

Test of Bandspeed 3100AG 802.11 Wireless AP

To: FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: BAND07-A2 Rev A

TEST REPORT
FROM
MiCOM Labs

Test of Bandspeed 3100AG 802.11 Wireless AP
to
To: FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: BAND07-A2 Rev A

Note: this report only contains data with regard to the 5,150 to 5,250 MHz operational modes of the Bandspeed Wireless Access Point. 2.4 and 5.8 GHz test data are reported in MiCOM Labs test report BAND05-A2.

This report supersedes None

Manufacturer: Bandspeed Inc
4301 Westbank Drive
Bldg B, Suite 100
Austin, Texas 78746 USA

Product Function: 802.11a/b/g Wireless Access Point

Copy No: pdf **Issue Date:** 25th October 2007

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.
440 Boulder Court, Suite 200
Pleasanton, CA 94566 USA
Phone: +1 (925) 462-0304
Fax: +1 (925) 462-0306
www.micomlabs.com

CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 3 of 60

This page has been left intentionally blank

TABLE OF CONTENTS

ACCREDITATION & LISTINGS.....	5
1. TEST RESULT CERTIFICATE	8
2. REFERENCES AND MEASUREMENT UNCERTAINTY	9
2.1. Normative References	9
2.2. Test and Uncertainty Procedures	10
3. PRODUCT DETAILS AND TEST CONFIGURATIONS	11
3.1. Technical Details	11
3.2. Scope of Test Program.....	12
3.3. Equipment Model(s) and Serial Number(s)	13
3.4. Antenna Details	13
3.5. Cabling and I/O Ports	13
3.6. Test Configurations.....	14
3.7. Equipment Modifications.....	14
3.8. Deviations from the Test Standard	14
4. TEST SUMMARY	15
5. TEST RESULTS	17
5.1. Device Characteristics	17
5.1.1. 26 dB and 99 % Bandwidth	17
5.1.2. Transmit Output Power.....	22
5.1.3. Peak Power Spectral Density.....	25
5.1.4. Peak Excursion Ratio	30
5.1.5. Frequency Stability.....	35
5.1.6. Maximum Permissible Exposure	36
5.1.7. Radiated Emissions.....	37
5.1.8. AC Wireline Conducted Emissions (150 kHz – 30 MHz).....	52
6. PHOTOGRAPHS.....	55
6.1. Radiated Emissions (30 MHz-1 GHz).....	55
6.2. Spurious Emissions >1 GHz	56
6.3. Conducted Emissions (150 kHz - 30 MHz)	57
6.4. General Measurement Test Set-Up.....	58
7. TEST EQUIPMENT DETAILS.....	59

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 5 of 60

ACCREDITATION & LISTINGS

MiCOM Labs, Inc. an accredited laboratory complies with the international standard BS EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-01.pdf>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 6 of 60

LISTINGS

MiCOM Labs test facilities are listed by the following organizations;

North America

United States of America

Federal Communications Commission (FCC) Listing #: 102167

Canada

Industry Canada (IC) Listing #: 4143A-2

RECOGNITION

APEC MRA (Asia-Pacific Economic Community Mutual Recognition Agreement)

Conformity Assessment Body (CAB) – MiCOM Labs

Test data generated by MiCOM Labs is accepted in the following countries under the APEC MRA.

Country	Recognition Body	Phase	CAB Identification No.
Australia	Australian Communications and Media Authority (ACMA)	I	US0159
Hong Kong	Office of the Telecommunication Authority (OFTA)	I	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	I	
Singapore	Infocomm Development Authority (IDA)	I	
Taiwan	Directorate General of Telecommunications (DGT) Bureau of Standards, Metrology and Inspection (BSMI)	I	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 7 of 60

DOCUMENT HISTORY

Document History		
Revision	Date	Comments
Draft		
Rev A	25 th October 2007	First issue.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 8 of 60

1. TEST RESULT CERTIFICATE

Manufacturer:	Bandspeed Inc 4301 Westbank Drive Bldg B, Suite 100 Austin, Texas 78746 USA	Tested By:	MiCOM Labs, Inc. 440 Boulder Court Suite 200 Pleasanton California, 94566, USA
EUT:	Wireless Access Point	Telephone:	+1 925 462 0304
Model:	3100AG (5150-5250 MHz)	Fax:	+1 925 462 0306
S/N:	SRKTMC-061906-0077		
Test Date(s):	4th to 24th October 2007	Website:	www.micomlabs.com

STANDARD(S)	TEST RESULTS
FCC 47 CFR Part 15.407 & IC RSS-210	EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.
2. Details of test methods used have been recorded and kept on file by the laboratory.
3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve
Quality Manager MiCOM Labs,

CERTIFICATE #2381.01

Gordon Hurst
President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 9 of 60

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.407	2007	Code of Federal Regulations
(ii)	FCC 06-96	June 2006	Memorandum Opinion and Order
(iii)	Industry Canada RSS-210	Issue 7 June 2007	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands): Category 1 Equipment
(iv)	Industry Canada RSS-Gen	Issue 2 June 2007	General Requirements and Information for the Certification of Radiocommunication Equipment
(v)	ANSI C63.4	2003	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(vi)	CISPR 22/ EN 55022	1997 1998	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(vii)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(viii)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(ix)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(x)	A2LA	14 th September 2005	Reference to A2LA Accreditation Status – A2LA Advertising Policy
(xi)	FCC Public Notice – DA 02-2138	2002	Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 10 of 60

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor $k = 2$, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

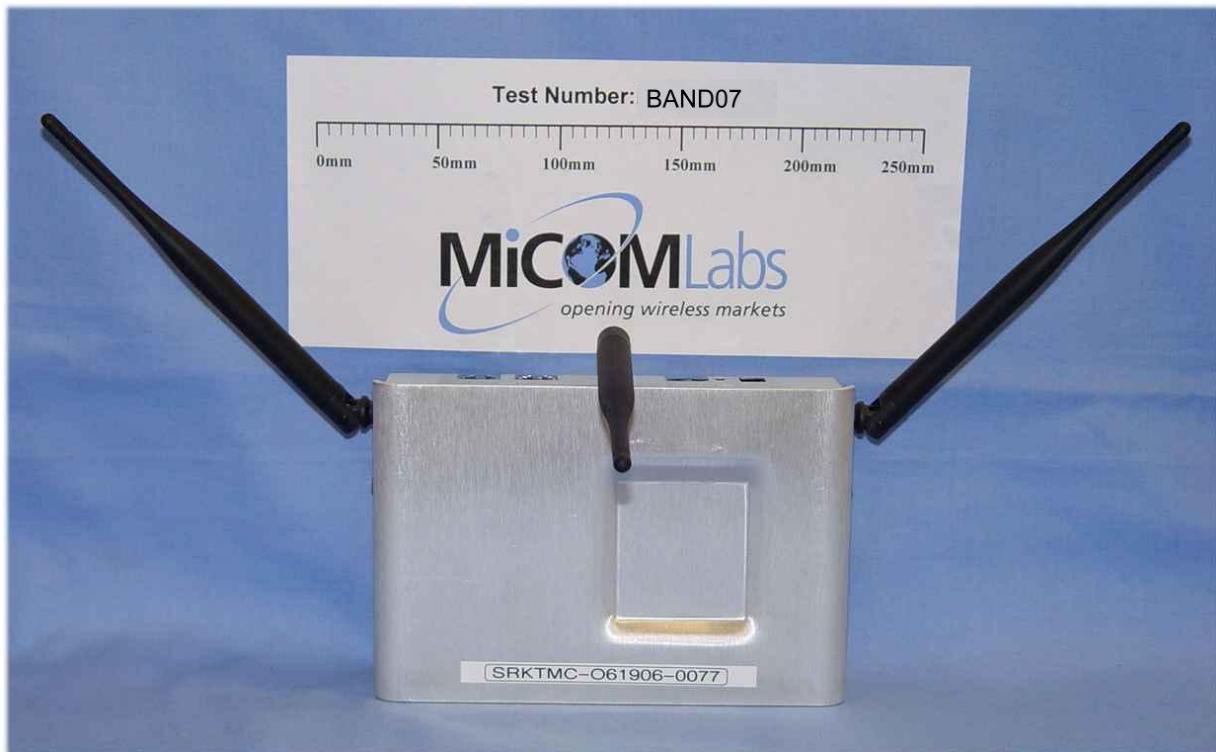
Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 11 of 60

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the Bandspeed 3100AG 802.11 Wireless AP in the frequency ranges 5150 to 5250 MHz to FCC Part 15.407 and Industry Canada RSS-210 regulations.
Applicant:	As Manufacturer
Manufacturer:	Bandspeed Inc 4301 Westbank Drive Bldg B, Suite 100 Austin, Texas 78746 USA
Laboratory performing the tests:	MiCOM Labs, Inc. 440 Boulder Court, Suite 200 Pleasanton, California 94566 USA
Test report reference number:	BAND07-A2 Rev A
Date EUT received:	4 TH June 2006
Standard(s) applied:	FCC 47 CFR Part 15.407 & IC RSS-210
Dates of test (from - to):	4 th to 24 th October 2007
No of Units Tested:	2
Type of Equipment:	802.11a/b/g Wireless Access Point
Manufacturers Trade Name:	Wireless Access Point
Model:	3100AG
Location for use:	Indoor
Declared Frequency Range(s):	5,150 to 5,250 MHz
Type of Modulation:	Per 802.11a – OFDM
Declared Nominal Output Power: (Average Power)	5,150-5,250 MHz: +16 dBm
EUT Modes of Operation:	802.11a/b/g
Transmit/Receive Operation:	Time Division Duplex
Rated Input Voltage and Current:	5 Vdc, 2.6 A
Operating Temperature Range:	Declared range 0 to +50°C
ITU Emission Designator:	802.11a – 17M8W7D
Microprocessor(s) Model:	Intel IXP425
Clock/Oscillator(s):	33.33 MHz, 40 MHz, 80 MHz
Frequency Stability:	±20 ppm max
Equipment Dimensions:	7½" X 5" X 1½"
Weight:	2 lbs
Primary function of equipment:	Wireless Access Point

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


3.2. Scope of Test Program

RF Testing

The scope of the compliance program was to test the Bandspeed 3100AG wireless AP in the frequency ranges 5150 - 5250 MHz for compliance against FCC 47 CFR Part 15.407, Industry Canada RSS-210 specifications.

The Bandspeed 3100AG access point has three independent transmitters. Each antennae comprises two individual antennae, this addresses space diversity requirements. System identifies antenna as primary and secondary devices. A maximum of three transmitters can operate at any given time in any configuration;

Bandspeed 3100AG Wireless Access Point

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 13 of 60

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	Wireless AP	Bandspeed	3100AG	SRKTMC-061906-0077
EUT	Power Supply	Good Power	JOD-SMU02131	None
Support	Laptop PC	Dell	Inspiron	None

3.4. Antenna Details

1. 802.11a Maximum Antenna Gain = + 5.00 dBi

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. 10/100 Ethernet
2. POE 10/100 Ethernet
3. Local maintenance terminal (Serial RS-232, 9-pin cable)
4. 5 Vdc, 4mm supply connector

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.6. Test Configurations

Matrix of test configurations

Operational Mode (802.11)	Frequencies (MHz)	Maximum Data Rates (MBit/s)	Data Rate(s) Selected for Test Purposes (Mbit/s)	
			Conducted	Radiated
a	5,180 5,220 5,240	54	54 ¹	54 ¹

¹ – These data rates were used to test and exercise the EUT at all times

Worst case plots are provided for each test parameter within this report. Plots not included are held on file by the test laboratory and available upon request with client permission.

