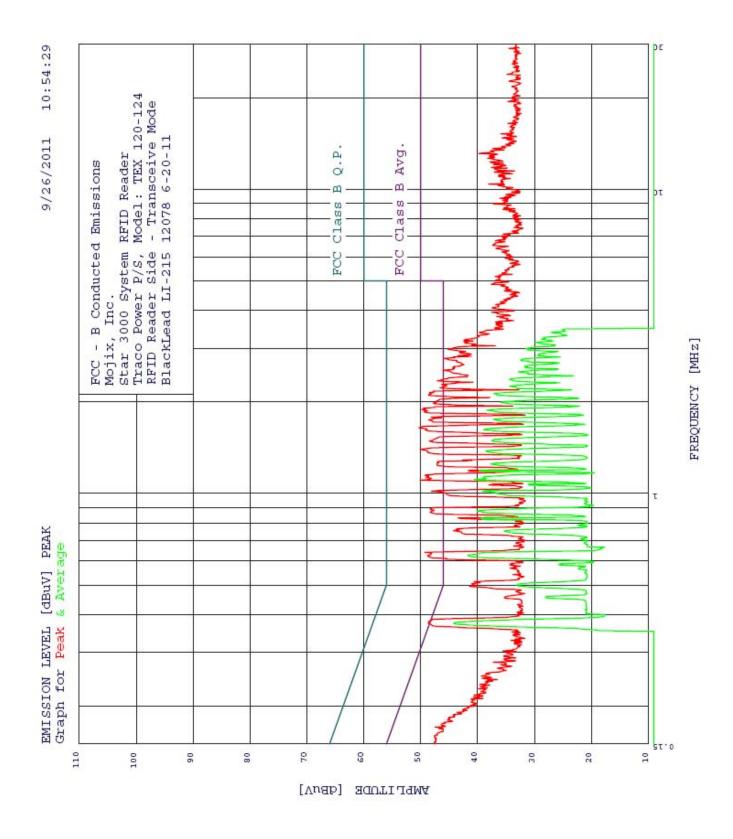
Peak# Freq(MHz) Amp(dBuV) Limit(dB) Delta(dB) 1.184 44. 30.01 46.00 46.00 -3.56 42.44 1 2 1.148 -15.99 1.148 30.01 1.217 21.89 46.00 -24.11 3

Mojix, Inc. Star 3000 System RFID Reader Astrodyne P/S, Model: SPU130-108 (eMux) eMux with eNode Side - Transceiver Mode WhiteLead LI-215 12078 6-20-11 TEST ENGINEER : Kyle Fujimoto _______ 48 highest peaks above -50.00 dB of FCC Class B Avg. limit line Peak criteria : 0.00 dB, Curve : Peak Peak# Freq(MHz) Amp(dBuV) Limit(dB) Delta(dB) 46.68 1 1.184 46.00 0.68** 2 0.324 45.51 49.62 -4.110.329 44.61 3 49.48 -4.87 44.81 49.88 -5.07 0.313 4 40.69 5 0.826 46.00 -5.31 6 1.106 39.06 46.00 -6.94 7 0.637 39.04 46.00 -6.96 8 0.339 42.22 -7.00 49.22 9 41.72 0.352 48.91 -7.19 10 -7.67 0.345 41.42 49.09 11 0.658 37.94 46.00 -8.06 46.00 12 1.262 37.89 -8.11 37.67 1.148 46.00 -8.33** 13 14 1.297 37.49 46.00 -8.51 37.43 46.00 15 1.016 -8.57 16 0.648 36.94 46.00 -9.06 40.50 17 27.720 50.00 -9.50 40.50 18 0.304 50.14 -9.64 -9.89 19 25.740 36.04 40.11 50.00 20 0.669 46.00 -9.96 40.00 21 27.431 50.00 -10.00 40.00 50.00 -10.00 22 28.306 39.99 23 29.078 50.00 -10.01 24 0.362 38.62 48.69 -10.07 25 0.676 35.63 46.00 -10.37 26 0.452 36.46 46.85 -10.38 36.37 46.76 27 0.457 -10.39 28 26.278 39.61 50.00 -10.39 29 1.367 35.50 46.00 -10.50 35.10 30 1.389 46.00 -10.90 39.01 50.00 31 26.009 -10.99 32 1.419 35.00 46.00 -11.00 33 34.95 46.00 1.066 -11.05 34 0.705 34.93 46.00 -11.07 38.89 50.00 35 29.387 -11.11 38.81 36 26.999 50.00 -11.19 34.62 34.58 37 4.050 46.00 -11.38 38 3.547 46.00 -11.42 34.55 39 0.618 46.00 -11.45 38.50 40 28.770 50.00 -11.50 29.851 38.39 50.00 -11.61 41 42 0.862 34.38 46.00 -11.62 43 0.909 34.36 46.00 -11.64 34.33 44 0.552 46.00 -11.67 45 34.32 4.11446.00 -11.68 46 0.775 34.31 46.00 -11.69 47 0.720 34.22 46.00 -11.78 34.22 48 3.945 46.00 -11.78

^{**} Please See the Average Readings on the Next Page and on the Plot

Mojix, Inc.

Star 3000 System RFID Reader


Astrodyne P/S, Model: SPU130-108 (eMux) eMux with eNode Side - Transceiver Mode

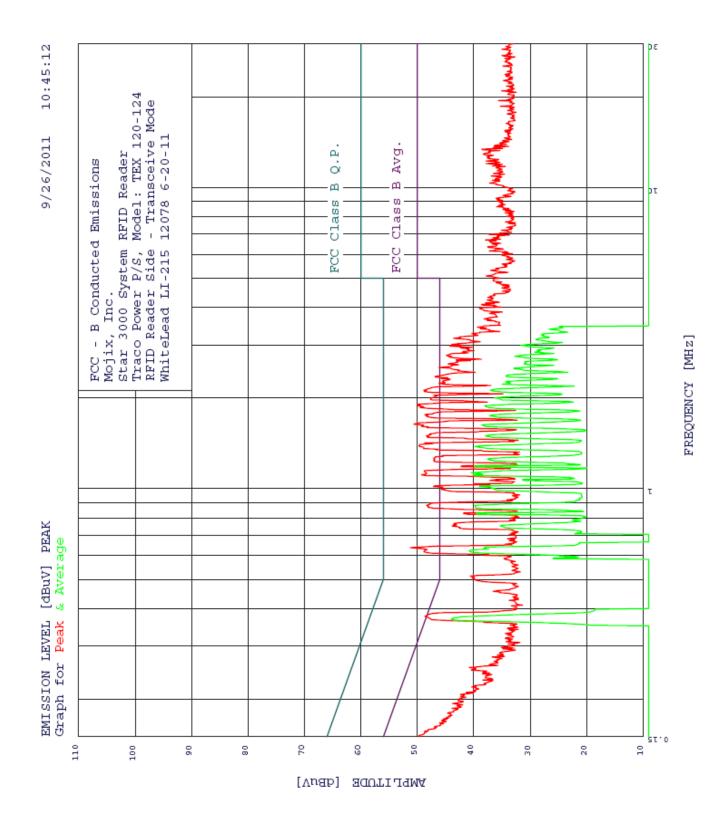
WhiteLead LI-215 12078 6-20-11 TEST ENGINEER : Kyle Fujimoto

3 highest peaks above -50.00 dB of FCC Class B Avg. limit line

Peak criteria : 0.00 dB, Curve : Average Peak# Freq(MHz) Amp(dBuV) Limit(dB) Delta(dB) 1.184 42.38 46.00 -3.62 1.148 29.91 46.00 -16.09 1.210 20.95 46.00 -25.05 1 2 3


```
Mojix, Inc.
Star 3000 System RFID Reader
Traco Power P/S, Model: TEX 120-124
RFID Reader Side - Transceive Mode
BlackLead LI-215 12078 6-20-11
TEST ENGINEER : Kyle Fujimoto
48 highest peaks above -50.00 dB of FCC Class B Avg. limit line
Peak criteria : 1.00 dB, Curve : Peak
Peak# Freq(MHz) Amp(dBuV) Limit(dB) Delta(dB)
       1.646 50.30
                           46.00
 1
                                       4.30**
  2
       1.106
                 50.10
                             46.00
                                        4.10**
  3
       1.397
                 50.10
                             46.00
                                        4.10**
                                         3.80**
       1.889
                 49.80
                             46.00
  4
  5
       1.148
                49.30
                            46.00
                                        3.30**
  6
       0.641
                 49.28
                            46.00
                                        3.28**
  7
       1.745
                 48.60
                            46.00
                                        2.60**
  8
                                        2.60**
                 48.60
                             46.00
       2.100
 9
       1.488
                 48.50
                                        2.50**
                             46.00
 10
       0.867
                 48.33
                             46.00
                                         2.33**
 11
       1.781
                 48.20
                             46.00
                                         2.20**
                                         2.10**
 12
       1.016
                 48.10
                            46.00
 13
                 47.80
                            46.00
                                        1.80**
       1.981
                47.10
                                        1.10**
 14
       1.236
                            46.00
 15
       2.346
                 47.09
                            46.00
                                        1.09**
                                        0.59**
 16
       2.226
                 46.59
                            46.00
 17
                                        0.30**
       0.375
                 48.68
                             48.38
                                        0.08**
       2.540
 18
                 46.08
                             46.00
 19
       2.781
                 45.87
                             46.00
                                        -0.13**
                                       -0.83**
 20
                 45.17
       2.979
                            46.00
                                       -1.75**
       0.755
 21
                 44.25
                            46.00
 22
       2.840
                 43.47
                            46.00
                                        -2.53**
                                        -2.57**
 23
       0.831
                 43.43
                            46.00
                                        -2.83**
 24
                 43.17
                             46.00
       2.916
 25
       1.290
                 42.60
                            46.00
                                        -3.40**
 26
       3.158
                 42.46
                             46.00
                                        -3.54**
 27
       3.192
                 42.36
                            46.00
                                        -3.64**
                                       -4.40**
 28
       1.191
                 41.60
                            46.00
 29
                                       -4.69**
       0.494
                            46.09
                41.41
 30
       0.513
                40.61
                            46.00
                                       -5.39**
 31
       3.383
                39.75
                            46.00
                                       -6.25**
 32
       0.170
                 47.52
                             54.94
                                       -7.42
       1.066
                             46.00
                                        -8.00**
 33
                 38.00
 34
       4.877
                 37.60
                             46.00
                                        -8.40
 35
       3.945
                 37.54
                             46.00
                                        -8.46
                 37.43
 36
       4.071
                             46.00
                                       -8.57
       3.492
 37
                                       -9.05
                 36.95
                            46.00
                 36.84
                            46.00
 38
       3.663
                                       -9.16
 39
       3.585
                36.75
                            46.00
                                       -9.25
                36.75
 40
                            46.00
                                       -9.25
       3.624
                                       -9.36
 41
                36.64
                            46.00
       3.820
 42
      13.129
                 39.78
                             50.00
                                       -10.22
 43
       4.648
                 35.31
                             46.00
                                      -10.69
                 35.30
                                      -11.50**
 44
       0.454
                             46.80
 45
       0.583
                34.39
                            46.00
                                      -11.61**
 46
       4.504
                34.32
                             46.00
                                      -11.68
 47
       0.567
                 34.30
                             46.00
                                       -11.70**
      12.656
                             50.00
                                      -11.76
 48
              38.24
```

^{**} Please See the Average Readings on the Next Page and on the Plot


FCC - B Conducted Emissions Mojix, Inc.