Only worst case plots are provided for each test parameter are identified within this report. Plots not included are held on file by the test laboratory and available upon request with client permission.

3.7. **Equipment Modifications**

The following modifications were required to bring the equipment into compliance:

1. Problem with radiated emissions below 1 GHz. Harmonics from 80 MHz local oscillator were generated and radiated from the EUT.

Solution

Manufacturer slowed rise time on the edges of the oscillator which reduced harmonic content (required termination resistor change, product BOM updated as a result). Section 5.1.7.4 identifies compliant emission profile after the fix.

3.8. **Deviations from the Test Standard**

The following deviations from the test standard were required in order to complete the test program:

1. NONE

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 15 of 60

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the **FCC CFR47 Part 15.407** and **Industry Canada RSS-210** and **Industry Canada RSS-Gen**.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(a) A9.2(2) 4.4	26dB and 99% Emission BW	Emission bandwidth measurement	Conducted	Complies	5.1.1
15.407(a) A9.2(2) 4.6	Transmit Output Power	Power Measurement	Conducted	Complies	5.1.2
15.407(a) A9.2(2)	Peak Power Spectral Density	PPSD	Conducted	Complies	5.1.3
15.407(a)(6)	Peak Excursion Ratio	<13dB in any 1MHz bandwidth	Conducted	Complies	5.1.4
15.407(g) 15.31 2.1 4.5	Frequency Stability	Limits: contained within band of operation at all times.	Manufacturer declaration	Complies	5.1.5
15.407(f) 5.5	Radio Frequency Radiation Exposure	Exposure to radio frequency energy levels, Maximum Permissible Exposure (MPE)	SAR testing performed	Complies	5.1.6

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 16 of 60

List of Measurements (continued)

The following table represents the list of measurements required under the **FCC CFR47 Part 15.407** and **Industry Canada RSS-210** and **Industry Canada RSS-Gen**.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(b)(2) 15.205(a) 15.209(a) 2.2 2.6 A9.3(2) 4.7	Radiated Emissions Transmitter Radiated Spurious Emissions Radiated Band Edge	Emissions above 1 GHz Band edge results	Radiated		5.1.7
RSS-GEN 6	Receiver Radiated Spurious Emissions	Emissions above 1 GHz		Complies	5.1.7.1
15.407(b)(6) 15.205(a) 15.209(a) 2.2	Radiated Emissions	Emissions <1 GHz (30M-1 GHz)		Complies	5.1.7.2
15.407(b)(6) 15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz–30 MHz	Conducted Emissions	Conducted	Complies	5.1.7.3
					5.1.7.4
					5.1.8

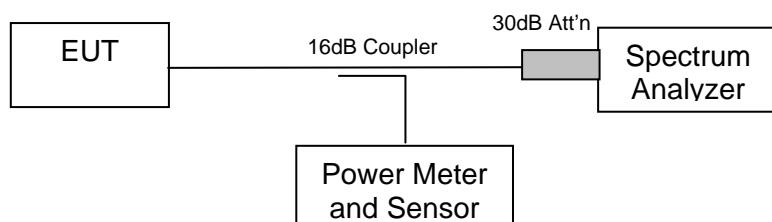
Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5. TEST RESULTS

5.1. Device Characteristics


5.1.1. 26 dB and 99 % Bandwidth

FCC, Part 15 Subpart C §15.407(a)
Industry Canada RSS-210 § A9.2(2)
Industry Canada RSS-Gen 4.4

Test Procedure

The bandwidth at 26 dB and 99 % is measured with a spectrum analyser connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The spectrum analyzer utilized the 6 dB resolution bandwidth filter for all measurements.

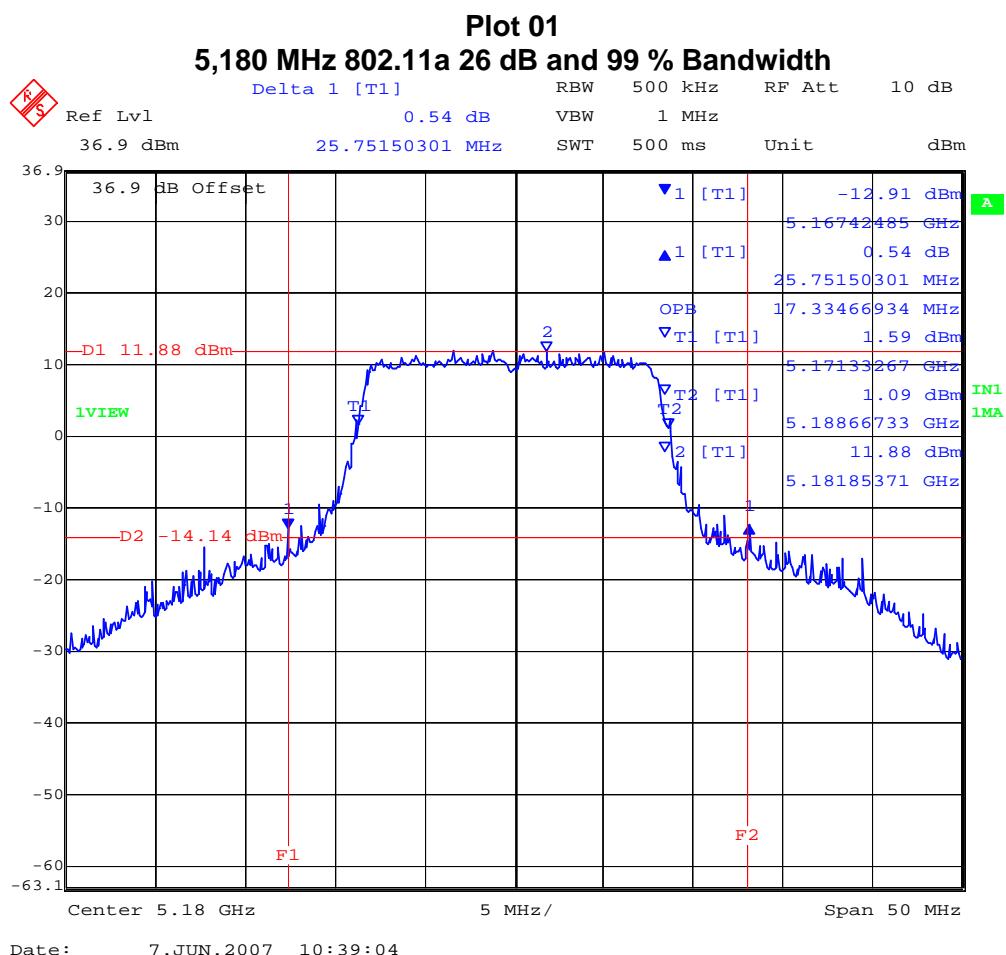
Test Measurement Set up

Measurement set up for 6 dB and 99 % bandwidth test

EUT parameters.

Data Rate(s): 802.11a 54 MBit/s,
Power Level: Maximum

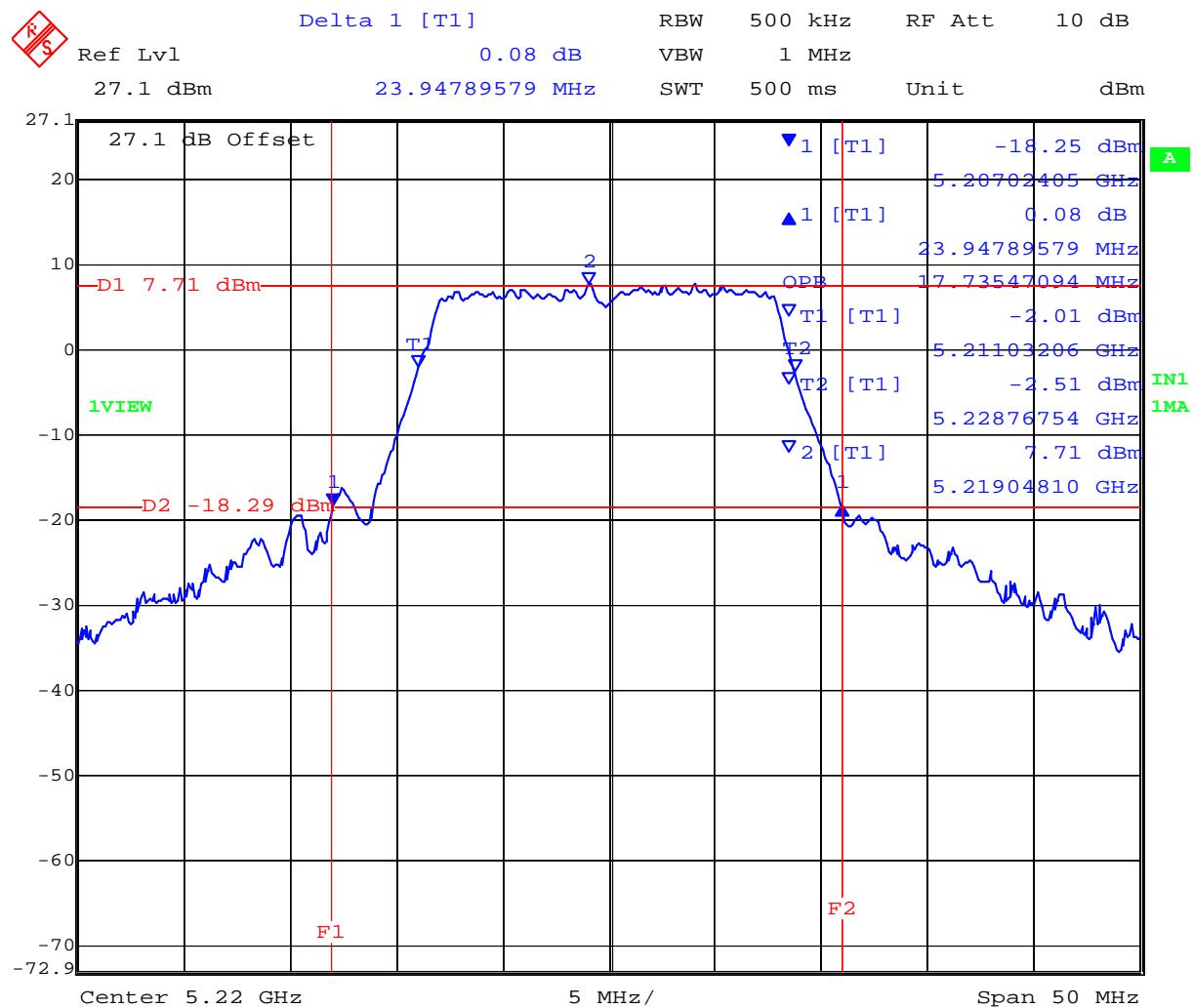
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Measurement Results for 26 dB and 99 % Operational Bandwidth(s)

Ambient conditions.

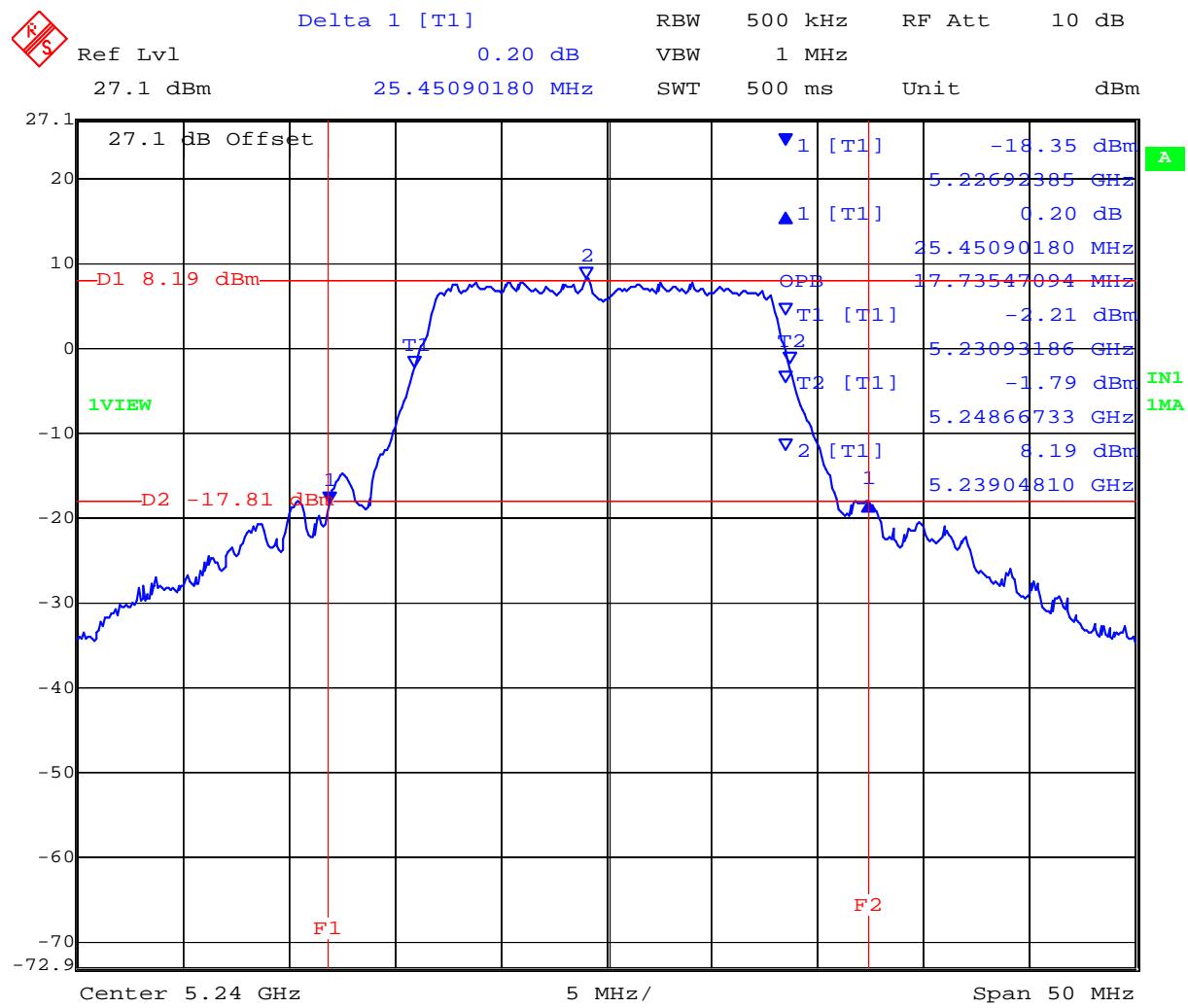
Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS – 802.11a


Center Frequency (MHz)	26 dB Bandwidth (MHz)	99 % BW (MHz)	26 dB and 99 % BW Plots
5,180	25.75150301	17.33466934	01
5,220	23.94789579	17.73547094	02
5,240	25.45090180	17.73547094	03

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Plot 02


5,220 MHz 802.11a 26 dB and 99 % Bandwidth

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Plot 03

5,240 MHz 802.11a 26 dB and 99 % Bandwidth

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 21 of 60

Specification

Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or $+4 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed $+4 \text{ dBm}$ in any 1 megahertz band.

(a)(2) For the 5.25-5.35 GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or $+11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed $+11 \text{ dBm}$ in any 1 megahertz band.

Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

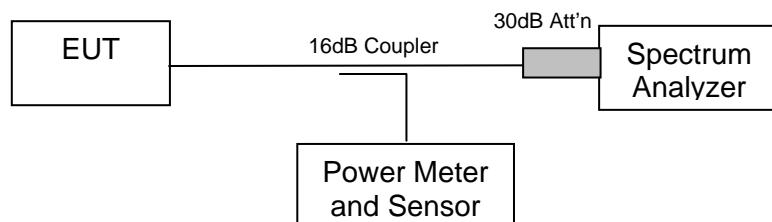
Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty	±2.81 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of RF Spectrum Mask'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.2. Transmit Output Power

FCC, Part 15 Subpart C §15.407(a)
Industry Canada RSS-210 §9.9(2)
Industry Canada RSS-Gen 4.6

Test Procedure

The transmitter terminal of EUT was connected to the input of the average power meter and the spectrum analyzer. Method #2 as outlined in the FCC's Public Notice (DA 02-2138, August 30, 2002 was used to make all measurements. The results reported include all offsets due to attenuators, cable losses etc.

Test Measurement Set up

Measurement set up for Transmitter Output Power

Maximum Transmit Power, FCC Limits

Limit 5150 – 5250 MHz: Lesser of 50 mW (+17dBm) or $4 + 10 \log (B)$ dBm

Frequency Range (MHz)	Maximum 26 dB Bandwidth (MHz)	$4 + 10 \log (B)$	Limit (dBm)
5150 – 5250	27.7515	+18.43 dBm	+17.0

Maximum Transmit Power, Industry Canada Limits

Limit 5150 – 5250: Lesser of 200 mW (+23 dBm) or $10 + 10 \log (B)$ dBm

Frequency Range (MHz)	Maximum 99% Bandwidth (MHz)	$10 + 10 \log (B)$	Limit (dBm)
5150 – 5250	25.7515	24.11	+23.0

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 23 of 60

Measurement Results for Transmit Output Power

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

EUT parameters.

Data Rate(s): 802.11a 54 MBit/s,

Power Level: Maximum

Take from

TABLE OF RESULTS – 802.11a

Center Frequency (MHz)	Maximum Conducted Power (dBm)
5,180	+14.50
5,220	+15.40
5,240	+15.80

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 24 of 60

Specification

Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or $+4 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or $+11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 §A9.2(2)

For the band 5150-5250 MHz, the maximum equivalent isotropically radiated power (e.i.r.p.) shall not exceed 200 mW or $10 + 10 \log_{10} B$, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

For the band 5250-5350 MHz and 5470-5725 MHz, the maximum conducted output power shall not exceed 250 mW or $11 + 10 \log_{10} B$, dBm, whichever power is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log_{10} B$, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.

Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

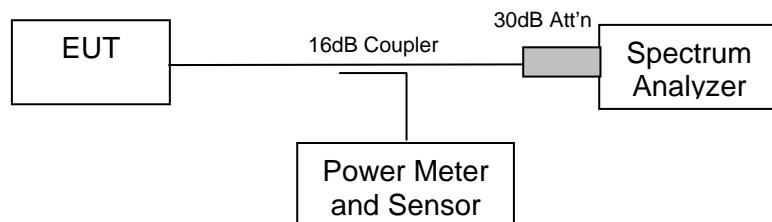
Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.3. Peak Power Spectral Density

FCC, Part 15 Subpart C §15.407(a)
Industry Canada RSS-210 § A9.2(2)


Test Procedure

The transmitter output was connected to a spectrum analyzer and the peak power spectral density measured. Method 2 Sample Detection and power averaging, specified in FCC document DA 02-2138 (Normative Reference (x) in Section 2.1 'References and Measurement Uncertainty');

"Measurement Procedure Updated for Peak Transmit Power in the Unlicensed National Information Infrastructure (U-NII) Bands."

was used to determine the peak power spectral density of the emission. The Peak Power Spectral Density is the highest level found across the emission in a 1 MHz resolution bandwidth.

Test Measurement Set up

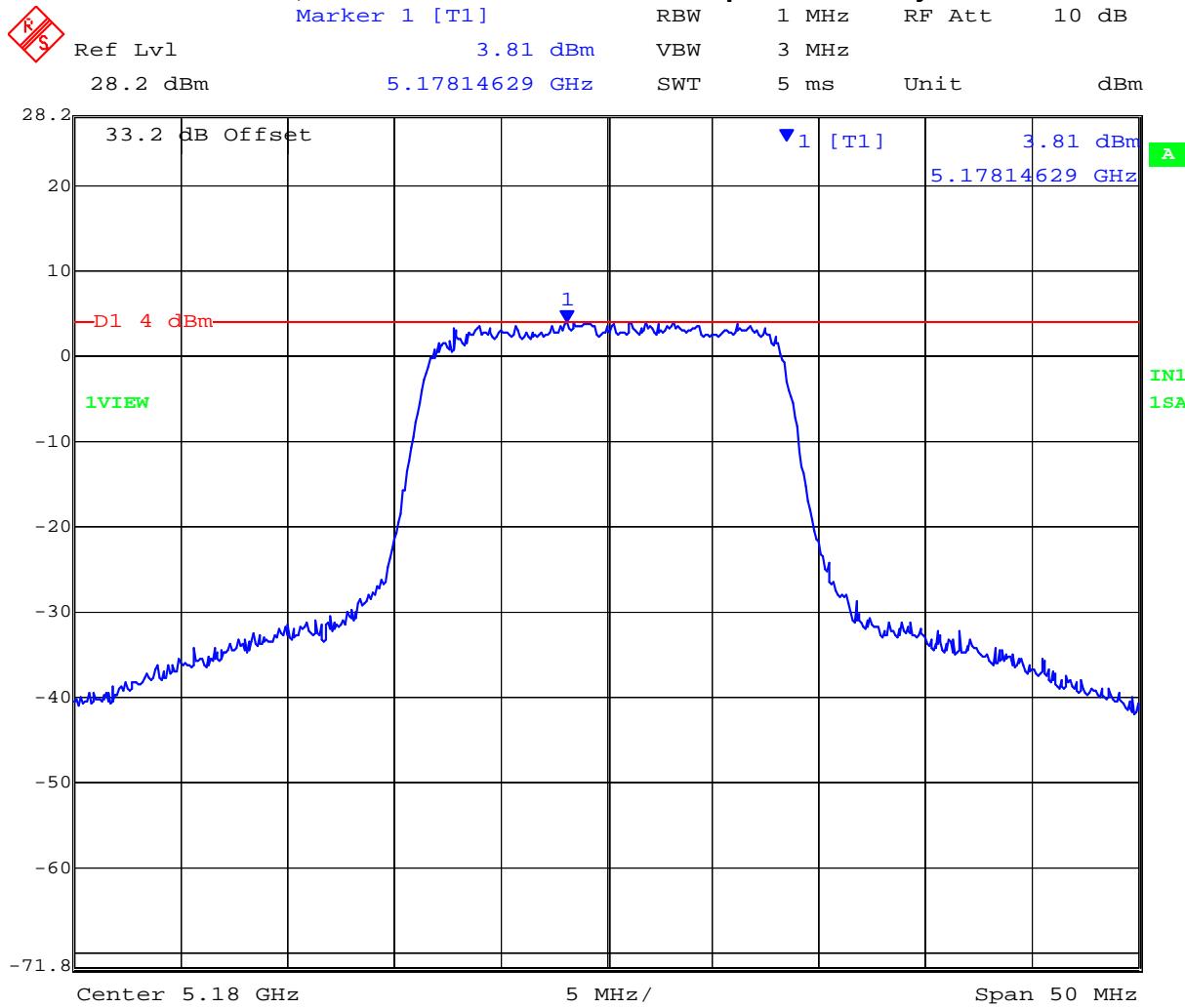
Measurement set up for Peak Power Spectral Density

Measurement Results for Peak Power Spectral Density

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

EUT parameters.