Star 3000 System RFID Reader

Traco Power P/S, Model: TEX 120-124 RFID Reader Side - Transceive Mode BlackLead LI-215 12078 6-20-11 TEST ENGINEER: Kyle Fujimoto

48 highest peaks above -50.00 dB of FCC Class B Avg. limit line Peak criteria : 0.00 dB, Curve : Average Peak# Freq(MHz) Amp(dBuV) Limit(dB) Delta(dB) 48.43 1 0.373 44.15 -4.28 2 0.627 41.67 46.00 -4.33 1.112 40.63 3 -5.37 46.00 40.10 0.876 4 46.00 -5.90 5 1.184 39.62 46.00 -6.38 6 0.831 39.24 46.00 -6.76 1.016 39.16 7 -6.84 46.00 39.05 -6.95 8 1.124 46.00 1.620 38.94 9 -7.06 46.00 10 1.136 38.90 46.00 -7.10 38.53 1.382 11 46.00 -7.47 1.879 38.32 12 46.00 -7.68 37.71 13 1.249 46.00 -8.29 1.488 37.53 14 46.00 -8.47 15 1.75437.22 46.00 -8.78 37.16 16 2.134 46.00 -8.84 17 2.111 36.75 46.00 -9.25 18 1.000 36.66 -9.34 46.00 35.91 19 1.992 46.00 -10.09 20 0.751 35.34 46.00 -10.66 21 2.371 34.39 46.00 -11.61 22 2.250 34.37 46.00 -11.63 33.09 23 2.214 46.00 -12.91-12.94 24 0.500 33.07 46.01 25 2.514 32.81 46.00 -13.19 26 2.736 32.45 46.00 -13.55 27 2.624 31.71 46.00 -14.29 31.68 2.596 28 46.00 -14.32 31.50 29 2.995 46.00 -14.502.963 31.23 -14.77 30 46.00 31.21 31 2.475 46.00 -14.79 31.12 32 2.707 46.00 -14.88 1.066 31.10 33 46.00 -14.90 3.141 29.81 34 46.00 -16.19 35 2.855 29.42 -16.58 46.00 28.79 36 3.209 46.00 -17.21 37 3.260 28.42 46.00 -17.58 0.457 28.08 46.76 38 -18.67 27.15 39 3.383 46.00 -18.85 0.583 46.00 40 25.73 -20.27 3.456 25.10 41 46.00 -20.90 0.788 22.38 46.00 42 -23.62 43 0.564 22.27 46.00 -23.73 44 0.709 21.88 46.00 -24.12 45 0.686 21.24 46.00 -24.76 46 0.924 21.20 46.00 -24.80 0.948 47 21.19 46.00 -24.81 0.552 21.18 46.00 -24.82

FCC - B Conducted Emissions Mojix, Inc. Star 3000 System RFID Reader Traco Power P/S, Model: TEX 120-124 RFID Reader Side - Transceive Mode WhiteLead LI-215 12078 6-20-11 TEST ENGINEER : Kyle Fujimoto 48 highest peaks above -50.00 dB of FCC Class B Avg. limit line Peak criteria : 1.00 dB, Curve : Peak Peak# Freq(MHz) Amp(dBuV) Limit(dB) Delta(dB) 46.00 0.637 51.24 5.24** 1 4.60** 2 1.637 50.60 46.00 50.07 46.00 4.07** 3 1.889 1.389 49.70 46.00 3.70** 49.26 48.86 5 1.112 46.00 3.26** 6 2.123 46.00 2.86** 7 46.00 2.70** 48.70 1.419 8 1.763 48.68 46.00 2.68** 1.496 9 48.41 46.00 2.41** 10 0.881 48.37 46.00 2.37** 47.66 47.13 47.09 11 1.981 46.00 1.66** 12 1.016 46.00 1.13** 46.00 1.09** 13 1.262 46.00 46.00 48.34 46.00 46.00 2.358 46.86 0.86** 14 15 0.377 48.62 0.29** 16 2.238 46.16 0.16** 17 2.527 46.15 0.15** 18 2.322 45.76 -0.24** 2.766 44.84 46.00 19 -1.16** 2.596 46.00 -1.45** 20 44.55 46.00 -1.77** 2.979 44.23 21 3.011 43.93 46.00 -2.07** 22 0.751 46.00 -2.19** 23 43.81 24 3.158 43.54 46.00 -2.46** 46.00 -2.86** 25 2.679 43.1446.00 2.932 42.33 -3.67** 26 46.00 46.00 42.28 -3.72** 27 1.184 28 2.840 42.04 -3.96** 29 0.826 41.79 46.00 -4.21** 46.00 30 0.513 40.61 -5.39 46.00 46.00 31 3.277 40.35 -5.65** -5.96** 32 1.038 40.04 46.00 -6.63** 33 3.438 39.37 3.966 3.401 39.02 46.00 -6.98 34 38.87 35 46.00 -7.13** 4.092 38.62 38.19 37.92 36 46.00 -7.38 37 3.663 46.00 -7.81 38 4.137 46.00 -8.08 37.62 46.00 39 4.227 -8.38 37.21 3.820 40 46.00 -8.79 37.15 36.59 41 1.066 46.00 -8.85** 46.00 42 4.928 -9.41 36.00 43 4.825 46.00 -10.00 53.88 44 0.194 43.76 -10.13 45 0.457 36.57 46.76 -10.19 0.186 43.86 54.19 -10.34 46 51.60 40.79 -10.81 47 0.255 -10.95 48 0.207 42.36 53.31

^{**} Please See the Average Readings on the Next Page and on the Plot

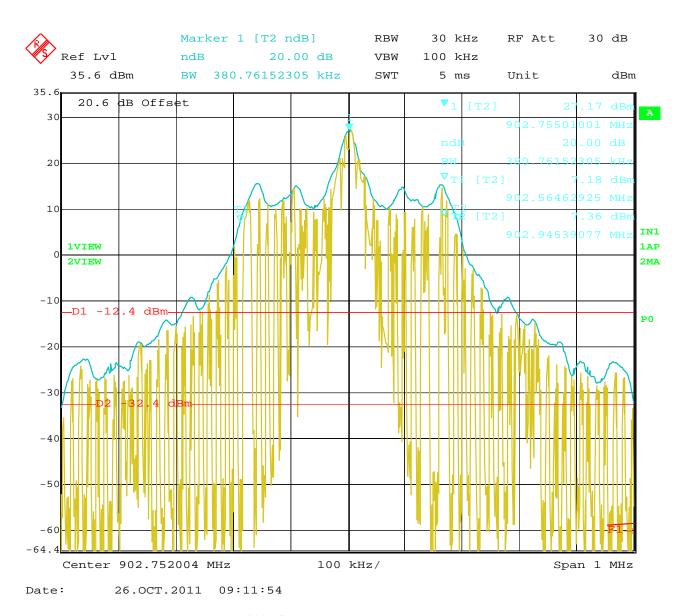
FCC - B Conducted Emissions Mojix, Inc.

Star 3000 System RFID Reader

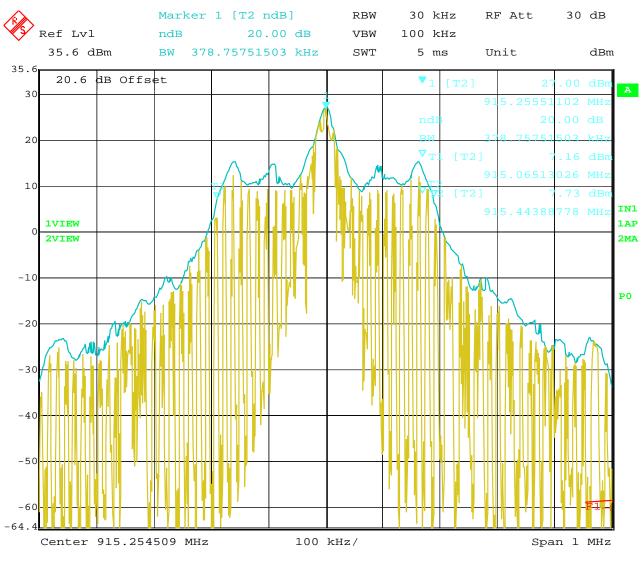
Traco Power P/S, Model: TEX 120-124 RFID Reader Side - Transceive Mode WhiteLead LI-215 12078 6-20-11

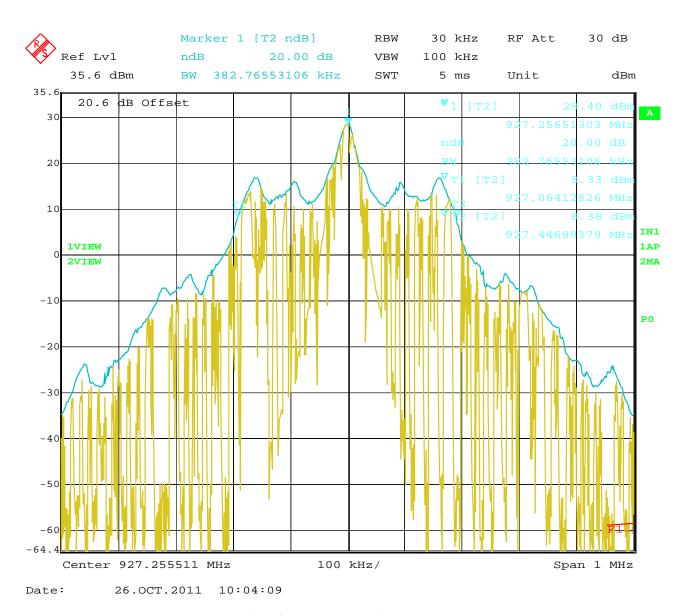
TEST ENGINEER : Kyle Fujimoto

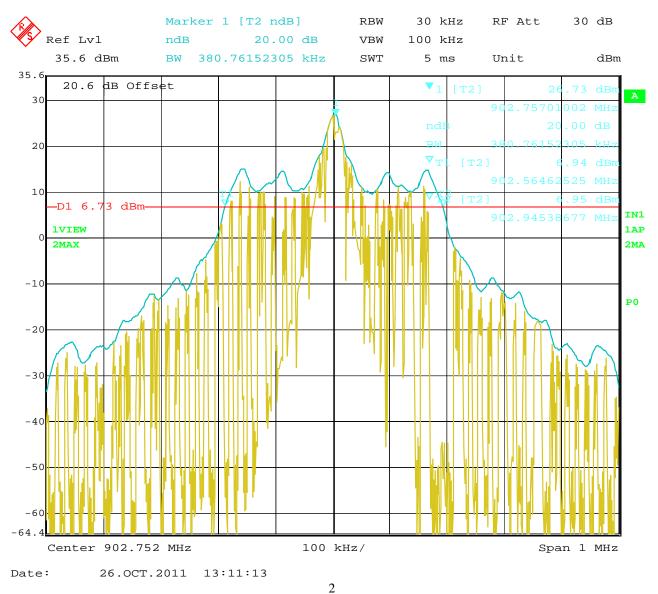
45 highest peaks above -50.00 dB of FCC Class B Avg. limit line

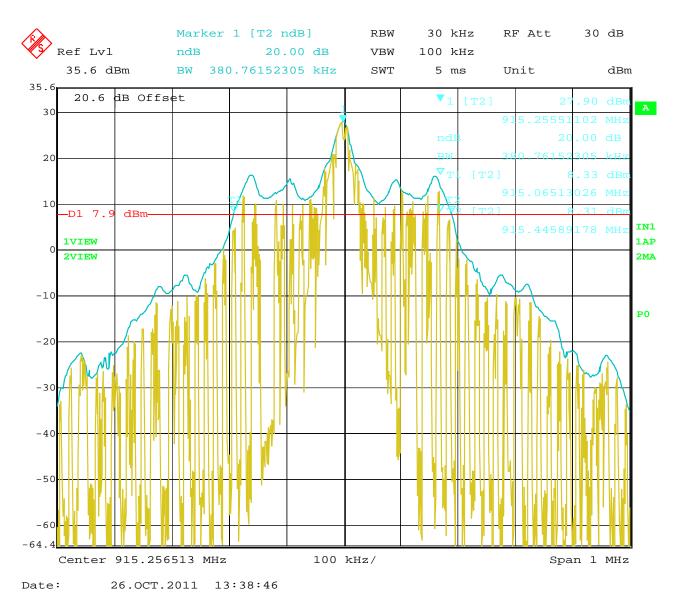

				! Class B Avg.	limit line
Peak c	riteria :	0.00 dB, Cu	ırve : Avera		
Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)	
1	0.369	43.90	48.52	-4.61	
2	0.621	40.78	46.00	-5.22	
3	1.130	40.45	46.00	-5.55	
4	1.112	40.00	46.00	-6.00	
5	0.881	39.85	46.00	-6.15	
6	1.191	39.83	46.00	-6.17	
7	1.382	39.82	46.00	-6.18	
8	0.867	39.69	46.00	-6.31	
9	0.826	39.49	46.00	-6.51	
10	1.016	39.01	46.00	-6.99	
11	1.629	38.56	46.00	-7.44	
12	0.634	38.17	46.00	-7.83	
13	1.889	38.00	46.00	-8.00	
14	1.496	37.94	46.00	-8.06	
15	1.256	37.50	46.00	-8.50	
16	1.745	37.23	46.00	-8.77	
17	2.123	37.04	46.00	-8.96	
18	0.995	36.38	46.00	-9.62	
19	2.002	36.27	46.00	-9.73	
20	0.751	35.22	46.00	-10.78	
21	2.226	34.93	46.00	-11.07	
22	2.262	34.34	46.00	-11.66	
23	2.371	34.30	46.00	-11.70	
24	2.514	32.88	46.00	-13.12	
25	2.751	32.74	46.00	-13.26	
26	2.995	31.60	46.00	-14.40	
27	1.072	31.37	46.00	-14.63	
28	2.596	31.07	46.00	-14.93	
29	2.637	31.00	46.00	-15.00	
30	2.840	29.21	46.00	-16.79	
31	3.124	28.97	46.00	-17.03	
32	2.885	28.72	46.00	-17.28	
33	3.260	27.96	46.00	-18.04	
34	3.226	27.96	46.00	-18.04	
35	3.383	26.66	46.00	-19.34	
36	0.586	25.93	46.00	-20.07	
37	3.456	24.88	46.00	-21.12	
38	0.788	22.54	46.00	-23.46	
39	0.709	22.14	46.00	-23.86	
40	0.914	21.98	46.00	-24.02	
41	0.929	21.33	46.00	-24.67	
42	0.662	21.32	46.00	-24.68	
43	1.434	21.28	46.00	-24.72	
44	0.948	20.94	46.00	-25.06	
45	0.396	18.61	47.95	-29.33	

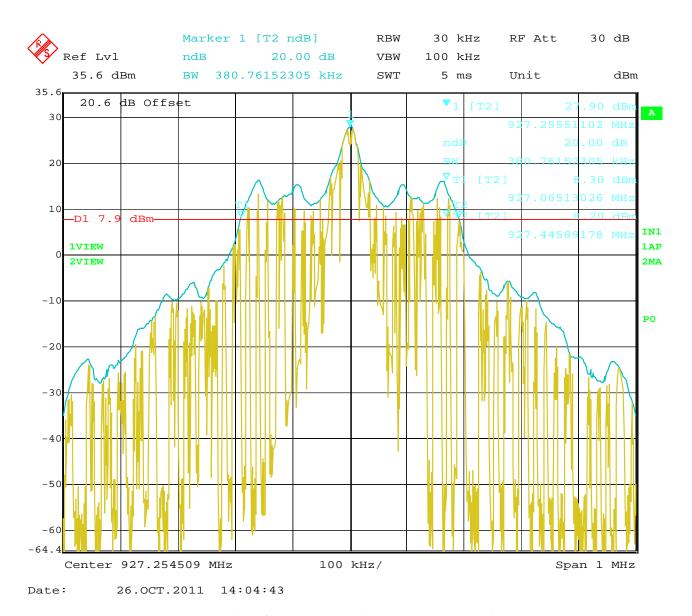
-20 dB BANDWIDTH


DATA SHEETS

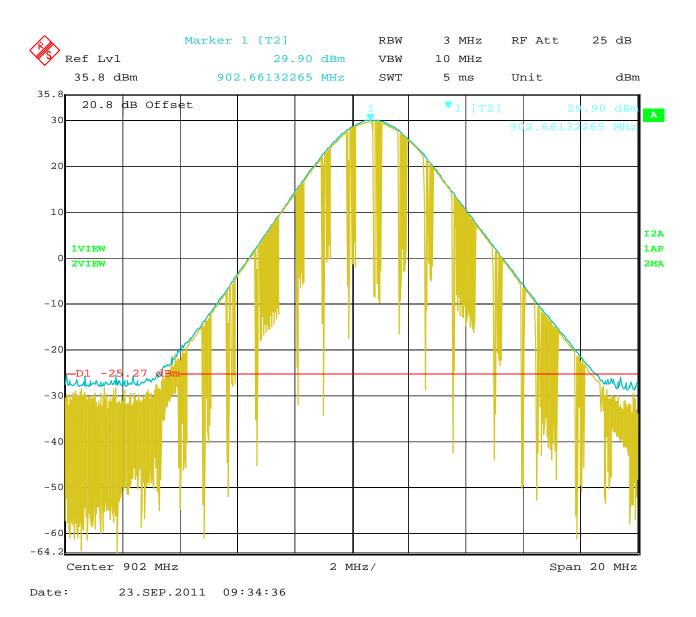

20 dB Bandwidth of Fundamental - Low Channel - eNode Only


Date: 26.OCT.2011 09:47:11 20 dB Bandwidth of Fundamental – Middle Channel – eNode Only


20 dB Bandwidth of Fundamental - High Channel - eNode Only

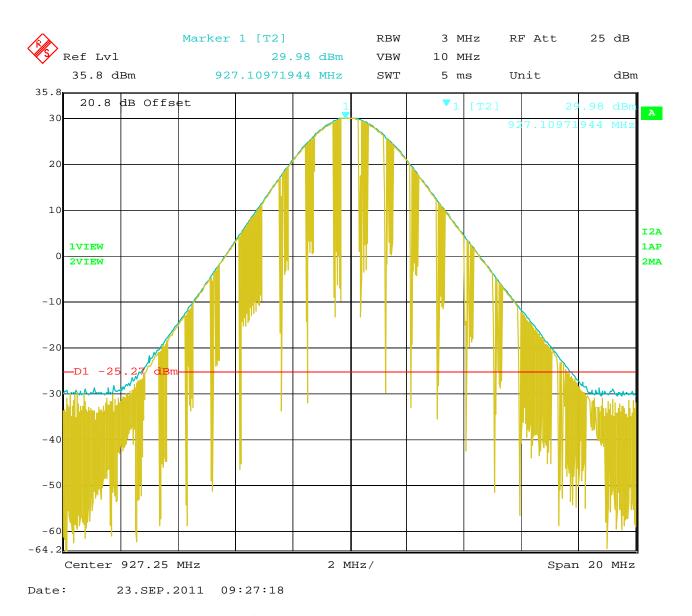

20 dB Bandwidth of Fundamental - Low Channel - eNode with eMux

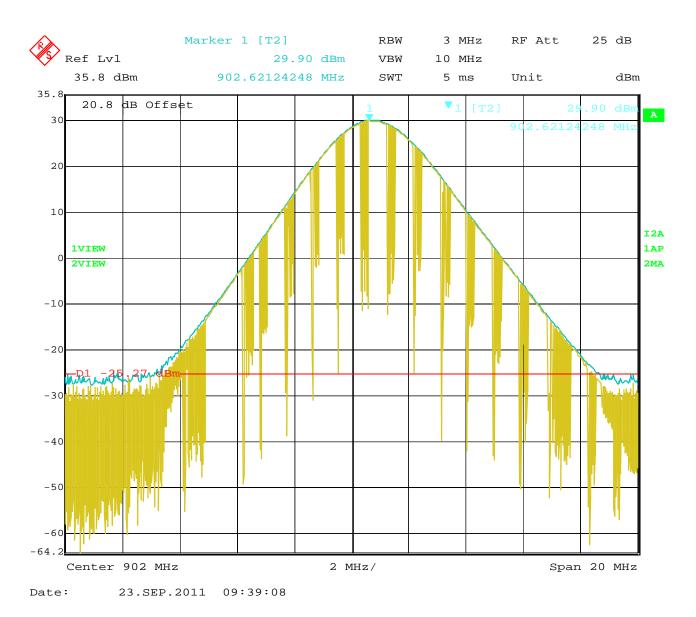
20 dB Bandwidth of Fundamental - Middle Channel - eNode with eMux