Data Rate(s): 802.11a 54 MBit/s,

Power Level: Maximum

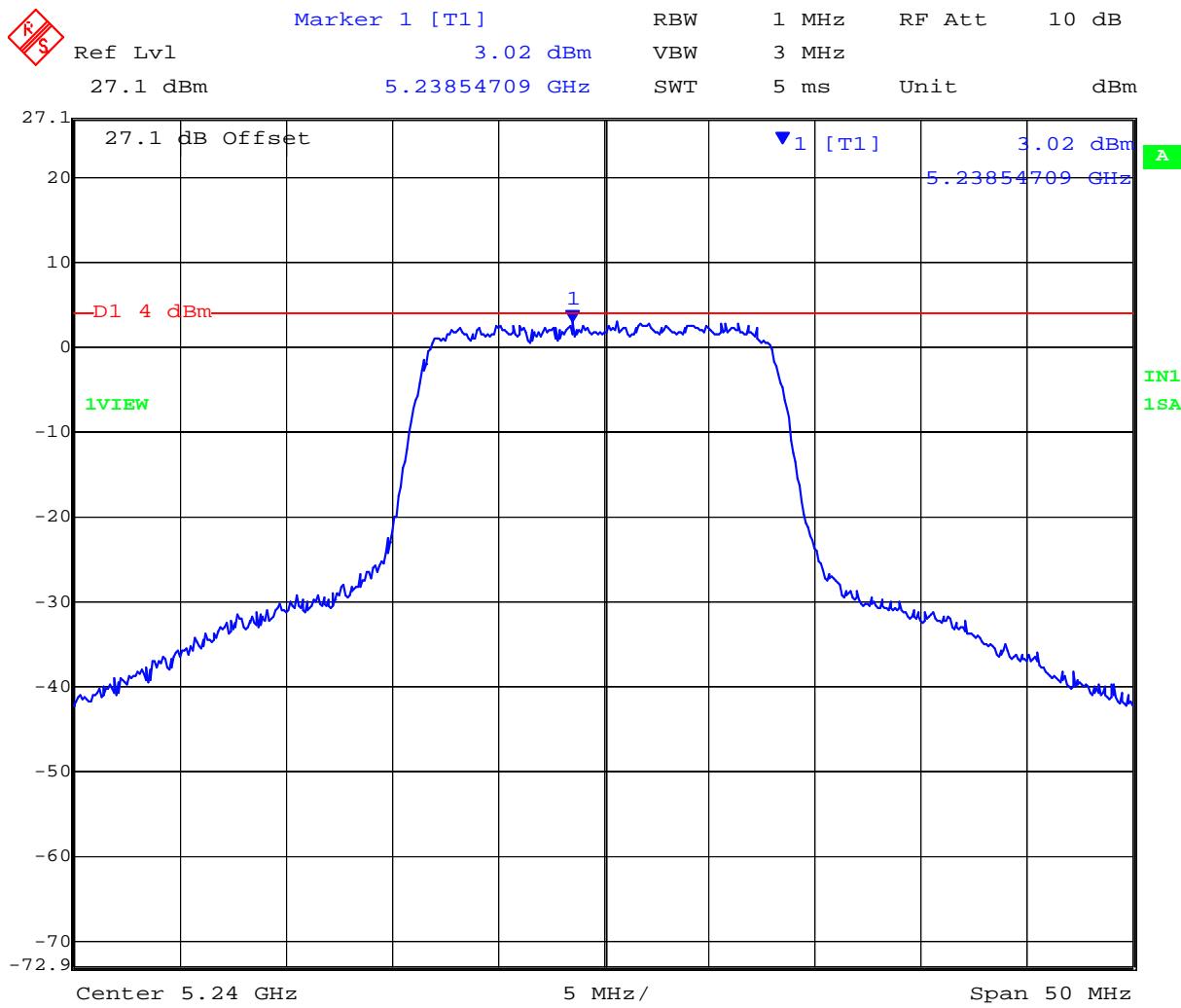
TABLE OF RESULTS – 802.11a

Center Frequency (MHz)	Peak Frequency (MHz)	PPSD (dBm)	Plot #
5,180	5178.14629	+3.81	04
5,220	5221.15230	+2.88	05
5,240	5238.54709	+3.02	06


Plot 04
5,180 MHz 802.11a Peak Power Spectral Density

Date: 22.JUN.2007 13:41:26

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Plot 05
5,220 MHz 802.11a Peak Power Spectral Density

Date: 24.OCT.2007 20:39:24

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Plot 06
5,240 MHz 802.11a Peak Power Spectral Density

Date: 24.OCT.2007 20:41:02

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 29 of 60

Specification

FCC, Part 15 §15.407 (a)(1), (a)(2)

(a)(1) The peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) The peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 § A9.2(1), A9.2(2)

§ A9.2(1) The eirp spectral density shall not exceed +10 dBm in any 1 MHz band

§ A9.2(2) The power spectral density shall not exceed +11 dBm in any 1 MHz band

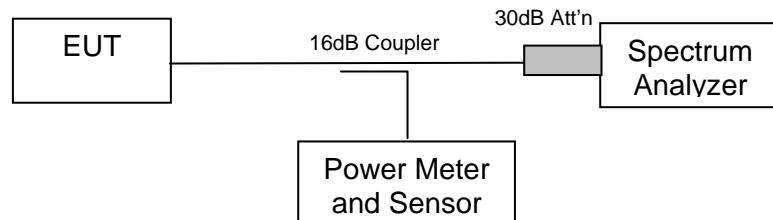
Laboratory Measurement Uncertainty for Spectral Density

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.4. Peak Excursion Ratio

FCC, Part 15 Subpart C §15.407(a)(6)

Test Procedure

Normative Reference (xi) Section 2.1 Measurement Procedure DA 02-2138 "Measurement Procedure Updated for Peak Transmit Power in the UNII Bands" was implemented to determine the Peak Excursion Ratio. This is a conducted measurement using a spectrum analyzer. The Peak Excursion Ratio is the difference in amplitude (dB) between the two traces.

Test Measurement Set up

Measurement set up for Peak Excursion Ratio

Measurement Results for Peak Excursion Ratio

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57% Pressure: 999 to 1012 mbar