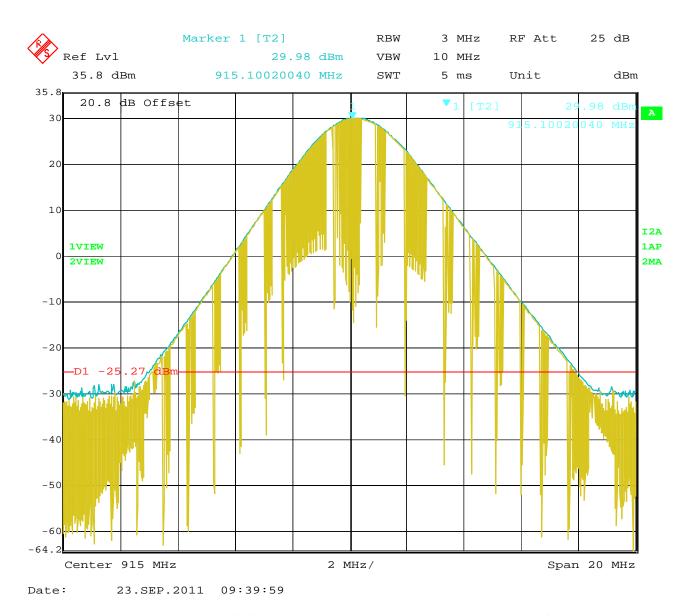

20 dB Bandwidth of Fundamental - High Channel - eNode with eMux

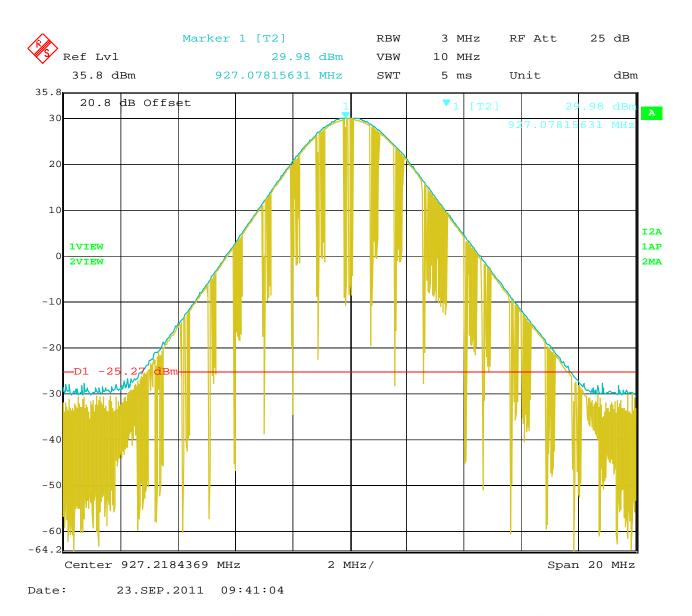
PEAK POWER


DATA SHEETS

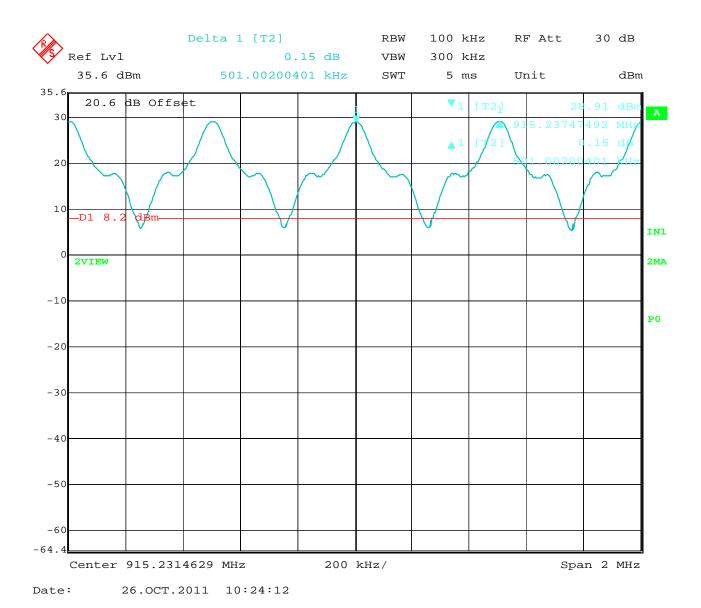

Peak Power Output – Low Channel – Antenna Port #2 – Worst Case – eNode Only


Peak Power Output – Middle Channel – Antenna Port #2 – Worst Case – eNode Only

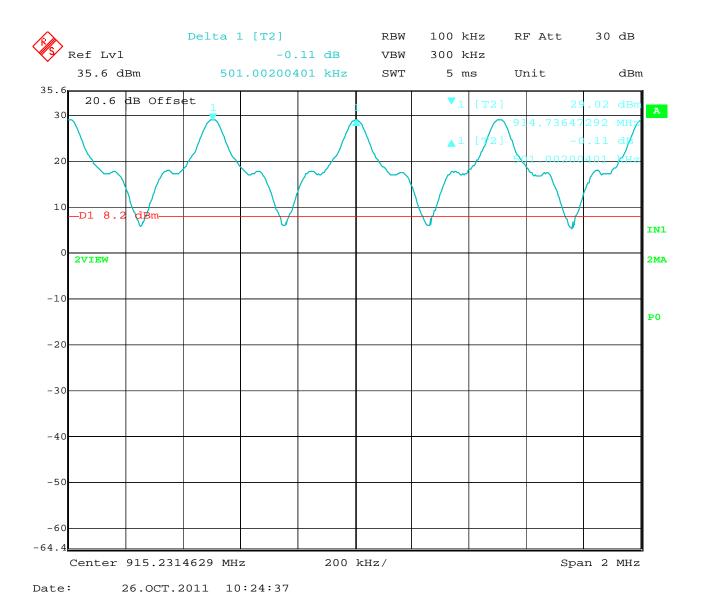

Peak Power Output – High Channel – Antenna Port #2 – Worst Case – eNode Only

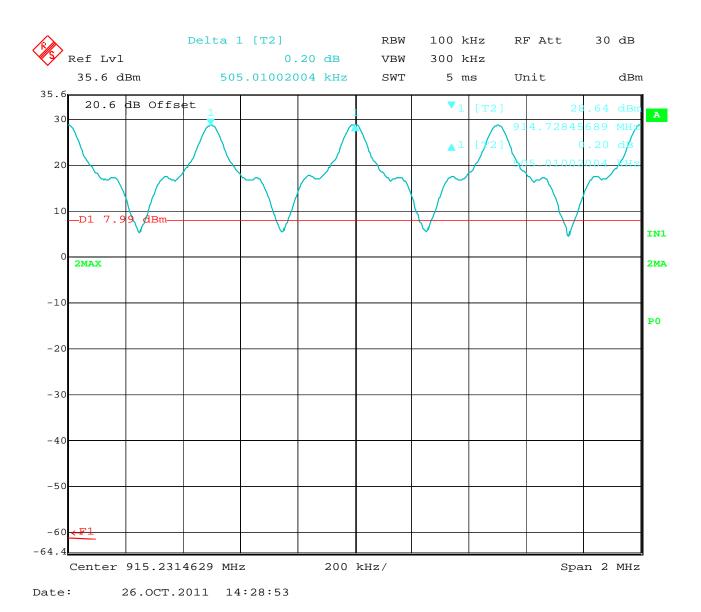

Peak Power Output - Low Channel - Antenna Port #2 - Worst Case - eNode with eMux

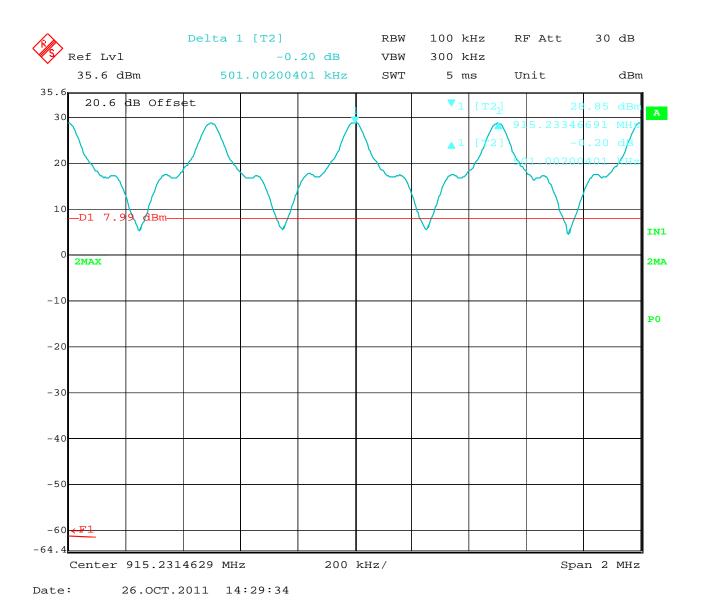
Peak Power Output – Middle Channel – Antenna Port #2 – Worst Case – eNode with eMux



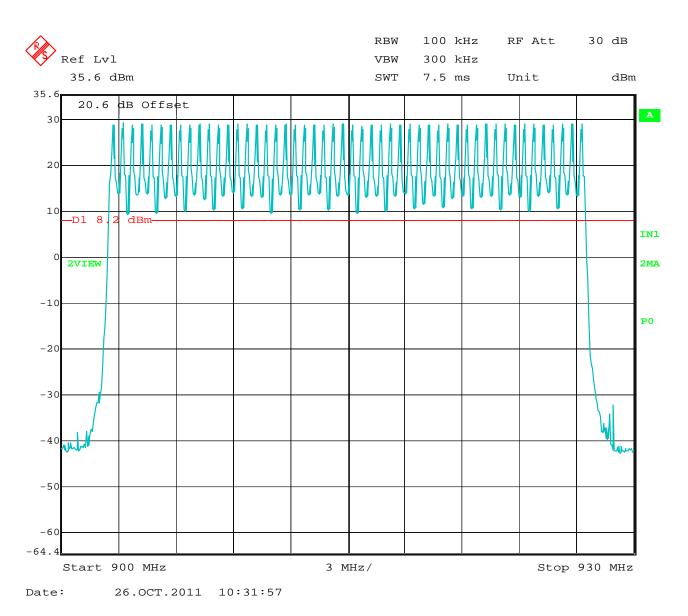
Peak Power Output – High Channel – Antenna Port #2 – Worst Case – eNode with eMux


CHANNEL SEPARATION TEST

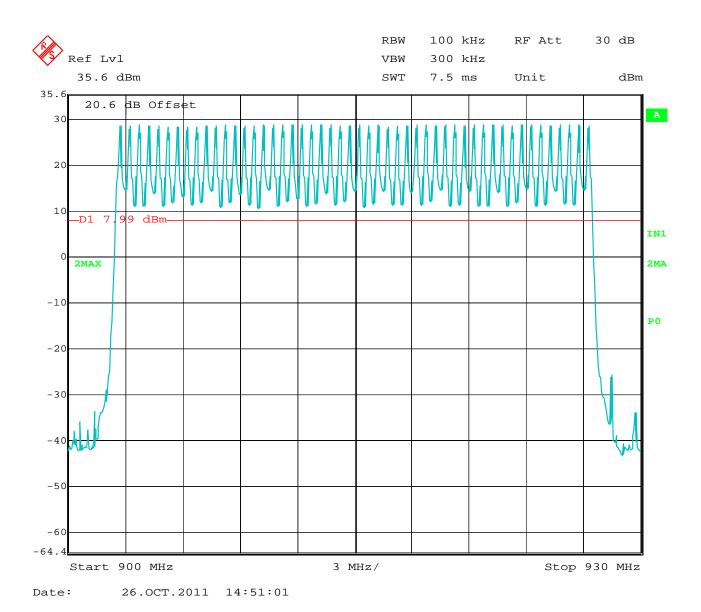

Channel Frequency Separation Test – Plot #1 – eNode Only


Channel Frequency Separation Test – Plot #2 – eNode Only

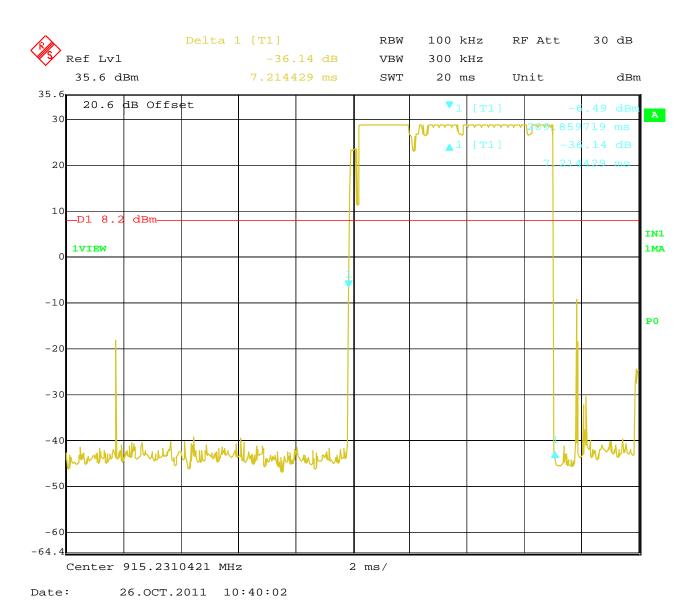
Channel Frequency Separation Test – Plot #1 – eNode with eMux



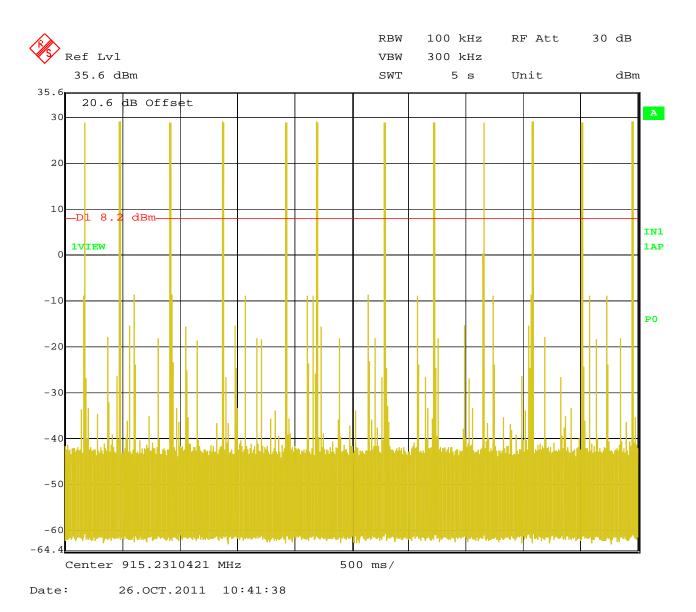
Channel Frequency Separation Test – Plot #2 – eNode with eMux

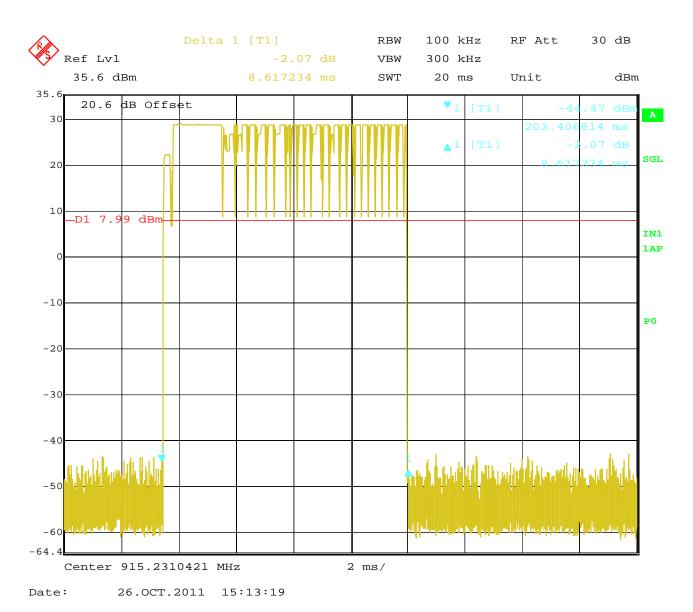

NUMBER OF FREQUENCIES

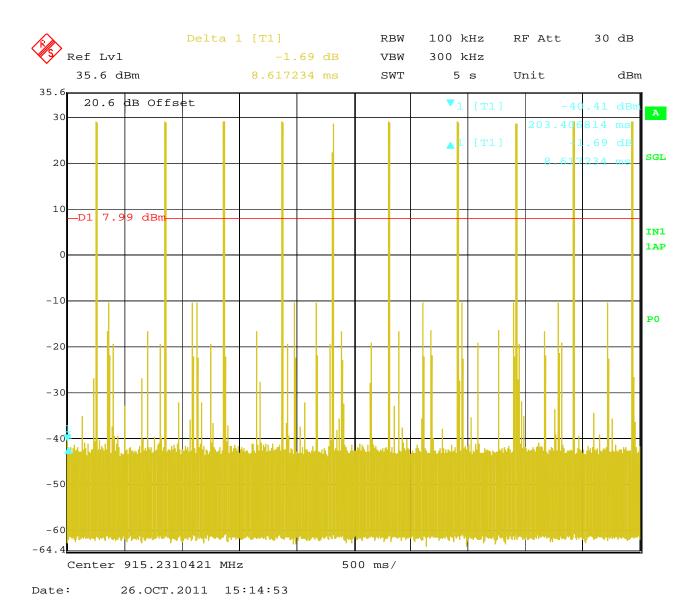
Number of Frequencies (50 Total) – eNode Only



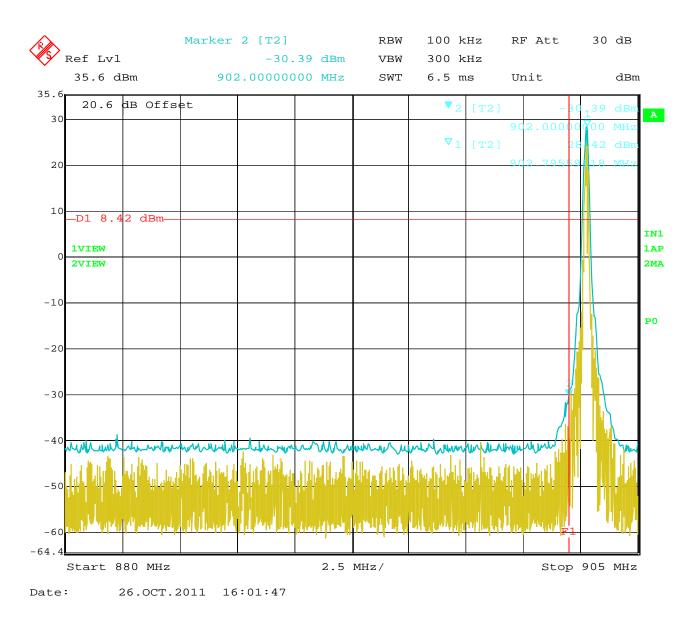
Number of Frequencies (50 Total) - eNode with eMux


TIME OF OCCUPANCY

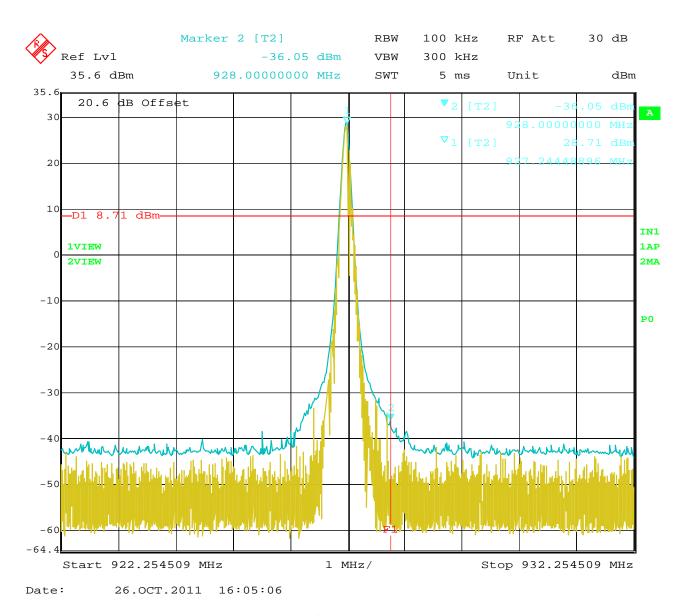

Time of One Pulse = 7.214429 mS - eNode Only

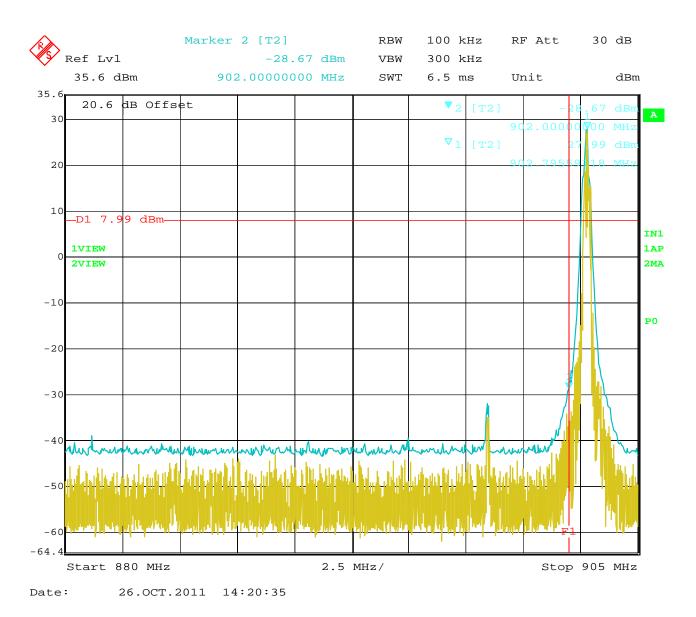

Number of Pulses in 5 Seconds = 12 Total Number of Pulses in 10 Seconds = 24 Time of Occupancy = 7.214429 mS * 24 = 173.146296 mS Limit = 400 mS in a 10 Second Period eNode Only

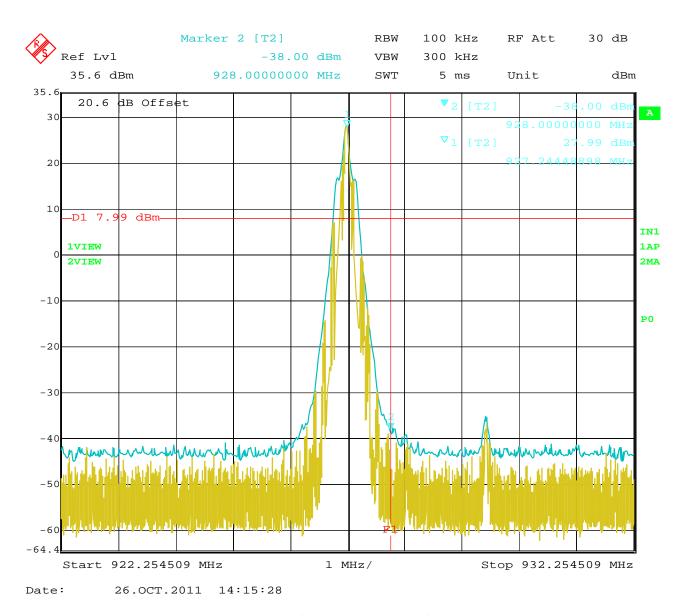
Time of One Pulse = 8.617234 mS - eNode with eMux