EUT parameters

Data Rate(s): 802.11a 54 MBit/s,

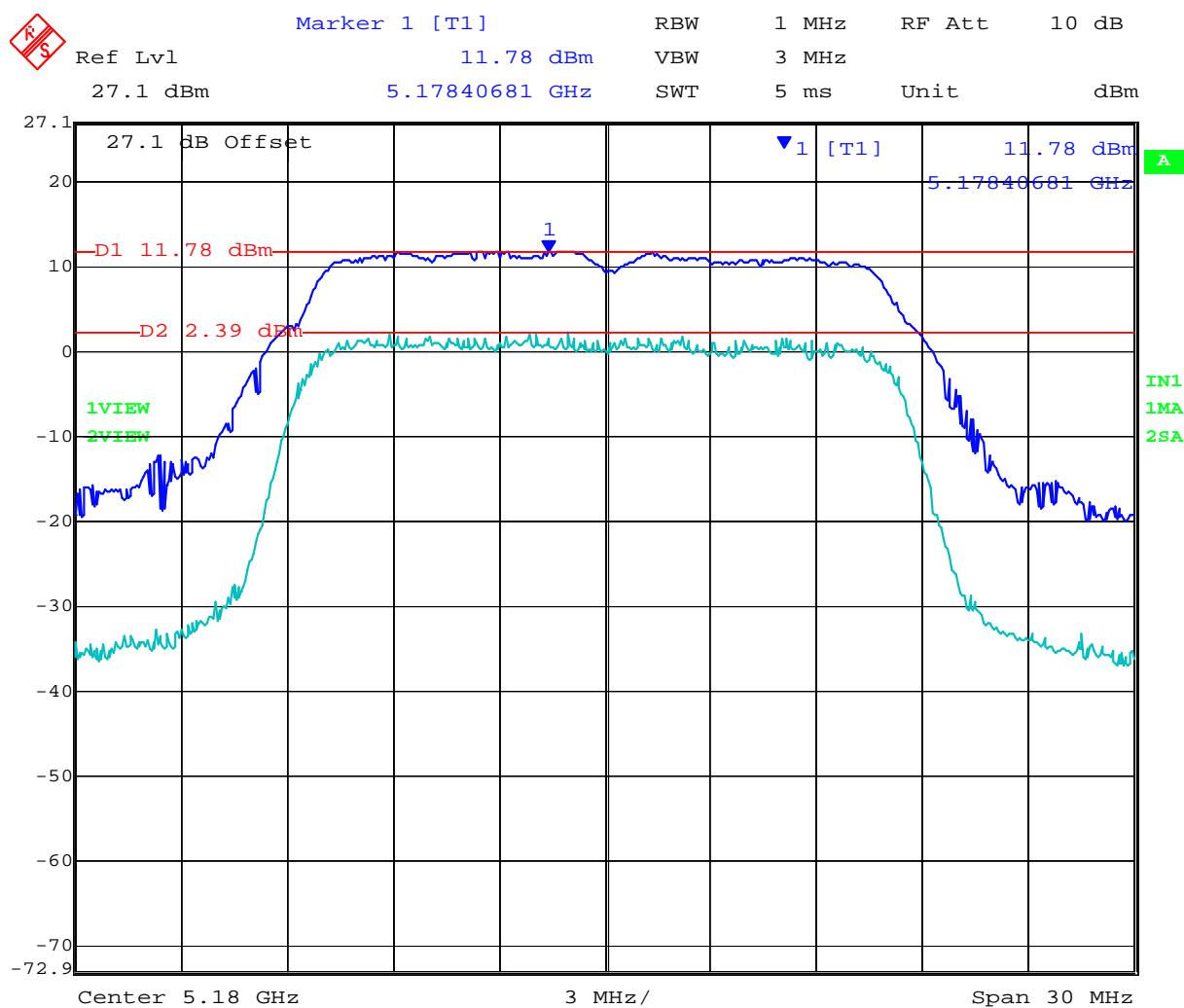
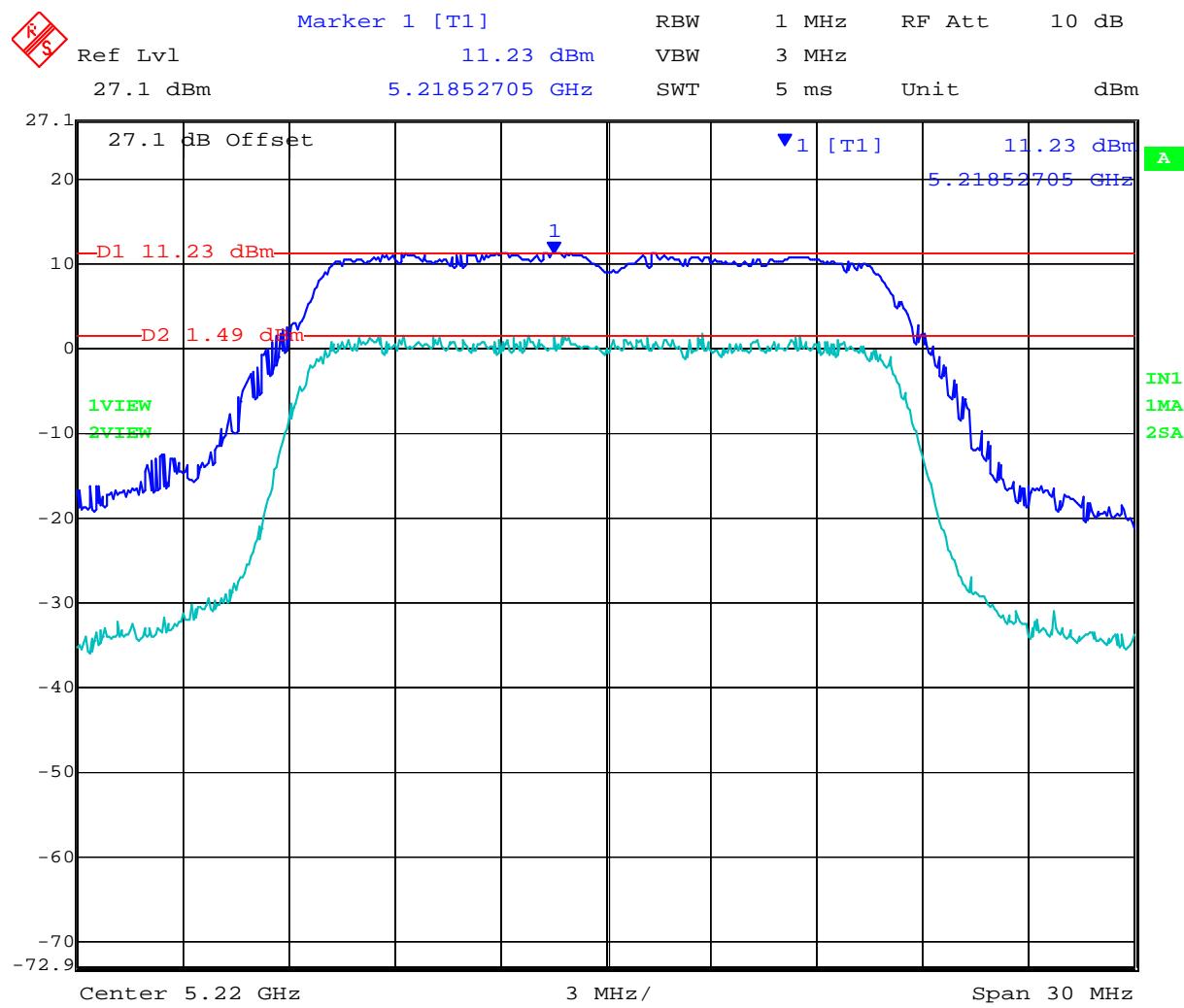

Power Level: Maximum

TABLE OF RESULTS – 802.11a

Centre Frequency (MHz)	Peak Excursion Ratio (dB)	Plot #
5,180	9.39	07
5,220	9.74	08
5,240	9.21	09

Plot 07

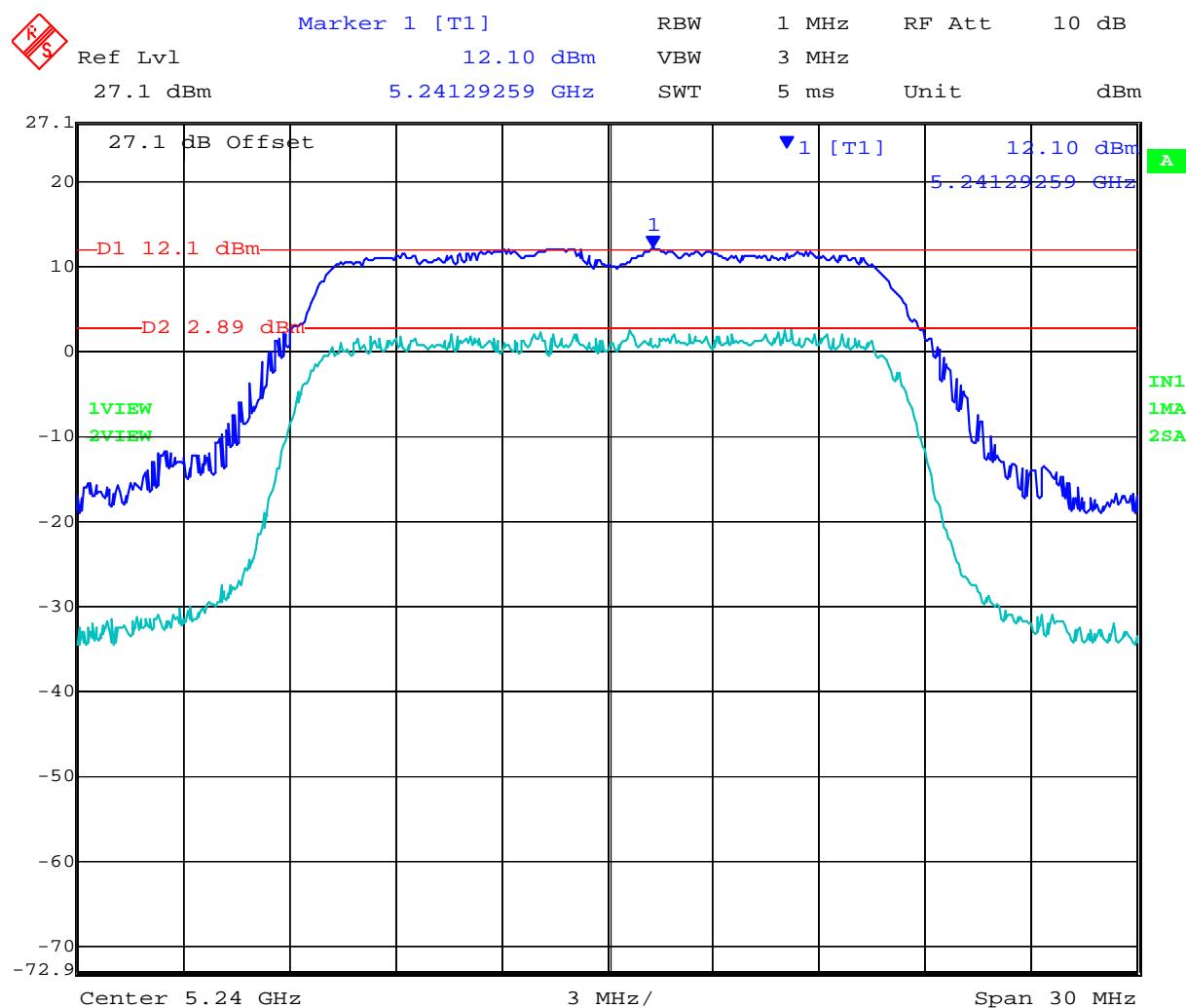
5,180 MHz 802.11a - Peak Excursion Ratio



Date: 24.OCT.2007 20:36:11

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Plot 08


5,220 MHz 802.11a - Peak Excursion Ratio

Date: 24.OCT.2007 20:32:35

This test report may be reproduced in full only. The document may only be updated by MiCOM
 Labs personnel. Any changes will be noted in the Document History section of the report.

Plot 09
5,240 MHz 802.11a - Peak Excursion Ratio

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 34 of 60

Specification

Limits

§15.407 (a)(6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified in this paragraph) shall not exceed 13dB across any 1MHz bandwidth or the emission bandwidth whichever is less

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty	± 2.81dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of RF Spectrum Mask'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.5. Frequency Stability

**FCC, Part 15 Subpart C §15.407(g)
Industry Canada RSS-210 §2.1**

Test Procedure

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions.

Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signals should have ± 20 ppm stability.

This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency variation across temperature, and crystal ageing.

± 20 ppm at 5.250 GHz translates to a maximum frequency shift of ± 105 KHz. As the edge of the channels is at least one MHz from either of the band edges, ± 105 KHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the EUT.

Specification

Limits

§15.407 (g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 36 of 60

5.1.6. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.407(f)

Industry Canada RSS-Gen §5.5

Calculations for Maximum Permissible Exposure Levels

$$\text{Power Density} = P_d \text{ (mW/cm}^2\text{)} = \text{EIRP}/(4\pi d^2)$$

$$\text{EIRP} = P * G * 3$$

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (cm)

Numeric Gain = 10^G (dBi)/10

The Bandspeed 3100AG has three transmitters operating over four different frequency bands. The peak power in the table below is calculated for each frequency band by assuming a worst case scenario where the three transmitters are operating simultaneously in the same band. The Peak Power in mW is calculated by taking the maximum conducted power measured in each band and multiplying by 3.

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm²

Freq. Band (GHz)	Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm ² Limit(cm)	Minimum Separation Distance (cm)
5.2	5.0	3.17	+15.80	114.06	5.36	20

Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

§15.247 (f) U-NII devices are subject to the radio frequency radiation exposure requirements specified in §1.1307 (b), 2.1091 and 2.1093 as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment.

FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1

RSS-Gen §5.5 Before equipment certification is granted, the application requirements of RSS-102 shall be met.