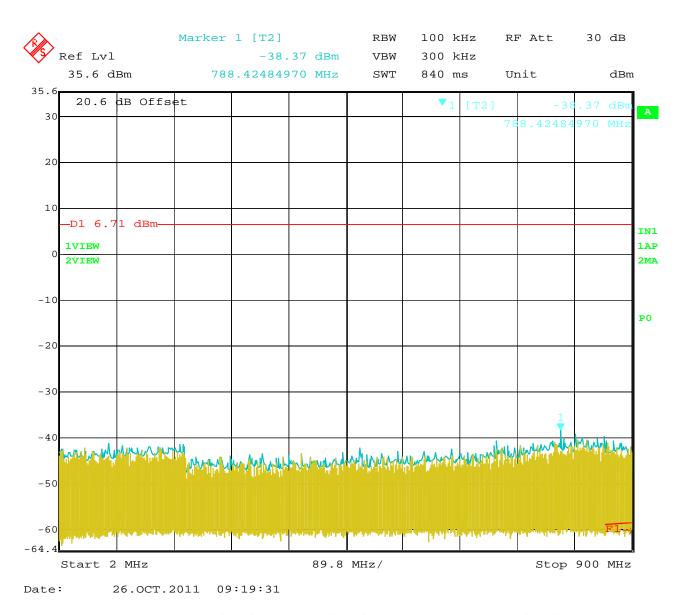
Number of Pulses in 5 Seconds = 10 Total Number of Pulses in 10 Seconds = 20 Time of Occupancy = 8.617234 mS * 20 = 172.34468 mS Limit = 400 mS in a 10 Second Period eNode with eMux


BAND EDGES

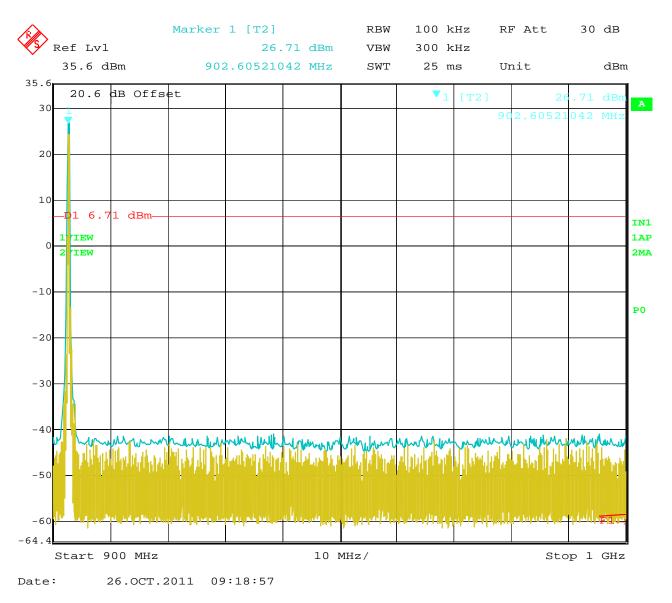

Band Edge – Low Channel – eNode Only

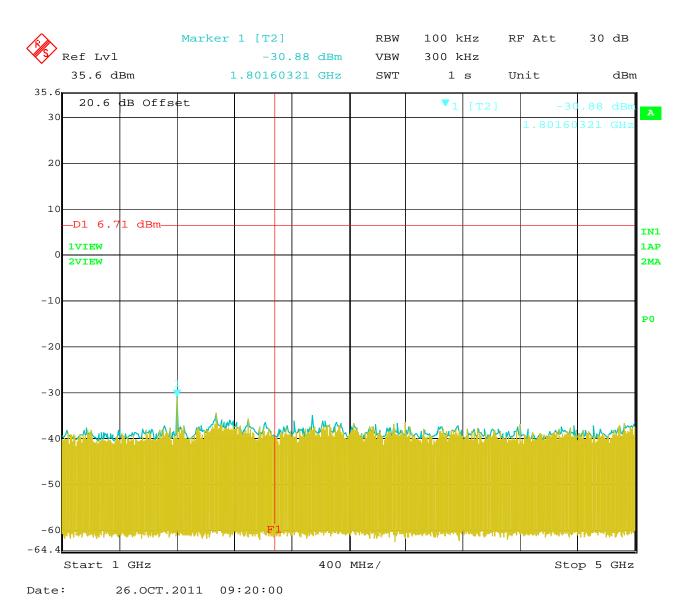

Band Edge – High Channel – eNode Only

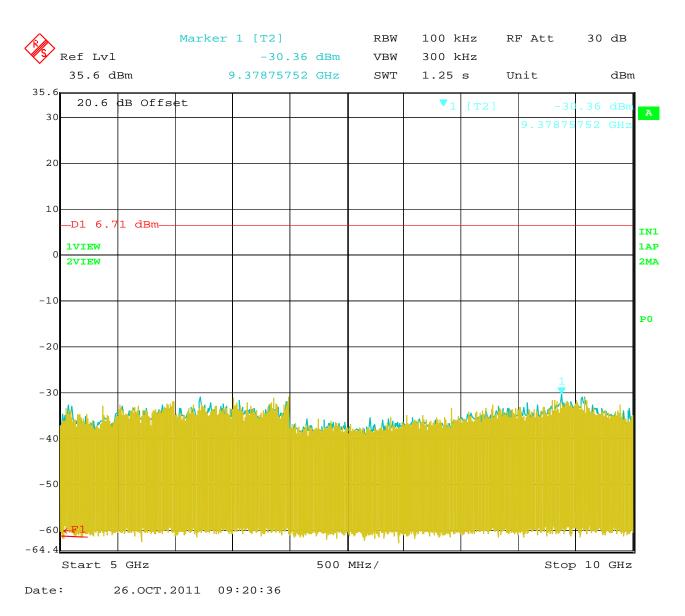
Band Edge - Low Channel - eNode with eMux

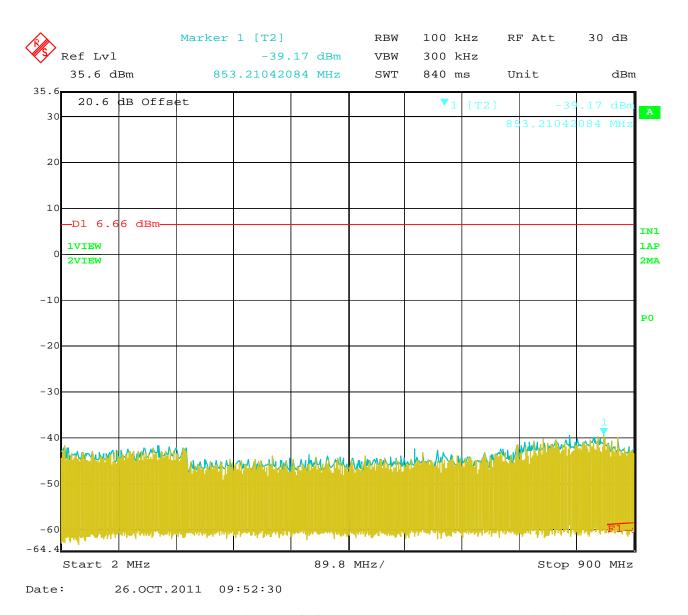


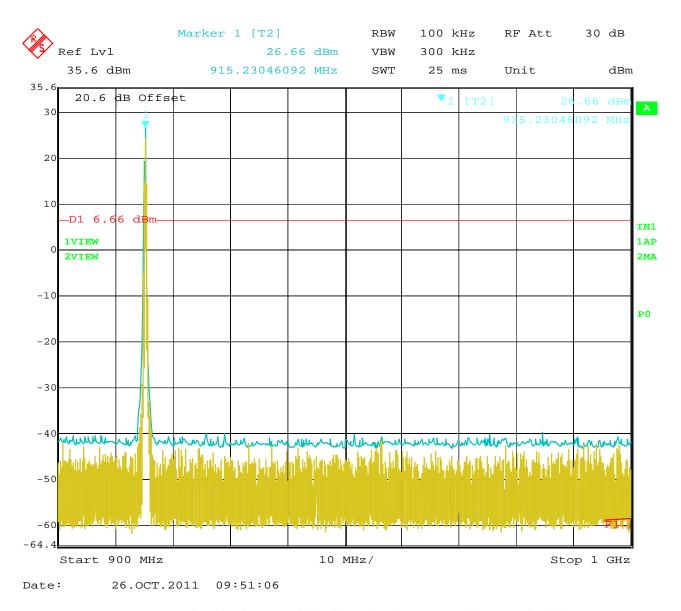
Band Edge – High Channel – eNode with eMux

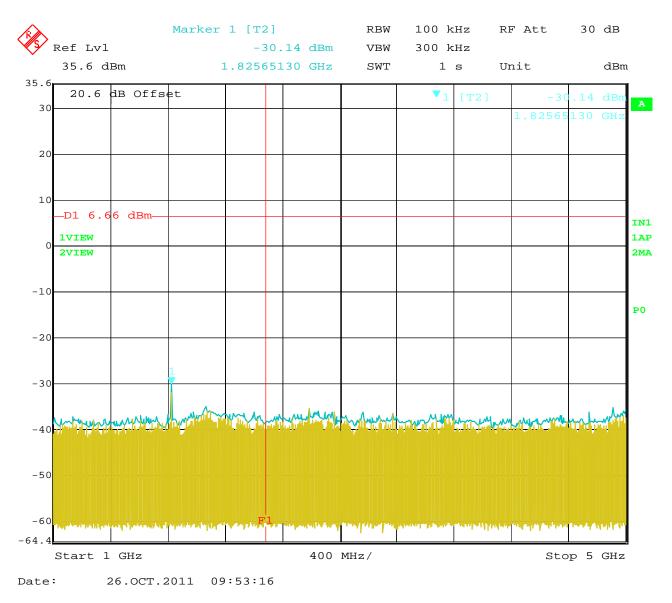

RF ANTENNA CONDUCTED

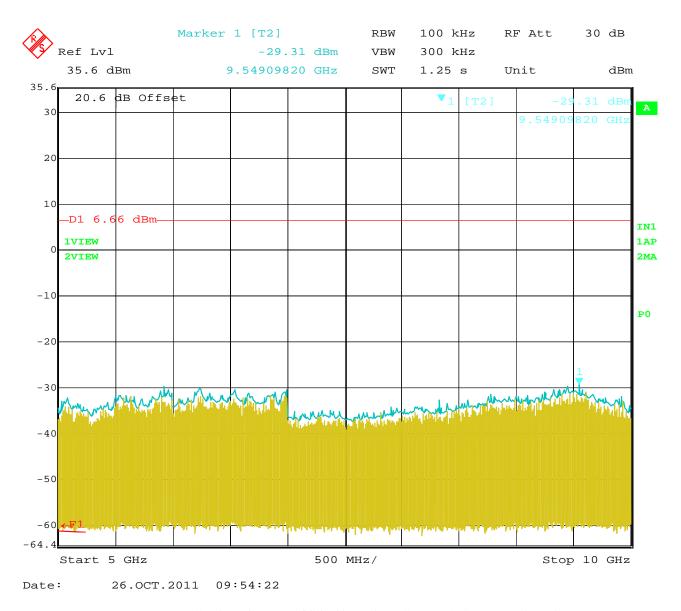

RF Antenna Conducted Test – Low Channel – 2 MHz to 900 MHz – eNode Only

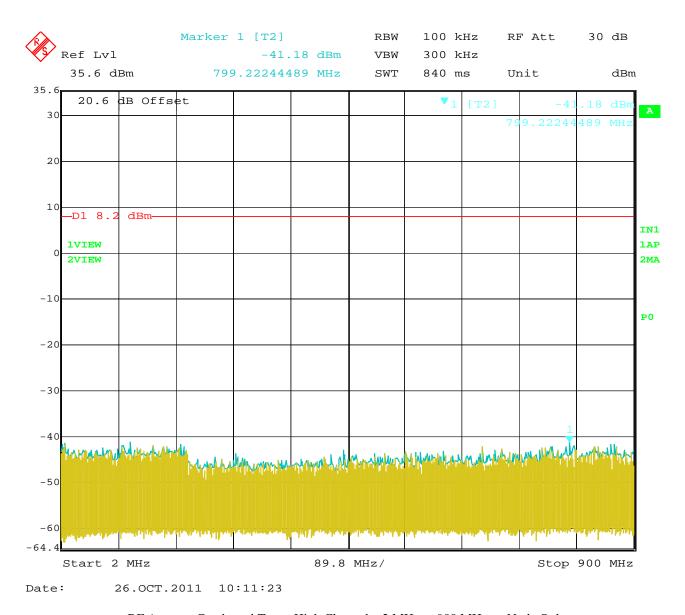

RF Antenna Conducted Test - Low Channel - 900 MHz to 1 GHz - eNode Only


RF Antenna Conducted Test – Low Channel – 1 GHz to 5 GHz – eNode Only

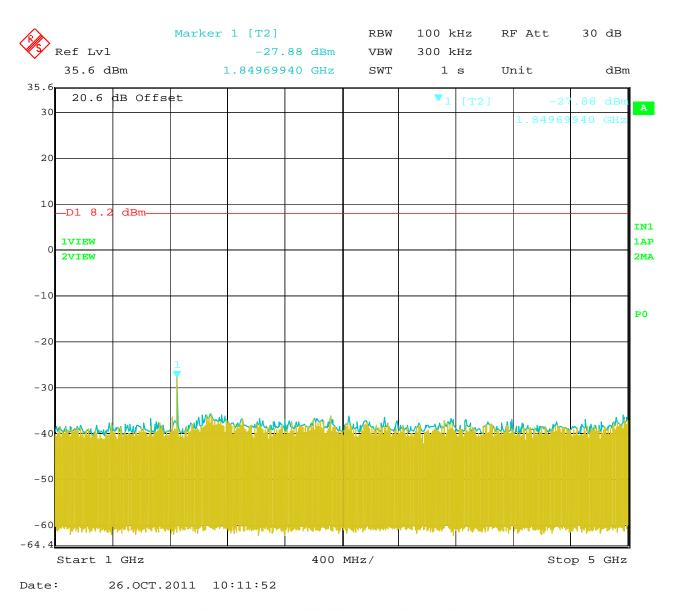

RF Antenna Conducted Test – Low Channel – 5 GHz to 10 GHz – eNode Only

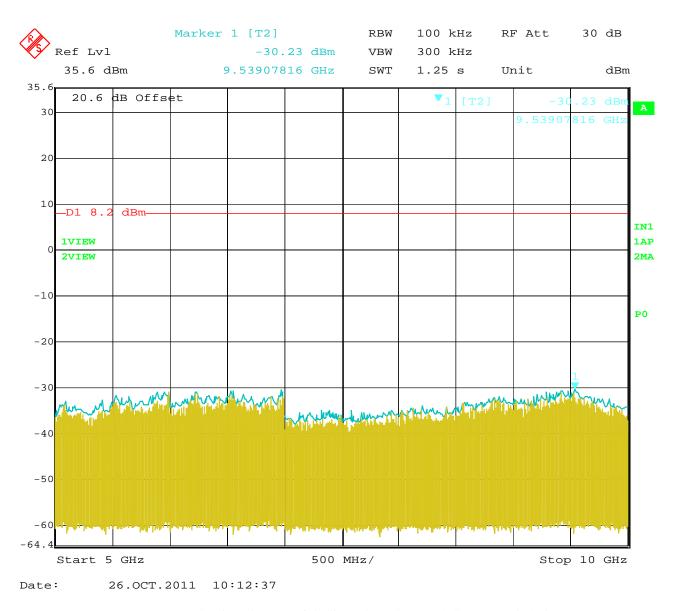

RF Antenna Conducted Test – Middle Channel – 2 MHz to 900 MHz – eNode Only

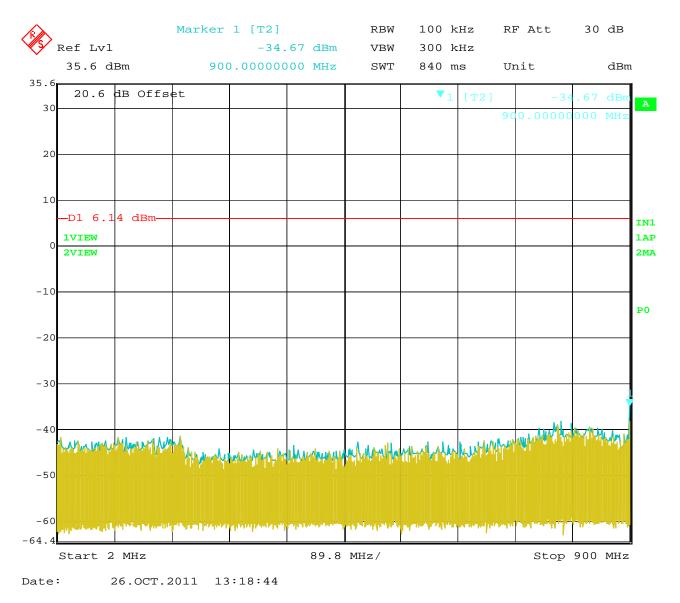

RF Antenna Conducted Test – Middle Channel – 900 MHz to 1 GHz – eNode Only

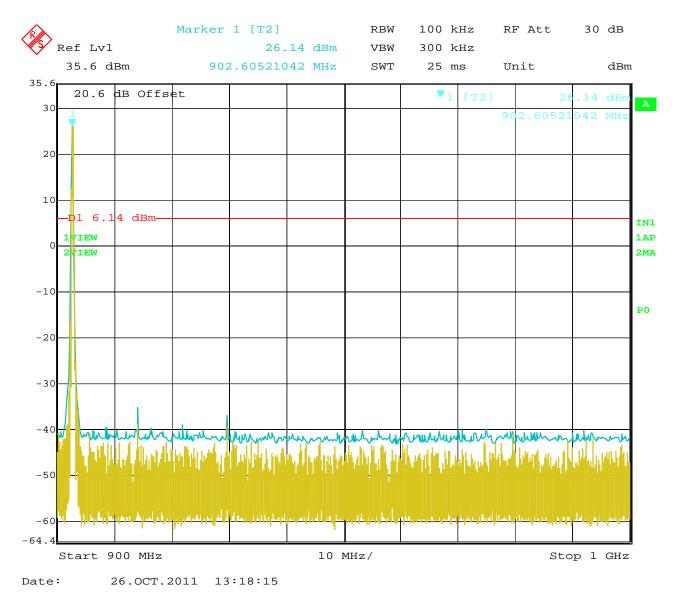

RF Antenna Conducted Test – Middle Channel – 1 GHz to 5 GHz – eNode Only

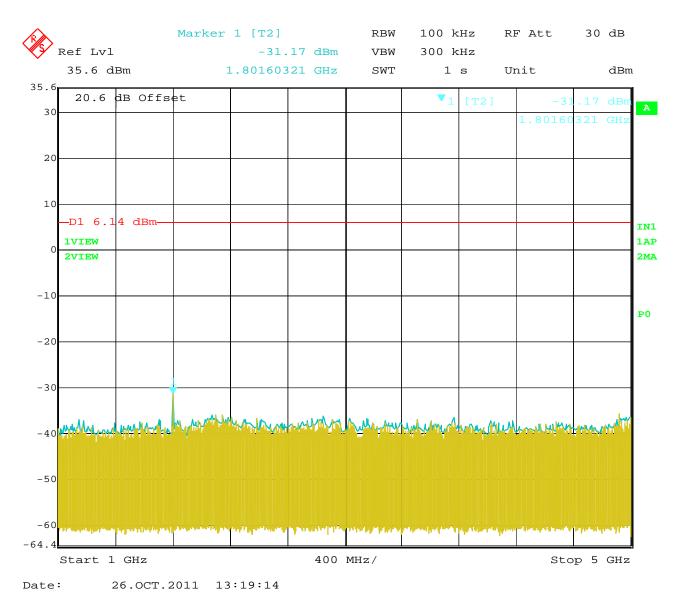
RF Antenna Conducted Test - Middle Channel - 5 GHz to 10 GHz - eNode Only