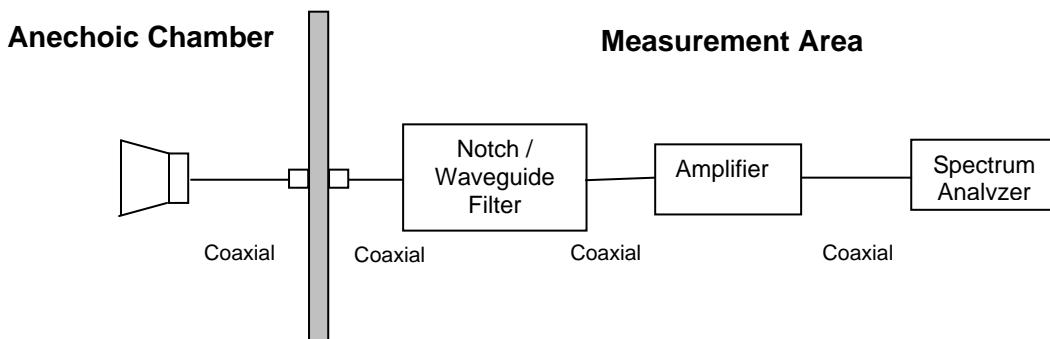
Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.7. Radiated Emissions

5.1.7.1. Transmitter Radiated Spurious Emissions (above 1 GHz)


FCC, Part 15 Subpart C §15.407(b)(2), §15.205(a)/15.209(a)
Industry Canada RSS-210 §A9.3(2); §2.2; §2.6; RSS-Gen §4.7

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$FS = R + AF + CORR - FO$$

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level (}\mu\text{V/m)})$$

$$40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$$

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength;

$$E = 1000000 \times \sqrt{30P} / 3 \mu\text{V/m, where P is the EIRP in Watts}$$

$$\text{Therefore: } -27 \text{ dBm/MHz} = 68.23 \text{ dBuV/m}$$

Note: The data in this Section along with the data in sections 5.1.7 (Conducted Spurious Emissions) and Section 5.1.8.2 (Radiated Band Edge - Restricted Bands) identifies that the EUT is in compliance with the -27dBm/MHz EIRP limit for out of band emissions.

Measurement Results Transmitter Radiated Spurious Emissions above 1 GHz

Ambient conditions.

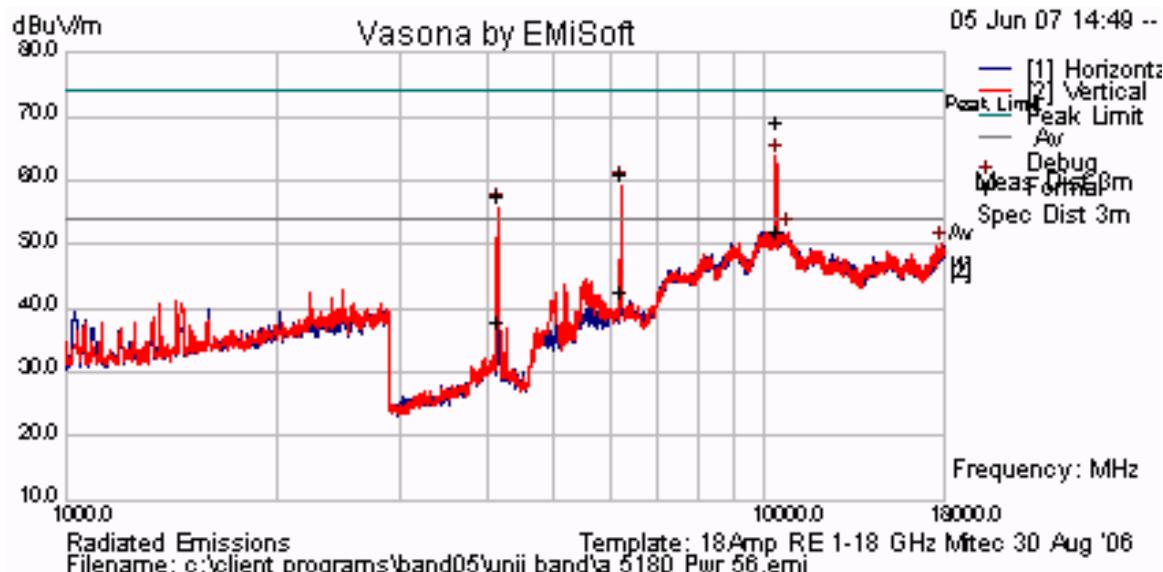

Temperature: 17 to 23°C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS – 802.11a 5,180 MHz Radiated Emissions above 1 GHz

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB μ V)	Correction Factor (dB)	Corrected Peak Field Strength (dB μ V/m)	Peak Limit (dB μ V/m)	Margin (dB)
10358.05	V	57.21	+10.09	67.30	74	-6.70
6226.041	V	60.13	-1.22	58.91	74	-15.09
4144.474	V	61.17	-5.83	55.34	74	-18.66

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB μ V)	Correction Factor (dB)	Corrected Field Strength (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)
10358.05	V	39.80	+12.39	52.19	54	-1.81
6226.041	V	41.82	+1.08	42.90	54	-11.10
4144.474	V	41.46	-3.53	37.93	54	-16.07

Radiated Emissions for 5,180 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – 802.11a 5,220 MHz Radiated Emissions above 1 GHz

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB μ V)	Correction Factor (dB)	Corrected Average Field Strength (dB μ V/m)	Peak Limit (dB μ V/m)	Margin (dB)
10518.09	V	61.44	+9.66	71.10	74	-2.90
15770.18	V	55.01	+9.20	64.21	74	-9.79

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB μ V)	Correction Factor (dB)	Corrected Average Field Strength (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)
10518.09	V	42.28	+9.66	51.94	54	-2.06
15770.18	V	37.6	+9.20	46.80	54	-7.20

Radiated Emissions for 5,220 MHz

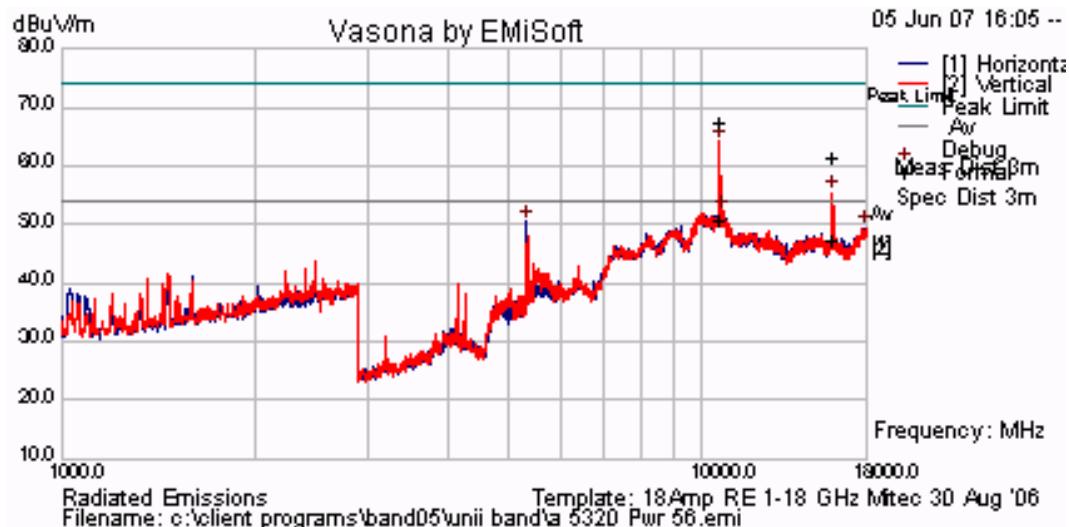

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

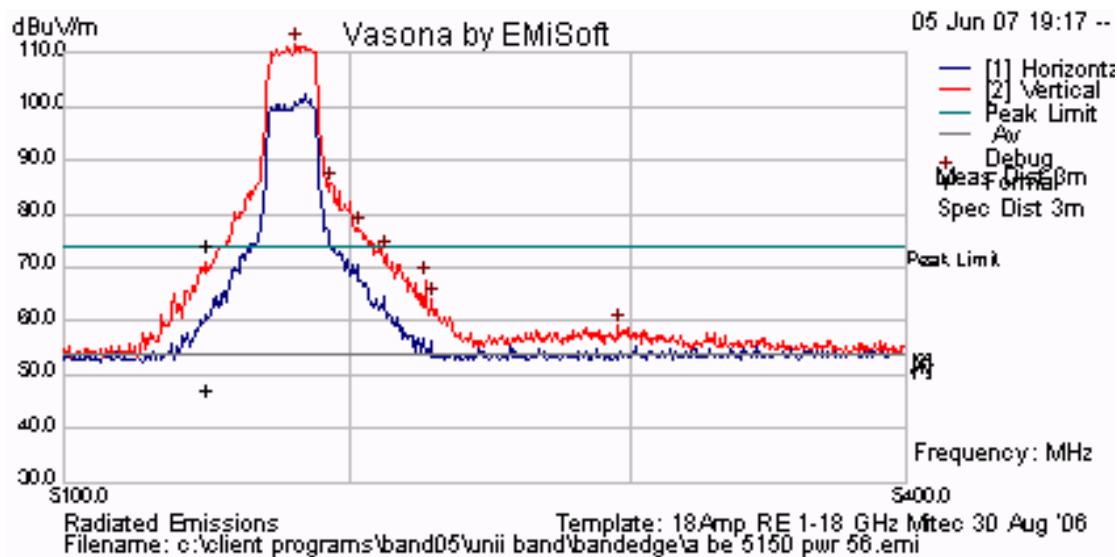
TABLE OF RESULTS – 802.11a 5,240 MHz Radiated Emissions above 1 GHz

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB μ V)	Correction Factor (dB)	Corrected Field Strength (dB μ V/m)	Peak Limit (dB μ V/m)	Margin (dB)
10640.21	V	56.1	+9.24	65.34	74	-8.66
15960.68	H	49.69	+9.57	59.26	74	-14.74

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB μ V)	Correction Factor (dB)	Corrected Field Strength (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)
10640.21	V	39.33	+11.54	50.87	54	-3.13
15960.68	H	35.46	+11.87	47.33	54	-6.67

Radiated Emissions for 5,240 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.7.2. Radiated Band-Edge – Restricted Bands

Lower sub-band 5,150 MHz to 5,250 MHz

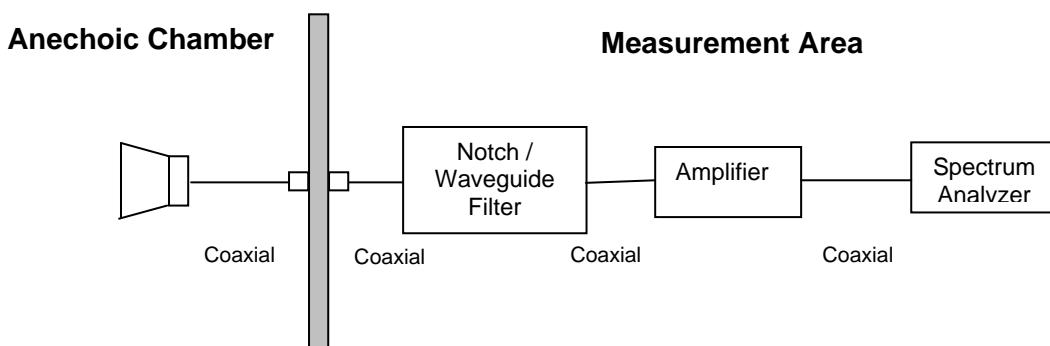
TABLE OF RESULTS - 802.11a

Tx Freq. (MHz)	Restricted Band Frequency (MHz)	Measured (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
5,180 _{PEAK}	5,150	71.69	74.00	-2.31
5,180 _{AVE}	5,150	44.72	54.00	-9.28

802.11a – 5,180 MHz
 Lower Band Edge Peak Emission = 111.57 dB μ V/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.7.3. Receiver Spurious Emissions above 1 GHz