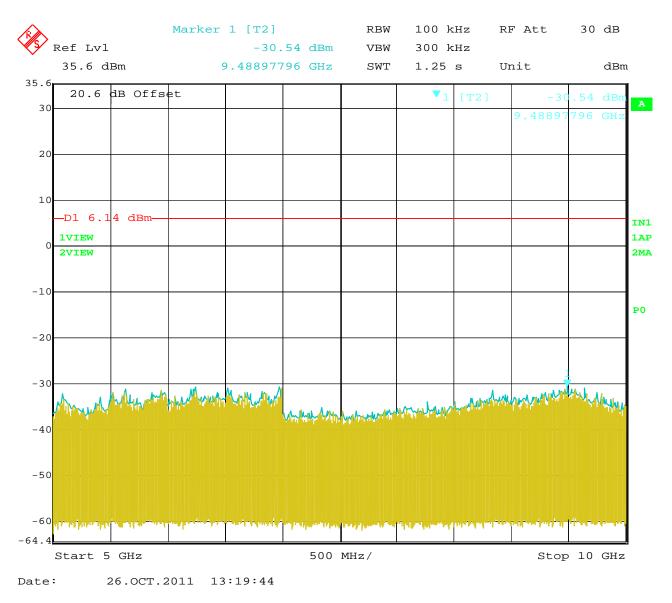

 $RF\ Antenna\ Conducted\ Test-High\ Channel-2\ MHz\ to\ 900\ MHz-eNode\ Only$

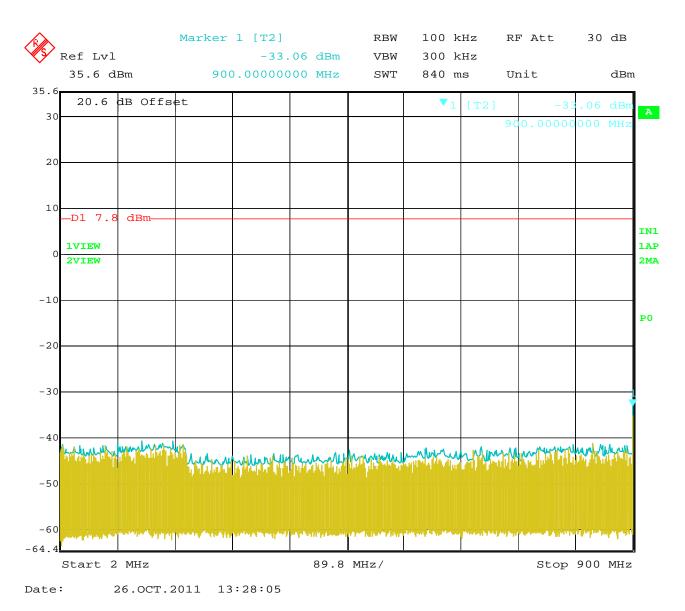

RF Antenna Conducted Test – High Channel – 900 MHz to 1 GHz – eNode Only

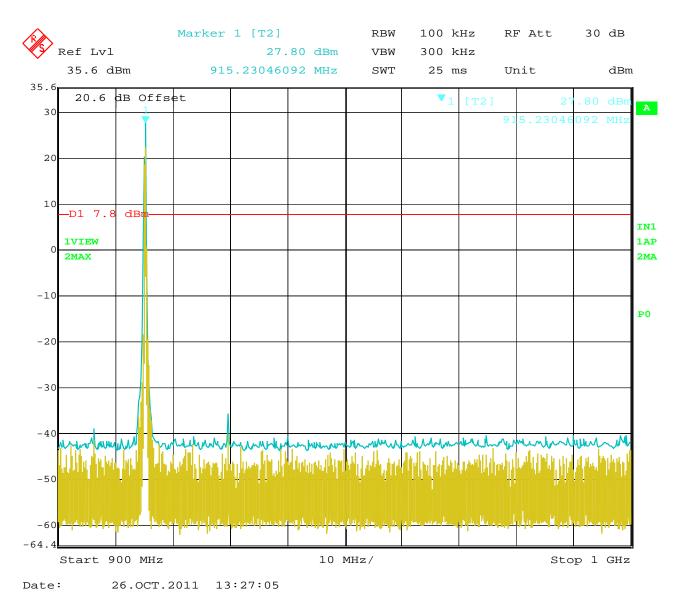

RF Antenna Conducted Test – High Channel – 1 GHz to 5 GHz – eNode Only

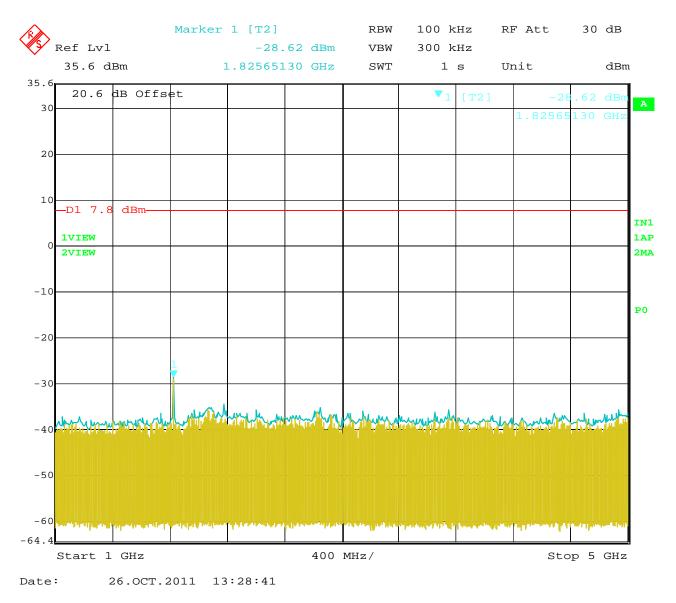

RF Antenna Conducted Test – High Channel – 5 GHz to 10 GHz – eNode Only

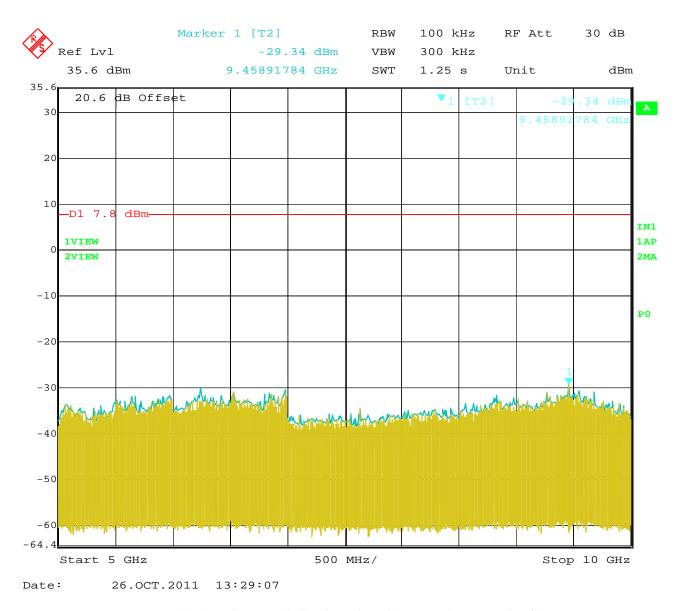

RF Antenna Conducted Test – Low Channel – 2 MHz to 900 MHz – eNode with eMux

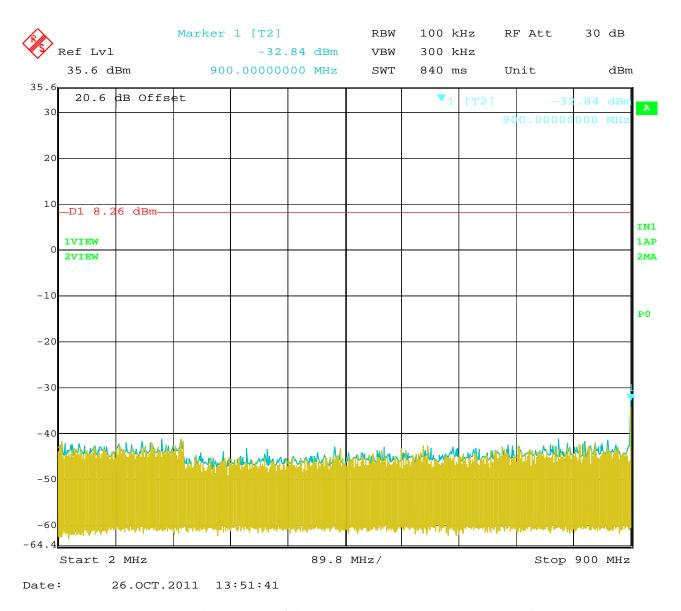

RF Antenna Conducted Test – Low Channel – 900 MHz to 1 GHz – eNode with eMux

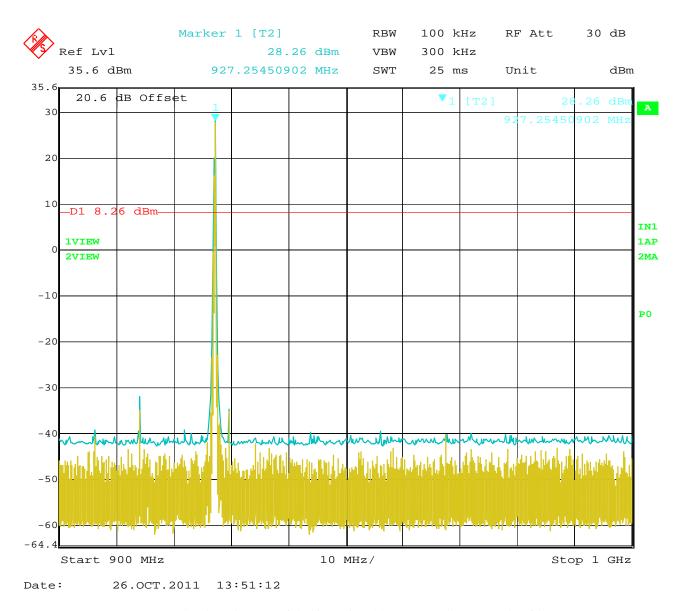

RF Antenna Conducted Test – Low Channel – 1 GHz to 5 GHz – eNode with eMux

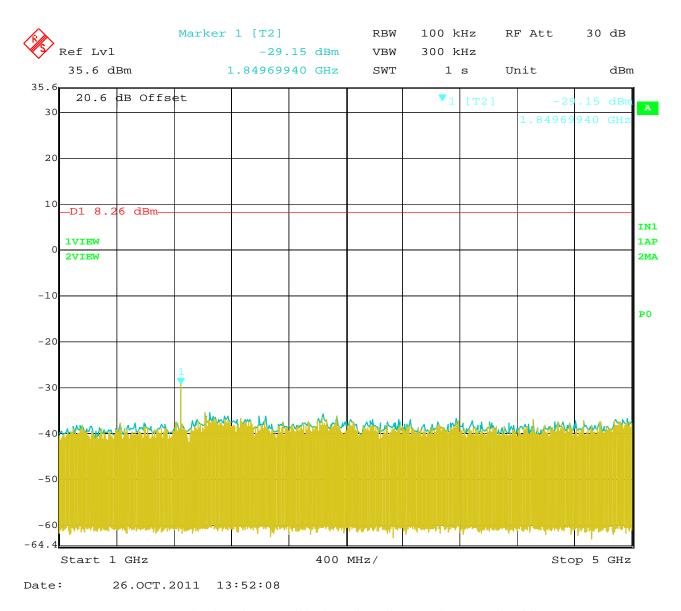

RF Antenna Conducted Test – Low Channel – 5 GHz to 10 GHz – eNode with eMux

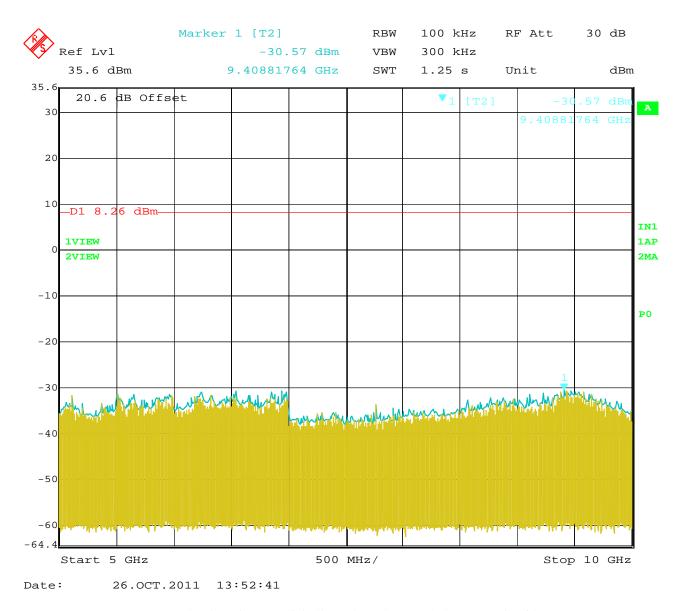

RF Antenna Conducted Test – Middle Channel – 2 MHz to 900 MHz – eNode with eMux


RF Antenna Conducted Test – Middle Channel – 900 MHz to 1 GHz – eNode with eMux


RF Antenna Conducted Test – Middle Channel – 1 GHz to 5 GHz – eNode with eMux


RF Antenna Conducted Test - Middle Channel - 5 GHz to 10 GHz - eNode with eMux


RF Antenna Conducted Test – High Channel – 2 MHz to 900 MHz – eNode with eMux


RF Antenna Conducted Test - High Channel - 900 MHz to 1 GHz - eNode with eMux

RF Antenna Conducted Test – High Channel – 1 GHz to 5 GHz – eNode with eMux

RF Antenna Conducted Test – High Channel – 5 GHz to 10 GHz – eNode with eMux