Industry Canada RSS-Gen §4.8, §6

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$FS = R + AF + CORR - FO$$

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 44 of 60

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level (\mu V/m)})$$

$$40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$$

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Receiver Radiated Spurious Emissions above 1 GHz

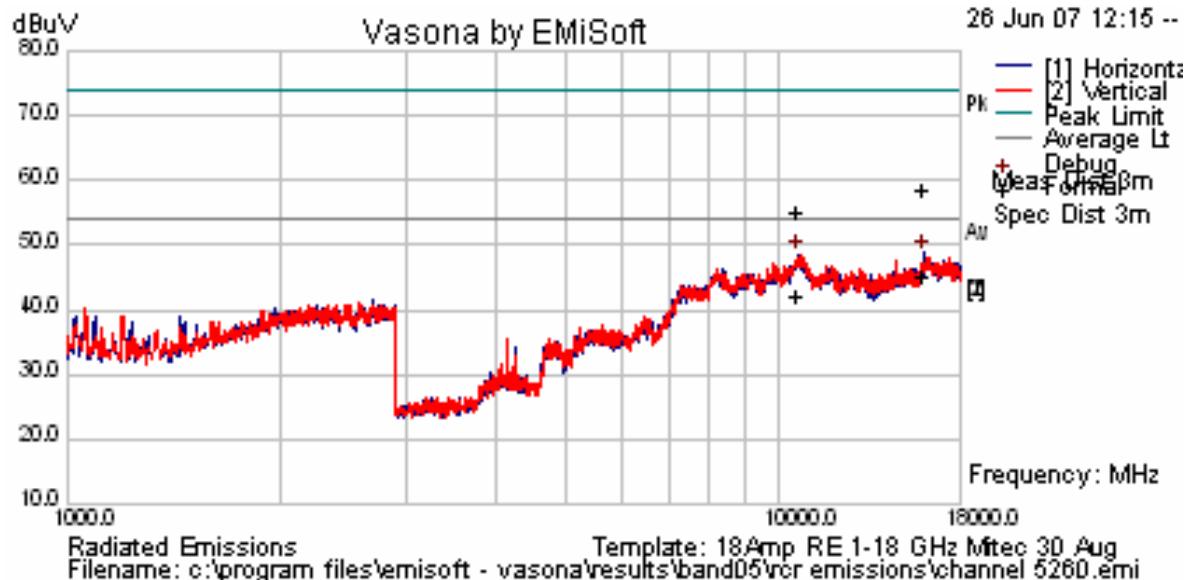

Test Setup - 802.11a
Channel 5,220 MHz

TABLE OF RESULTS –802.11a

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB μ V/m)	Correction Factor (dB)	Corrected Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
					74	
					74	

No emissions were observed within 6 dB of the limit

Radiated Emissions Channel 5220

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limits

15.407 (b)(2). All emissions outside of the 5,150-5,350MHz band shall not exceed an EIRP of -27dBm/MHz.

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

RSS-210 §A9.3(2) For transmitters operating in the 5250-5350 MHz band, all emissions outside the 5150-5350 MHz band shall not exceed -27 dBm/MHz e.i.r.p. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band shall not exceed out of band emission limit of 27 dBm/MHz e.i.r.p. in the 5150-5250 MHz band in order to operate indoor/outdoor, or alternatively shall comply with the spectral power density for operation within the 5150-5250 MHz band and shall be labeled "for indoor use only".

RSS-Gen §4.7 The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz , whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

RSS-Gen §6 Receiver Spurious Emission Standard

If a radiated measurement is made, all spurious emissions shall comply with the limits of the following Table. The resolution bandwidth of the spectrum analyzer shall be 100 kHz for spurious emission measurements below 1.0 GHz and 1.0 MHz for measurements above 1.0 GHz

Frequency (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 47 of 60

Laboratory Measurement Uncertainty for Radiated Emissions

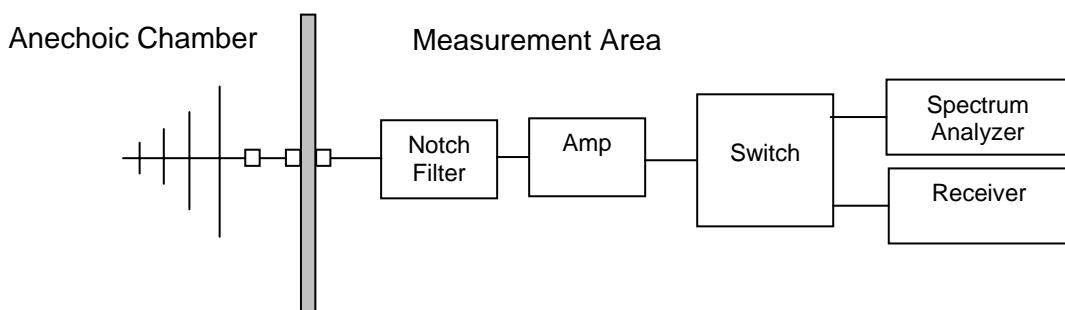
Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.7.4. Radiated Spurious Emissions (30M-1 GHz)


FCC, Part 15 Subpart C §15.407(b)(6); §15.205(a); §15.209(a)
Industry Canada RSS-210 §2.2

Test Procedure

Preliminary radiated emissions are measured in the anechoic chamber at a 10-meter distance on every azimuth in both horizontal and vertical polarity. The emissions are recorded with a spectrum analyzer in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The maximum three transmitters were operated during testing of emissions 30M – 1GHz

Test Measurement Set up

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 49 of 60

For example:

Given a Receiver input reading of 51.5dB μ V; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3\text{dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level (}\mu\text{V/m)})$$

$$40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$$

Measurement Results for Spurious Emissions (30 MHz – 1 GHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

EUT parameters.

Data Rate(s): 802.11a 54 MBit/s

 Radiated Emissions 30M – 1GHz

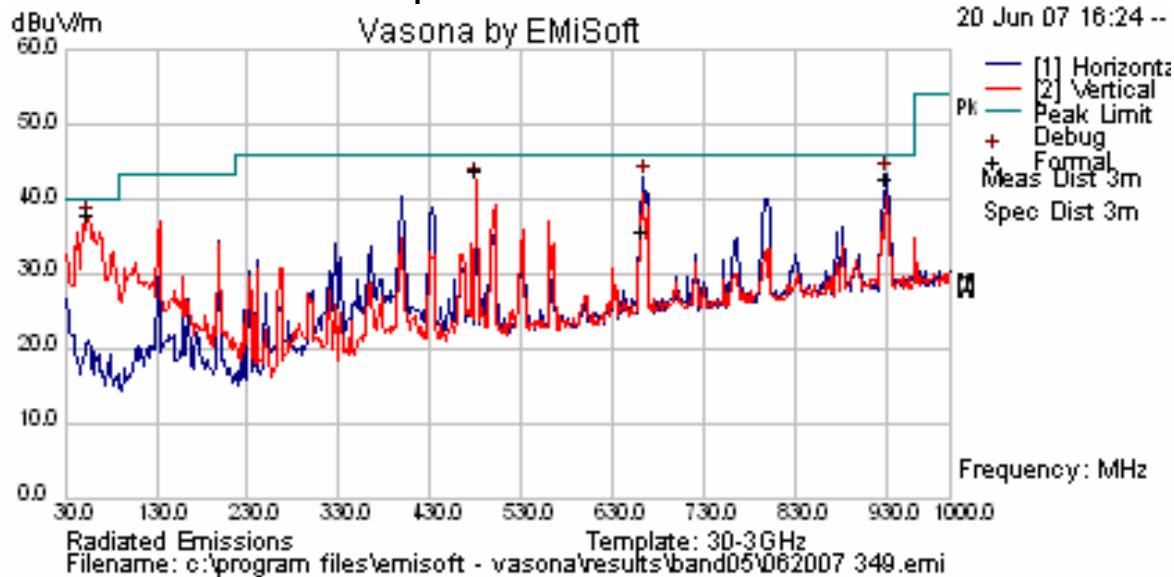
 3 x Transmitters at full power

 1.. 5180 MHz 54 Mbit/s

 2.. 5220 MHz 54 Mbit/s

 3.. 5240 MHz 54 Mbit/s

Power Level: Maximum



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS

Freq. (MHz)	Peak (dBuV/m)	QP (dBuV/m)	QP Lmt (dBuV/m)	QP Margin (dB)	Angle (deg)	Height (cm)	Polarity
54.941	37.29	36.2	40	-3.8	51	99	V
479.995	42.54	42.2	46	-3.8	211	106	V
663.074	42.82	33.97	46	-12.03	318	98	V
928.264	43.38	40.9	46	-5.1	256	173	H

Radiated Spurious Emissions 30 MHz to 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 51 of 60

Specification

Limits

§15.407(b)(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209.

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

RSS-210 §2.2 refers to Section 2.7 Table 2 below;-

Frequency(MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

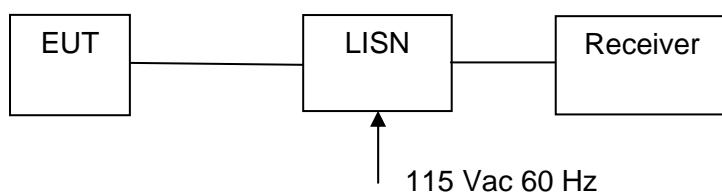
Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per Sanmina work instruction	8546A HP Receiver and RF Filter, HP Pre-amp, Antenna EMCO Biconilog

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.8. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

FCC, Part 15 Subpart C §15.407(b)(6)/15.207
Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions.

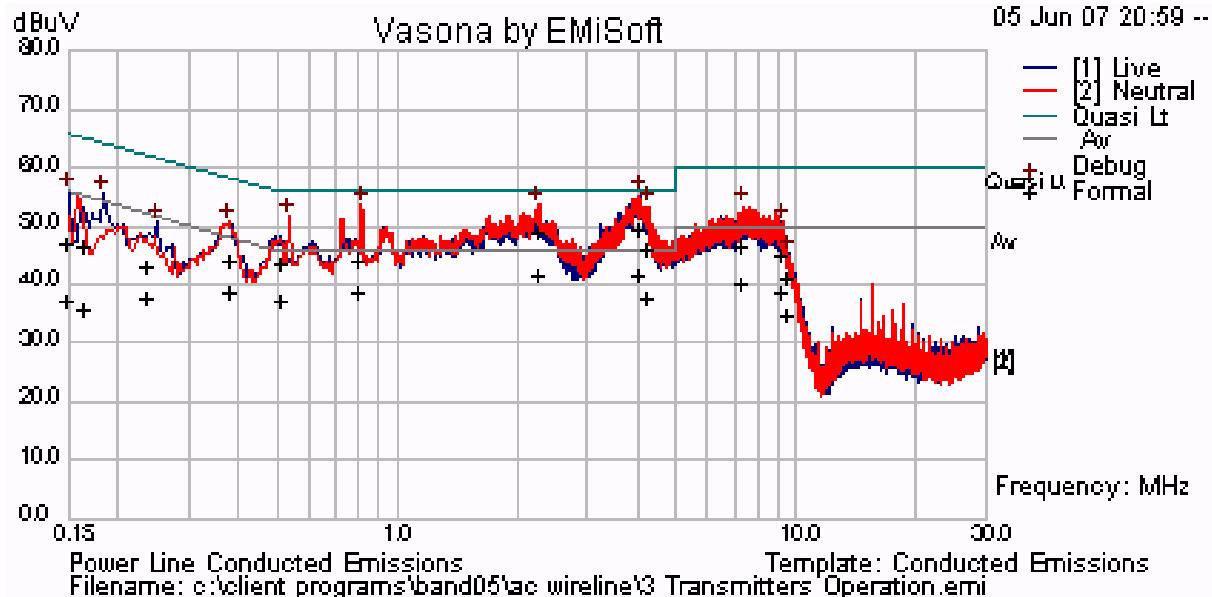
Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

AC Wireline Emissions 115Vac 60Hz

3 x Transmitters at full power

1..	5180 MHz 54 Mbit/s
2..	5220 MHz 54 Mbit/s
3..	5240 MHz 54 Mbit/s

Transmitter Power Level: Maximum



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – Live Line

Freq (MHz)	Line	Peak (dB μ V)	QP (dB μ V)	QP Limit (dB μ V)	QP Margin (dB)	Ave. (dB μ V)	Ave. Limit (dB μ V)	Ave. Margin (dB)
0.150	Live	56.15	44.89	66	-21.11	34.80	56	-21.20
0.166	Live	55.55	43.99	65.15	-21.16	33.47	55.15	-21.68
0.240	Live	50.76	40.54	62.09	-21.55	35.36	52.09	-16.73
0.387	Neutral	50.68	41.74	58.12	-16.38	36.29	48.12	-11.82
0.517	Neutral	51.59	41.49	56	-14.51	34.99	46	-11.01
0.815	Neutral	53.57	41.70	56	-14.30	36.39	46	-9.61
2.275	Neutral	53.60	46.52	56	-9.48	39.23	46	-6.77
4.073	Live	55.31	47.11	56	-8.89	39.29	46	-6.71
4.262	Neutral	53.29	43.55	56	-12.45	35.61	46	-10.39
7.345	Neutral	53.37	44.11	60	-15.89	37.58	50	-12.42
9.243	Live	50.74	42.63	60	-17.37	36.22	50	-13.78
9.543	Live	45.31	38.64	60	-21.36	32.27	50	-17.73

AC Wireline Conducted Emissions –150 kHz – 30 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 54 of 60

Specification

Limit

§15.407 (b)(6); Any U-NII devices using an AC power line are required to comply also with the limits set forth in Section 15.207.

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

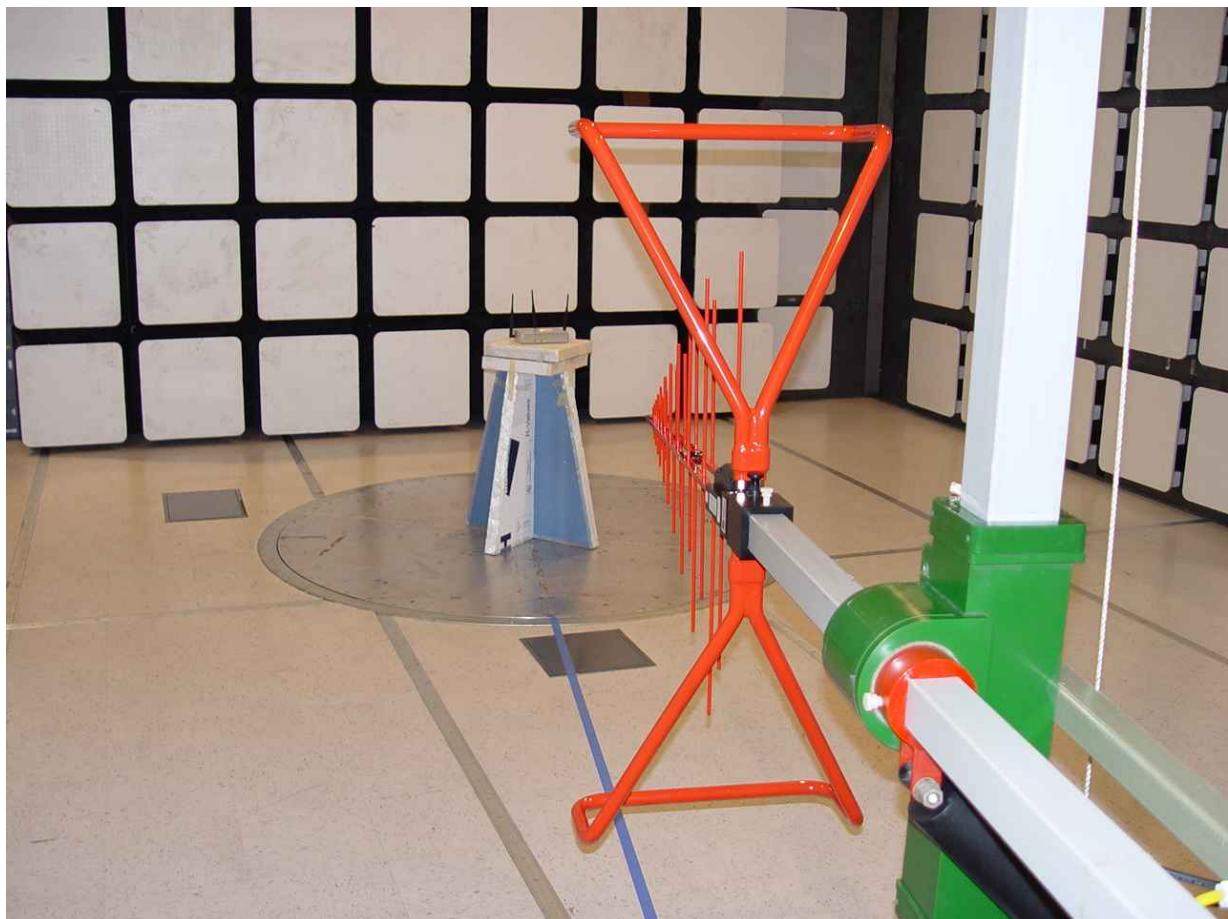
The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

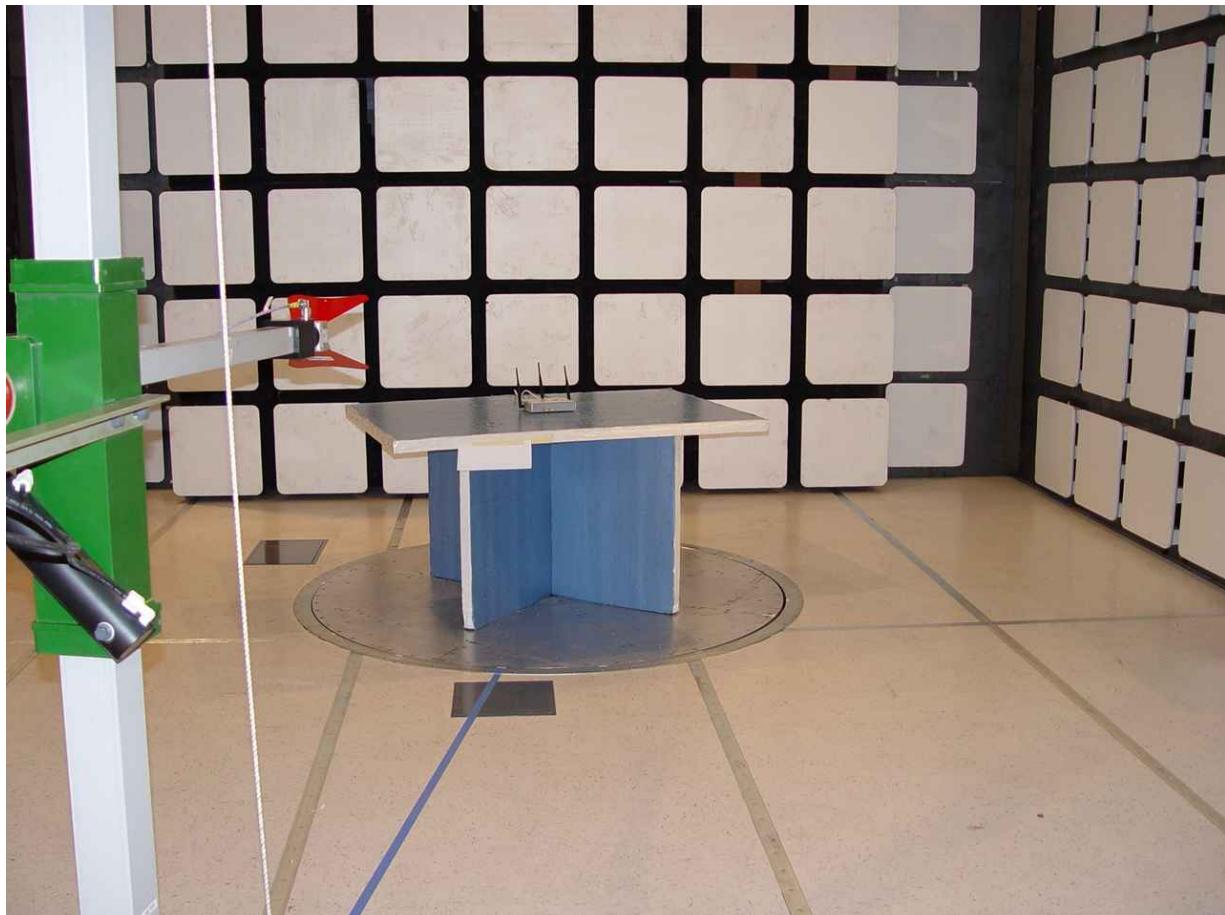
Measurement uncertainty	± 2.64 dB
-------------------------	---------------


Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0193, 0190, 0293, 0307

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6. PHOTOGRAPHS


6.1. Radiated Emissions (30 MHz-1 GHz)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2. Spurious Emissions >1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.3. Conducted Emissions (150 kHz - 30 MHz)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.4. General Measurement Test Set-Up

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Bandspeed 3100AG 802.11 Wireless AP
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: BAND07-A2 Rev A
Issue Date: 25th October 2007
Page: 59 of 60

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0088	Spectrum Analyzer	Hewlett Packard	8564E	3410A00141
0134	Amplifier	Com Power	PA 122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2846
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007
0252	SMA Cable	Megaphase	Sucoflex 104	None
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787-3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181-3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwartz	ESH3Z5	836679/006
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0301	5.6 GHz Notch Filter	Micro-Tronics	RBC50704	001
0302	5.25 GHz Notch Filter	Micro-Tronics	BRC50703	002
0303	5.8 GHz Notch Filter	Micro-Tronics	BRC50705	003
0304	2.4GHzHz Notch Filter	Micro-Tronics	--	001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002
0335	1-18GHz Horn Antenna	ETS- Lindgren	3117	00066580
0337	Amplifier	MiCOM Labs	--	--
0338	Antenna	Sunol Sciences	JB-3	A052907

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

440 Boulder Court, Suite 200
Pleasanton, CA 94566, USA
Tel: 1.925.462.0304
Fax: 1.925.462.0306
www.micomlabs.com